5 research outputs found

    Extracting Geospatial Information from Social Media Data for Hazard Mitigation, Typhoon Hato as Case Study (Short Paper)

    Get PDF
    With social media widely used for interpersonal communication, it has served as one important channel for information creation and propagation especially during hazard events. Users of social media in hazard-affected area can capture and upload hazard information more timely by portable and internet-connected electric devices such as smart phones or tablet computers equipped with (Global Positioning System) GPS devices and cameras. The information from social media(e.g. Twitter, facebook, sina-weibo, WebChat, etc.) contains a lot of hazard related information including texts, pictures, and videos. Most important thing is that a fair proportion of these crowd-sourcing information is valuable for the geospatial analysis in Geographic information system (GIS) during the hazard mitigation process. The geospatial information (position of observer, hazard-affected region, status of damages, etc) can be acquired and extracted from social media data. And hazard related information could also be used as the GIS attributes. But social media data obtained from crowd-sourcing is quite complex and fragmented on format or semantics. In this paper, we introduced the method how to acquire and extract fine-grained hazard damage geospatial information. According to the need of hazard relief, we classified the extracted information into eleven hazard loss categories and we also analyzed the public\u27s sentiment to the hazard. The 2017 typhoon "Hato" was selected as the case study to test the method introduced

    Health-Related Emergency Disaster Risk Management (Health-EDRM)

    Get PDF
    Disasters such as earthquakes, cyclones, floods, heat waves, nuclear accidents, and large scale pollution incidents take lives and cause exceptionally large health problems. The majority of large-scale disasters affect the most vulnerable populations, which are often comprised of people of extreme ages, in remote living areas, with endemic poverty, and with low literacy. Health-related emergency disaster risk management (Health-EDRM) [1] refers to the systematic analysis and management of health risks surrounding emergencies and disasters; it plays an important role in reducing hazards and vulnerability along with extending preparedness, response, and recovery measures. This concept encompasses risk analyses and interventions, such as accessible early warning systems, timely deployment of relief workers, and the provision of suitable drugs and medical equipment, to decrease the impact of disaster on people before, during, and after disaster events. Disaster risk profiling and interventions can be at the personal/household, community, and system/political levels; they can be targeted at specific health risks including respiratory issues caused by indoor burning, re-emergence of infectious disease due to low vaccination coverage, and gastrointestinal problems resulting from unregulated waste management. Unfortunately, there has been a major gap in the scientific literature regarding Health-EDRM. The aim of this Special Issue of IJERPH was to present papers describing/reporting the latest disaster and health risk analyses, as well as interventions for health-related disaster risk management, in an effort to address this gap and facilitate major global policies and initiatives for disaster risk reduction

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    11th International Coral Reef Symposium Proceedings

    Get PDF
    A defining theme of the 11th International Coral Reef Symposium was that the news for coral reef ecosystems are far from encouraging. Climate change happens now much faster than in an ice-age transition, and coral reefs continue to suffer fever-high temperatures as well as sour ocean conditions. Corals may be falling behind, and there appears to be no special silver bullet remedy. Nevertheless, there are hopeful signs that we should not despair. Reef ecosystems respond vigorously to protective measures and alleviation of stress. For concerned scientists, managers, conservationists, stakeholders, students, and citizens, there is a great role to play in continuing to report on the extreme threat that climate change represents to earth’s natural systems. Urgent action is needed to reduce CO2 emissions. In the interim, we can and must buy time for coral reefs through increased protection from sewage, sediment, pollutants, overfishing, development, and other stressors, all of which we know can damage coral health. The time to act is now. The canary in the coral-coal mine is dead, but we still have time to save the miners. We need effective management rooted in solid interdisciplinary science and coupled with stakeholder buy in, working at local, regional, and international scales alongside global efforts to give reefs a chance.https://nsuworks.nova.edu/occ_icrs/1000/thumbnail.jp
    corecore