30,407 research outputs found

    Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity

    Get PDF
    We explored the feature extraction techniques for Bayesian assessment of EEG maturity of newborns in the context that the continuity of EEG is the most important feature for assessment of the brain development. The continuity is associated with EEG “stationarity” which we propose to evaluate with adaptive segmentation of EEG into pseudo-stationary intervals. The histograms of these intervals are then used as new features for the assessment of EEG maturity. In our experiments, we used Bayesian model averaging over decision trees to differentiate two age groups, each included 110 EEG recordings. The use of the proposed EEG features has shown, on average, a 6% increase in the accuracy of age differentiation

    Comparing EEG patterns of actual and imaginary wrist movements - a machine learning approach

    Get PDF
    Our goal is to develop an algorithm for feature extraction and classification to be used in building brain-computer interfaces. In this paper, we present preliminary results for classifying EEG data of imaginary wrist movements. We have developed an algorithm based on the spatio-temporal features of the recorded EEG signals. We discuss the differences between the feature vectors selected for both actual and imaginary wrist movements and compare classification results

    Extraction of features from sleep EEG for Bayesian assessment of brain development

    Get PDF
    Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy

    EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features

    Full text link
    Riemannian geometry has been successfully used in many brain-computer interface (BCI) classification problems and demonstrated superior performance. In this paper, for the first time, it is applied to BCI regression problems, an important category of BCI applications. More specifically, we propose a new feature extraction approach for Electroencephalogram (EEG) based BCI regression problems: a spatial filter is first used to increase the signal quality of the EEG trials and also to reduce the dimensionality of the covariance matrices, and then Riemannian tangent space features are extracted. We validate the performance of the proposed approach in reaction time estimation from EEG signals measured in a large-scale sustained-attention psychomotor vigilance task, and show that compared with the traditional powerband features, the tangent space features can reduce the root mean square estimation error by 4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291

    PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    Get PDF
    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    EEG analysis – automatic spike detection

    Get PDF
    In the diagnosis and treatment of epilepsy, an electroencephalography (EEG) is one of the main tools. However visual inspection of EEG is very time consuming. Automatic extraction of important EEG features saves not only a lot of time for neurologist, but also enables a whole new level for EEG analysis, by using data mining methods. In this work we present and analyse methods to extract some of these features of EEG – drowsiness score and centrotemporal spikes. For spike detection, a method based on morphological filters is used. Also a database design is proposed in order to allow easy EEG analysis and provide data accessibility for data mining algorithms developed in the future
    corecore