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Abstract

Brain development can be evaluated by experts analysing age-related patterns in sleep

electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect

the evaluation accuracy as well as experts’ agreement. The knowledge of predictive poste-

rior distribution allows experts to estimate confidence intervals within which decisions are

distributed. Bayesian approach to probabilistic inference has provided accurate estimates of

intervals of interest. In this paper we propose a new feature extraction technique for Bayes-

ian assessment and estimation of predictive distribution in a case of newborn brain develop-

ment assessment. The new EEG features are verified within the Bayesian framework on a

large EEG data set including 1,100 recordings made from newborns in 10 age groups. The

proposed features are highly correlated with brain maturation and their use increases the

assessment accuracy.

Introduction

Expert evaluation of brain development is mainly carried out by analysing age-related patterns

in sleep electroencephalograms (EEG), represented by different characteristics such as waves,

amplitude distributions, and variations over sleep stages, that reflect the non-stationary nature

of EEG, see e.g. [1, 2]. For quantitative analysis, EEG data are split into segments within which

changes are not significant and EEG can be considered as quasi-stationary signals. The dura-

tion of such intervals is typically between 2 and 20 sec, [1, 3].

Despite the wide variability of sleep EEG, there have been identified patterns for newborns

at different post-conception weeks (ages), that allow experts to evaluate EEG maturity with the

accuracy of ±1 week, see e.g. [3, 4]. When brain development is normal, the EEG evaluation

typically matches the newborn’s age, whilst in pathological cases the EEG evaluation mis-

matches the age. The results of evaluations however can be heavily affected by EEG artefacts,

noise as well as by the variability of the age-related patterns.

One of important patterns for EEG evaluation is the discontinuity that is represented by

amplitude and frequency changes. An EEG pattern is defined discontinuous if an interval

with a voltage above the normal value is interchanged with a period of a low voltage. The dis-

continuity in EEG of newborns between 28 and 30 weeks contains high-amplitude bursts
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visible as waves of mixed frequencies. These bursts are interchanged by long low-voltage

periods. After 30 weeks, the variability of amplitudes decreases and periods of an uninter-

rupted EEG activity become longer, and the discontinuity is progressively decreased, see e.g.

[3, 5, 6]

In practice of EEG evaluation, reference guidances have not been established as the discon-

tinuity is difficult to measure quantitatively, see e.g [7]. Automated estimation of the disconti-

nuity has been attempted with a threshold segmentation technique proposed in [8]. However,

a threshold required for such segmentation is heavily dependent on EEG characteristics that

widely vary between patients as well as during sleep hours.

Adaptive segmentation has been proposed in order to find pseudo-stationary intervals in

EEG, suitable for representation and evaluation, see e.g. [9–12]. A technique that is based

on such segmentation has been proposed in [13] to extract a discontinuity feature from

sleep EEG. Within this technique detected pseudo-stationary intervals were used for esti-

mating the average amplitudes which then form an Amplitude Vector (AV). Statistics

derived from distributions of AV were found correlated with the EEG maturation of new-

borns between 25 and 35 weeks post-conception. However, these statistics varied largely

between patients.

An alternative approach, proposed in our previous work [14], aimed at estimating the EEG

discontinuity as a rate of pseudo-stationary segments. This technique detected EEG intervals

within which the statistics of spectra powers were changed insignificantly. The calculated sta-

tistics were compared in adjacent intervals of EEG. The new feature was correlated with new-

born age and shown to be capable of increasing the accuracy of classification between pre-

term and full-term newborns, respectively.

The above work was undertaken within a methodology of Bayesian Model Averaging

(BMA) aimed at estimating the full predictive posterior probability distribution that is

required for accurate estimation of uncertainty intervals, see e.g. [15]. The use Decision Tree

(DT) models within BMA provides selection of predictors that are important for classification,

see e.g. [16, 17]. DT models provide experts with new insights into data and interpretation of

decision making. A single DT model can be selected for interpretation purposes as shown in

our work [18].

The Bayesian averaging over DT models is practically implemented with the Markov Chain

Monte Carlo (MCMC) method aimed at exploring a posterior density of model parameters by

making random walk proposals, see e.g. [17, 19]. The MCMC methods have been recently

applied for modelling and simulation problems in biomedicine, see e.g. [20, 21] including

Bayesian analysis of EEG [22].

In this paper we explore the EEG discontinuity feature used along with the spectral power

characteristics within the Bayesian classification of newborn development in 10 age groups

between 36 and 45 weeks. The proposed technique is compared with the conventional discon-

tinuity techniques [8, 13] based on the threshold and adaptive segmentations in terms of corre-

lation with newborn age, classification accuracy and uncertainty. We also compare our

technique with the adaptive segmentation [10] that is based on autoregressive modelling.

The rest of the paper is structured as follows. We discuss the techniques of extracting EEG

discontinuity features and describe a new approach. Then we describe our methodology and

experiments and explore the correlation of the conventional and new discontinuity features

with newborn brain maturity. We show that the new features are more strongly correlated

with brain maturation. We also compare the new features for Bayesian classification of EEG

obtained in 10 age groups in terms of age classification accuracy. Finally we show that the new

features provide more accurate assessments of EEG maturation. The S1 Appendix provides

details of the Bayesian method.

EEG features for assessment of brain development
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Extraction of EEG features

In this section we analyse the feature extraction methods based on adaptive segmentation, that

were developed for detecting boundaries of pseudo-stationary EEG intervals. Finally we

describe our approach to feature extraction.

Adaptive segmentation for extracting EEG features

In [9], boundaries of quasi-stationary intervals in a signal x(n) are detected by using an autore-

gressive (AR) model given with parameters ω for modelling homogeneous parts of the signal

x. It has been shown that changes in parameters ω that are adjusted to different intervals define

boundaries of interest. A given AR model generates the outcome ŷðn;oÞ as follows

ŷðn;oÞ ¼
Xp

k¼1

oðkÞxðn � kÞ � xðnÞ; ð1Þ

where ω(k) are the coefficients and p is the order of AR model.

Signal x(n) is modelled in the reference and test windows. The modelling errors

eðnÞ ¼ ŷðnÞ � xðnÞ are hypothesised to be a white noise process on a homogeneous part of x(n).

Based on the above approach, the errors e(n) calculated in a window are hypothesised to be

distributed as white noise. Such a hypothesis is tested with Z-statistic as describe in [10]. The

overall Z-statistic is combined over the reference, R, and test, T, windows as follows

Z ¼ ZðIjJÞ þ ZðJjIÞ; ð2Þ

where Z(I|J) are the statistics of cross-validation errors calculated for windows I 2 {T, R} and

J 6¼ I.
The statistics Z(I|J) are defined as follows

ZðIjJÞ ¼
1

2NI

XNI

n¼1

eIðnÞ
2

s2
J

� 1

� ��
�
�
�
�

�
�
�
�
�
; ð3Þ

where NI is the size of window I, eI(n)2 is the residual error, and s2
J is the variance of estimated

noise in the window J.
The cross-validation error eI(n)2 in Eq 3 is calculated for an AR model with coefficients ωJ

fitted to the window J, so that eI(n)2 is

eIðnÞ
2
¼ ðŷ Iðn;oJÞ � xIðnÞÞ

2
: ð4Þ

In the above Eq 3 the variance s2
J is calculated for an AR model with parameters ωJ, so that

s2
J :

s2
J ¼

1

NJ � p

XNJ

n¼pþ1

ðŷ Jðn;oJÞ � xJðnÞÞ
2
: ð5Þ

The Z-statistic defined in Eq 2 is calculated for each pair of the reference and test windows

and then compared with a critical value, Zcr. For EEG signals, Zcr is found empirically.

A similar approach was adopted in [13, 23] for extracting EEG features. In particular, the

adaptive segmentation is used for generating an amplitude vector, proposed in [13], in order

to extract the discontinuity feature.

The above techniques were implemented for our experiments as Matlab scripts included in

the Supporting Information.

EEG features for assessment of brain development
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Extraction of discontinuity feature from amplitude vector

According to [13], the discontinuity feature is extracted from an amplitude vector (AV) gener-

ated from a segmented EEG as follows. First, the mean μi of absolute amplitudes is computed

for each pseudo-stationary segment, i = 1, 2, . . ., including Li samples. The value μi is then

repeated Li times. For examples, given Li = 600, the value μi is repeated 600 times. At the sec-

ond step, a distribution of the generated AV is estimated and then approximated with a log-

normal distribution. Finally, the location μ and scale σ of this distribution represent the fea-

tures of interest.

Fig 1 illustrates how discontinuity features are changed during sleep of a newborn at age of

44 weeks. Here the feature is represented by a location μ and a scale σ computed in a 10-min

window sliding with a 1-min step over a 120-min recording. The intervals between 10 and 40

min as well as between 80 and 110 min, identified as the quiet sleep phase, are with a high dis-

continuity value. In contrast, the active phase, that is between 40 and 80 min as well as between

110 and 120 min, is with a low discontinuity value.

Proposed feature extraction technique

In [24], a technique proposed for estimating the stationarity of EEG signals has employed the

spectral density function calculated in two separate intervals. The spectral densities estimated

in these intervals are then compared within a 2-sample Kolmogorov-Smirnov (KS) test. This

technique was used to estimate the stationarity of intervals when their lengths varied between

1 and 64 sec.

A similar approach, based on a statistical test, is adopted in our technique in order to extract

the discontinuity feature. The proposed technique based on the Spectral Power Statistics (SPS)

is described below.

Algorithm 1 describes the main steps of the proposed segmentation technique. The refer-

enceW1 and testW2 windows are sliding along a signal X. The length of both windows is

given by L. For each position of the windowsW1 andW2, Fast Fourier Transform (FFT)

Fig 1. Amplitude variability over sleep stages. a) A 120-min sleep EEG recorded from a newborn at age of 44 weeks, b) μ (Red) and σ
(Black) are the parameters of the distribution of AV extracted from EEG.

https://doi.org/10.1371/journal.pone.0174027.g001
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computes the spectral powers S1 and S2 within a given frequency band S. These powers are

used for testing a hypothesis that EEG signals in the reference and test windows are from the

same quasi-stationary process within a given critical level d0.

For given signal X, length L, band S, and value d0, the Algorithm 1 finds boundaries of inter-

est and returns their indexes as a vector T. At lines 9 and 10 the indexes of referenceW1 and

testW2 windows are assigned. At the next lines 11 and 12, the spectral powers S1 and S2 are cal-

culated for windowsW1 andW2, respectively. If a distance d of the KS test exceeds the critical

value d0, the EEG signals in windowsW1 andW2 have different characteristics, and the line 15

assigns a boundary of the pseudo-stationary segment to the output vector T.

In our experiments we achieved the best segmentation with the following parameters:

length L = 200 samples, that is a 2-sec duration given a sampling frequency F = 100 Hz, a value

d0 = 0.15, and a frequency band S = (0, 13.5) Hz. Given F = 100 Hz, the band S is represented

by 28 spectral lines that is a sufficient sample size for the statistical KS test.

Algorithm 1 Adaptive segmentation using Spectral Power Statistics

1: Inputs:X, L, S, d0
2: Initialise:
3: i1 1 ▷ Referencewindowindex
4: i2 i1 + L ▷ Test windowindex
5: L1 L − 1
6: K floor(length(X)/L)− 1 ▷ Numberof segments
7: T[1, K] 0 ▷ Segmentationvector
8: for k 1, K do
9: W1 [i1, i1 + L1] ▷ Referencewindow
10: W2 [i2, i2 + L1] ▷ Test window
11: S1 Sum(FFT(X(W1)), S) ▷ Spectralpowers
12: S2 Sum(FFT(X(W2)), S)
13: d StatTest(S1, S2) ▷ Statisticaltest
14: if d > d0 then
15: T[k] i2 ▷ A new segmentboundary
16: end if
17: i1 i1 + L ▷ Movingwindows
18: i2 i2 + L
19: end for
20: returnT

New discontinuity feature

Having recorded the locations of segment boundaries in the vector T, we can consider a rate of

pseudo-stationary intervals as a discontinuity feature and introduce a segmentation rate, sr, as

follows:

sr ¼ K
k X k
L

� �� 1

; ð6Þ

where K is the number of pseudo-stationary segments detected in a signal X and stored in T,
kXk
L

� �
is the maximal number of segments that can be detected in signal X by using a window of

length L, and kXk is the length of X.

According to Eq 6, the larger the sr value, the larger is the number K of segments and, there-

fore, higher is the discontinuity of sleep EEG. Fig 2 shows the results of the proposed segmen-

tation technique, where the boundaries of pseudo-stationary segments are labelled by the

vertical bars in Red. The sr is higher for the EEG recorded at 36 and 38 weeks, shown on plots

EEG features for assessment of brain development
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a) and b). For the EEG recorded at 41 weeks shown on plots (c) and (d), the variations in EEG

activity are smaller and so segment rate sr is decreased.

Experiments with EEG data

In this section we present results of our experiments on the EEG data recorded during sleep

hours from newborns in 10 age groups. We explore the correlation of the proposed disconti-

nuity feature with the newborn ages. Finally we compare the proposed and existing disconti-

nuity features in terms of classification and uncertainty estimation accuracy.

Description of EEG data

In our experiments we used 1,110 EEG recorded from newborns in 10 age groups from 36 to

45 weeks, with approximately 100 recordings in a group. The data were recorded during the

Fig 2. Segmentation results. Segment rates, sr, for different EEG patterns: a) discontinuous pattern at 36 weeks, b) semi-discontinuous

pattern at 38 weeks, c) and d) continuous patterns at 41 weeks.

https://doi.org/10.1371/journal.pone.0174027.g002
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project on automated EEG assessment of newborn brain development, see e.g. [25, 26], con-

ducted at the University of Jena, Germany.

The recordings were made with the C3-T3 and C4-T4 electrodes with a sampling rate

F = 100 Hz. The electrodes were positioned according to the standard 10–20 electrode system.

Raw EEG were filtered to remove slow drifts with frequencies below 0.1 Hz and noise along

with high-frequency interference above 30 Hz. The EEG segments with amplitudes that

exceeded a threshold found as ±1.5 standard deviation of amplitudes in a 2-min sliding win-

dow were removed as artefacts. Segments with the spectral power below 10% of the average

power were also removed as “lost” signal. The average rate of artefacts was around 20%.

The EEG were analysed in the standard frequency bands that are typically used for analysis

of sleep EEG. Table 1 shows the six standard bands and their frequency ranges.

Methodology of experiments

The above data were used in our experiments for comparison of the proposed and existing

techniques described in the previous section. The features extracted from segmented EEG

were compared, first, in terms of correlation with newborn ages and, second, in terms of accu-

racy of age classification and uncertainty estimation.

Correlation with brain development. The AR model based segmentation technique

described in the above section was run with the reference and test windows being set with

2-sec duration and a 2-sec moving step similar to the SPS technique. In our experiments we

applied Zcr 2 (4.0, 9.0) and obtained almost the same correlation with ages, ρ� 0.60.

A threshold (TR) segmentation technique, proposed in [8], calculates a difference, dk:

dk ¼ max
1�n�N

ðxnÞ � min
1�n�N

ðxnÞ; k ¼ 1; . . . ;K;

where N is the number of EEG samples in the kth interval of 2-sec duration, and K is the num-

ber of the intervals in EEG.

Differences dk are calculated for all K intervals and then compared with a threshold d0 2

{25, 50}μV:

dk � d0

> 0; Tk ¼ 1; continuity;

� 0; Tk ¼ 0; discontinuity:

(

ð7Þ

Then, finally, a ratio of the continuous intervals,
PK

k¼1
ðTkjTk ¼ 1Þ=K, is considered as a dis-

continuity feature along with the segmentation vector T. If Tk + 1 6¼ Tk, then a boundary is

assigned between segments k and k + 1, otherwise the segments are considered to be similar.

Table 1. EEG frequency bands.

# Band Range, Hz

1 Subdelta 0–1.5

2 Delta 1.5–3.5

3 Theta 3.5–7.5

4 Alpha 7.5–13.5

5 Beta1 13.5–19.5

6 Beta2 19.5–25

Standard frequency bands for analysis of sleep EEG.

https://doi.org/10.1371/journal.pone.0174027.t001
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The proposed SPS technique was run with the reference and test windows of 2-sec duration,

each including L samples. The windows were set to be moving with a 2-sec step. The frequency

band S, in the Algorithm 1 was set in the range (0, 13.5) Hz, that includes the standard bands

Subdelta to Alpha, shown in Table 1. The critical value d0 for the KS test was given 0.15. This

value enabled the algorithm to assign a segment boundary if the spectral powers S1 and S2, that

are considered to be sampled from the same stationary process, are different with a p-value,

p< 0.9.

Classification of EEG maturity. In experiments we used Bayesian method to compare

the assessment accuracy that can be obtained with the proposed and conventional EEG fea-

tures. Bayesian methods are known for accurate estimation of predictive posterior probabil-

ities, Pij, for each input i and each class j. This enables practitioners to reliably estimate the

uncertainty intervals for each patient. The S1 Appendix provides details of the Bayesian

method.

The above predictive posterior probabilities are calculated in our experiments with different

feature extraction techniques in order to estimate and compare uncertainties of age classifica-

tion. Following [27], the uncertainty is estimated in terms of Entropy, E, as follows

E ¼ �
XT

i¼1

XC

j¼1

Pijlog2ðPijÞ; ð8Þ

where T is the size of test data that are used for analysing the predictive accuracy, and C = 10 is

the number of age groups.

The EEG were recorded from newborns in 10 age groups between 36 and 45 weeks. Each

group was represented by approximately 100 EEG recordings. Because of physiological vari-

ability, sleep EEG are difficult to distinguish, and assessments are made within ±1 week of the

post-conceptual age. The accuracy of such assessment provided by EEG experts, known from

[4], is 65.0%, that is the baseline for our comparison.

Experimental results

Table 2 shows performances of the SPS, AR and TR segmentation techniques in terms of cor-

relation observed between the extracted features and post-conceptional ages. The correlation

was estimated with Spearaman’s rank correlation coefficient, ρ. The columns AVμ and AVσ
show correlations ρ obtained by the AV technique when the EEG were segmented by the SPS,

AR and TR techniques. The results achieved with the TR techniques were obtained for 25μV
and 50μV threshold and denoted TR(25) and TR(50), respectively.

The columns AVμ and AVσ in Table 2 show the correlation obtained with the location μ
and scale σ, that were estimated by the AV technique, respectively. The last column, sr,

Table 2. Correlation of EEG features.

Segmentation technique Correlation, ρ
AV μ AV σ sr

SPS 0.384 0.113 −0.734

AR 0.385 0.093 -0.598

TR(25) 0.378 0.099 -0.293

TR(50) 0.384 0.223 0.245

Correlation, ρ, of the extracted EEG features with post-conceptional age.

https://doi.org/10.1371/journal.pone.0174027.t002
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shows the results obtained with the feature sr, defined by Eq 6, for all the segmentation

techniques.

In Table 2 we see that the proposed SPS technique has extracted the new feature with the

strongest correlation, ρ = −0.734. The second result, ρ = −0.598, was obtained with the AR seg-

mentation technique. The TR(50) techniques, applied for segmentation with a 50μV threshold,

provided the weakest correlation, ρ = 0.245. At the same time, the ratios of segments with EEG

activity exceeding a given threshold are correlated with age, delivering ρ = 0.344 and ρ = 0.302

for 25μV and 50μV thresholds, respectively. All results were statistically significant with p-

value, p< 0.01.

Observing the correlations ρ in the column sr, we see that the rates of segments are

decreased with post-conceptional age for the SPS, AR, and TR(25) techniques, and ρ< 0. For

the TR(50) segmentation with a 50μV threshold the tendency is opposite and ρ> 0. This can

be explained by a higher EEG activity allowed in segments that reflects the fact of increasing

EEG activity with newborn age. Fig 3 shows the correlation between newborn age and sr
obtained with the proposed SPS and AR techniques.

Table 3 shows the performance, P, and entropy E, calculated by Eq 8, for the Bayesian classi-

fication using EEG features extracted with the SPS, AR, and AV techniques.

The average performance and 2σ intervals were calculated within the 10-fold cross valida-

tion. We observe that the average performance of the SPS technique is 69.2% that is higher

than that provided by the AR techniques. Moreover, the new feature provides a smaller classifi-

cation uncertainty, giving an entropy E = 199.3.

Conclusion

EEG discontinuity is known in the literature as an important feature for evaluating brain

development of newborns in weeks between 28 and 42 weeks of post-conceptional age. The

conventional approach is based on discontinuity features that can be extracted from seg-

mented EEG.

In our research we found that the discontinuity features, extracted within the existing

approaches, become weakly correlated with brain maturity at 36 and 45 weeks, that affects the

assessment accuracy. This observation inspires us to assume that more accurate results can be

achieved with a new discontinuity feature estimated as a rate of pseudo-stationary intervals

which can be detected by a new adaptive segmentation technique. We hypothesised that such a

feature will be more strongly correlated with brain maturation. Our assumption was based on

the observation that during brain development the continuous EEG patterns become longer,

while the discontinuous patterns become shorter, and this increases a correlation between the

proposed feature and age-related changes.

The proposed and conventional features were compared on the EEG data recorded from

newborns in 10 age groups from 36 to 45 weeks. In our experiments we found that the new fea-

tures provide a stronger correlation with ages. The new EEG features were explored within the

Bayesian assessment of brain development. The new features have improved the assessment

accuracy achieving 69.2%, whilst the accuracy of the baseline expert evaluation known from

the literature is 65.0%. The existing feature extraction techniques were incapable of exceeding

the baseline accuracy.

It is also important to note that predictive distributions generated by the Bayesian method

are used to provide an accurate approximation of uncertainty intervals within which a predic-

tion is distributed. This becomes critically important when technologies assist practitioners to

avoid fatal errors.

EEG features for assessment of brain development
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Fig 3. Correlation of the sr features extracted by the SPS and AR techniques. The circles represent sr

values calculated for an EEG recording. The squares represent the median, and the dashed lines denote the

25th and 75th percentiles.

https://doi.org/10.1371/journal.pone.0174027.g003
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Supporting information
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