3,723 research outputs found

    Aspect-oriented refactoring of Java programs

    Get PDF

    A new search for anomalous neutrino oscillations at the CERN-PS

    Get PDF
    The LSND experiment has observed a 3.8 sigma excess of anti-nu_e events from an anti-nu_mu beam coming from pions at rest. If confirmed, the LSND anomaly would imply new physics beyond the standard model, presumably in the form of some additional sterile neutrinos. The MiniBooNE experiment at FNAL-Booster has further searched for the LSND anomaly. Above 475 MeV, the nu_e result is excluding the LSND anomaly to about 1.6 sigma but it introduces an unexplained, new 3.0 sigma anomaly at lower energies, down to 200 MeV. The nu_e data have so far an insufficient statistics to be conclusive with LSND's anti-nu_e. The present proposal at the CERN-PS is based on two strictly identical LAr-TPC detectors in the near and far positions, respectively at 127 and 850 m from the neutrino (or antineutrino) target and focussing horn, observing the electron-neutrino signal. This project will benefit from the already developed technology of ICARUS T600, well tested on surface in Pavia, without the need of any major R&D activity and without the added problems of an underground experiment (CNGS-2). The superior quality of the Liquid Argon imaging TPC and its unique electron - pi-zero discrimination allow full rejection of the NC background, without efficiency loss for electron neutrino detection. In two years of exposure, the far detector mass of 600 tons and a reasonable utilization of the CERN-PS with the refurbished previous TT7 beam line will allow to collect about 10^6 charged current events, largely adequate to settle definitely the LSND anomaly.Comment: 23 pages, 17 figures, added watermark, better referencin

    Evidence-based Software Process Recovery

    Get PDF
    Developing a large software system involves many complicated, varied, and inter-dependent tasks, and these tasks are typically implemented using a combination of defined processes, semi-automated tools, and ad hoc practices. Stakeholders in the development process --- including software developers, managers, and customers --- often want to be able to track the actual practices being employed within a project. For example, a customer may wish to be sure that the process is ISO 9000 compliant, a manager may wish to track the amount of testing that has been done in the current iteration, and a developer may wish to determine who has recently been working on a subsystem that has had several major bugs appear in it. However, extracting the software development processes from an existing project is expensive if one must rely upon manual inspection of artifacts and interviews of developers and their managers. Previously, researchers have suggested the live observation and instrumentation of a project to allow for more measurement, but this is costly, invasive, and also requires a live running project. In this work, we propose an approach that we call software process recovery that is based on after-the-fact analysis of various kinds of software development artifacts. We use a variety of supervised and unsupervised techniques from machine learning, topic analysis, natural language processing, and statistics on software repositories such as version control systems, bug trackers, and mailing list archives. We show how we can combine all of these methods to recover process signals that we map back to software development processes such as the Unified Process. The Unified Process has been visualized using a time-line view that shows effort per parallel discipline occurring across time. This visualization is called the Unified Process diagram. We use this diagram as inspiration to produce Recovered Unified Process Views (RUPV) that are a concrete version of this theoretical Unified Process diagram. We then validate these methods using case studies of multiple open source software systems

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Refactorings to evolve object-oriented systems with aspect-oriented concepts

    Get PDF
    Tese de doutoramento em Informática.Software engineering tools should support complete separation of concerns, by enabling the deployment of each different concern in its own unit of modularity. Unfortunately, current tools and languages – including those supporting the object-oriented programming paradigm – fail to provide a complete and effective support for the separation of all concerns. Undesirable phenomena such as code scattering and code tangling ensue. Aspect-Oriented Programming is a new programming paradigm capable of modularising crosscutting concerns. Aspect-oriented programming complements existing programming paradigms, including object-oriented programming, with constructs that provide a fuller separation of concerns. Refactoring is a technique to restructure program source code in order to improve its underlying design and style while preserving the externally observable behaviour. “Code smells” help to detect inadequate structures and designs, which are then gradually removed through refactoring processes. There is a prospect of aspect-oriented programming becoming a mainstream technology in the near future. This begs the question of how to deal with a large base of object-oriented legacy code when aspect-orientation becomes standard practice. AspectJ's backward compatibility with Java opens the way for refactoring existing Java applications to leverage the concepts and mechanisms of aspects. This requires a prior idea of good style for aspect-oriented source code, something yet to be developed and matured. This thesis contributes to the definition of a new style appropriate to aspect orientation. To this effect, this thesis documents a collection of novel refactorings enabling the extraction of crosscutting concerns from object-oriented legacy source code and the subsequent restructuring of the aspects thus obtained. In addition, this thesis presents a review of traditional object-oriented code smells so they can be used as indicators of latent aspects in object-oriented source code. Finally, this thesis proposes several novel aspect-oriented code smells. We validate the refactorings through an illustrative refactoring process.Idealmente, as ferramentas de engenharia de programas suportariam uma estrita separação de facetas, possibilitando a colocação de cada faceta na sua própria unidade modular. Infelizmente, as actuais ferramentas e linguagens – incluindo as que suportam o paradigma da orientação ao objecto – não conseguem obter uma completa e efectiva separação de todas as facetas. Daí resultam fenómenos indesejáveis tais como a dispersão e emaranhado de texto fonte. A programação orientada ao aspecto é um novo paradigma da programação capaz de modularizar facetas transversais. A orientação ao aspecto complementa os paradigmas existentes, incluindo a orientação ao objecto, com mecanismos que providenciam uma separação de facetas mais completa. A refabricação de programas é uma técnica para reestruturar o texto fonte de um programa no sentido de melhorar a concepção e estilo subjacentes, mantendo o seu comportamento externamente observável. “Maus cheiros” no texto fonte ajudam a detectar estruturas e concepções inadequadas, que são então gradualmente removidos através de processos de refabricação. Existe a perspectiva da orientação ao aspecto ter uma aceitação generalizada no futuro próximo. Coloca-se a questão de como lidar com uma grande base instalada de texto fonte orientado ao objecto legado quando tal acontecer. A compatibilidade retroactiva de AspectJ em relação a Java possibilita a refabricação das aplicações Java existentes de modo a tomarem partido dos conceitos e mecanismos dos aspectos. Porém, isto tem como pressuposto uma ideia clara de bom estilo para o texto fonte orientado ao aspecto, algo que actualmente não existe duma maneira desenvolvida e matura. Esta tese contribui para a caracterização de um novo estilo, apropriado à orientação ao aspecto. Para esse efeito, esta tese documenta uma colecção de refabricações originais através das quais facetas transversais existentes em texto legado orientado ao objecto são extraídas para aspectos, e a posterior reestruturação dos aspectos assim obtidos pode ser realizada. Esta tese apresenta também uma reapreciação dos maus cheiros orientados ao objecto tradicionais no sentido de poderem ser usados na detecção de aspectos latentes no texto fonte orientado ao objecto. Por fim, esta tese propõe diversos maus cheiros originais, orientados ao aspecto. As refabricações são validadas por meio de um processo de refabricação ilustrativo.Programa de Desenvolvimento Educativo para Portugal III (PRODEP III) - (Medida 5 - Acção 5.3 - Eixo 3 - Formação Avançada de Docentes do Ensino Superior).Portable Parallel Computing based on Virtual Machines (PPC-VM) - (PO-SI/CHS/47158/2002).Fundação Luso Americana para o Desenvolvimento (FLAD)

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Innovative Techniques for Testing and Diagnosing SoCs

    Get PDF
    We rely upon the continued functioning of many electronic devices for our everyday welfare, usually embedding integrated circuits that are becoming even cheaper and smaller with improved features. Nowadays, microelectronics can integrate a working computer with CPU, memories, and even GPUs on a single die, namely System-On-Chip (SoC). SoCs are also employed on automotive safety-critical applications, but need to be tested thoroughly to comply with reliability standards, in particular the ISO26262 functional safety for road vehicles. The goal of this PhD. thesis is to improve SoC reliability by proposing innovative techniques for testing and diagnosing its internal modules: CPUs, memories, peripherals, and GPUs. The proposed approaches in the sequence appearing in this thesis are described as follows: 1. Embedded Memory Diagnosis: Memories are dense and complex circuits which are susceptible to design and manufacturing errors. Hence, it is important to understand the fault occurrence in the memory array. In practice, the logical and physical array representation differs due to an optimized design which adds enhancements to the device, namely scrambling. This part proposes an accurate memory diagnosis by showing the efforts of a software tool able to analyze test results, unscramble the memory array, map failing syndromes to cell locations, elaborate cumulative analysis, and elaborate a final fault model hypothesis. Several SRAM memory failing syndromes were analyzed as case studies gathered on an industrial automotive 32-bit SoC developed by STMicroelectronics. The tool displayed defects virtually, and results were confirmed by real photos taken from a microscope. 2. Functional Test Pattern Generation: The key for a successful test is the pattern applied to the device. They can be structural or functional; the former usually benefits from embedded test modules targeting manufacturing errors and is only effective before shipping the component to the client. The latter, on the other hand, can be applied during mission minimally impacting on performance but is penalized due to high generation time. However, functional test patterns may benefit for having different goals in functional mission mode. Part III of this PhD thesis proposes three different functional test pattern generation methods for CPU cores embedded in SoCs, targeting different test purposes, described as follows: a. Functional Stress Patterns: Are suitable for optimizing functional stress during I Operational-life Tests and Burn-in Screening for an optimal device reliability characterization b. Functional Power Hungry Patterns: Are suitable for determining functional peak power for strictly limiting the power of structural patterns during manufacturing tests, thus reducing premature device over-kill while delivering high test coverage c. Software-Based Self-Test Patterns: Combines the potentiality of structural patterns with functional ones, allowing its execution periodically during mission. In addition, an external hardware communicating with a devised SBST was proposed. It helps increasing in 3% the fault coverage by testing critical Hardly Functionally Testable Faults not covered by conventional SBST patterns. An automatic functional test pattern generation exploiting an evolutionary algorithm maximizing metrics related to stress, power, and fault coverage was employed in the above-mentioned approaches to quickly generate the desired patterns. The approaches were evaluated on two industrial cases developed by STMicroelectronics; 8051-based and a 32-bit Power Architecture SoCs. Results show that generation time was reduced upto 75% in comparison to older methodologies while increasing significantly the desired metrics. 3. Fault Injection in GPGPU: Fault injection mechanisms in semiconductor devices are suitable for generating structural patterns, testing and activating mitigation techniques, and validating robust hardware and software applications. GPGPUs are known for fast parallel computation used in high performance computing and advanced driver assistance where reliability is the key point. Moreover, GPGPU manufacturers do not provide design description code due to content secrecy. Therefore, commercial fault injectors using the GPGPU model is unfeasible, making radiation tests the only resource available, but are costly. In the last part of this thesis, we propose a software implemented fault injector able to inject bit-flip in memory elements of a real GPGPU. It exploits a software debugger tool and combines the C-CUDA grammar to wisely determine fault spots and apply bit-flip operations in program variables. The goal is to validate robust parallel algorithms by studying fault propagation or activating redundancy mechanisms they possibly embed. The effectiveness of the tool was evaluated on two robust applications: redundant parallel matrix multiplication and floating point Fast Fourier Transform

    Eristämismekanismeja selainpohjaisille ohjelmistoarkkitehtuureille

    Get PDF
    Traditional backend-oriented web applications are increasingly being replaced by frontend applications, which execute directly in the user's browser. Web application performance has been shown to directly affect business performance, and frontend applications enable unique performance improvements. However, building complex applications within the browser is still a new and poorly understood field, and engineering efforts within the field are often plagued by quality issues. This thesis addresses the current research gap around frontend applications, by investigating the applicability of isolation mechanisms available in browsers to frontend application architecture. We review the important publications around the topic, forming an overview of current research, and current best practices in the field. We use this understanding, combined with relevant industry experience, to categorize the available isolation mechanisms to four classes: state and variable isolation, isolation from the DOM, isolation within the DOM, and execution isolation. For each class, we provide background and concrete examples on both the related quality issues, as well as tools for their mitigation. Finally, we use the ISO 25010 quality standard to evaluate the impact of these isolation mechanisms on frontend application quality. Our results suggest that the application of the previously introduced isolation mechanisms has the potential to significantly improve several key areas of frontend application quality, most importantly compatibility and maintainability, but also performance and security. Many of these mechanisms also imply tradeoffs between other quality attributes, most commonly performance. Future work could include developing frontend application architectures that leverage these isolation mechanisms to their full potential.Perinteisiä palvelinorientoituneita verkko-ohjelmistoja korvataan kiihtyvällä vauhdilla selainpohjaisilla ohjelmistoilla. Verkko-ohjelmistojen suorituskyvyn on osoitettu vaikuttavan suoraan yritysten tulokseen, ja selainpohjaiset ohjelmistot mahdollistavat huomattavia parannuksia suorituskykyyn. Monimutkaisten selainpohjaisten ohjelmistojen rakentaminen on kuitenkin uusi ja huonosti ymmärretty ala, ja sillä tapahtuva kehitystyö on ollut laatuongelmien piinaamaa. Tässä diplomityössä täydennetään puutteellista tutkimusta selainpohjaisista ohjelmistoista tutkimalla selaimista löytyvien eristysmekanismien soveltuvuutta näiden ohjelmistojen arkkitehtuurin parantamiseen. Käymme läpi tärkeimmät alan julkaisut muodostaen yleiskuvan tutkimuksen tilasta ja parhaiksi katsotuista käytännöistä alan harjoittajien keskuudessa. Yhdistämällä kirjallisuuskatsauksen tulokset omaan työkokemukseemme alalta, luokittelemme selainten käytettävissä olevat eristysmekanismit neljään kategoriaan: tilan ja muuttujien eristäminen, eristäminen DOM:ista, eristäminen DOM:in sisällä sekä suorituksen eristäminen. Käsittelemme tämän jälkeen löydetyt kategoriat sekä esitämme niihin liittyviä konkreettisia laatuongelmia sekä työkaluja näiden ongelmien ratkaisuun. Lopuksi arvioimme näiden eristysmekanismien vaikutusta selainpohjaisten ohjelmistojen laatuun ISO 25010 -laatustandardin avulla. Tuloksemme osoittavat että työssä esitettyjen eristysmekanismien käyttö saattaisi parantaa ohjelmistojen laatua usealla tärkeällä alueella. Näistä merkittävimpiä ovat yhteensopivuus ja ylläpidettävyys, mutta hyötyjä voitaisiin saada myös suorituskyvyn sekä tietoturvan parantumisella. Toisaalta monet esitellyistä mekanismeista myös vaativat kompromisseja muiden laatuvaatimusten osalta. Jatkotutkimusta tarvittaisiin selainpohjaisista arkkitehtuureista, jotka hyödyntäisivät paremmin työssä esitettyjä eristysmekanismeja
    corecore