
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Jarno Rantanen

Isolation Mechanisms

for Web Frontend

Application Architectures

Master’s Thesis
Espoo, August 10, 2015

Supervisors: Professor Heikki Saikkonen
Instructor: Risto Sarvas, docent, D.Sc.(Tech)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80716686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Jarno Rantanen

Title:
Isolation Mechanisms for Web Frontend Application Architectures

Date: August 10, 2015 Pages: 87

Professorship: Software Systems Code: T-106

Supervisors: Professor Heikki Saikkonen

Instructor: Risto Sarvas, docent, D.Sc.(Tech)

Traditional backend-oriented web applications are increasingly being replaced by
frontend applications, which execute directly in the user’s browser. Web appli-
cation performance has been shown to directly affect business performance, and
frontend applications enable unique performance improvements. However, build-
ing complex applications within the browser is still a new and poorly understood
field, and engineering efforts within the field are often plagued by quality issues.

This thesis addresses the current research gap around frontend applications, by
investigating the applicability of isolation mechanisms available in browsers to
frontend application architecture. We review the important publications around
the topic, forming an overview of current research, and current best practices in
the field. We use this understanding, combined with relevant industry experience,
to categorize the available isolation mechanisms to four classes: state and variable
isolation, isolation from the DOM, isolation within the DOM, and execution
isolation. For each class, we provide background and concrete examples on both
the related quality issues, as well as tools for their mitigation. Finally, we use the
ISO 25010 quality standard to evaluate the impact of these isolation mechanisms
on frontend application quality.

Our results suggest that the application of the previously introduced isolation
mechanisms has the potential to significantly improve several key areas of fron-
tend application quality, most importantly compatibility and maintainability, but
also performance and security. Many of these mechanisms also imply tradeoffs be-
tween other quality attributes, most commonly performance. Future work could
include developing frontend application architectures that leverage these isolation
mechanisms to their full potential.

Keywords: web, browser, frontend, architecture, quality, isolation

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jarno Rantanen

Työn nimi:
Eristämismekanismeja selainpohjaisille ohjelmistoarkkitehtuureille

Päiväys: 10. elokuuta 2015 Sivumäärä: 87

Professuuri: Ohjelmistotekniikka Koodi: T-106

Valvojat: Professori Heikki Saikkonen

Ohjaaja: Dosentti Risto Sarvas, TkT

Perinteisiä palvelinorientoituneita verkko-ohjelmistoja korvataan kiihtyvällä
vauhdilla selainpohjaisilla ohjelmistoilla. Verkko-ohjelmistojen suorituskyvyn on
osoitettu vaikuttavan suoraan yritysten tulokseen, ja selainpohjaiset ohjelmistot
mahdollistavat huomattavia parannuksia suorituskykyyn. Monimutkaisten selain-
pohjaisten ohjelmistojen rakentaminen on kuitenkin uusi ja huonosti ymmärretty
ala, ja sillä tapahtuva kehitystyö on ollut laatuongelmien piinaamaa.

Tässä diplomityössä täydennetään puutteellista tutkimusta selainpohjaisista
ohjelmistoista tutkimalla selaimista löytyvien eristysmekanismien soveltuvuut-
ta näiden ohjelmistojen arkkitehtuurin parantamiseen. Käymme läpi tärkeimmät
alan julkaisut muodostaen yleiskuvan tutkimuksen tilasta ja parhaiksi katsotuista
käytännöistä alan harjoittajien keskuudessa. Yhdistämällä kirjallisuuskatsauksen
tulokset omaan työkokemukseemme alalta, luokittelemme selainten käytettävissä
olevat eristysmekanismit neljään kategoriaan: tilan ja muuttujien eristäminen,
eristäminen DOM:ista, eristäminen DOM:in sisällä sekä suorituksen eristäminen.
Käsittelemme tämän jälkeen löydetyt kategoriat sekä esitämme niihin liittyviä
konkreettisia laatuongelmia sekä työkaluja näiden ongelmien ratkaisuun. Lopuksi
arvioimme näiden eristysmekanismien vaikutusta selainpohjaisten ohjelmistojen
laatuun ISO 25010 -laatustandardin avulla.

Tuloksemme osoittavat että työssä esitettyjen eristysmekanismien käyttö saattaisi
parantaa ohjelmistojen laatua usealla tärkeällä alueella. Näistä merkittävimpiä
ovat yhteensopivuus ja ylläpidettävyys, mutta hyötyjä voitaisiin saada myös
suorituskyvyn sekä tietoturvan parantumisella. Toisaalta monet esitellyistä
mekanismeista myös vaativat kompromisseja muiden laatuvaatimusten os-
alta. Jatkotutkimusta tarvittaisiin selainpohjaisista arkkitehtuureista, jotka
hyödyntäisivät paremmin työssä esitettyjä eristysmekanismeja.

Asiasanat: web, selain, frontend, arkkitehtuuri, laatu, eristys

Kieli: Englanti

3

Acknowledgements

Well, this took a bit longer than I originally expected... Still, good things
come to those who wait. Even though — as it turned out — more than
waiting was actually required.

In all seriousness, I want to thank my professor Heikki Saikkonen, for
helping me iterate on the topic, and cut it down into something manageable.

I want to thank my employer Futurice, both for providing a Thesis Boot
Camp for getting started with this project, and then providing such darn
interesting work opportunities that I promptly forgot about my thesis for a
few years. But the Boot Camp was the start of a journey, in more ways than
one.

I also want to thank Olli Jarva, and especially Marja Käpyaho, for your
persistence in kickgently reminding me about getting back on track, and your
help in reviews and everything.

KIITOS 18.6.2012–10.8.2015

Jarno Rantanen

4

Abbreviations and Acronyms

WWW World Wide Web
URL Uniform Resource Locator
HTML HyperText Markup Language
CSS Cascading Style Sheets
HTTP Hypertext Transfer Protocol
TCP Transmission Control Protocol
IP Internet Protocol
SPA Single-Page Application
RIA Rich Internet Application
DOM Document Object Model
API Application Programming Interface
IEEE Institute of Electrical and Electronics Engineers
SOP Same-Origin Policy
UX User Experience
IIFE Immediately-Invoked Function Expression
UI User Interface
GPU Graphics Processor Unit

5

Contents

1 Introduction 8
1.1 Background and Motivation 9

1.1.1 The Web . 9
1.1.2 The Browser . 9
1.1.3 Web Frontend Applications 10
1.1.4 Isolation in Frontend Application Architectures 11

1.2 Research Questions . 12
1.3 Research Methods . 13
1.4 Structure of Work . 14

2 Previous Work 15
2.1 Classical Software Architecture 15

2.1.1 Defining Architecture 15
2.1.2 Architectural Design Research 16

2.2 Classical Software Quality . 17
2.2.1 Quality Attributes . 17
2.2.2 Abstract Models . 18
2.2.3 Applied Models . 19

2.3 Relating Quality and Architecture 21
2.3.1 Attribute Driven Design 21
2.3.2 Architectural Tactics 22

2.4 Isolation in Architectures . 22
2.5 Frontend Application Architecture 23

2.5.1 Spaghetti Code . 23
2.5.2 Security . 25
2.5.3 Patterns and Architecture 26
2.5.4 Maintainability . 27
2.5.5 Performance . 28

3 Isolation Mechanisms 30
3.1 State and Variable Isolation 30

6

3.1.1 Information Hiding . 31
3.1.2 Emulating Privacy . 32
3.1.3 Variable Scope . 33
3.1.4 Naming Collisions . 33
3.1.5 Namespace Objects . 34
3.1.6 Modules . 35

3.2 Isolation from the DOM . 36
3.2.1 DOM Introduction . 36
3.2.2 Naive DOM Use . 36
3.2.3 Storing State in the DOM 38
3.2.4 Separation of Concerns 39
3.2.5 The MVC Pattern . 41

3.3 Isolation within the DOM . 44
3.3.1 Introduction . 44
3.3.2 CSS Selectors . 45
3.3.3 Selection Collisions . 46
3.3.4 Rooted Selectors . 47
3.3.5 Style Isolation . 48
3.3.6 Depthwise Isolation . 48
3.3.7 Frames and the iframe 51
3.3.8 Web Components . 55

3.4 Execution Isolation . 62
3.4.1 Evented Programming on a Single Thread 62
3.4.2 Responsibilities of the UI-thread 64
3.4.3 Yielding Batch Operations 65
3.4.4 Web Workers . 67
3.4.5 Message Passing . 68
3.4.6 The Perils of References 70

4 Discussion 73
4.1 Relationship to Quality . 73

4.1.1 Functional Suitability 73
4.1.2 Performance Efficiency 74
4.1.3 Compatibility . 75
4.1.4 Usability . 75
4.1.5 Reliability . 76
4.1.6 Security . 76
4.1.7 Maintainability . 77
4.1.8 Portability . 78

4.2 Summary . 78

5 Conclusions 81

7

Chapter 1

Introduction

During the last two decades, the Internet has arguably been the largest single
disruption in how the civilized world exchanges information. For the masses,
its main facet is the World Wide Web (WWW): a massive, interlinked col-
lection of interactive documents. Towards the latter part of the past decade,
the interactivity of these documents has increased dramatically, to the point
where the term “document” no longer accurately describes them; indeed,
they are increasingly becoming interlinked applications, which are installed
to and executed in a web browser when the user types in their URL.

While these browser-based web frontend applications are already taking
over the World Wide Web (and by extension the world), they are only very
recently being recognized as applications in their own right [28]. It is be-
coming evident that the same rigor should be applied to their design and
architecture, as has been to traditional applications in the decades of soft-
ware development efforts that preceded them. This neglect has lead to a
wealth of quality problems with frontend applications, and it seems what
can be achieved purely within the browser is not limited by the technologies
available, but by the lack of architecture allowing these applications to grow
in complexity.

It turns out many of the aforementioned quality issues relate to the lack
of isolation between various components of these applications. This work
identifies the 4 major classes of isolation mechanisms available to frontend
application architectures, discusses the concrete quality issues related to each,
and introduces the most relevant mechanisms for addressing those quality
issues. To substantiate how these isolation mechanisms can positively affect
overall application quality, we also discuss their effects using a well-known
quality standard, namely the ISO 25010 [18].

8

CHAPTER 1. INTRODUCTION 9

1.1 Background and Motivation

This section will briefly introduce the environment in which this work is
relevant: web frontend applications, which run purely1 in a web browser, and
are part of the whole that is the World Wide Web. Finally, we enumerate
the concrete classes of isolation mechanisms this work will address.

1.1.1 The Web

At the foundation of the scope of this work is the World Wide Web, commonly
referred to as simply the web. The web is a global system of interconnected
hypertext documents, that may contain various types of resources (images,
for example), links to other such documents, styling information, and —
especially importantly in the scope of this work — executable code that
provides capabilities for interacting with the user. [41] These documents are
typically accessed using a web browser, and an application which is composed
of (or is capable of producing) such documents is commonly known as a web
application.

There are numerous layers below the web facilitating its functions, such
as HTTP, the Internet, the TCP/IP Protocol Suite, and the physical in-
frastructure making the globally interconnected web a possibility. They are,
however, also far beyond the scope of this work, and a basic understanding
of them is assumed from the reader.

1.1.2 The Browser

The way a typical user interacts with the web is through a web browser,
commonly known as simply a browser. The role of a browser is to navigate
to a specific URL, retrieve its HTML document and related resources, inter-
pret and visually display them to the user, and execute any JavaScript2 the
document instructs it to. [41]

An important distinction between the components of a web application
can be made by looking at where application code is executed, specifically
whether this happens before or after delivering the code over the network to
the browser. When before, we often talk about the backend part of the web

1By “purely” we do not preclude the involvement of systems beyond the browser; see
the upcoming definition of web frontend applications.

2There are other languages which modern browsers can execute such as Dart
(https://www.dartlang.org/), but their prevalence on the web is dwarfed by that of stan-
dard JavaScript.

https://www.dartlang.org/

CHAPTER 1. INTRODUCTION 10

application. When after, we talk about the frontend part. Using this defini-
tion, even though code (such as JavaScript) or resources (such as images) are
often delivered to the browser by backend code, we still refer to such code or
resources as pertaining to the frontend, as they are executed (or interpreted)
by the browser.

1.1.3 Web Frontend Applications

Communication between the browser and the backend has inherent delays
due to networking, and avoiding these delays can result in better application
responsiveness and performance. For example, this can be achieved by:

• Performing navigation within the browser. When the user nav-
igates to another document for which data is already available in the
browser, instead of requesting the new document over the network,
that document can be instantaneously assembled and displayed by
JavaScript.

• Updating the document speculatively. When the user takes an
action that needs to be performed by the backend, the frontend can
immediately update the document as if the action already succeeded,
while it is carried out in the background. If the background action
can be assumed to usually succeed, this results in the perception of
instantaneous response.

• Performing actions purely within the browser. In some cases
the backend need not be involved at all in carrying out actions. For
instance, if the required computation and logic can be performed by
JavaScript in the frontend, the response to such actions can be near-
instantaneous, without the potential complications of speculative up-
dates.

User-perceived performance is of increasing importance to modern web
applications. Amazon famously experimented with artificially slowing down
their page load times, and observed a 1% loss of sales for each added 100 mil-
liseconds. Similar experiments by Google revealed that an artificial delay of
500 milliseconds decreased their revenue by 20%. [23] These and similar ob-
servations have resulted in the conclusion that web application performance
is of great importance. They have also driven many web applications to
shift their focus to their frontend, where many classes of performance im-
provements can only be obtained (such as the ones listed above). Taking
this trend to its extreme, the frontend part of the application contains the

CHAPTER 1. INTRODUCTION 11

majority of application logic, and the backend part is relegated to the role
of delivering resources and data storage. Such applications are referred to as
web frontend applications, or just frontend applications in this work.

Another common term for applications fitting the previous description is a
Single-Page Application (SPA).3 While perhaps a more commonly used term
in the industry, it carries a connotation that makes it unsuitable for defin-
ing the scope of this work. The “Single-Page” part refers to a specific kind
of frontend application, which is usually contained in a single HTML docu-
ment, delivered with associated resources and JavaScript, and this document
is typically never loaded again. While an SPA definitely fits the previous
description of frontend applications, the latter also includes web applications
which are composed of several HTML documents, with possible reloads dur-
ing their execution. The difference is subtle, but the isolation mechanisms
considered in in this work benefit a broader class of frontend applications
than just the SPA. That is, we consider the former a superset of the latter,
and thus we will use the term (web) frontend application for the rest of this
work.

1.1.4 Isolation in Frontend Application Architectures

In the rush to benefit from the performance improvements made possible
by frontend applications, these applications grew quickly in size. There was
little precedent on how to build large applications for the frontend, however,
and quality issues abounded (see subsection 2.5.1 Spaghetti Code).

In developing large applications, architectures that focus on isolating ap-
plication components from one another have traditionally been considered
valuable (see section 2.4 Isolation in Architectures). Frontend applications
are especially susceptible to quality issues from lack of isolation, due to sev-
eral reasons:

1. The lingua franca of frontend applications — JavaScript — has tra-
ditionally lacked many features related to enforcing isolation within
architectures, such as language-level modules, or visibility modifiers
for variables. This class of issues is discussed in depth in section 3.1
State and Variable Isolation.

2. By tradition, frontend applications have closely intertwined their state
and application logic with their presentation logic — the DOM API

3Rich Internet Application (RIA) was also a popular, related term for a time, but its
common use also encompassed proprietary technologies such as Flash and Silverlight, thus
making it an unsuitable term for our standards-oriented discussion.

CHAPTER 1. INTRODUCTION 12

(see subsection 3.2.1 DOM Introduction) of the browser especially. This
makes it hard to perform changes to either part without accidentally af-
fecting the other. This class of issues is discussed in depth in section 3.2
Isolation from the DOM.

3. By technical necessity, most components of an application need to co-
exist within a single, shared DOM, with little to no access control be-
tween them. This means any faults within a component are mostly free
to propagate to their neighbors, potentially causing additional faults
that can be hard to diagnose. This class of issues is discussed in depth
in section 3.3 Isolation within the DOM.

4. By technical necessity, most computation needs to be performed on a
single thread of execution, within a single shared memory space (see
subsection 3.4.1 Evented Programming on a Single Thread). As appli-
cation logic is increasingly moved to the frontend, these limited com-
puting resources become increasingly saturated, up to the point where
the very benefits of moving application logic to the frontend are negated
by the resulting performance problems. Due to traditional lack of mem-
ory isolation, parallelizing these workloads is complicated. This class
of issues is discussed in depth in section 3.4 Execution Isolation.

This is to say the lack of isolation in architectures is both a major issue for
frontend applications today, and one of the significant detractors to frontend
applications reaching new levels of complexity, significance and quality.

1.2 Research Questions

The concrete questions this work addresses are as follows:

1. What kinds of isolation mechanisms are available for web fron-
tend application architectures?

This question is addressed in chapter 3 Isolation Mechanisms, where
we introduce the 4 major classes of isolation mechanisms we have iden-
tified in literature, give concrete examples of related quality issues,
and present mechanisms for addressing those issues through enforcing
isolation.

2. How do those mechanisms benefit web frontend application
quality?

CHAPTER 1. INTRODUCTION 13

This question is addressed in section 4.1 Relationship to Quality, where
we evaluate the impact of applying the isolation mechanisms through
the quality attributes defined by the ISO 25010 standard.

1.3 Research Methods

The methods of research in this work can be categorized as follows:

• Academic literature review. Academic research into web frontend
application architecture is limited. The most relevant works — perhaps
interestingly — do not have to do with the structure and architecture in
frontend applications, but the lack thereof. Security and performance
are also discussed, though their treatment of architectural issues is often
indirect. However, application architecture and the related concept of
software quality are well-researched topics on their own. Relevant work
in academia is introduced in chapter 2 Previous Work.

• Industry literature review. Compared to academic work on the
topic, both in software development industry and in various Open
Source Software communities publications are frequent. In our ex-
perience, such publications are also often highly influential among de-
velopers, much more so in fact than formal research. Thus, this work
often also cites technical reports, white papers, Open Source Software
projects, books, technical documentation and even blog posts, where
appropriate. In the absence of publications peer-reviewed by the scien-
tific community, this work relies on recognized industry thought lead-
ers4, but also on organizations and popular bodies of code5. Relevant
work in the industry is introduced in section 2.5 Frontend Application
Architecture, and informs much of the main contribution of this work,
chapter 3 Isolation Mechanisms.

• Personal experience. I, the author, have been involved in web de-
velopment in one form or another for more than 15 years6, close to 10
of that professionally7. The last four years I have specialized in web

4In the context of frontend architectures, two often cited ones are Nicholas Zakas and
Addy Osmani (of Yahoo! and Google fame, respectively).

5Such as in widely used Open Source Software packages.
6Non-professional work has included various kinds of projects, from small experiments

to developing and maintaining several mid-sized web sites.
7See http://fi.linkedin.com/in/jarnorantanen for an overview of professional work.

http://fi.linkedin.com/in/jarnorantanen

CHAPTER 1. INTRODUCTION 14

frontend applications, often working in the capacity of a lead developer
or architect. The projects I have worked on range from single developer
efforts to projects of close to a 100 000 lines of code with more than
10 full-time developers. This experience has given me insight into the
topic of this work, and helps, for instance, in assessing the credibil-
ity of sources in the industry literature review. This experience also
especially informs chapter 4 Discussion.

1.4 Structure of Work

In chapter 2 Previous Work, we first introduce relevant concepts and publica-
tions from the context of software architecture and software quality research.
We then move on to explore the relationship between the two, and also
touch upon previous work on isolation in application architectures. Finally,
we present the most important publications relevant to frontend application
architecture.

In chapter 3 Isolation Mechanisms, we present the main contribution of
this work: the enumeration of the 4 major classes of isolation mechanisms
for frontend application architectures. For each we also introduce relevant
background and concepts, give examples of related quality issues, and list the
concrete mechanisms available for implementing isolation within that class.

In chapter 4 Discussion, we evaluate the potential impact of the presented
isolation mechanisms on application quality, using the ISO 25010 [18] quality
standard as a frame of reference. We conclude by presenting a summary of
our findings.

Finally, in chapter 5 Conclusions, we briefly discuss the broader implica-
tions of the topic of this work, and offer some avenues for future research.

Chapter 2

Previous Work

This chapter will first cover relevant previous work on classical software archi-
tecture, mainly to adequately define what we mean by software architecture.
We then cover classical methods of modeling software quality, in preparation
for the eventual discussion relating our isolation mechanisms to concrete
quality improvements. Having defined architecture and quality, we move
onto investigating the relationship between the two, covering some estab-
lished methods of affecting quality through architectural decisions. Finally,
we briefly visit previous work on using isolation in architectures.

Having adequately covered the concepts of architecture, quality and iso-
lation in general, we move onto presenting previous publications relating
specifically to the domain of this work. We cover the state of research on
topics such as frontend application security, architecture, maintainability and
performance. All of the topics are related to our main focus of isolation in
architecture, yet there is a clear gap in research on the exact topic, as no
publications were found directly discussing isolation in this context. The
main body of this work will contribute directly towards narrowing that gap.

2.1 Classical Software Architecture

2.1.1 Defining Architecture

As the topic of this work relates to architecture in the context of software
systems, a brief treatment of its meaning is in order. Architecture is a con-
cept which is easy to grasp by intuition, yet difficult to formalize or define
accurately, although there have been countless attempts over the years [29,
p. 2]. The Institute of Electrical and Electronics Engineers (IEEE) defines
it in a standard titled “Systems and software engineering — Architecture

15

CHAPTER 2. PREVIOUS WORK 16

description” as:

Fundamental concepts or properties of a system in its environ-
ment embodied in its elements, relationships, and in the princi-
ples of its design and evolution. [19]

It is hard to argue for or against such a definition, as it seems nearly
all-encompassing, and makes it hard to say what is architectural, and even
harder to say what is not.

For another take on the subject, the industry giant IBM, for their Rational
Unified Process software development model at the turn of the millennium,
approaches the concept through distinct views:

Architecture is represented by a number of architectural views.
These views capture the major structural design decisions. In
essence, architectural views are abstractions or simplifications of
the entire design, in which important characteristics are made
more visible by leaving details aside. [25]

This seems more reasonable, as depending on the viewpoint — of a devel-
oper, of a user, of a project manager — the simplified version of the system
might look very different. It also brings up the interesting concept of struc-
ture: how things fit together to form a whole.

Martin Fowler, author of important architectural work in the context of
large enterprise applications [11], offers a very simple definition of “things
that people perceive as hard to change” [12]. While concise and intuitive, a
simple counterexample is the choice of programming language: surely simple
matters of syntax are not architecturally significant choices? Yet, often the
only way to migrate a software project to a different programming language
is a complete rewrite.

For the purposes of this work, let us formulate a definition that is a
combination of each of the above:

Architecture is the fundamental way in which the application is
decomposed into smaller parts, how they fit together to form a
whole, and how resilient that whole is in the face of inevitable
change.

2.1.2 Architectural Design Research

As varied as the definitions of software architecture, are the avenues of re-
search on the topic. While a comprehensive review of the state of software

CHAPTER 2. PREVIOUS WORK 17

architecture research is well beyond the scope of this work, one area is too
relevant to be omitted: architectural design research.

Research into architectural design focuses on understanding early on the
decisions that lead to particular architectural results at a later stage of a
software development project. Recalling the earlier definition of architecture
as “things that are hard to change later”, and keeping in mind there are often
commercial interests in software development projects, the motivation of ar-
chitectural design research is to guide projects into getting their architecture
right as early as possible, thus minimizing costly rework.

One classical method for bringing such architectural design and under-
standing into a software development project is the Architecture Tradeoff
Analysis Method (ATAM) [22]. The method focuses on analyzing the main
business drivers of the project, extracting and documenting the quality at-
tributes (introduced in subsection 2.2.1 Quality Attributes) that embody
those drivers, and then modeling the proposed architecture as a set of trade-
offs affecting the known quality attributes. By iterating on the architectural
choices and analyzing each iteration, a suitable balance of the desired quality
attributes can be achieved before the implementation phase of the applica-
tion begins. Even though the Agile development movement has successfully
questioned the feasibility of heavy up-front design [4] , understanding the
causalities between architectural choices and the resulting quality attributes
of the software system remains a worthy goal.

2.2 Classical Software Quality

2.2.1 Quality Attributes

Quality attributes are a taxonomy of desirable software characteristics, often
taking the form of various “ilities”, such as reliability, extensibility and porta-
bility. This taxonomy is often nested to contain various sub-characteristics:
portability, for instance, can be thought to consist of sub-characteristics such
as adaptability, coexistence and replaceability. [29, p. 3]

The usefulness of quality attributes in software development is broad:
they can assist in understanding a software system, in facilitating discus-
sion and trade-off analysis (see ATAM above), and in allowing derivation of
concrete models for quality assessment.

CHAPTER 2. PREVIOUS WORK 18

2.2.2 Abstract Models

When talking about software quality, it is hard to sidestep one of the most
recognized standards on the topic: the ISO 25010:2011 [18]. The standard
proposes two quality models, namely Quality in Use and Product Quality.
Each model defines a set of quality attributes1, through which various prop-
erties of the system can be evaluated.

The Quality in Use model defines the attributes of the system in the
context of interacting with a user. Its five top-level attributes are:

• Effectiveness: How accurately and completely the user is able to
achieve his/her goals

• Efficiency: How much resources are consumed, relative to the degree
to which the users’ goals are met

• Satisfaction: How well the system satisfies the needs of the user dur-
ing use (subdivided into Usefulness, Trust, Pleasure and Comfort)

• Freedom from risk: How well the system limits imposed risks to
its users and environment (subdivided into Economic risk mitigation,
Health and safety risk mitigation and Environmental risk mitigation)

• Context coverage: How well the above quality attributes are fulfilled
in relation to known and unexpected contexts of use (subdivided into
Context completeness and Flexibility)

The Product Quality model, on the other hand, defines the attributes for
evaluating the static and dynamic quality properties of the system itself. Its
eight top-level attributes are:

• Functional Suitability: How well the system provides functionality
to satisfy pre-defined needs (subdivided into Functional completeness,
Functional correctness and Functional appropriateness)

• Performance Efficiency: How well the system performs, relative to
the degree of resource use (subdivided into Time behaviour, Resource
utilization and Capacity)

1The standard uses the term “characteristic” in place of “quality attribute” (which
is more often used in related literature); for the purposes of this work, the terms are
interchangeable.

CHAPTER 2. PREVIOUS WORK 19

• Compatibility: How well the system is able to exchange information
with other systems, and how it performs while operating in a shared
software/hardware environment (subdivided into Co-existence and In-
teroperability)

• Usability: How well the system behaves with respect to effectiveness,
efficiency and satisfaction during use (subdivided into Appropriateness
recognizability, Learnability, Operability, User error protection, User
interface aesthetics and Accessibility)

• Reliability: How well the system is able to carry out its intended
function, with respect to specific conditions or the passing of time (sub-
divided into Maturity, Availability, Fault tolerance and Recoverability)

• Security: How well the system protects information so that only the
intended persons or systems are granted access (subdivided into Confi-
dentiality, Integrity, Non-repudiation, Accountability and Authenticity)

• Maintainability: How efficiently the system can be modified in the
face of changing requirements (subdivided into Modularity, Reusability,
Analysability, Modifiability and Testability)

• Portability: How efficiently the system can be transferred between
different hardware, software or usage environments (subdivided into
Adaptability, Installability and Replaceability)

Especially the latter model will be useful later in this work in section 4.1
Relationship to Quality, providing a framework for discussion on the quality
implications of the proposed isolation mechanisms.

2.2.3 Applied Models

As useful as high-level models are for building a frame of reference, ISO
25010 operates on such an abstract level of description that it may not be
easy to apply to day-to-day work. For that reason, the model proposed by
the standard is often applied to specific contexts by defining context-specific
quality attributes, which reduce the level of abstraction and thus make the
attributes more practically useful.

One such applied quality model has been presented for the context of
Service-Oriented Architectures (SOA) [14]. It evaluates related literature,
extracting quality attributes2 specifically relating to SOA, and enumerates

2The paper uses the term “Quality Activity”; we treat it here equivalently to quality
attributes for reasons of brevity.

CHAPTER 2. PREVIOUS WORK 20

them citing the ISO 25010 counterparts. The presented quality attributes
are:

1. Understanding: How easily the service is understood by a potential
user (corresponds to Usability [Appropriateness Recognizability] in ISO
25010)

2. Consumption: How well the service covers its intended functionality
(corresponds to Functional Suitability [Functional Appropriateness] in
ISO 25010)

3. Support: How easy it is for service providers to support their users
(the work does not identify a counterpart in ISO 25010)

4. Service Reuse: How well the service composes with other services
(corresponds to Reusability in ISO 25010)

5. Extension: How easily new functionality can be added to the service
(corresponds to Reusability in ISO 25010)

Another applied quality model has been presented specifically for web
applications [34]. It especially stresses the potential for practical use during
design, development and maintenance of a web site. The presented quality
attributes, their proposed sub-characteristics and ISO 25010 counterparts (if
any) are:

• Architecture: Information architecture and Navigation

• Communication: Brand identity, Visual design, Typography and
Multimedia usage

• Functionality: Functional adequacy, Functional correctness and Se-
curity/privacy (corresponds to Functional Suitability in in ISO 25010)

• Content: Categorization/labeling, Conformity to style guide, Infor-
mation/data quality, Content timeliness and Content localization

• Community: User relations and Community management

• Platform: Platform adequacy, Site availability, Site performance and
Access monitoring

• Accessibility: Findability, Band requirements, Client independence
and Usability requirements (corresponds to Usability [Accessibility] in
ISO 25010)

CHAPTER 2. PREVIOUS WORK 21

• Usability: Effectiveness, Efficiency and User satisfaction (corresponds
to Usability [Accessibility] in ISO 25010)

• Software code: Reliability, Compliance to standards and Maintain-
ability (partially corresponds to Reliability in ISO 25010)

Several other works on the topic of applied quality models in the specific
context of web applications also exist. [30, 31]

All of the works cited above serve as examples of the applicability of
abstract quality models into more concrete contexts. A clear need for context-
specificity is identified in each. The major contribution of this work — a list
of isolation mechanisms for frontend applications — can also be understood
as a list of highly context-specific quality attributes. This interpretation is
further discussed in section 4.1 Relationship to Quality.

2.3 Relating Quality and Architecture

Architectural design decisions have direct influence on the quality of a soft-
ware system [29, p. 3]. On the other hand, making decisions about the de-
sired qualities of the software system affect architectural design [22]. While
the two concepts are fundamentally linked, architectural design decisions
rarely hold intrinsic value. For instance, choosing a client-server architecture
does not usually produce value in itself, but rather, the qualities which derive
from that choice do. For example, these qualities might present themselves
as increased decoupling and interoperability. Thus, research into the rela-
tionship between quality and architecture often focuses on how to derive an
architecture out of chosen quality requirements. [29]

2.3.1 Attribute Driven Design

In addition to ATAM, other examples of this research include the Attribute
Driven Design method (ADD) [51]. ADD follows a Plan-Do-Check cycle in
recursively decomposing and designing the architecture of the system:

• In the Plan phase, the desired quality attributes and other design
constraints are considered to produce a set of roles, responsibilities,
properties and relationships between software elements in the system.

• In the Do phase, the architect produces a list of patterns3 for fulfilling
the previously identified roles, properties and relationships. This list

3The term pattern is loosely related to the concept of Design Patterns (treated thor-
oughly in [11]).

CHAPTER 2. PREVIOUS WORK 22

can be derived from the architect’s personal experience, books, papers,
commercial products, et cetera.

• In the Check phase, the whole of the architecture is verified against
the original quality constraints, to make sure the most recent iteration
of the Do phase has not introduced regressions.

The process is then repeated recursively to further decompose the archi-
tecture, until a satisfactory level of detail is achieved.

2.3.2 Architectural Tactics

Another method for deriving a concrete, partial architecture out of the de-
sired quality attributes exists in the form of Architectural Tactics [2]. Ar-
chitectural Tactics are concerned with taking a concrete scenario relating
to a quality attribute, and applying a repeatable and predictable process
for turning the scenario into design fragments. The application architecture
emerges from the combination of multiple such design fragments. As a sim-
plified example, if a performance scenario dictates some hard limit for system
responsiveness, through application of known methods for affecting respon-
siveness, a tactic of bound execution times4 might be chosen. The concrete
design fragment derived of this might be the use of a scheduler for arbitrating
the execution times of system functions.

2.4 Isolation in Architectures

This work deals extensively with isolation in the context of software archi-
tecture. Little work exists specifically on the topic of isolation, but its value
in software development is often discussed indirectly.

One aspect which can greatly benefit from isolation is fault tolerance. A
classical example of this is isolating the address spaces of cooperating software
modules. [49] The purpose is to ensure a failure in a single module does not
corrupt the address space of other modules. While this will not make the
root cause of the failure (such as a bug in application code) go away, proper
isolation makes analysing the failure more tractable for humans, and makes it
easier for other modules to reason about the failure (for example by retrying
the operation that failed). There is often some overhead associated with

4In this context, being bound is understood as having a well-defined upper limit. For
instance, a given operation is allowed to execute for at most 10 milliseconds before it is
either terminated, or suspended while other operations are allowed to execute.

CHAPTER 2. PREVIOUS WORK 23

enforcing isolation between modules, but in many cases it can be negligible,
considering its benefits.

Another beneficial aspect is security. A topical example are modern web
browsers, which place increasing importance on isolating the various web
applications they execute from each other. Despite the benefits of address
space isolation [36], isolating each application using this method is not always
possible. This is due to many existing features in the web platform that
necessitate breaking this kind of isolation. But even in such cases several
mechanisms exist in browsers to ensure proper isolation of applications, the
most important of which is the Same Origin Policy (SOP). The SOP ensures
that web applications that were started from two separate domains have
limited facilities of affecting each other. [1] This feature is further elaborated
on in subsection 2.5.2 Security.

Finally, isolation benefits maintainability and understandability of large
software systems. Human beings have finite capacity for understanding soft-
ware complexity, and sufficiently large systems can no longer be completely
understood by any single individual. In such cases, isolated modules that
mask complex implementation details behind a well-defined, simplified inter-
face are one of the few tools developers have at their disposal to keep the
system maintainable. [54]

2.5 Frontend Application Architecture

There is a clear research gap around frontend application architecture (as
originally brought up in section 1.2 Research Questions). Thus, when dis-
cussing previous work on the subject, we are mostly limited to publications
that discuss the topic indirectly.

2.5.1 Spaghetti Code

As suggested in section 1.3 Research Methods, formal research into frontend
application architecture is scarce. Notably, one topic on which such research
does exist is the lack of proper architectures for frontend applications.

Mikkonen and Taivalsaari note how web applications are the “spaghetti
code for the 21st century” [28]. They argue many of the well-established
software engineering principles contributing to software quality have been
lost with the rise of web applications, specifically:

• Modularity and related principles: The browser platform does not
adequately support separation of concerns. For instance, procedural

CHAPTER 2. PREVIOUS WORK 24

JavaScript and declarative HTML and CSS are mixed and matched at
will, and thus also application and presentation logic. Also, besides
the DOM, no well-defined interfaces exist for cooperation between UI
components and the browser. Finally, while privacy and information
hiding can be emulated with JavaScript, no such mechanisms are built
into the language.

• Consistency, simplicity, and elegance: Due to the dynamic nature
of the environment, mixing and matching programming languages, and
the convoluted history of browser support for various API’s, there are
often several ways to achieve the same end-result. Also, the current
generation of web applications are often unstructured and difficult to
read and understand.

• Reusability and portability: References to resources are often hard-
coded into an application, making it harder to use a part of it elsewhere.
As most frontend code traditionally deals with user experience, the
reliance on UI toolkits makes it difficult to transfer that user experience
to other applications, as it would often imply carrying over (potentially
incompatible) UI toolkits as well.

In addition to these violations of established software engineering princi-
ples, they identify two other important categories of challenges:

• Usability: The browser has many historical features which are poorly
suited for the context of application interactions (as opposed to inter-
acting with traditional web documents). The standard reload, stop and
back buttons do not have immediately obvious and portable semantics
in the context of applications, which may host complex internal state
and communicate with servers in the background, often with no indi-
cation to the user of an ongoing operation.

• Development style: The support for static verification or type-checking
of JavaScript applications is lacking, if not nonexistent. The dynamic
nature of the programming environment makes it hard to apply tradi-
tional quality control methods to source code.

Mikkonen and Taivalsaari conclude, however, by noting that there are
no fundamental reasons for web applications to be any worse than tradi-
tional applications. While application architectures are not explicitly dis-
cussed, in light of the previous discussion in section 2.3 Relating Quality and
Architecture, it would seem many of these issues are best addressed through
application of proper architectural design principles.

CHAPTER 2. PREVIOUS WORK 25

2.5.2 Security

Another topic on which formal research relating to frontend application archi-
tecture has been published is security. In a paper titled “Privilege Separation
in HTML5 Applications” [1], Akhawe et al contrast the established security
mechanisms for traditional applications with the lack of such mechanisms for
web frontend applications. They note how traditional use of the Same Ori-
gin Policy — one of the major methods of privilege separation for frontend
applications — is ill-suited for providing security for complex applications,
due to the monetary and administrative overheads associated with domain
management5. Instead, they propose an architecture where the SOP is used
with temporary origins, allowing strong isolation and privilege separation
among application components.

Application components running in temporary origins execute without
the privileges granted to the main application. These privileges may include
things like access to cookies associated with some server, access to browser
API’s such as storage or geolocation, or navigating the browser to a different
URL. In order to use such privileged API’s, the unprivileged components
communicate with the main application via message passing. The main
application acts as a mediator, implementing a security policy which dictates
which components are allowed to exercise which privileged API’s, and fulfills
or rejects their requests accordingly.

Akhawe et al proceed to apply this security-minded architecture to a
number of existing web frontend applications. They note that they are able
to achieve a drastic reduction in the amount of code executing with full
privileges, while requiring only minor changes to most applications. The
performance penalties of the approach are also deemed negligible. In a re-
lated study on applying similar changes to browser extensions [5], the authors
show a drastic reduction not only in the amount of code executed with full
privileges, but in the number of concrete, exploitable vulnerabilities. The
results of the studies indicate there are significant — yet underutilized —
security benefits to applying the proposed architecture to web frontend ap-
plications. This proposed architecture relies heavily on the ability to provide

5This is due to how the Same-Origin Policy requires for either the protocol or the host
to be different in order to isolate origins. Generating a new port for every component that
needs isolation (for example :8080, :8081, :8082 and so on) would not work with many
firewalls, plus generates infrastructure overhead. Generating a new subdomain for every
component (for instance c1.example.com, c2.example.com, and so on) would not provide
complete isolation, as setting the document.domain property to ’’example.com’’ would
allow the components to communicate directly. This property has no effect on top-level
domains (such as setting document.domain to ’’com’’ would not allow access), but using
top-level domains for containment would be prohibitively expensive.

CHAPTER 2. PREVIOUS WORK 26

isolation between application components.

2.5.3 Patterns and Architecture

A wealth of literature — in the form of books, articles and blog posts — exists
on the topic of patterns and architectures for web frontend applications. As
argued before in section 1.3 Research Methods, this work is often influential
among practitioners, and thus must be considered. While many cited works
date back several years6, they remain both influential and relevant. The
former is due to how they have essentially shaped the collective thinking of
the industry. The latter is due to how architectural patterns stand the test of
time: while implementations are outdated quickly in the context of frontend
applications, ideas significantly less so. This section introduces some of the
most relevant authors on the topic of patterns and architecture, and some
their most influential works.

Nicholas Zakas was one of the globally visible front-runners in developing
and championing proper architectural design in the emerging context of fron-
tend applications. Zakas was professionally part of Yahoo!7 for a long time,
and attributes much of his insight on the topic to his experiences in leading
large-scale frontend development projects there [54]. One particularly influ-
ential presentation given in 2009 on the topic of “Scalable JavaScript Appli-
cation Architectures” [52] remains an often-cited source of inspiration, even
among other industry thought leaders (cited as such in [32], for instance).
In the presentation, Zakas talks about structuring Single-Page Applications
(a notably recent trend at the time), treating concepts such as modularity,
loose coupling, security through message passing, and importantly, sandbox-
ing. Sandboxing, as per Zakas, has to do with isolating components of the
application so that they cannot interfere with one another during applica-
tion execution. This includes isolating the state, variables and the DOM of
components from each other. These same concepts are treated in great detail
later in this work, in chapter 3 Isolation Mechanisms.

Another important figure in the context of frontend architectures is Addy
Osmani, who has — like Zakas — contributed several books and dozens of

6The frontend application development community is perhaps notorious for how often
it changes its collective views on best practices, et cetera; we cannot resist the urge to point
the interested reader to http://www.reddit.com/comments/2kl88s, where several frontend
practitioners react to the news (2014-10-29) that one of the largest frontend frameworks
of the time — AngularJS — is going to completely break backwards compatibility with
its next major version, even as many have only recently invested heavily into the current
version.

7http://www.linkedin.com/in/nzakas

http://www.reddit.com/comments/2kl88s
http://www.linkedin.com/in/nzakas

CHAPTER 2. PREVIOUS WORK 27

blog posts to improving the craft. Osmani’s position in developer relations at
industry giant Google8 has recently lent him additional visibility. Osmani’s
2011 write-up on the topic of “Patterns for Large-Scale JavaScript Applica-
tion Architectures” [32] brings together many related publications and con-
cepts, and frames the discussion with relevant Design Patterns. The patterns
Osmani considers most important for large-scale frontend applications are:

• The Module Pattern: The primary purpose of the pattern is to pro-
vide encapsulation and code organization for the architecture. This
includes emulating privacy and using namespace objects for organiz-
ing variables (see section 3.1 State and Variable Isolation for related
discussion in this work).

• The Facade Pattern: A Facade provides an abstraction layer on
top of a concrete module implementation, making it possible for that
module to change or be completely replaced, without affecting other
modules in the system. It is somewhat analogous to the function of
interfaces in less dynamic languages.

• The Mediator Pattern: To tie the proposed architecture together, a
Mediator provides methods for various modules to communicate, with-
out having direct access to each other (see subsection 3.4.5 Message
Passing for related discussion in this work).

Osmani expands on the topic in a full-length book titled “Learning JavaScript
Design Patterns” [33], which covers non-architectural patterns as well.

Other noteworthy literature on the topic of patterns and architecture
includes books such as Stoyan Stefanov’s “JavaScript Patterns” [38]. The
book goes into great detail especially on practical implementations and im-
plications of using many patterns in the browser, not just in theory, or in
JavaScript environments in general.

Finally, this list of authors and works makes no attempt at being ex-
haustive: there is a wealth of important authors and publications left out.
Osmani provides a high-quality starting point [32] to exploring this space
further.

2.5.4 Maintainability

As previously argued in section 2.3 Relating Quality and Architecture, the
two concepts are fundamentally linked. One important aspect of quality is

8http://uk.linkedin.com/in/osmani

http://uk.linkedin.com/in/osmani

CHAPTER 2. PREVIOUS WORK 28

maintainability, and perhaps due to its traditional negligence in frontend
applications, several well-known books and other publications have been de-
voted the treatment of maintainability in this context.

One of the seminal works on maintainable JavaScript is Douglas Crock-
ford’s 2008 book “JavaScript: The Good Parts” [7]. Indeed, it is still of-
ten cited as one of the best starting points to learning professional-grade
JavaScript development. The author argues that the language contains many
features which should be avoided in order to produce JavaScript code that
is free from maintainability issues. These claims are codified into a sub-
set of the language, which includes features like simple objects, closures and
higher-order functions. The parts of the language the author advises to avoid
include global variables, which are discussed at length later, in section 3.1
State and Variable Isolation.

“Maintainable JavaScript” [54] by Zakas also contains a thorough treat-
ment of programming practices for building robust and maintainable frontend
applications. He discusses topics such as loose coupling, separation of con-
cerns, and the tendency of JavaScript towards global variables and state.
This discussion is foundational to several of the isolation mechanisms pre-
sented in chapter 3 Isolation Mechanisms.

2.5.5 Performance

As frontend applications have an intimate relationship with User Experience
(UX), and as performance is an especially important part of good UX (see
subsection 4.1.2 Performance Efficiency for related discussion), several books
have been devoted to the topic.

One of the classic works on the topic is, again, by Zakas, titled “High
Performance JavaScript” [53]. It contains a holistic overview of the fun-
damentals in achieving high performance on the browser platform. Even
though the performance of web browsers continues to improve rapidly, much
of the book is as relevant today as it was when published in 2010. This is
because the fundamentals of frontend performance — avoiding round-trips9,
DOM-thrashing and expensive work on the UI-thread10 — have improved
through gradual evolution, rather than a revolution making previous advice
obsolete. These performance fundamentals lay the groundwork for much

9Network access is still many orders of magnitude more expensive than local compu-
tation for example; see subsection 3.4.1 Evented Programming on a Single Thread for
related issues.

10Fundamental limitations with DOM access preclude revolutionary improvements to
DOM performance; see subsection 3.4.2 Responsibilities of the UI-thread for details.

CHAPTER 2. PREVIOUS WORK 29

of the performance-related discussion in section 3.4 Execution Isolation, for
instance.

A collection of articles from several notable authors on the topic of fron-
tend performance was also released in 2012, titled “Web Performance Day-
book Volume 2”11 [39]. As it is a collection of independent articles, if offers
a less holistic view of the field, but contains both more recent and in-depth
advice on the issues it does cover.

11Curiously, a Volume 1 has never been published, and accord-
ing to a representative of the publisher, perhaps never will be:
http://support.oreilly.com/oreilly/topics/is there a web performance daybook volume 1

http://support.oreilly.com/oreilly/topics/is_there_a_web_performance_daybook_volume_1

Chapter 3

Isolation Mechanisms

This chapter defines the 4 major classes of isolation mechanisms identified in
this work, namely:

• State and Variable Isolation in section 3.1

• Isolation from the DOM in section 3.2

• Isolation within the DOM in section 3.3

• Execution Isolation in section 3.4

Each section introduces the specific concepts involved, contains concrete
examples of related quality issues, and covers the available mechanisms for
enforcing isolation within that class. This includes discussing the relevant
best practices in the field, as in most cases the isolation mechanisms are
not purely about using specific technology, or purely about implementing a
specific architectural pattern, but a combination of both.

3.1 State and Variable Isolation

The first class of isolation mechanisms is state and variable isolation. It
pertains to the common lack of namespacing in frontend applications: unless
the developer takes explicit measures to implement isolation for state and
variables, collisions (accidental sharing of a variable for example) are likely
to occur. These collisions often manifest as bugs that are hard to diagnose.

30

CHAPTER 3. ISOLATION MECHANISMS 31

3.1.1 Information Hiding

JavaScript, as a language, was born in haste and out of necessity. Thus, it
does not contain many features a professional programmer might expect from
a language used to implement industrial-grade applications. [7, p. 1] One
such language feature is the ability to restrict the visibility of variables1. In
other common languages — such as Java — it is possible to declare specific
fields as private. This forces any access to them to take place within a
restricted subset of the application — in contrast to being accessible from
everywhere.

Restricting the visibility of variables is one common tool for implementing
information hiding in an application. An application is ideally a collection
of smaller parts, each of which take care of a specific task, and do little
else. Information hiding refers to implementing those parts so that each
exposes only enough features as is necessary. Since the parts are working
together to form a larger system, some features are necessarily exposed so
that the application can work as a whole, but everything else becomes an
implementation detail. Such implementation details should not be of interest
to any other part of the application, and can thus be changed freely, as long
as the exposed features are not affected. [35, p. 268] [52, p. 30] Declaring
fields or methods private in Java effectively marks them as implementation
details, whereas declaring them public marks them as exposed interaction
points.

All variables created outside an enclosing function body2 are public by
default in JavaScript [10, p. 56]. This means — in a simplified case — that
every variable defined (including functions) is automatically accessible from
every other part of the application. An experienced programmer will know to
avoid such arbitrary access to maintain proper information hiding, but not all
programmers benefit from formal training and years of industry experience.
This is especially true in the case of JavaScript, due to the relative youth of
the language, and the near-zero upfront investment in starting development
[6]. Having language-level features for limiting access to specific variables
alleviates the need for constantly consciously maintaining these limitations
by the application developer. Also, in an application with more than one

1There are many terms with subtly differing meanings which could be used here: vari-
able, identifier, symbol, name, et cetera. For the purposes of this discussion, variable will
be used. In addition to the titular var statement, this covers well the visibility semantics
of named functions, as they are very close to those of assigning anonymous functions into
named variables [10, p. 98]. Assignments to the Global Object are also semantically close
enough to using top-level var statements [10, p. 103].

2The upcoming revision of the language introduces the let keyword, though, which
allows limiting the visibility of variables to scopes other than function bodies.

CHAPTER 3. ISOLATION MECHANISMS 32

1 var addItem = (function () {

2 var private = [];

3 return function(newItem) {

4 private.push(newItem);

5 };

6 })();

7
8 addItem("foobar");

Listing 3.1: By wrapping the variable private in an Immediately Invoked
Function Expression (IIFE), it becomes only visible to the function assigned
to variable addItem, thus protecting it from uncontrolled access.

developer, these features become tools for communicating which parts of
application code are meant to remain as implementation details. Having
all variables public by default is often considered one of the worst features
of the language [7, p. 40] [38, p. 11], and many of the following isolation
mechanisms will involve information hiding in one form or another.

3.1.2 Emulating Privacy

The notable exception to the previously discussed global visibility of vari-
ables are function bodies. While variables that were originally created as
global will remain accessible from everywhere3, new variables defined within
a function body are only accessible from within that specific function [10, p.
59]. This additional privacy can simply be coincidental: the primary purpose
of functions is to represent an executable block of code, and the reduced vis-
ibility of new variables can be just a side-effect. But many JavaScript best
practice guides ([33, p. 29] [7, p. 37], [54, p. 77]) place high value on this
ability to provide information hiding, going as far as to advocate the use
of functions solely for that purpose. To achieve this effect, the application
code that would otherwise be in the global scope is placed within a function
body, which is in turn immediately invoked (that is, the lines of code it con-
tains are executed). This technique — also known as Immediately Invoked
Function Expression (IIFE) [33, p. 115] — makes all newly introduced vari-
ables private to the enclosing function, while leaving the execution order of
individual lines of code unchanged. This provides an effective emulation of
private variables to the language [32]. Listing 3.1 demonstrates this effect.

3With specific exceptions such as a closer variable with the same name eclipsing it [10,
p. 59].

CHAPTER 3. ISOLATION MECHANISMS 33

3.1.3 Variable Scope

Variable scope refers to the parts of application code where a variable can be
accessed [7, p. 36]. It is closely related to the previously discussed concept
of visibility: declaring variables as private limits their scope, and declaring
them as public extends their scope to the entire application.

Since JavaScript lacks language-level visibility modifiers (such as Java’s
private and public), the scope of a variable is defined by its enclosing
function body4. These scopes can be nested, so that when variable references
are bound, the named variable is first looked for from the function where the
access takes place, then from the function that encloses that function, and
so on. These function bodies form a scope chain, the root of which is the
global scope, from which the variable reference is finally looked for if none of
the previous scopes declared a variable by that name. [10, p. 51]

3.1.4 Naming Collisions

This nesting of scopes, with chained access to outer scopes, is a very useful
feature of the language. It allows convenient sharing of application variables
with select subsections of the same application. [7, p. 37] But it also has an
insidious side-effect: when assigning to or reading from a variable which has
not been declared in any outer scope, the variable is created to or read from
the global scope5. This is a natural consequence of the previously discussed
chained variable resolution, but can cause bugs that are hard to diagnose.
The global variable being affected may control completely unrelated aspects
of the application, a third-party library, or even the browser itself. [54, p. 69]
An accidental sharing of a variable with the same name is called a collision
[33, p. 114].

The most commonly recommended methods of protecting against colli-
sions are always declaring variables [38, p. 11] and static code analysis [7,
p. 116] [54, p. 70]. Collisions are most likely to happen in the global scope,
since it is always shared by all parts of the application. Always explicitly
declaring variables — as opposed to allowing them to be created implicitly
— makes sure the global scope is never reached when traversing the scope
chain, and thus the global state is never affected. Static code analysis tools

4With specific — and largely irrelevant in the context of this discussion — exceptions
such as the with/catch clause [10, p. 51], and the previously mentioned upcoming let

keyword.
5With the exception of the opt-in “strict mode” [10, p. 4].

CHAPTER 3. ISOLATION MECHANISMS 34

1 // In the global scope:

2 var myApp = {

3 log: function(message) {

4 // process the log entry

5 },

6 alert: function(message) {

7 // show a customized alert dialog

8 }

9 };

10
11 (function () {

12 // In a local scope:

13 myApp.log("User logged in");

14 myApp.alert("Welcome to My Application!");

15 })();

Listing 3.2: Variables introduced by the application are organized under the
namespace object myApp. While that object remains in the global scope, its
properties log and alert are protected from collisions with other globals. For
instance, the global alert is usually reserved by the browser, and assigning
the custom implementation to that global might have undesired consequences
for other parts of the application.

such as JSHint6 and ESLint7 can help in detecting implicit variable declara-
tions, as well as many other common programming mistakes associated with
a loosely typed language such as JavaScript.

3.1.5 Namespace Objects

Even though the use of global variables is often categorically discouraged
[38, p. 10], many real-world applications end up sharing select variables
and functions as globals. Generic variable names such as log are likely to
be defined by many source files (either from the same application or from
3rd party components), and are thus prime candidates for collisions. To
reduce the chances of collisions with other variables populating the global
scope, many best practice guides suggest organizing all global variables into
a global namespace object, whose name has a low likelihood of colliding with
other globals [7, p. 25] [33, p. 114] [54, p. 71]. Specific names such as the
name of the application are good candidates for the name of the namespace
object. This technique is demonstrated in Listing 3.2.

6http://www.jshint.com/
7https://github.com/eslint/eslint

http://www.jshint.com/
https://github.com/eslint/eslint

CHAPTER 3. ISOLATION MECHANISMS 35

The properties of the namespace object are still effectively globals within
the context of the application. While all arguments about avoiding shared
global state and information hiding still apply, the namespace object makes
collisions between the application, its libraries and the browser environment
less likely.

Internal collisions are still possible within the namespace object: in a
large application, the same property of the shared namespace object can be
inadvertently used by unrelated parts of the code. This is in fact a manifes-
tation of the same problem originally solved by the namespace object, only
limited to the context of the application (as opposed to the global scope). It
can be mitigated by applying the namespace object pattern recursively: for
each subsection of the application, a separate property is reserved from the
root namespace object, which is then used as the root namespace object for
that subsection. Thus the namespace of the application can be subdivided
as much as needed to avoid collisions. This subdivision also has the poten-
tial to help in understanding a large application, as functionality relating to
specific subproblems the application solves can be found from specific parts
of the namespace tree. This nesting approach is recommended by many best
practice guides for namespacing complex applications [33, p. 114] [38, p. 88]
[54, p. 72].

3.1.6 Modules

Recent years have seen a proliferation of module systems for JavaScript, the
most prevalent of which are AMD8, CommonJS9 and, very recently, ES6
Modules10.

While these systems contribute tremendously to the interoperability be-
tween JavaScript applications and components, they fundamentally offer lit-
tle extra in terms of isolation between modules. The module systems contain
many useful features related to locating and loading additional JavaScript
code, and ensuring each additional module is loaded only once. However,
in terms of isolation guarantees, they simply assume the role of a top-level
namespace object, and offer little else than the techniques presented in List-
ing 3.1 and Listing 3.2 before.

That is, the importance of the various module systems warrant a mention,
but their treatment here is left brief.

8https://github.com/amdjs/amdjs-api/wiki/AMD
9http://wiki.commonjs.org/wiki/CommonJS

10http://people.mozilla.org/ jorendorff/es6-draft.html#sec-modules, though the speci-
fication is yet to be finalized.

https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.commonjs.org/wiki/CommonJS
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-modules

CHAPTER 3. ISOLATION MECHANISMS 36

3.2 Isolation from the DOM

The second class of isolation mechanisms is isolation from the DOM. It per-
tains to the issues inherent in the tradition of tightly coupling application
state and logic with the presentation logic of a frontend application. The ma-
jor forces driving developers towards this are sheer productiveness, the ease
of interweaving HTML, CSS and JavaScript, and traditions emerging from
a culture of treating frontend applications more as the domain of graphic
designers, not of trained programmers [28].

3.2.1 DOM Introduction

The DOM (Document Object Model [46]) is the in-memory representation a
browser uses to construct, render and maintain the web page as defined by
its HTML content. The DOM is exposed to the JavaScript executing on a
page as an API for reading and modifying the web page, and for subscribing
to events generated by the browser or the user interacting with the web page.
[46]

On the evolutionary path of the frontend application, the DOM has al-
ways been a central component. The DOM API is the primary means for
JavaScript to affect the contents of the web page it runs on, so to add any
functionality to a static HTML document, the DOM API must be used. The
DOM is also a large shared data structure always accessible by all JavaScript
executing on the page — effectively a mandatory shared global variable for
all frontend applications [28]. In light of the previous discussion in section 3.1
State and Variable Isolation, this is not an optimal foundation on which to
build large, production quality applications.

3.2.2 Naive DOM Use

Using the DOM as the shared data structure that maintains the complete
application state is very tempting. When some change to application state
takes place, the UI will have to be updated to reflect that change, and the
visible UI changes can only be effected through the DOM API11. Listing 3.4
presents an application which does the following:

1. Performs a POST /login HTTP request.

11There are specific exceptions such as updating the UI through the recently introduced
<canvas> element, though frontend applications only using that element for UI updates
are rare.

CHAPTER 3. ISOLATION MECHANISMS 37

1 <script src="/lib/jquery -2.1.1. js"></script >

2 <header style="display: none"></header >

3

Listing 3.3: HTML document associated with the JavaScript application
presented in Listing 3.4.

1 $.post("/login").then(function(userName) {

2 $("header").text("Logged in as: " + userName).show();

3 }).always(function () {

4 $.get("/posts").then(function(posts) {

5 $("ul").append(posts.map(function(post) {

6 var $li = $("").text(post);

7 if ($("header").is(":visible")) { // login check

8 $li.append(" [edit post]");

9 }

10 return $li;

11 }));

12 });

13 });

Listing 3.4: A sample JavaScript application which maintains its state
exclusively in the DOM.

2. If the request succeeds (that is, correct credentials were provided), the
server-provided username is made visible on the UI. If not, this step is
skipped, and the relevant part of the UI remains hidden.

3. Performs a GET /posts HTTP request.

4. For each post received from the server, adds it to the UI into the list
of posts.

5. For each such post, based on whether or not the user is logged in,
optionally displays an link for editing the post (as for the purposes of
this example editing posts is reserved for users who are logged in).

The application presented in Listing 3.4 is in fact a fully functioning
implementation of the listed requirements, all in 13 lines of JavaScript code,
and 3 lines of supporting HTML (Listing 3.3). It contains non-blocking
network operations, conditional branching based on the success or failure of
those operations, updating the UI and storing and retrieving the state of
the previous login request (as the visibility of the <header> element). The

CHAPTER 3. ISOLATION MECHANISMS 38

application only depends on a single external library, jQuery12.
Indeed, what makes this method of storing application state in the DOM

tempting is that there is no duplication of effort: the UI changes can only be
effected through the DOM API, so the state will have to exist in the DOM.
It thus stands to reason said state should not have to be duplicated else-
where. Furthermore, modern DOM manipulation libraries (such as jQuery)
can make the developer very productive in working with the DOM, and under
the constant pressure to ship code [4], getting features implemented quickly
sounds very attractive. Finally, while the example application in Listing 3.4
is contrived, this has, up until recent times, been a very common way to
model the frontend code of web applications: keeping most application state
in the DOM [28].

3.2.3 Storing State in the DOM

Unfortunately, as application complexity increases, this method of main-
taining application state mostly within the DOM starts to break down [21].
Firstly, let us assume other conditional actions (similar to the previous login
check) will have to be performed in other parts of the application: some other
information or functionality can only be available to logged in users, for ex-
ample. The same DOM-based check will be implemented for those cases. The
application code ends up riddled with references to specific elements in the
DOM. But the requirements for software systems need to cope with change
— so much so in fact that requirements churn is classically attributed as one
of the top reasons for software project failure [15]. Should the application
requirements change so that the login status be shown in a <footer> element
instead of the current <header> element, all of the DOM-based conditional
checks would break. This is because the element from which the state is
retrieved is specified by its type, and the type has to be updated everywhere
where there is a login status check.

However, there are several ways to work around this problem:

• Reference the element through an ID-attribute, so that the actual ele-
ment type can change without affecting the conditional check:
<header id="login-state"> and $("#login-state")

• Use a CSS class for storing the login state, and use the class for ren-
dering the element visible/hidden as needed:
<header class="is-logged-in">

12http://jquery.com/

http://jquery.com/

CHAPTER 3. ISOLATION MECHANISMS 39

• Create a function which will encapsulate retrieving the state from the
DOM, so that the way it is stored in the DOM can be freely changed
without affecting more than one location in the application code:
function isLoggedIn() { return $("..."); }

Yet, let us assume that the requirements change so that the login state
need not be displayed to the user at all. The intuitive solution might be to
keep the <header> element permanently hidden in the UI. All of the condi-
tional checks will keep working as before13, and hiding an element is usually
a single line of added styling, thus very straightforward to implement. But
as the application evolves, maintaining UI elements in the DOM which have
no contribution to the actual UI becomes questionable, for several reasons:

1. Firstly, DOM access is one of the slowest aspects of a modern JavaScript
engine [53, p. 35], and accumulating unnecessary DOM accesses will
begin slowing the application down.

2. Secondly, another developer working on the application may see a part
of the UI which is never shown to the user, and decide to remove it as
unnecessary. This would again break the conditional checks.

3. Finally, the example of a boolean login state is an oversimplification —
in a frontend application of non-trivial size, the types of state that will
have to be maintained include complex data structures such as objects,
collections of objects, and references between them.

Thus, we conclude that using the DOM as both the description of the UI
and the sole storage of application state is problematic, in all but the most
trivial frontend applications. That is, we want to isolate application state
from the DOM, so that concerns of visual representation do not interfere
with concerns of application logic.

3.2.4 Separation of Concerns

Separation of Concerns was originally described by Edsger W. Dijkstra in
1974 as follows:

Let me try to explain to you, what to my taste is characteristic
for all intelligent thinking. It is, that one is willing to study in
depth an aspect of one’s subject matter in isolation for the sake

13Assuming something else than element visibility is used as the property storing the
login state.

CHAPTER 3. ISOLATION MECHANISMS 40

of its own consistency, all the time knowing that one is occupying
oneself only with one of the aspects. We know that a program
must be correct and we can study it from that viewpoint only;
we also know that it should be efficient and we can study its
efficiency on another day, so to speak. In another mood we may
ask ourselves whether, and if so: why, the program is desirable.
But nothing is gained – on the contrary! – by tackling these
various aspects simultaneously. It is what I sometimes have called
“the separation of concerns”, which, even if not perfectly
possible, is yet the only available technique for effective ordering
of one’s thoughts, that I know of. [9]

Besides rooting itself permanently into computer science terminology, the
concept is often discussed alongside JavaScript and frontend application ar-
chitecture. Its primary technical interpretation is maintaining a clear sepa-
ration between the HTML, CSS and JavaScript of an application — that is,
its content, presentation and behaviour [38, p. 181] [54, p. 53]:

• HTML defines the content of a web page, by providing the building
blocks and their associated semantics from which a web page is assem-
bled. It is possible to embed both CSS and JavaScript within HTML,
but either is considered bad separation of concerns [54, p. 57]. An
exception to this are some advanced optimization techniques, but they
are generally applied using build automation during deployment, rather
than being maintained as part of the codebase [53, p. 163].

• CSS defines the presentation of a web page, using declarative rules
which apply a specific visual appearance to matching DOM elements.
This application is automatic, in the sense that an update to the DOM
will cause a web browser to automatically consult the associated CSS
for relevant changes in appearance. [42] It is not possible to embed
HTML or JavaScript within CSS14.

• JavaScript defines the behaviour of a web page, by executing code
against the scripting environment provided by the browser. It is pos-
sible to embed both HTML and CSS within JavaScript, though again,
both are considered bad separation of concerns [54, p. 56].

14An exception to this are CSS Expressions (http://msdn.microsoft.com/en-
us/library/ms537634%28v=vs.85%29.aspx) which are not supported by any modern
browser. Methods for achieving similar end-results, such as the CSS calc() function
(https://developer.mozilla.org/en-US/docs/Web/CSS/calc) and CSS pseudo-elements
(https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements) exist, but do not
allow direct embedding of either JavaScript or HTML into CSS.

http://msdn.microsoft.com/en-us/library/ms537634%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms537634%28v=vs.85%29.aspx
https://developer.mozilla.org/en-US/docs/Web/CSS/calc
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements

CHAPTER 3. ISOLATION MECHANISMS 41

In addition to the above technical interpretation, the more abstract inter-
pretation of the separation of concerns has to do with the internal structure
of the JavaScript of the application. Many JavaScript best practice guides
give a thorough treatment to related concepts, such as:

• Code base organization [54]

• Design Patterns [33]

• Code maintainability [54]

• Application architecture [32]

Yet, while these concepts have important applications in the domain of
frontend applications, they are — in their general form — ultimately appli-
cable to any software development effort. Thus, their treatment is limited
to citing relevant sources, in favor of focusing on topics specific to frontend
applications.

3.2.5 The MVC Pattern

From its beginnings, up to recent times, web frontend development efforts
have lacked structure. Instead of proper software development (which could
and would be taken seriously), the prevailing attitude towards frontend de-
velopment has been one of hacker-culture and ignorance: even if web appli-
cations contained significant frontend components, they have been mostly
treated as a necessary evil, or at least the domain of graphic designers and
the like, not proper programmers. [28] [54, p. ix]

With the increasing importance of the web frontend, and indeed the rise
of the frontend application, the frontend developer community has found
itself revisiting established architectural patterns for software development,
to allow their applications to grow in size and complexity. Perhaps the most
important of these patterns is the Model-View-Controller (MVC) pattern,
originally introduced with the Smalltalk-80 programming environment [24]
in the early 1980’s, and later popularized by the classic Design Patterns work
by the “Gang of Four” in 1994 [13].

In the form the pattern has since been adopted by frontend application
developers [33], it splits the application into three distinct parts:

• Model: Encapsulating and managing the data and state of the appli-
cation.

CHAPTER 3. ISOLATION MECHANISMS 42

1 <script src="/lib/jquery -2.1.1. js"></script >

2 <script src="/lib/underscore -1.7.0. js"></script >

3 <script src="/lib/backbone -1.1.2. js"></script >

4
5 <header style="display: none"></header >

6
7

Listing 3.5: HTML document associated with the application presented in
Listing 3.6.

• View: Providing a visual representation of related Models (using the
DOM API).

• Controller: Working as an intermediary between the Models and the
Views, effecting updates to Model state as the user interacts with a
View, and updating relevant Views when changes to Model state are
detected.

In the context of this discussion, the most important property of the MVC
pattern is that it allows for a separation of concerns between the state, UI and
logic of a frontend application (Models, Views and Controllers, respectively).
Revisiting the simple application introduced in subsection 3.2.2 Naive DOM
Use and addressing the issues brought up in subsection 3.2.3 Storing State
in the DOM, we can apply the MVC pattern for separating the concerns
of the state and the UI. Backbone.js15 is used for the demonstration of the
principle. Backbone.js was arguably one of the most prominent libraries in
the beginnings of the movement from the unstructured frontend code of the
past to the modern frontend application era, and is also heavily inspired by
the MVC pattern16. Thus, it is a well-suited library for the sample presented
in Listing 3.6.

The sample application presented in Listing 3.6 addresses the issues of
its predecessor (presented in Listing 3.4) in several important ways:

1. It maintains the data and state of the application in a Model (variable
data), separate from the DOM. This allows performing the login check
(on line 15) without any assumptions towards how the data is visually
represented. Should the requirements change to display the login sta-
tus in a <footer> element instead, the conditional checks would remain

15http://backbonejs.org/
16http://backbonejs.org/#FAQ-mvc

http://backbonejs.org/
http://backbonejs.org/#FAQ-mvc

CHAPTER 3. ISOLATION MECHANISMS 43

1 var MainView = Backbone.View.extend ({

2 initialize: function () {

3 this.listenTo(this.model , "change", this.render);

4 },

5 render: function () {

6 var userName = this.model.get("userName");

7 var posts = this.model.get("posts");

8 this.$("header")

9 .text("Logged in as: " + userName)

10 .toggle (!! userName);

11 this.$("ul")

12 .empty ()

13 .append(posts.map(function(post) {

14 var $li = $("").text(post);

15 if (!! userName) { // login check

16 $li.append(" [edit post]");

17 }

18 return $li;

19 }));

20 }

21 });

22
23 var data = new Backbone.Model();

24 var ui = new MainView ({

25 el: document.body ,

26 model: data

27 });

28
29 $.post("/login").then(function(userName) {

30 data.set({ userName: userName });

31 }).always(function () {

32 $.get("/posts").then(function(posts) {

33 data.set({ posts: posts });

34 });

35 });

Listing 3.6: The application originally presented in Listing 3.4, rewritten
according to the principles of the MVC pattern. The state of the application
is stored in data (Model), the DOM is managed exclusively through ui

(View), and the root scope performs the functions of the Controller.

CHAPTER 3. ISOLATION MECHANISMS 44

unaffected, and only the View code would need to be changed. Simi-
larly, the login status can be removed from the visible UI altogether,
without affecting the conditional checks.

2. It manipulates the DOM exclusively through a View (variable ui).
One of the important implications is that if any of the aforementioned
changes to the appearance of the UI have to be implemented, the View
alone needs to be changed.

3. It establishes a persistent binding between the Model and the View,
by the main script acting as a Controller. This is an important im-
provement over the previous implementation, which was built to handle
responses to two HTTP requests, and to then update the UI accord-
ingly. The version presented in Listing 3.6 raises the level of abstraction
so that any subsequent operation which changes the state in data will
also be reflected by the UI automatically. For instance, evaluating
data.set({ userName: null }); at any later point during the ap-
plication execution will hide the “[edit post]” labels and the “Logged
in as:” text.

Applications of the MVC Pattern have been an important stepping stone
in the evolution of modern frontend application development [33, p. 79].
While it has benefitted the craft in numerous ways, its most important aspect
while discussing isolation from the DOM is allowing for an explicit separation
of DOM manipulation from the other concerns of the application (such as
state manipulation or domain logic).

3.3 Isolation within the DOM

The third class of isolation mechanisms is isolation within the DOM. It per-
tains to the common lack of isolation between components that need to co-
exist within a shared DOM. Unless explicitly addressed by the developer, this
allows for accidental access across components, with the potential to affect
both application logic and appearance in an unexpected manner. Mecha-
nisms for dealing with these issues exist, but require various tradeoffs between
effectiveness and feasibility.

3.3.1 Introduction

The DOM can become a very large data structure, shared across the en-
tire frontend application. In addition to keeping the DOM and the appli-
cation state separate (as previously discussed in section 3.2 Isolation from

CHAPTER 3. ISOLATION MECHANISMS 45

the DOM), providing isolation between parts of the DOM can be equally
valuable.

The DOM is a tree structure. Regardless of the plethora of potential
problems the browser may encounter while constructing the tree (such as im-
properly nested elements, missing required elements or attributes, et cetera),
modern browsers are very resilient in HTML parsing, and its result is always
a directed acyclic graph of DOM nodes, of varying types. Most of these types
correspond to specific types of HTML elements (such as a button or a text
input). So while the HTML parsed by the browser may contain errors or
omissions, it is always normalized into a standardized tree structure. [45]

3.3.2 CSS Selectors

Specific elements of the DOM tree have to be targeted for various reasons.
The Cascading Stylesheets (CSS) specification [42] defines selectors, using
which one or more DOM elements can be selected to receive specific visual
styling by the browser. JavaScript code often needs to select specific DOM
elements as well. Common examples include being able to subscribe to DOM
events [46] generated at a specific element, programmatically changing the
styling applied to an element, or adding or removing an element altogether.
Updating the contents of a specific element also requires first selecting the
element to be updated. This is needed, for example, when a View updates
the HTML contents of a specific part of the page, as discussed in section 3.2
Isolation from the DOM, and exemplified in Listing 3.6.

CSS selectors are a compact and expressive way to select elements. In
modern browsers, the CSS selector engine used to apply styling to the DOM
tree can also be accessed from JavaScript using the Selectors API [44]. Even
without the convenience of the Selectors API, the basic DOM API provides
methods — albeit cruder ones — for traversing the tree and selecting ele-
ments. Finally, abstractions exist which will use either method of element
selection, depending on what is available in the browser environment. These
abstractions are also able to combine both approaches for increased perfor-
mance, and implement selector syntaxes beyond what is defined by the CSS
specification alone17.

17jQuery (http://jquery.com/) is one such abstraction, leveraging the Selectors API
where available, but implementing several non-standard selector syntaxes on top (such as
:visible) using JavaScript (http://sizzlejs.com/).

http://jquery.com/
http://sizzlejs.com/

CHAPTER 3. ISOLATION MECHANISMS 46

1 <header >

2 Followers:

3 <ul id="followers">

4 John

5 Alice

6 Maurice

7

8 </header >

9
10 <main>

11 List of posts:

12 <ul id="posts">

13 The Art of Isolation

14 The Perils of Globals

15 The Root of all Selectors

16

17 </main>

Listing 3.7: The HTML of a sample application which lists followers and
posts, demonstrating the dangers of relying on global CSS selectors for
effecting UI updates: naive selections such as "ul" would match both lists,
which is rarely intended.

3.3.3 Selection Collisions

Element selection — whether realized through selector queries or raw DOM
access — is essential to all applications which interact with the DOM. Ele-
ments may be selected by querying the entire DOM tree for elements match-
ing a given selector, but also to query a specific subtree of it18. This makes
selector queries easy to understand: they always start from a specific element,
working their way down the tree and looking for matches to the executing
selector. The most commonly used DOM manipulation libraries (such as
jQuery) and the Selectors API support both types of queries — rooted and
global ones — but always default to the latter.

In light of the arguments against globals presented in section 3.1 State and
Variable Isolation, global selectors seem to violate previously established best
practices. To demonstrate this, Listing 3.7 presents an application which lists
followers and posts. Assuming for the moment the <header> and its contents
(that is, the list of followers) do not exist, the list of posts could be updated
with:

$("ul").append("New post ");

18Querying the entire document is in fact equivalent to querying the subtree rooted at
the document root.

CHAPTER 3. ISOLATION MECHANISMS 47

This performs a global selector query19 which matches the list of posts,
into which a new item is then appended. This is very easy to implement and
works well in a simple application. Should the requirements of the application
change, however, so that the <header> needs to be included (and into it
rendered the list of followers), the above code for adding a post would cause
the new item to appear into both lists. This is not desired behaviour, and is
analogous to the preceding discussion in subsection 3.1.4 Naming Collisions,
in that following a reference (in this case the selector "ul") leads to an
unexpected object (in this case the set of both lists, instead of just the
intended one).

The naive solution to this predicament is to give unique names to the
target elements. In Listing 3.7 this has already been done, so that both lists
can be selected by their id attribute as follows:

$("ul#posts").append("New post ");

$("ul#followers").append("New follower ");

The above code will keep matching the intended list, regardless of how
many other lists will be added to the application. Yet the solution still suffers
from the same underlying issue: relying on names in a global namespace.
As a frontend application grows — in lines of code and in the number of
developers working on it — the chances for selector collisions in a global
namespace become increasingly likely [16].

3.3.4 Rooted Selectors

As previously discussed, selector queries can be either global or rooted.
Rooted queries start their DOM tree traversal from a given DOM element,
and will never match elements which are not descendants of the given ele-
ment [44]. Holding a reference to a DOM element effectively creates a selector
query namespace:

var $namespace = $("main");

$namespace.find("ul").append("New post ");

The above code can again use the simple "ul" selector without mixing
up the list elements, as the element stored at $namespace only contains the
intended list element, but not the other one.

Recalling Listing 3.6, a View in an MVC-like architecture often allows
managing these selector query namespaces automatically. The sample ap-
plication in fact makes use of this namespacing by referring to this.$()

19The $ variable refers to jQuery’s Selector API
(http://api.jquery.com/category/selectors/). Unless otherwise noted, this applies to
other code samples as well.

http://api.jquery.com/category/selectors/

CHAPTER 3. ISOLATION MECHANISMS 48

instead of $() for selecting elements. The former performs a rooted selector
query within the confines of the View instance, whereas the latter performs
a global selector query. This technique — regardless of which frameworks
or libraries are being used — is a powerful method for providing separation
between components which inhabit the shared DOM. [16]

3.3.5 Style Isolation

While the preceding discussion has treated JavaScript exclusively, let us recall
subsection 3.3.2 CSS Selectors, and the original purpose of CSS selectors in
effecting visual styling into a web page. Indeed, the same dangers of global
selections apply in the context of styling: an accidental reuse of an existing
CSS selector may visually affect an unrelated part of the application in an
undesired way.

The concept presented in subsection 3.3.4 Rooted Selectors can be ap-
plied to provide a degree of style isolation as well. When developing styles
for an element, the developer can limit their applicability by choosing a par-
ent element which is relevant to the context: instead of using "ul" as the
selector, using "main ul" ensures only the element within the <main>

element is applicable. This is referred to as increasing the specificity [42] of
the selector.

Increasing selector specificity, however, is not a panacea for providing style
isolation within the DOM. To the contrary, many notable works on managing
CSS in complex frontend applications treat overly specific selectors as an
antipattern. While other reasons such as performance are also cited, the most
prominent argument is one of maintainability: overly specific selectors make
the structure of the application hard to change without causing unexpected
changes to styling as well. These works instead suggest using fairly unspecific
selectors based on unique, globally reserved names for each component. [17,
37] In our opinion, this is merely a stopgap measure of managing styling
complexity in a large frontend application, since many of the fundamental
problems of using a single namespace for global names (see subsection 3.3.3
Selection Collisions) remain unsolved by the approach.

3.3.6 Depthwise Isolation

The preceding discussion on isolation within the DOM — both isolating
JavaScript element selections and isolating CSS styling — has concentrated
on limiting the effects DOM siblings have on each other. Being siblings is
not the only way DOM elements can be related, however, and much of DOM
terminology [46] revolves around these concepts of ancestry:

CHAPTER 3. ISOLATION MECHANISMS 49

• The parent of a DOM element is another element which directly con-
tains the element in question

• A child of a DOM element is another element for which the element
in question is the parent

• Two or more elements in the DOM are considered siblings if they
share the same parent element

A condition not yet explicitly discussed arises when two UI components
of an application are not siblings but instead in a parent-child relationship.
Considering our aim is to provide isolation between UI components in the
DOM, the previously discussed methods for achieving that isolation are not
equally effective anymore. To demonstrate this, recalling Listing 3.7, let us
assume the application needs to be changed so that each post also contains
a list of the authors who have worked on it. The results of such amendments
are presented in Listing 3.8, and they present potential violations of cross-
component isolation in several scenarios:

• If using a selector such as $("main ul") to effect changes to the list of
posts, the newly added list of authors would inadvertently receive the
same changes. The syntactic alternative of using var $namespace =

$("main"); would be equally defective.

• If JavaScript was using a View in an MVC-like architecture (as in
Listing 3.6) and selecting elements with properly rooted selectors such
as this.$("ul"), the issue would persist. This is regardless of whether
the inner list (that is, the list of authors) was managed by another
independent View or not.

• If the page stylesheets were using CSS rules such as ul li { color:

red; } to make the titles of posts appear in with specific visual styling,
the same styling would — most likely accidentally — be applied to the
list of authors as well.

The root cause for all of the issues listed above is the use of descendant
selectors for specifying the relationships between the various referenced DOM
elements. The CSS specification defines the selector as follows:

At times, authors may want selectors to match an element that
is the descendant of another element in the document tree (for
example, “Match those EM elements that are contained by an
H1 element”). Descendant selectors express such a relationship

CHAPTER 3. ISOLATION MECHANISMS 50

1 <main>

2 List of posts:

3 <ul id="posts">

4 The Art of Isolation , by:

5

6 John

7 Donny

8 Alice

9

10

11 The Perils of Globals , by:

12

13 Maurice

14

15

16 The Root of all Selectors , by:

17

18 John

19 Alice

20

21

22

23 </main>

Listing 3.8: The HTML of a sample application which lists posts and their
authors, demonstrating the dangers of unfettered depthwise CSS selection.

CHAPTER 3. ISOLATION MECHANISMS 51

in a pattern. A descendant selector is made up of two or more
selectors separated by white space. A descendant selector of the
form "A B" matches when an element B is an arbitrary descendant
of some ancestor element A. [42]

While specific figures on their prevalence were not obtained for this work,
in our experience, descendant selectors are the overwhelmingly most com-
mon form of CSS selectors on the web. Alternative selector forms exist
which define stricter rules for the parent-child relationship (such as the child
selector20), but their widespread use is both rare and against recent works
on CSS best practices (as discussed in subsection 3.3.5 Style Isolation).

Thus, we conclude that providing depthwise isolation for either JavaScript
element selections or CSS styling using the current, widely available technolo-
gies remains challenging. The single exception21 to this are frames.

3.3.7 Frames and the iframe

The concept of frames on web pages dates back to the 90’s and the HTML
4.01 Specification, which introduces them as:

HTML frames allow authors to present documents in multiple
views, which may be independent windows or subwindows. Mul-
tiple views offer designers a way to keep certain information vis-
ible, while other views are scrolled or replaced. For example,
within the same window, one frame might display a static ban-
ner, a second a navigation menu, and a third the main document
that can be scrolled through or replaced by navigating in the
second frame. [40]

That is, a frame essentially creates a view into another web page from
within the current web page. As of HTML5 [45], all other frame types except
the iframe have been deprecated, so the following discussion will focus solely
on the iframe element. The iframe, however, has several properties which
make it very different from most other DOM elements, such as:

1. Creating nested browsing contexts: A web page loaded into an
iframe behaves as it were a stand-alone page loaded directly into the

20https://developer.mozilla.org/en-US/docs/Web/CSS/Child selectors
21<svg> elements are another, but largely uninteresting in the context of this discussion,

as while an <svg> element has many of the same properties of a frame, they are meant
for representing graphics, not general-purpose web page components.

https://developer.mozilla.org/en-US/docs/Web/CSS/Child_selectors

CHAPTER 3. ISOLATION MECHANISMS 52

browser22, except for being visually rendered inside its parent web page.
This includes a separate JavaScript environment from the parent page.

2. Generating a new viewport: Media Queries [42] within an iframe
will react to the dimensions of the iframe, not the web page containing
the iframe.

3. Restricting JavaScript DOM access: A web page using an iframe
to load another page from a differing origin23 is not allowed to access
the content of the loaded page with JavaScript24. The same applies
the other way around, as the loaded page is not allowed to access its
parent page, either. This includes stopping the propagation of element
selection using selector queries.

4. Stopping the application of CSS styling: Style rules which have
been defined for a web page do not25 affect the web page loaded into
an iframe.

Considering the context of our discussion — isolation within the DOM —
the iframe seems like a perfect unit of composition for building large frontend
applications, as it specifically addresses the primary issues brought up thus
far:

• In subsection 3.3.3 Selection Collisions: When performing element se-
lection through JavaScript, selector queries will never match elements
within an iframe. Those elements are thus safe from accidental modi-
fication, such as in Listing 3.7.

• In subsection 3.3.5 Style Isolation: CSS styles defined for an element
within an iframe will never affect the styling of its siblings.

• In subsection 3.3.6 Depthwise Isolation: Leaks between the parent and
the child — both in CSS styling and JavaScript element selection —
are prevented, such as the ones in Listing 3.8.

22There are other subtle differences as well, such as how the browser han-
dles navigation events within a nested browsing context, but their full enumer-
ation is beyond the scope of this work. The interested reader is referred to
https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe for a high-level ex-
planation of an iframe’s properties.

23https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin policy
24There are several exceptions to this, however, such as window.postMessage

(https://developer.mozilla.org/en-US/docs/Web/API/window.postMessage), which allow
selective flexibility in isolating the JavaScript environments.

25The experimental seamless attribute (https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe#attr-
seamless) allows selectively relaxing this, however.

https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/API/window.postMessage
https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe#attr-seamless
https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe#attr-seamless

CHAPTER 3. ISOLATION MECHANISMS 53

1 <style >

2 li {

3 font -weight: bold;

4 }

5 </style >

6
7 <main>

8 List of posts:

9 <ul id="posts">

10 The Art of Isolation , by:

11 <iframe src="author -list.html"></iframe >

12

13

14 </main>

Listing 3.9: The HTML of a sample application which lists posts and their
authors. The list of authors is included using an iframe to ensure its isolation
from the rest of the application. The list of authors is loaded as a separate
web page from the URL "author-list.html", and its contents are presented
in Listing 3.10.

1 <style >

2 li {

3 color: red;

4 }

5 </style >

6
7

8 John

9 Donny

10 Alice

11

Listing 3.10: The HTML which is assumed to be available at the URL
"author-list.html", and which is included by the main application
presented in Listing 3.9 to list the authors for a post.

CHAPTER 3. ISOLATION MECHANISMS 54

A sample application listing posts and their authors is presented in List-
ing 3.9 and Listing 3.10. The isolation properties of the iframe ensure that
while both components use the simple "li" selector, the font-weight:

bold; styling only applies to the list of posts, and conversely, the color:

red; styling only affects the list of authors. Similarly, should either part of
the application use selector queries such as $("li"), the former application
would only match elements representing posts, while the latter application
would only match elements representing authors.

While iframes exhibit extremely desirable characteristics for providing
isolation between UI components in the DOM, those capabilities come at a
cost — iframes come with severe performance penalties:

• Resources needed by the web page within the iframe (including the page
itself) cause additional HTTP requests to the server26. As the list of
needed resources is often unknown until the page within the iframe has
started loading, this limits the browser’s ability to load the resources
in parallel, inducing unwanted latency [39, p. 31].

• Additional HTTP requests caused by loading the iframe consume an
HTTP connection pool shared with the rest of the web page. What this
means is that after opening a specific number of HTTP connections,
the browser will start enqueuing subsequent connection attempts until
capacity is returned to the connection pool, again introducing unwanted
latency to loading the page. [39, p. 31] This number has traditionally
been as low as 2-4 connections per hostname27, though modern browsers
have continuously increased the number, 10-15 connections being a
reasonable assumption at the time of writing28.

• Creation of iframes into the DOM is costly in terms of execution time.
As the most recent figures by a reputable online source29 were already
over 5 years old, and browsers are updated with an ever-increasing

26Advanced optimization techniques such as aggressive resource inlining helps with the
performance penalties, but are both non-trivial to implement and beyond the scope of this
work.

27http://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/ lists some
classical guidelines on the topic.

28http://www.browserscope.org/?category=network contains relevant statistics from
many contemporary browsers, and is frequently updated as browsers update; the truly
interested reader is directed to https://insouciant.org/tech/connection-management-in-
chromium/ for a fascinatingly thorough treatment of the connection management in the
Chromium project.

29http://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/ is by a well-
known web performance researcher, but being from 2009, already outdated.

http://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
http://www.browserscope.org/?category=network
https://insouciant.org/tech/connection-management-in-chromium/
https://insouciant.org/tech/connection-management-in-chromium/
http://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/

CHAPTER 3. ISOLATION MECHANISMS 55

frequency30, this assumption was verified experimentally. The findings
are presented in Table 3.1, and indicate a creation cost 1-2 orders of
magnitude greater than that of simpler DOM elements.

• Maintenance of iframes within the DOM is costly in terms of retained
memory. As relevant existing figures were not obtained for this work,
this assumption was also verified experimentally. The findings are pre-
sented in Table 3.3, and indicate a maintenance cost 2-3 orders of
magnitude greater than that of simpler DOM elements.

In light of these performance characteristics, using iframes as the only —
or even the primary — unit of composition in a large frontend application
does not seem feasible. While the performance penalties are significant, the
usage of iframes is still extremely common across the web. This is due to
the prevalence of contexts such as online advertising, where the performance
tradeoff for isolation and security is desirable. In conclusion, iframes are an
indispensable tool for providing strong isolation guarantees within a frontend
application, but have to be used sparingly due to their high runtime costs.

3.3.8 Web Components

While composing large frontend applications entirely out of iframes (to lever-
age their favorable properties for isolation within the DOM) remains pro-
hibitively expensive performance-wise, a collection of recent standard propos-
als — collectively known as Web Components [47] — introduces mechanisms
for achieving some of the same benefits, without the steep performance penal-
ties of iframes. In this regard, the most interesting part of said specifications
is the Shadow DOM, the abstract of which reads:

This specification describes a method of combining multiple DOM
trees into one hierarchy and how these trees interact with each
other within a document, thus enabling better composition of the
DOM. [48]

Contrasting its offering with the beneficial properties previously intro-
duced in subsection 3.3.7 Frames and the iframe, we find several similarities:

30Indeed Chrome, one of the major browsers of today had only been in existence for a
year at the time of Steve Souders’ related article, and has since received major updates
almost monthly. It is reasonable to assume the performance characteristics of today’s
browsers may have changed, even drastically, from those of 2009.

CHAPTER 3. ISOLATION MECHANISMS 56

1 // <a>

2 var el = document.createElement("a");

3 el.href = "http :// google.com/";

4 el.appendChild(document.createTextNode("Some textual content"

));

5 document.body.appendChild(el);

6 document.body.removeChild(el);

7
8 // <div >

9 var el = document.createElement("div");

10 el.appendChild(document.createTextNode("Some textual content"

));

11 document.body.appendChild(el);

12 document.body.removeChild(el);

13
14 // <script >

15 var el = document.createElement("script");

16 el.appendChild(document.createTextNode("var foobar = 123;"));

17 document.body.appendChild(el);

18 document.body.removeChild(el);

19
20 // <style >

21 var el = document.createElement("style");

22 el.appendChild(document.createTextNode("p { color: red; }"));

23 document.body.appendChild(el);

24 document.body.removeChild(el);

25
26 // <iframe >

27 var el = document.createElement("iframe");

28 el.srcdoc = "<p>Hello World </p>";

29 document.body.appendChild(el);

30 document.body.removeChild(el);

Listing 3.11: Source code for testing the performance of the creation of
<iframe> elements into the DOM. Several other common element types are
created similarly to provide context. The execution time of each code block
should be measured separately. For a sample of such measurements, see
Table 3.1.

CHAPTER 3. ISOLATION MECHANISMS 57

1 // <div >

2 var el = document.createElement("div");

3 var p = document.createElement("p");

4 p.innerText = "Hello World";

5 el.appendChild(p);

6 document.body.appendChild(el);

7 document.body.removeChild(el);

8
9 // Shadow DOM

10 var el = document.createElement("div");

11 var root = el.createShadowRoot ();

12 var p = document.createElement("p");

13 p.innerText = "Hello World";

14 root.appendChild(p);

15 document.body.appendChild(el);

16 document.body.removeChild(el);

17
18 // <iframe >

19 var el = document.createElement("iframe");

20 el.srcdoc = "<p>Hello World </p>";

21 document.body.appendChild(el);

22 document.body.removeChild(el);

Listing 3.12: Source code for testing the performance of the creation of
Shadow DOM elements into the DOM. Several other common element types
are created similarly to provide context. The execution time of each code
block should be measured separately. For a sample of such measurements,
see Table 3.2.

CHAPTER 3. ISOLATION MECHANISMS 58

1 // Testbench for comparing heap allocations between creating

2 // and appending various types of DOM elements.

3
4 var EL_COUNT = 100;

5 var EL_TYPE = "shadow"; // one of "div", "iframe" or "shadow"

6
7 // Wait for a bit after main document load:

8 window.setTimeout(function () {

9 // Mark the start of the interesting part in the timeline:

10 console.timeStamp("Start: " + EL_TYPE);

11 // Create and append EL_COUNT elements of given type:

12 var range = new Array(EL_COUNT + 1).join(" ").split("");

13 range.forEach(function(x, i) {

14 var el , text;

15 if (EL_TYPE === "shadow") {

16 el = document.createElement("div");

17 var p = document.createElement("p");

18 text = document.createTextNode(EL_TYPE + "#" + i);

19 p.appendChild(text);

20 el.createShadowRoot ().appendChild(p);

21 } else {

22 el = document.createElement(EL_TYPE);

23 if (EL_TYPE === "div") {

24 text = document.createTextNode(EL_TYPE + "#" + i);

25 el.appendChild(text);

26 } else if (EL_TYPE === "iframe") {

27 el.srcdoc = EL_TYPE + "#" + i;

28 }

29 }

30 document.body.appendChild(el);

31 });

32 }, 3000);

Listing 3.13: Source code for testing the memory retention of <iframe> and
Shadow DOM elements. Regular <div> elements are created similarly to
provide context. Measuring the memory retention for each element type
should be carried out using the profiling facilities of the web browser. For a
sample of such measurements, see Table 3.3.

CHAPTER 3. ISOLATION MECHANISMS 59

UserAgent <a> <div> <iframe> <script> <style> Runs
Chrome 37.0.2062 130,477 209,187 1,316 101,874 79,117 1
Chrome 38.0.2125 68,291 137,432 1,855 65,181 37,010 3
Chrome 40.0.2182 64,994 184,361 982 59,954 35,949 3
Chrome 40.0.2183 146,735 290,175 1,460 145,301 72,146 1
Chromium 37.0.2062 25,811 39,079 1,070 25,491 21,469 1
Firefox 20.0 65,352 100,751 280 8,270 19,891 1
Firefox 31.0 114,256 153,427 265 18,498 26,334 1
Firefox 32.0 103,343 161,694 502 20,889 25,917 2
Opera 12.17 57,492 134,042 2,713 17,860 59,852 1
Opera 24.0.1558 109,205 206,955 1,211 84,694 51,175 1
Other 5,613 6,424 1,288 4,434 2,577 2
Safari 7.1 322,741 720,387 2,629 190,859 71,051 1
Safari 8.0 200,581 617,288 1,294 139,872 62,998 2

Table 3.1: This table presents the raw results of evaluating the runtime per-
formance of Listing 3.11. Numeric columns (except runs) indicate operations
per second, that is, how many times the browser was able to perform the cre-
ation of the element within one second. Thus, higher is better. The tests
were carried out using http://jsperf.com/, a service specializing in compar-
ative performance evaluation of JavaScript code samples. During a period
of approximately 12 hours, the test page was visited by 20 separate web
browsers, each of which was benchmarked for performance (the runs column
indicates the visit frequency per browser). The technical implementation and
the reliability of the results of such benchmarking are discussed at length in
http://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/.

UserAgent <div> <iframe> Shadow DOM Runs
Chrome 37.0.2062 135,555 908 94,137 1
Chrome 38.0.2125 144,250 1,834 84,231 2
Chrome 40.0.2182 100,339 789 62,055 1
Chrome Mobile 38.0.2125 21,764 268 17,200 1
Firefox 32.0 78,872 244 33,111 1
Mobile Safari 8.2 75,381 48 2
Opera 12.17 111,434 2,706 1

Table 3.2: This table presents the raw results of evaluating the runtime per-
formance of Listing 3.12. The results were obtained using the methodology
described in Table 3.1. During a period of approximately 12 hours, the test
page was visited by 9 separate web browsers.

http://jsperf.com/
http://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/

CHAPTER 3. ISOLATION MECHANISMS 60

1. Creating nested browsing contexts: While technically not equiv-
alent to the browsing context defined by the HTML5 specification [45]
— most notably because the JavaScript environment is not isolated —
the end-result is similar: the Shadow DOM allows maintaining a DOM
subtree in isolation, while still visually rendering it as it were part of
the parent page which hosts it.

2. Generating a new viewport: A Shadow DOM does not generate a
new viewport.

3. Restricting JavaScript DOM access: Selector queries will not
match elements within a Shadow DOM by default. The specification
does allow access when explicitly requested, but considering such ac-
cess requires specific alterations to the way the DOM is accessed31, it
stands to reason such access would unlikely be accidental.

4. Stopping the application of CSS styling: As with selector queries,
CSS styling does not have effects on a Shadow DOM by default. Again,
explicit methods32 exist for circumventing this protection, but they are
less likely to happen unintentionally.

Based on the above evaluation, the Shadow DOM does not provide equal
isolation properties compared to iframes. While #1 would be beneficial for
previously discussed properties (see section 3.1 State and Variable Isolation),
and #2 would greatly benefit Responsive Web Design33, #3 and #4 are
strikingly similar to the corresponding properties of iframes. Indeed, as one
of the design goals of the Shadow DOM specification is “enabling better
composition of the DOM” [48], this seems reasonable.

Striking a balance between the isolation guarantees of iframes and the
performance of a globally shared DOM, it would seem the performance char-
acteristics of the Shadow DOM should compare favorably to those of iframes.
No existing work directly contrasting their performance was obtained, so this
assumption was verified experimentally, using the same method as previously.
The results are presented in Table 3.1 and Table 3.3. These findings indi-
cate performance several orders of magnitude better than that of iframes,

31The element has to be accessed through a special shadowRoot property
(http://www.w3.org/TR/shadow-dom/#attributes-1).

32Such as the ::shadow pseudo element selector or the /deep/ combinator
(http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom-201/#toc-
style-cat-hat).

33The interested reader is directed to http://www.smashingmagazine.com/2013/06/25/media-
queries for a treatment of the elusive “element-based media queries”.

http://www.w3.org/TR/shadow-dom/#attributes-1
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom-201/#toc-style-cat-hat
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom-201/#toc-style-cat-hat
http://www.smashingmagazine.com/2013/06/25/media-queries
http://www.smashingmagazine.com/2013/06/25/media-queries

CHAPTER 3. ISOLATION MECHANISMS 61

UserAgent <div> <iframe> Shadow DOM
Chrome 38.0 0.088 21.246 0.145
Firefox 32.0 0.450 28.947 0.280

Table 3.3: This table presents the raw results of evaluating the mem-
ory retention of Listing 3.13, using the memory profiling facilities
of Chrome (https://developer.chrome.com/devtools/docs/javascript-
memory-profiling) and Firefox (https://developer.mozilla.org/en-
US/docs/Mozilla/Performance/Profiling with the Built-in Profiler). The
experiment was carried out manually, at least 3 times for each combination
of browsers and element types, using a sample size of 100 elements, and
finally taking the average of the obtained samples. It should be noted,
however, that the measurements are highly inaccurate for relatively small
changes in memory usage. This is visible in the data, as in Firefox the
retained memory for Shadow DOM in fact appears to be less than that
of regular <div> elements. While this seems unintuitive (and is likely in
error), the value of the experiment is in showcasing the differences in orders
of magnitude between an <iframe> and other types of elements, not exact
values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

iframe

style

Shadow DOM

script

a

div

1,183

43,499

58,147

67,937

1.09 · 105

1.81 · 105

operations per second

Figure 3.1: Relative creation performance for various element types, summa-
rized from Table 3.1 and Table 3.2. Higher is better.

https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler

CHAPTER 3. ISOLATION MECHANISMS 62

both in terms of creation cost and memory retention. The differences are
summarized in Figure 3.1 and Figure 3.2.

In conclusion, Web Components, and especially the Shadow DOM, are
powerful tools for providing isolation within the DOM. Their current sup-
port in mainstream browsers is limited34, though, and thus their impact on
frontend application development remains limited, for the time being. In our
opinion, however, they are one of the technologies which will likely serve as
the foundation of web frontend development when they mature.

3.4 Execution Isolation

The fourth and final class of isolation mechanisms is execution isolation. It
pertains to the issues that result from the common lack of separation be-
tween functions and the data they operate on. Due to their tight coupling
— partly by tradition, partly by language design — it is hard to leverage the
potential for parallelization of JavaScript execution in the browser. As fron-
tend application complexity increases, being constrained to a single thread
of execution becomes increasingly difficult to cope with.

3.4.1 Evented Programming on a Single Thread

Evented programming is the method of constructing an application so that
instead of blocking calls to long-running operations (such as relating to disk
or network access), callbacks and an event queue are used. In contrast, in
non-evented environments, a blocking call suspends the executing thread un-
til the long-running operation completes. This allows another thread to take
over, to make sure the CPU remains utilized. Once the operation completes,
the original thread resumes, possibly pre-empting (also known as evicting)
another thread which was in the middle of something else. Thus, the devel-
oper needs to take great care in protecting resources that are shared between
the threads, as other threads may make modifications to those shared re-
sources at unexpected times. For decades, elaborate concurrency control
mechanisms have been implemented to alleviate these problems, but due
to the nondeterministic nature of any nontrivial multi-threaded application,
they remain a common source of application errors. [8]

With evented programming, on the other hand, there is often only one
thread executing the user-land portion of the application35. When a call to

34http://caniuse.com/#feat=shadowdom reports (and will continue to report) on their
support among mainstream browsers.

35The expression “user-land” is used here to distinguish between the programming model

http://caniuse.com/#feat=shadowdom

CHAPTER 3. ISOLATION MECHANISMS 63

a long-running operation is made, instead of yielding the CPU to another
thread, a callback is registered. The same thread then continues execution,
picking the next event from the queue of events waiting to be processed.
Once the long-running operation completes, its callback is added to the event
queue, to be processed as soon as the main thread works its way through the
preceding queue. The notable difference is that there is no pre-emption: each
callback is allowed to execute as long as needed, and to yield the CPU when it
is done. This means that there is little need for complex concurrency control:
each executed callback may work on shared resources without interruption
as long as it needs to. Thus, evented programming has the potential of
greatly simplifying an application that deals with long-running operations.
[8] The downside to this simplification is that any computationally expensive
operations in the user-land thread will block any other callbacks in the event
queue from executing.

JavaScript — as a language — is not particularly biased towards either
approach: depending on the host environment, some function calls may be
blocking and some non-blocking (that is, using callbacks), and in some cases
this distinction can even be made during call-time36. But as JavaScript
execution environments are almost exclusively single-threaded (with mostly
experimental exceptions37), blocking calls would be very wasteful of CPU.
Network calls for example — the bread and butter of a web browser —
may take up time on the order of several seconds (or tens of seconds under
unfavorable network conditions), during which the JavaScript application
would be unable to carry out any meaningful work. Since web browsers also
model user interactions as events, the only thread capable of responding to
user input would be blocked on the network call, and the application would
be completely unresponsive for the duration of that call. For these reasons,
JavaScript host environments — web browsers especially — tend to expose
the majority of their API calls as non-blocking. The language also makes it
relatively easy to deal with higher-order functions, which in turn makes it
easy to register callbacks for events. Therefore, most JavaScript is written
in an evented manner. [38, p. 66]

exposed to the developer, and the underlying mechanisms used to power that model.
Indeed, the underlying model may often use several threads for carrying out work, before
exposing the results of that work to the single-threaded user-land.

36https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous and Asynchronous Requests
37https://github.com/audreyt/node-webworker-threads is one such exception, which ex-

poses system-level threads into node.js user-land code.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
https://github.com/audreyt/node-webworker-threads

CHAPTER 3. ISOLATION MECHANISMS 64

3.4.2 Responsibilities of the UI-thread

While there are slight differences in implementation, and the term thread may
not always exactly correspond to system-level threads38, it is commonplace
to refer to the UI-thread when discussing JavaScript execution in the context
of a web browser. The tasks this thread is burdened with usually include:
[53, p. 50] [50]

• JavaScript execution: That is, executing JavaScript callbacks from
the event queue. This includes all work which is performed in JavaScript
(such as arithmetic, data processing), and includes blocking browser
API calls (DOM access and most data storage for example), but ex-
cludes any work which is performed through non-blocking browser API
calls (such as network requests, waiting on timers). User interactions
such as reacting to clicks on DOM elements are also processed through
the event queue.

• Reflows: A reflow takes place when the geometry or layout of DOM
elements changes (for example an element is added or removed, or the
size of an element changes). During a reflow, the browser recalculates
the positions at which each visible element should appear on the page.
Depending on the change that triggered the reflow, these recalculations
may be small and localized, or affect a large portion of the web page.

• Repaints: Whenever the visual appearance of an element is changed
(such as when updating the text color of an element), the browser
needs to invoke its graphics implementation to redraw the element.
A change to the styling of one element may also cause repaints of
other elements (for instance, adding a box-shadow39 to an element may
require repainting elements beneath it).

• Compositing: After a reflow has established the visible positions of
elements, and a repaint has established their appearance, the browser
will need to combine the visual representations of each element into
the final web page which can be displayed to the user. This process is
referred to as compositing. While in some browsers this work can be
partially offloaded to a Graphics Processing Unit (GPU), the task of
coordinating work with the GPU still falls on the UI-thread [50].

38As the smallest schedulable unit of work from the point of view of the Operating
System.

39https://developer.mozilla.org/en-US/docs/Web/CSS/box-shadow

https://developer.mozilla.org/en-US/docs/Web/CSS/box-shadow

CHAPTER 3. ISOLATION MECHANISMS 65

In light of the above (non-exhaustive!) list of responsibilities, it is un-
surprising that for more complex frontend applications, the UI-thread may
become oversaturated. [53, p. 52] Even with the advent of mainstream multi-
process browsers40, most of this work is still bound to the UI-thread. This
is often attributed to the fact that the necessarily central shared data struc-
ture — the DOM — has no built-in mechanisms for thread-safety, and thus
mandates confining any related functionality into a single thread. [20, 27]
In addition, even in multi-process browser architectures, any web pages with
potential for JavaScript access41 between them need to be hosted within the
same process. [36]

3.4.3 Yielding Batch Operations

As previously established, performance is important for modern frontend ap-
plications (see subsection 1.1.3 Web Frontend Applications). Traditionally,
there has been little the developer has been able to do to alleviate the over-
saturation of the UI-thread: after making sure all API calls are non-blocking
where possible, and optimizing the access patterns to necessarily-blocking
API’s42, the remaining work will have to be performed on the UI-thread.
Assuming that even after optimization there are operations which make the
frontend application unresponsive for significant time periods, the common
best practice is to split those operations into a series of smaller operations
(later referred to as partial operations), between which other callbacks from
the event queue can be processed. This helps in maintaining the appearance
of an application responsive to user input, as user input is also processed
through the event queue. The recommended approach is: [53, p. 116]

1. When the operation is to be started, instead of starting the operation,
create a workspace43 for it, and schedule a timeout44 for starting the
first partial operation. The duration of this timeout should be very

40The canonical example of which is perhaps Google Chrome
(https://www.google.com/chrome/).

41While some classes of non-blocking access would allow separating these pages into sep-
arate processes (see subsection 3.4.5 Message Passing below), as long as there is potential
for blocking access between the pages, separating them remains infeasible.

42The DOM API is a classic example of an API where different access patterns to
achieve the same visible result may have wildly differing performance characteristics; see
https://github.com/wilsonpage/fastdom for an example.

43The workspace can be simply a set of protected variables which hold the data the op-
eration is to process; see subsection 3.1.2 Emulating Privacy for discussion on the available
mechanisms for such protection.

44https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout

https://www.google.com/chrome/
https://github.com/wilsonpage/fastdom
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout

CHAPTER 3. ISOLATION MECHANISMS 66

small, on the order of tens of milliseconds. Store a callback in the
workspace which is to be called when the entire operation is finished.

2. Once the event queue gets to the callback of the timeout, look into
the workspace of the operation for the data needed by a partial opera-
tion, and execute the partial operation. Store the results of the partial
operation in the workspace.

3. If there are no more partial operations to carry out, the entire operation
is finished (as in #5).

4. If there are more partial operations to carry out, look at how much
time has elapsed since #2 started. If less than an allotted time win-
dow, process the next partial operation (as in #2). If more than the
allotted time window, schedule a timeout (as in #1). The choice of
this time window will vary between applications, but as it will dictate
the maximum period of time the UI-thread will be unresponsive, it is
recommended to be on the order of a hundred milliseconds.

5. If there are no more partial operations to carry out, the entire operation
is finished. Invoke the callback from the workspace (see #1) and pass
the final results as arguments. Dispose of the workspace45.

The virtue of this approach is that it allows interleaving the processing
of other events from the event queue, maintaining the appearance of respon-
siveness, while still carrying out the same amount of work. It also makes it
possible to make the operation cancelable by the user, which is not possible
with a fully blocking implementation. The downsides of the approach are
still numerous, however:

• The operation as a whole will take more time. This due to the overhead
of scheduling timers, setting up a workspace, et cetera.

• Whether or not an operation can easily be broken down into partial
operations is highly dependent on the problem at hand [53, p. 122].
An algorithm that accumulates data from a linear array of datums may
be simple to break into partial operations. A recursive algorithm that
traverses the DOM may not be.

45As JavaScript is a garbage-collected language, if the workspace is properly protected
from outside references, simply removing the last reference to the workspace will effectively
release its retained resources.

CHAPTER 3. ISOLATION MECHANISMS 67

• Yielding the UI-thread between timeout callbacks exposes potential for
race conditions. If the partial operations work on a shared, mutable
data structure, concurrent access to that data structure may have un-
expected effects on the outcome of the operation. Creating a protected
copy of the data structure into the workspace protects against concur-
rent modification, but can be expensive in terms of both memory and
processor time.

• Yielding the UI-thread between timeout callbacks makes it possible to
re-start the operation before the previous invocation has finished. As-
suming proper protection of the workspace, this will not interfere with
the previous invocation, but still results in unnecessary work carried
out on the UI-thread. To protect against concurrent re-starts, an ex-
ternal locking mechanism can be implemented, though as mentioned
in subsection 3.4.1 Evented Programming on a Single Thread, locks as
concurrency control primitives are not without problems of their own.

Finally, breaking an operation into its partial operations cannot work
around the fundamental limitation of being bound to the UI-thread: given
enough work, there will not be enough CPU cycles to complete it all in time.
This is where exploiting parallelism necessarily comes into play, regardless of
programming language or runtime. In the case of frontend applications, it
comes in the form of Web Workers.

3.4.4 Web Workers

Originally introduced as part of HTML5 [45], Web Workers have since been
moved to their own specification, which describes them as follows:

This specification defines an API for running scripts in the back-
ground independently of any user interface scripts.

This allows for long-running scripts that are not interrupted by
scripts that respond to clicks or other user interactions, and al-
lows long tasks to be executed without yielding to keep the page
responsive. [43]

Browsers implementing the specification allow the inclusion of scripts that
will be started and executed in a separate thread. This is both in contrast and
similar to how regular scripts are loaded: both are fetched by a URL, parsed
and automatically executed by the browser. For Web Workers, however, this
simply happens without affecting the UI-thread in any way. This means they

CHAPTER 3. ISOLATION MECHANISMS 68

will not have access to many of the API’s the UI-thread traditionally does;
there is no DOM API for a Web Worker, for instance.

Running Web Workers that never end up having effects outside their own
thread is comparable to the proverbial tree that falls without anyone there
to hear it: without going into metaphysics (and whether it actually executes
or not), it is safe to say such a Web Worker is not very useful. In order to
have useful, observable effects, the Web Worker has to communicate with the
UI-thread46, which is achieved by passing messages between the threads.

3.4.5 Message Passing

Message passing is a well-established method for implementing cooperation
between nodes of a distributed system. It has been a subject of study for
more than 50 years, since the times of the first computers capable of par-
allel processing. A 1994 paper providing an overview of message passing
environments introduces it as follows (emphasis added):

Processors in distributed memory systems have no direct ac-
cess to the memory of other processors. In order to utilize mul-
tiple processors on one task it is necessary to exchange informa-
tion between processors by sending packets of data — messages
— between them using an available communication network.
Software libraries to facilitate such exchange of data are called
Message Passing Environments. While communication networks
vary enormously in detail, they tend to provide broadly similar
capabilities for exchanging data. As a result, message passing
environments are often remarkably similar across architec-
tures [...]. [26]

As message passing is a broadly applicable concept, it is unsurprising that
this description also maps cleanly to communication between the UI-thread
and Web Workers in a web browser:

• Processor maps to a thread executing JavaScript.

• Memory maps to the JavaScript heap of a thread. This includes the
DOM in the UI-thread, to which other threads have no direct access.

46A Web Worker may also have externally observable effects through other means, net-
work communication for instance, though it is questionable whether it is sensible to carry
out such work in the browser to begin with (that is, work with only network-observable
effects).

CHAPTER 3. ISOLATION MECHANISMS 69

• Task maps to — for example — the concept of operation (previously
discussed in subsection 3.4.3 Yielding Batch Operations).

• Messages map to messages as defined by the Web Workers specifica-
tion [43] — usually strings or simple objects.

• Communication network maps to the internal mechanisms of the
browser which facilitates message exchange across threads47.

• Remarkably similar across architectures maps to other commu-
nication mechanisms available in a modern web browser — such as
XHR48, WebSockets49 and WebRTC50 — which offer remarkably simi-
lar message passing semantics. That is, the mechanics of passing mes-
sages to another thread on the same browser process is in fact remark-
ably similar to passing messages to another physical machine across
the network.

In concrete terms, passing messages takes place by invoking postMessage()

on the sending side, and registering interest on incoming messages takes place
by invoking addEventListener("message") on the other side. As messages
are received, the relevant callback is executed on the receiving thread. [43]
Notably, this API is fully compatible with that of iframes communicating
across domains (see subsection 2.5.2 Security).

Contrasting this to the previous discussion in subsection 3.4.3 Yielding
Batch Operations, even with the use of Web Workers and message passing,
similar issues remain:

• The operation as a whole will still take more time (as measured in CPU
cycles spent solving the problem). This is due to the overhead of setting
up and communicating with a Web Worker. The specification itself
states that “[Web Workers] are expected to be long-lived, have a high
start-up performance cost, and a high per-instance memory cost” [43].
The communication overhead relates to the need to perform cloning on
any data structures passed between threads51: sharing data structures
is disallowed to protect against concurrent modification errors.

47http://www.chromium.org/blink/web-workers is a concise introduction into how the
Chromium project implements Web Workers.

48https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
49https://developer.mozilla.org/en/docs/WebSockets
50https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
51https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/The structured clone algorithm

http://www.chromium.org/blink/web-workers
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/The_structured_clone_algorithm

CHAPTER 3. ISOLATION MECHANISMS 70

• Whether or not the operation can be easily transferred to another
thread remains dependent on the problem at hand: work that involves
heavy computation with simple inputs and outputs is easy to transfer,
but a recursive algorithm that traverses the DOM may not be.

• Performing the operation on another thread still exposes potential for
race conditions: while the messaging mechanism disallows sharing data
structures between threads, coordination with another thread often
needs additional concurrency control mechanisms. These mechanisms
may appear, for instance, in the form of locks to protect against dupli-
cation of work, or to maintain a specific ordering of operations.

That is to say, while Web Workers and message passing alleviate the
fundamental limitation of performing all work on the UI-thread, they neces-
sarily also increase application complexity. In other words, their use should
be limited to cases where the rewards outweigh the related overhead and
complications. Instead of defaulting to the use of Web Workers, a frontend
application should be architected to allow it, where a need is identified. This
need may not be initially obvious: as previously argued in subsection 3.2.3
Storing State in the DOM, the requirements — and thus the application
itself — may change often during an application’s lifetime.

3.4.6 The Perils of References

Allowing parallelization of the application is not trivial: different kinds of
workloads have highly differing potential for parallelization. However, recent
work on exploiting parallelism for increased JavaScript performance seems
to identify complex jungles of object references as the prime culprit for the
inability to parallelize workloads. [20, 27]

As discussed in section 3.1 State and Variable Isolation, both the de-
velopment traditions and host environments of JavaScript encourage shared
global state. The primary mechanism for sharing state is by object refer-
ences: in JavaScript, everything except simple primitive values52 are objects.
This includes things like arrays and functions. Objects are always passed by
reference, meaning an assignment of an object to a variable will not dupli-
cate that object, but will instead create a new reference to the same object.
[7, p. 20] This is in contrast to primitive values, which are duplicated upon
assignment. Since there are no concurrency control features in JavaScript,
any — even potential — access to a shared object precludes parallelization

52Numbers, strings, booleans, null and undefined are considered the primitive types
of JavaScript.

CHAPTER 3. ISOLATION MECHANISMS 71

of affected code paths [27], and as most data is passed by reference, these
shared objects are everywhere.

To allow retroactively53 moving select parts of application execution to
another thread, execution has to be as isolated from the UI-thread as possi-
ble. In addition to minimizing references to other shared objects (as argued
before in section 3.1 State and Variable Isolation), this also means isolation
from the DOM is a necessity. Parts of the application which can be modeled
with the previously introduced concept of message passing in mind are par-
ticularly simple to move to another thread if necessary. It should be noted
this does not necessitate modeling such parts as calls to postMessage() and
addEventListener(), but rather making sure the execution of said part is
purely dependent on a well-defined set of inputs, and does not affect or rely
on shared external data. Modeling real-world JavaScript applications as such
is not trivial, however, and the tendency of the language towards shared ob-
jects and references does not help. Still, this style of programming — more
generally known as Functional Programming [3] — has made inroads into
JavaScript mainstream in recent years54, and the properties it promotes are
especially suited for implementing execution isolation in frontend applica-
tions.

53The need for doing this retroactively stems from the argument that software will
inevitably change during its lifetime — and often in unforeseen ways. Thus, places where
the benefits of parallelization end up being needed may not be initially obvious.

54The popularity of the functional helper libraries Underscore (http://underscorejs.org/)
and its fork Lo-Dash (https://lodash.com/) should be sufficient evidence of the mainstream
embrace of the basics of Functional Programming.

http://underscorejs.org/
https://lodash.com/

CHAPTER 3. ISOLATION MECHANISMS 72

0 2 4 6 8 10 12 14 16 18 20 22 24 26

iframe

Shadow DOM

div

25.1

0.21

0.27

retained memory (MB) per 100 DOM elements

Figure 3.2: Relative memory retention for various element types, summarized
from Table 3.3. Lower is better.

Chapter 4

Discussion

4.1 Relationship to Quality

Since we have previously argued that architecture and quality are two funda-
mentally intertwined concepts (see section 2.3 Relating Quality and Architecture),
it is valuable to discuss the quality implications of the previously introduced
isolation mechanisms. That is, if we wish to claim employing isolation mech-
anisms in frontend application architectures has beneficial effects on appli-
cation quality, we should be able to show concrete connections between said
mechanisms and the quality attributes of the application.

To provide a frame of reference for this discussion, the quality attributes
defined by the ISO 25010 standard are used (the standard was introduced
in subsection 2.2.2 Abstract Models). For each attribute, we hope to either
show it is unaffected by the isolation mechanisms, or benefits from them in
some way.

Another way of looking at this discussion is as an applied quality model
(see subsection 2.2.3 Applied Models), specifically for the context of fron-
tend application architectures. The use cases for such a model could include,
for instance, guiding architectural decision-making through previously intro-
duced methods such as ATAM, Attribute Driven Design or Architectural
Tactics.

4.1.1 Functional Suitability

This quality attribute was defined as:

How well the system provides functionality to satisfy pre-defined
needs (subdivided into Functional completeness, Functional cor-
rectness and Functional appropriateness). [18]

73

CHAPTER 4. DISCUSSION 74

While attributes such as functional correctness can be seen as being af-
fected by the application of isolation mechanisms in frontend application
architecture, that effect is mainly indirect. For instance, effecting good fault
tolerance on the application will likely also positively affect its functional
correctness (that is, doing what the application is expected to do), but for
the purposes of this discussion the correlation between isolation mechanisms
and quality attributes is interesting, and not so much the correlations be-
tween quality attributes themselves. No such interesting correlations could
be identified.

In conclusion, functional suitability does not seem to be directly affected
by the previously introduced isolation mechanisms.

4.1.2 Performance Efficiency

This quality attribute was defined as:

How well the system performs, relative to the degree of resource
use (subdivided into Time behaviour, Resource utilization and
Capacity). [18]

Isolation from the DOM can be seen as positively affecting time be-
haviour, as slow DOM access is traditionally a source of performance issues in
web frontend applications. Maintaining state separately from the DOM will
inevitably require more memory, and thus can be taken as negatively affect-
ing the resource utilization of the application, but this loss seems negligible
compared to the positive effects it has.

Isolation within the DOM can also have positive effects on time be-
haviour, for instance by limiting the amount of necessary DOM traversal:
rooted selectors can dramatically reduce the search space for selector queries.
On the other hand, more robust isolation mechanisms such as the iframe can
have significant negative effects on both the time behaviour (such as having
to fetch dependent resources much after page load) and resource utilization
(for example the retained memory) of an application.

Execution isolation has several beneficial effects on performance effi-
ciency. It positively affects time behaviour and capacity, as the application
can do more computation with more than one thread. It also allows for
a more responsive user experience, even without actual additional threads
(as in subsection 3.4.3 Yielding Batch Operations). It can also be seen as
positively affecting resource utilization, as using the techniques discussed in
subsection 3.4.5 Message Passing can make garbage collection easier, since
references across large object pools become less likely. On the negative side,

CHAPTER 4. DISCUSSION 75

almost all methods for implementing execution isolation have additional com-
putational and/or memory costs associated with them, Web Workers espe-
cially so.

In conclusion, performance efficiency is directly affected by many of the
previously introduced isolation mechanisms. The effects are not entirely posi-
tive, either, and require careful analysis before application, to determine their
inherent tradeoffs. This is unsurprising in the sense that most improvements
in abstraction level, robustness et cetera traditionally carry a performance
penalty.

4.1.3 Compatibility

This quality attribute was defined as:

How well the system is able to exchange information with other
systems, and how it performs while operating in a shared soft-
ware/hardware environment (subdivided into Co-existence and
Interoperability). [18]

State and variable isolation can benefit the co-existence capabilities
within an application by making it less likely for components to interfere
with each other, through emulation of privacy and namespace objects, for
instance.

Isolation within the DOM has a tremendous beneficial effect on co-
existence. Rooted selectors, iframes, Web Components and their kin all work
towards an architecture where the presence (or absence) of neighboring or
nested components have less unexpected side-effects.

Execution isolation also lends co-existence capacity to a frontend ap-
plication, as limiting references across the application (see subsection 3.4.6
The Perils of References) makes it less likely to encounter unexpected side-
effects across components through references. Web Workers offer especially
good guarantees for this, as they operate within their own memory space,
enforced by the browser.

In conclusion, compatibility is directly affected by many of the previously
introduced isolation mechanisms, and the effects are overwhelmingly positive.

4.1.4 Usability

This quality attribute was defined as:

CHAPTER 4. DISCUSSION 76

How well the system behaves with respect to effectiveness, effi-
ciency and satisfaction during use (subdivided into Appropriate-
ness recognizability, Learnability, Operability, User error protec-
tion, User interface aesthetics and Accessibility). [18]

Much as with functional suitability, usability can be seen as being affected
by the application of isolation mechanisms, but only indirectly.

In conclusion, usability does not seem to be directly affected by the pre-
viously introduced isolation mechanisms.

4.1.5 Reliability

This quality attribute was defined as:

How well the system is able to carry out its intended function,
with respect to specific conditions or the passing of time (sub-
divided into Maturity, Availability, Fault tolerance and Recover-
ability). [18]

Isolation within the DOM can be seen as contributing towards fault
tolerance of a frontend application, as errors in DOM manipulation are less
likely to propagate to the domain logic of the application, and vice versa.
Components hosted in iframes can also benefit recoverability, as such com-
ponents can be externally and reliably restarted if they are detected to be in
an erroneous state.

Execution isolation, especially through its stronger forms (such as with
Web Workers) can contribute to fault tolerance, as an error taking place
behind a message passing interface will only affect the execution on its other
side if an explicit error handler has been registered. That is, errors will either
appear at an expected location, or not at all. While the latter solution —
essentially ignoring errors — is often not an optimal solution, for a specific
class of tasks these kinds of failures can be modeled as timeouts, and simply
retried automatically. As with iframes above, Web Workers can also be
externally restarted if faulty behaviour is detected.

In conclusion, reliability is directly affected by the previously introduced
isolation mechanisms, and the effects are positive.

4.1.6 Security

This quality attribute was defined as:

CHAPTER 4. DISCUSSION 77

How well the system protects information so that only the in-
tended persons or systems are granted access (subdivided into
Confidentiality, Integrity, Non-repudiation, Accountability and
Authenticity). [18]

State and variable isolation can be seen as affecting security in mul-
tiple ways. Emulating privacy allows for confidentiality (read access to data
can be controlled), integrity (write access to data can be controlled) and
non-repudiation (the sole access point to the data in question can produce
an audit trail).

Isolation from the DOM can benefit confidentiality and integrity, as
while the DOM is a necessarily shared data structure across an application
(save for some cases discussed in section 3.3 Isolation within the DOM and
section 3.4 Execution Isolation), if the authoritative data is maintained else-
where and only rendered to the DOM as necessary, it remains more secure.
In practice, however, an attacker who has access to the DOM seems likely
to be able to both read and write data in application memory, regardless of
isolation from the DOM, so its effects will be considered negligible.

Isolation within the DOM can also benefit confidentiality and in-
tegrity, in the case where iframes are applied across domains: in that case,
the browser will enforce a message passing interface between them, and thus
obtaining direct references to the DOM on the other side becomes impossi-
ble. This well-defined and controlled interface can also be audited for non-
repudiation.

Execution isolation also allows for the above properties (when using
strong isolation, as in subsection 3.4.4 Web Workers for example).

In conclusion, security is directly affected by the previously introduced
isolation mechanisms, and the effects are positive. In the traditional sense of
web security (that is, the server being the authority) the client can never be
trusted, but in modern and complex web frontend applications meaningful
privilege boundaries can exist even within the client-side code.

4.1.7 Maintainability

This quality attribute was defined as:

How efficiently the system can be modified in the face of changing
requirements (subdivided into Modularity, Reusability, Analysabil-
ity, Modifiability and Testability). [18]

The topic of this work — isolation mechanisms for frontend application
architectures — all contribute towards lower coupling between different parts

CHAPTER 4. DISCUSSION 78

of the application. Being able to create and modify parts of the application
so that the modifications have minimal unexpected effects on other parts of
the application is often cited as one of the tentpoles of maintainability in the
context of software systems.

In conclusion, maintainability is directly affected by all of the previously
introduced isolation mechanisms, and the effects are overwhelmingly positive.

4.1.8 Portability

This quality attribute was defined as:

How efficiently the system can be transferred between differ-
ent hardware, software or usage environments (subdivided into
Adaptability, Installability and Replaceability). [18]

Isolation within the DOM can be seen as benefiting installability and
replaceability, as self-contained components are easier to transfer between
environments. Leveraging iframes make this particularly simple (as do Web
Components, to a lesser extent), as their strong isolation guarantees make
it possible to transfer components with minimal likelihood of unexpected
side-effects.

Execution isolation can also positively affect adaptability, as it makes
it easier to transfer parts of the application to different environments.

In conclusion, portability is directly affected by some of the previously
introduced isolation mechanisms, and the effects are positive.

4.2 Summary

The previous section contrasted the isolation mechanisms presented in this
work with the ISO 25010 quality standard. The results of the discussion are
summarized in Table 4.1. The key insights are:

1. Performance Efficiency was identified as the most controversial of
the considered quality attributes. Especially isolation within the DOM
and execution isolation have the potential to cause significant perfor-
mance issues. At the same time, however, they contribute quality im-
provements across the board.

2. Compatibility and Maintainability were (perhaps unsurprisingly)
identified as benefitting greatly from the presented isolation mecha-
nisms. This confirms the applicability of isolation in architectures (as

CHAPTER 4. DISCUSSION 79

presented in chapter 2 Previous Work) to frontend applications, and is
significant since especially maintainability has traditionally been poorly
addressed in frontend applications (as discussed in subsection 2.5.1
Spaghetti Code).

3. Security was also identified as benefitting from the isolation mecha-
nisms. This is significant, since the traditional discussion on the topic
has concentrated on the boundary between the frontend application
and the rest of the Internet (as discussed in subsection 2.5.2 Security),
whereas here we identified several benefits to security within the archi-
tecture of a single frontend application.

Most importantly, we conclude that the application of the presented iso-
lation mechanisms to frontend application architecture has broad, beneficial
effects on quality, far outweighing their negative counterparts.

CHAPTER 4. DISCUSSION 80

St
at

e
an

d
V

ar
ia

bl
e

Is
ol

at
io

n

Is
ol

at
io

n
fr

om
th

e
D

O
M

Is
ol

at
io

n
W

it
hi

n
th

e
D

O
M

E
xe

cu
ti

on
Is

ol
at

io
n

Functional Suitability

Performance Efficiency + (–) – (+) + –

Compatibility + + +

Usability

Reliability + +

Security + (+) + +

Maintainability + + + +

Portability + +

Table 4.1: This table summarizes the discussion in section 4.1 Relationship
to Quality. “+” signifies positive effects, and “–” negative effects having
been identified. In cases where positive or negative effects were identified,
but considered negligible, the symbols are in parentheses.

Chapter 5

Conclusions

There are plenty of features in web browsers for enforcing or improving the
isolation between the various components that compose a modern frontend
application. Their adoption among the mainstream of developers, however,
has significant room for improvement. Often this is not wholly the fault of
the developers themselves, or even framework authors, as the web frontend
platform itself is still fairly immature in its capability to support the de-
velopment of complex applications. However, we see great promise in the
increasing availability of features such as Web Components, Web Workers
and countless others. They are laying the foundations for the future archi-
tectures of robust, interoperable, high-quality frontend applications. In the
meantime, developers should leverage the isolation mechanisms present in
today’s browsers to already enjoy many of the same benefits.

Isolation mechanisms hold no intrinsic value, but our evaluation indicated
that they can have significant positive effects on frontend application quality.
There is still a performance penalty to applying the stronger forms of isolation
on the architecture of such applications, and in many cases this penalty can
even be prohibitive. But web browsers continue to evolve at a staggering
pace, and it will not be long until many of these performance penalties have
become insignificant enough to make the tradeoffs worth it.

In conclusion, software is eating the world,1 and a large portion of that
software is web applications. Their frontend plays a crucial role in provid-
ing the performant user experience modern consumers have come to expect.
These same expectations also increasingly apply to enterprise software due to
its ongoing consumerization.2 Web frontend applications enable addressing
these performance expectations, and thus have great industry significance.

1http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
2http://www.forbes.com/sites/darianshirazi/2013/05/08/the-consumerization-of-

enterprise-software/

81

http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.forbes.com/sites/darianshirazi/2013/05/08/the-consumerization-of-enterprise-software/
http://www.forbes.com/sites/darianshirazi/2013/05/08/the-consumerization-of-enterprise-software/

CHAPTER 5. CONCLUSIONS 82

A concrete example of this significance is the money invested in the de-
velopment of frontend applications. These applications have traditionally
had a wealth of quality issues, and bad software quality tends to lead into
lost revenue, costly rework, or both. As we have shown, the application of
isolation mechanisms to frontend application architecture has the potential
to improve upon the status quo.

Most frontend applications are also based on one or more frameworks, and
those frameworks tend to dictate many of the architectural design choices.
Thus, it is not always fully up to the developer to decide on the application
of the presented isolation mechanisms. Assessing the isolation capabilities
of existing frontend frameworks is an interesting avenue for future research.
Furthermore, in contexts where a specific type of isolation is not only ben-
eficial but mandatory, due to for instance performance or security, a web
frontend application framework designed specifically for enforcing these iso-
lation mechanisms could prove valuable.

Bibliography

[1] Akhawe, D., Saxena, P., and Song, D. Privilege separation in
html5 applications. In Proceedings of the 21st USENIX Conference on
Security Symposium (Berkeley, CA, USA, 2012), Security’12, USENIX
Association, pp. 23–23.

[2] Bachmann, F., Bass, L., and Klein, M. Deriving architectural
tactics: A step toward methodical architectural design. Tech. rep., DTIC
Document, 2003.

[3] Backus, J. Can programming be liberated from the von neumann
style?: A functional style and its algebra of programs. Commun. ACM
21, 8 (Aug. 1978), 613–641.

[4] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cun-
ningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt,
A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor,
S., Schwaber, K., Sutherland, J., and Thomas, D. Manifesto
for agile software development, 2001.

[5] Carlini, N., Felt, A. P., and Wagner, D. An evaluation of the
google chrome extension security architecture. In Proceedings of the
21st USENIX Conference on Security Symposium (Berkeley, CA, USA,
2012), Security’12, USENIX Association, pp. 7–7.

[6] Crockford, D. Javascript: The world’s most misunderstood program-
ming language. http://www.crockford.com/javascript/javascript.

html (retrieved 2014-10-03), 2001.

[7] Crockford, D. JavaScript: The Good Parts. O’Reilly Media, Inc.,
2008.

[8] Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., and
Morris, R. Event-driven programming for robust software. In Pro-

83

http://www.crockford.com/javascript/javascript.html
http://www.crockford.com/javascript/javascript.html

BIBLIOGRAPHY 84

ceedings of the 10th Workshop on ACM SIGOPS European Workshop
(New York, NY, USA, 2002), EW 10, ACM, pp. 186–189.

[9] Dijkstra, E. W. On the role of scientific thought. In Selected Writ-
ings on Computing: A personal Perspective, Texts and Monographs in
Computer Science. Springer New York, 1982, pp. 60–66.

[10] ECMA. Standard ECMA-262 - ECMAScript Language Specification.
Tech. rep., ECMA International, June 2011.

[11] Fowler, M. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[12] Fowler, M. Who needs an architect? IEEE Softw. 20, 5 (Sept. 2003),
11–13.

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
patterns: elements of reusable object-oriented software. Pearson Educa-
tion, 1994.

[14] Goeb, A., and Lochmann, K. A software quality model for soa.
In Proceedings of the 8th International Workshop on Software Quality
(New York, NY, USA, 2011), WoSQ ’11, ACM, pp. 18–25.

[15] Group, T. S. The chaos report, 1994.

[16] Hardy, A. Javascript architecture. http://aaronhardy.com/

javascript/javascript-architecture-the-basics/ (retrieved 2014-10-
10), 2012. Series of posts detailing the author’s experiences in architect-
ing enterprise-grade SPA’s.

[17] Harisov, V., Berezhnoy, S., and Grinenko, V. BEM -
Technology for creating web applications. https://bem.info/method/

definitions/ (retrieved 2014-10-12), 2014.

[18] ISO, I. Iec 25010: 2011: Systems and software engineering - systems
and software quality requirements and evaluation (square) - system and
software quality models. International Organization for Standardization
(2011).

[19] ISO/IEC/IEEE. Iso/iec/ieee systems and software engineering –
architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of
ISO/IEC 42010:2007 and IEEE Std 1471-2000) (Dec 2011), 1–46.

http://aaronhardy.com/javascript/javascript-architecture-the-basics/
http://aaronhardy.com/javascript/javascript-architecture-the-basics/
https://bem.info/method/definitions/
https://bem.info/method/definitions/

BIBLIOGRAPHY 85

[20] Jones, C. G., Liu, R., Meyerovich, L., Asanovic, K., and
Bodik, R. Parallelizing the web browser. In Proceedings of the First
USENIX Workshop on Hot Topics in Parallelism (2009).

[21] Joreteg, H. Human JavaScript. http://read.humanjavascript.com/

(retrieved 2014-10-07), 2014. JavaScript best practices manual published
by &yet, a consultancy company specializing in web applications.

[22] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson,
H., and Carriere, J. The architecture tradeoff analysis method. In
Engineering of Complex Computer Systems, 1998. ICECCS’98. Proceed-
ings. Fourth IEEE International Conference on (1998), IEEE, pp. 68–78.

[23] Kohavi, R., and Longbotham, R. Online experiments: Lessons
learned. Computer 40, 9 (2007), 103–105.

[24] Krasner, G. E., Pope, S. T., et al. A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80 System.
Journal of object oriented programming 1, 3 (1988), 26–49.

[25] Kruchten, P. The Rational Unified Process: An Introduction, 3 ed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[26] McBryan, O. A. An overview of message passing environments. Par-
allel Computing 20, 4 (1994), 417–444.

[27] Mehrara, M., Hsu, P.-C., Samadi, M., and Mahlke, S. Dy-
namic parallelization of javascript applications using an ultra-lightweight
speculation mechanism. In High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on (2011), IEEE,
pp. 87–98.

[28] Mikkonen, T., and Taivalsaari, A. Web applications - spaghetti
code for the 21st century. In Proceedings of the 2008 Sixth Interna-
tional Conference on Software Engineering Research, Management and
Applications (Washington, DC, USA, 2008), SERA ’08, IEEE Computer
Society, pp. 319–328.

[29] Mistrik, I., Bahsoon, R., Eeles, P., Roshandel, R., and Stal,
M. Relating System Quality and Software Architecture. Morgan Kauf-
mann, 2014.

[30] Offutt, J. Quality attributes of web software applications. IEEE
Softw. 19, 2 (Mar. 2002), 25–32.

http://read.humanjavascript.com/

BIBLIOGRAPHY 86

[31] Olsina, L., and Rossi, G. Measuring web application quality with
webqem. IEEE MultiMedia 9, 4 (Oct. 2002), 20–29.

[32] Osmani, A. Patterns For Large-Scale JavaScript Application Architec-
ture. http://addyosmani.com/largescalejavascript/ (retrieved 2014-
10-03), 2011.

[33] Osmani, A. Learning JavaScript Design Patterns. O’Reilly Media,
Inc., 2012.

[34] Polillo, R. Quality models for web [2.0] sites: A methodological ap-
proach and a proposal. In Proceedings of the 11th International Confer-
ence on Current Trends in Web Engineering (Berlin, Heidelberg, 2012),
ICWE’11, Springer-Verlag, pp. 251–265.

[35] Pressman, R. Software Engineering: A Practitioner’s Approach, 7 ed.
McGraw-Hill, Inc., New York, NY, USA, 2010.

[36] Reis, C., and Gribble, S. D. Isolating web programs in modern
browser architectures. In Proceedings of the 4th ACM European confer-
ence on Computer systems (2009), ACM, pp. 219–232.

[37] Snook, J. Scalable and Modular Architecture for CSS (SMACSS).
https://smacss.com/book/ (retrieved 2014-10-12), 2011.

[38] Stefanov, S. JavaScript Patterns. O’Reilly Media, Inc., 2010.

[39] Stefanov, S. Web Performance Daybook Volume 2. O’Reilly Media,
Inc., 2012.

[40] W3C. HTML 4.01 Specification. Tech. rep., Word Wide Web Consor-
tium, 1999.

[41] W3C. Architecture of the World Wide Web, Volume One. Tech. rep.,
Word Wide Web Consortium, 2004.

[42] W3C. Cascading Style Sheets (CSS). Tech. rep., Word Wide Web
Consortium, 2010.

[43] W3C. Web Workers. Tech. rep., Word Wide Web Consortium, 2012.

[44] W3C. Selectors API. Tech. rep., Word Wide Web Consortium, 2013.

[45] W3C. A vocabulary and associated APIs for HTML and XHTML
(HTML5). Tech. rep., Word Wide Web Consortium, 2014.

http://addyosmani.com/largescalejavascript/
https://smacss.com/book/

BIBLIOGRAPHY 87

[46] W3C. Document Object Model (DOM). Tech. rep., Word Wide Web
Consortium, 2014.

[47] W3C. Introduction to Web Components. Tech. rep., Word Wide Web
Consortium, 2014.

[48] W3C. Shadow DOM. Tech. rep., Word Wide Web Consortium, 2014.

[49] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.
Efficient software-based fault isolation. In ACM SIGOPS Operating Sys-
tems Review (1994), vol. 27, ACM, pp. 203–216.

[50] Wiltzius, T., and Kokkevis, V. GPU Accelerated Compositing
in Chrome. http://www.chromium.org/developers/design-documents/

gpu-accelerated-compositing-in-chrome (retrieved 2014-10-16), 2014.

[51] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson,
P., Nord, R., and Wood, B. Attribute-driven design (add), version
2.0. Tech. rep., DTIC Document, 2006.

[52] Zakas, N. C. Scalable javascript application
architecture. http://www.slideshare.net/nzakas/

scalable-javascript-application-architecture (retrieved 2014-
10-03), 2009. Presented at the BayJax group meeting at Yahoo! on
2009-09-07.

[53] Zakas, N. C. High Performance JavaScript, 1st ed. Yahoo! Press,
USA, 2010.

[54] Zakas, N. C. Maintainable JavaScript. O’Reilly Media, Inc., 2012.

http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture

	Cover page
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.1.1 The Web
	1.1.2 The Browser
	1.1.3 Web Frontend Applications
	1.1.4 Isolation in Frontend Application Architectures

	1.2 Research Questions
	1.3 Research Methods
	1.4 Structure of Work

	2 Previous Work
	2.1 Classical Software Architecture
	2.1.1 Defining Architecture
	2.1.2 Architectural Design Research

	2.2 Classical Software Quality
	2.2.1 Quality Attributes
	2.2.2 Abstract Models
	2.2.3 Applied Models

	2.3 Relating Quality and Architecture
	2.3.1 Attribute Driven Design
	2.3.2 Architectural Tactics

	2.4 Isolation in Architectures
	2.5 Frontend Application Architecture
	2.5.1 Spaghetti Code
	2.5.2 Security
	2.5.3 Patterns and Architecture
	2.5.4 Maintainability
	2.5.5 Performance

	3 Isolation Mechanisms
	3.1 State and Variable Isolation
	3.1.1 Information Hiding
	3.1.2 Emulating Privacy
	3.1.3 Variable Scope
	3.1.4 Naming Collisions
	3.1.5 Namespace Objects
	3.1.6 Modules

	3.2 Isolation from the DOM
	3.2.1 DOM Introduction
	3.2.2 Naive DOM Use
	3.2.3 Storing State in the DOM
	3.2.4 Separation of Concerns
	3.2.5 The MVC Pattern

	3.3 Isolation within the DOM
	3.3.1 Introduction
	3.3.2 CSS Selectors
	3.3.3 Selection Collisions
	3.3.4 Rooted Selectors
	3.3.5 Style Isolation
	3.3.6 Depthwise Isolation
	3.3.7 Frames and the iframe
	3.3.8 Web Components

	3.4 Execution Isolation
	3.4.1 Evented Programming on a Single Thread
	3.4.2 Responsibilities of the UI-thread
	3.4.3 Yielding Batch Operations
	3.4.4 Web Workers
	3.4.5 Message Passing
	3.4.6 The Perils of References

	4 Discussion
	4.1 Relationship to Quality
	4.1.1 Functional Suitability
	4.1.2 Performance Efficiency
	4.1.3 Compatibility
	4.1.4 Usability
	4.1.5 Reliability
	4.1.6 Security
	4.1.7 Maintainability
	4.1.8 Portability

	4.2 Summary

	5 Conclusions

