6,101 research outputs found

    The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision

    Full text link
    We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu

    Know2Look: Commonsense Knowledge for Visual Search

    No full text
    With the rise in popularity of social media, images accompanied by contextual text form a huge section of the web. However, search and retrieval of documents are still largely dependent on solely textual cues. Although visual cues have started to gain focus, the imperfection in object/scene detection do not lead to significantly improved results. We hypothesize that the use of background commonsense knowledge on query terms can significantly aid in retrieval of documents with associated images. To this end we deploy three different modalities - text, visual cues, and commonsense knowledge pertaining to the query - as a recipe for efficient search and retrieval

    DepthCut: Improved Depth Edge Estimation Using Multiple Unreliable Channels

    Get PDF
    In the context of scene understanding, a variety of methods exists to estimate different information channels from mono or stereo images, including disparity, depth, and normals. Although several advances have been reported in the recent years for these tasks, the estimated information is often imprecise particularly near depth discontinuities or creases. Studies have however shown that precisely such depth edges carry critical cues for the perception of shape, and play important roles in tasks like depth-based segmentation or foreground selection. Unfortunately, the currently extracted channels often carry conflicting signals, making it difficult for subsequent applications to effectively use them. In this paper, we focus on the problem of obtaining high-precision depth edges (i.e., depth contours and creases) by jointly analyzing such unreliable information channels. We propose DepthCut, a data-driven fusion of the channels using a convolutional neural network trained on a large dataset with known depth. The resulting depth edges can be used for segmentation, decomposing a scene into depth layers with relatively flat depth, or improving the accuracy of the depth estimate near depth edges by constraining its gradients to agree with these edges. Quantitatively, we compare against 15 variants of baselines and demonstrate that our depth edges result in an improved segmentation performance and an improved depth estimate near depth edges compared to data-agnostic channel fusion. Qualitatively, we demonstrate that the depth edges result in superior segmentation and depth orderings.Comment: 12 page

    Are Elephants Bigger than Butterflies? Reasoning about Sizes of Objects

    Full text link
    Human vision greatly benefits from the information about sizes of objects. The role of size in several visual reasoning tasks has been thoroughly explored in human perception and cognition. However, the impact of the information about sizes of objects is yet to be determined in AI. We postulate that this is mainly attributed to the lack of a comprehensive repository of size information. In this paper, we introduce a method to automatically infer object sizes, leveraging visual and textual information from web. By maximizing the joint likelihood of textual and visual observations, our method learns reliable relative size estimates, with no explicit human supervision. We introduce the relative size dataset and show that our method outperforms competitive textual and visual baselines in reasoning about size comparisons.Comment: To appear in AAAI 201

    Exploiting Sparse Representations for Robust Analysis of Noisy Complex Video Scenes

    Full text link
    Abstract. Recent works have shown that, even with simple low level visual cues, complex behaviors can be extracted automatically from crowded scenes, e.g. those depicting public spaces recorded from video surveillance cameras. However, low level features as optical flow or fore-ground pixels are inherently noisy. In this paper we propose a novel unsupervised learning approach for the analysis of complex scenes which is specifically tailored to cope directly with features ’ noise and uncer-tainty. We formalize the task of extracting activity patterns as a matrix factorization problem, considering as reconstruction function the robust Earth Mover’s Distance. A constraint of sparsity on the computed basis matrix is imposed, filtering out noise and leading to the identification of the most relevant elementary activities in a typical high level behavior. We further derive an alternate optimization approach to solve the pro-posed problem efficiently and we show that it is reduced to a sequence of linear programs. Finally, we propose to use short trajectory snippets to account for object motion information, in alternative to the noisy optical flow vectors used in previous works. Experimental results demonstrate that our method yields similar or superior performance to state-of-the arts approaches.

    Learning functional object categories from a relational spatio-temporal representation

    Get PDF
    Abstract. We propose a framework that learns functional objectcategories from spatio-temporal data sets such as those abstracted from video. The data is represented as one activity graph that encodes qualitative spatio-temporal patterns of interaction between objects. Event classes are induced by statistical generalization, the instances of which encode similar patterns of spatio-temporal relationships between objects. Equivalence classes of objects are discovered on the basis of their similar role in multiple event instantiations. Objects are represented in a multidimensional space that captures their role in all the events. Unsupervised learning in this space results in functional object-categories. Experiments in the domain of food preparation suggest that our techniques represent a significant step in unsupervised learning of functional object categories from spatio-temporal patterns of object interaction.
    • …
    corecore