2,481 research outputs found

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc

    Performance Measure That Indicates Geometry Sufficiency of State Highways: Volume II—Clear Zones and Cross-Section Information Extraction

    Get PDF
    Evaluation method employed for the proposed corridor projects by Indiana Department of Transportation (INDOT) consider road geometry improvements by a generalized categorization. A new method which considers the change in geometry improvements requires additional information regarding cross section elements. Part of this information is readily available but some information like the embankment slopes and obstructions near traveled way needs to be acquired. This study investigates available data sources and methods to obtain cross-section and clear zone information in a feasible way for this purpose. We have employed color infrared (CIR) orthophotos, LiDAR point clouds, digital elevation and surface models for the extraction of the paved surface, average grade, embankment slopes, and obstructions near the traveled way like trees and man-made structures. We propose a framework which first performs a support vector machine (SVM) classification of the paved surface, then determines the medial axis and reconstructs the paved surface. Once the paved surface is obtained, the clear zones are defined and the features within the clear zones are extracted by the classification of LiDAR point clouds. SVM classification of the paved surface from CIR orthophotos in the study area results with a classification accuracy over 90% which suggests the suitability of high resolution CIR images for the classification of paved surface via SVM. A total of 21.3 miles of relevant road network has been extracted. This corresponds to approximately 90% of the actual road network due to missing parts in the paved surface classification results and parts which were removed during cleaning, simplification and generalization process. Branches due to connecting driveways, adjacent parking lots, etc. were also extracted together with the main road alignment as by-product. This information may also be utilized if found necessary with further effort to filter out irrelevant pieces that do not correspond to any actual branches. Based on the extracted centerline and classification results, we have estimated the paved surface as observed on the orthophotos. Based on the estimated paved surface centerline and width, we have generated cross section lines and calculated the side slopes. We have extracted the buildings and trees within the clear-zones that are also defined based on the reconstruction of the paved surface. Among 86 objects detected as buildings, 14% were false positives due to confusion with bridges or trees which present planar structure

    Ash Tree Identification Based on the Integration of Hyperspectral Imagery and High-density Lidar Data

    Get PDF
    Monitoring and management of ash trees has become particularly important in recent years due to the heightened risk of attack from the invasive pest, the emerald ash borer (EAB). However, distinguishing ash from other deciduous trees can be challenging. Both hyperspectral imagery and Light detection and ranging (LiDAR) data are two valuable data sources that are often used for tree species classification. Hyperspectral imagery measures detailed spectral reflectance related to the biochemical properties of vegetation, while LiDAR data measures the three-dimensional structure of tree crowns related to morphological characteristics. Thus, the accuracy of vegetation classification may be improved by combining both techniques. Therefore, the objective of this research is to integrate hyperspectral imagery and LiDAR data for improving ash tree identification. Specifically, the research aims include: 1) using LiDAR data for individual tree crowns segmentation; 2) using hyperspectral imagery for extraction of relative pure crown spectra; 3) fusing hyperspectral and LiDAR data for ash tree identification. It is expected that the classification accuracy of ash trees will be significantly improved with the integration of hyperspectral and LiDAR techniques. Analysis results suggest that, first, 3D crown structures of individual trees can be reconstructed using a set of generalized geometric models which optimally matched LiDAR-derived raster image, and crown widths can be further estimated using tree height and shape-related parameters as independent variables and ground measurement of crown widths as dependent variables. Second, with constrained linear spectral mixture analysis method, the fractions of all materials within a pixel can be extracted, and relative pure crown-scale spectra can be further calculated using illuminated-leaf fraction as weighting factors for tree species classification. Third, both crown shape index (SI) and coefficient of variation (CV) can be extracted from LiDAR data as invariant variables in tree’s life cycle, and improve ash tree identification by integrating with pixel-weighted crown spectra. Therefore, three major contributions of this research have been made in the field of tree species classification:1) the automatic estimation of individual tree crown width from LiDAR data by combining a generalized geometric model and a regression model, 2) the computation of relative pure crown-scale spectral reflectance using a pixel-weighting algorithm for tree species classification, 3) the fusion of shape-related structural features and pixel-weighted crown-scale spectral features for improving of ash tree identification

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Quantifying the urban forest environment using dense discrete return LiDAR and aerial color imagery for segmentation and object-level biomass assessment

    Get PDF
    The urban forest is becoming increasingly important in the contexts of urban green space and recreation, carbon sequestration and emission offsets, and socio-economic impacts. In addition to aesthetic value, these green spaces remove airborne pollutants, preserve natural resources, and mitigate adverse climate changes, among other benefits. A great deal of attention recently has been paid to urban forest management. However, the comprehensive monitoring of urban vegetation for carbon sequestration and storage is an under-explored research area. Such an assessment of carbon stores often requires information at the individual tree level, necessitating the proper masking of vegetation from the built environment, as well as delineation of individual tree crowns. As an alternative to expensive and time-consuming manual surveys, remote sensing can be used effectively in characterizing the urban vegetation and man-made objects. Many studies in this field have made use of aerial and multispectral/hyperspectral imagery over cities. The emergence of light detection and ranging (LiDAR) technology, however, has provided new impetus to the effort of extracting objects and characterizing their 3D attributes - LiDAR has been used successfully to model buildings and urban trees. However, challenges remain when using such structural information only, and researchers have investigated the use of fusion-based approaches that combine LiDAR and aerial imagery to extract objects, thereby allowing the complementary characteristics of the two modalities to be utilized. In this study, a fusion-based classification method was implemented between high spatial resolution aerial color (RGB) imagery and co-registered LiDAR point clouds to classify urban vegetation and buildings from other urban classes/cover types. Structural, as well as spectral features, were used in the classification method. These features included height, flatness, and the distribution of normal surface vectors from LiDAR data, along with a non-calibrated LiDAR-based vegetation index, derived from combining LiDAR intensity at 1064 nm with the red channel of the RGB imagery. This novel index was dubbed the LiDAR-infused difference vegetation index (LDVI). Classification results indicated good separation between buildings and vegetation, with an overall accuracy of 92% and a kappa statistic of 0.85. A multi-tiered delineation algorithm subsequently was developed to extract individual tree crowns from the identified tree clusters, followed by the application of species-independent biomass models based on LiDAR-derived tree attributes in regression analysis. These LiDAR-based biomass assessments were conducted for individual trees, as well as for clusters of trees, in cases where proper delineation of individual trees was impossible. The detection accuracy of the tree delineation algorithm was 70%. The LiDAR-derived biomass estimates were validated against allometry-based biomass estimates that were computed from field-measured tree data. It was found out that LiDAR-derived tree volume, area, and different distribution parameters of height (e.g., maximum height, mean of height) are important to model biomass. The best biomass model for the tree clusters and the individual trees showed an adjusted R-Squared value of 0.93 and 0.58, respectively. The results of this study showed that the developed fusion-based classification approach using LiDAR and aerial color (RGB) imagery is capable of producing good object detection accuracy. It was concluded that the LDVI can be used in vegetation detection and can act as a substitute for the normalized difference vegetation index (NDVI), when near-infrared multiband imagery is not available. Furthermore, the utility of LiDAR for characterizing the urban forest and associated biomass was proven. This work could have significant impact on the rapid and accurate assessment of urban green spaces and associated carbon monitoring and management
    • 

    corecore