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Abstract 

Flooding is by far the most pervasive natural hazard, with the human impacts of floods 

expected to worsen in the coming decades due to climate change. Hydraulic models are a 

key tool for understanding flood dynamics and play a pivotal role in unravelling the 

processes that occur during a flood event, including inundation flow patterns and velocities. 

In the realm of river basin dynamics, video remote sensing is emerging as a transformative 

tool that can offer insights into flow dynamics and thus, together with other remotely sensed 

data, has the potential to be deployed to estimate discharge. Moreover, the integration of 

video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the 

predictive capacity of these models.  

Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and 

are often calibrated and validated using observed data to obtain meaningful and actionable 

model predictions. Data for accurately calibrating and validating hydraulic models are not 

always available, leaving the assessment of the predictive capabilities of some models 

deployed in flood risk management in question. Recent advances in remote sensing have 

heralded the availability of vast video datasets of high resolution. The parallel evolution of 

computing capabilities, coupled with advancements in artificial intelligence are enabling the 

processing of data at unprecedented scales and complexities, allowing us to glean 

meaningful insights into datasets that can be integrated with hydraulic models. The aims of 

the research presented in this thesis were twofold. The first aim was to evaluate and explore 

the potential applications of video from air- and space-borne platforms to comprehensively 

calibrate and validate two-dimensional hydraulic models. The second aim was to estimate 

river discharge using satellite video combined with high resolution topographic data. In the 

first of three empirical chapters, non-intrusive image velocimetry techniques were employed 

to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulic 

model was fully calibrated and validated using velocities derived from Unpiloted Aerial 

Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in 

mitigating the limitations associated with traditional data sources used in parameterizing 

two-dimensional hydraulic models. This finding inspired the subsequent chapter where river 

surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood 

extents, derived using deep neural network-based segmentation, were extracted from 

satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. 

Harnessing the ability of deep neural networks to learn complex features and deliver accurate 

and contextually informed flood segmentation, the potential value of satellite video for 
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validating two-dimensional hydraulic model simulations is exhibited. In the final empirical 

chapter, the convergence of satellite video imagery and high-resolution topographical data 

bridges the gap between visual observations and quantitative measurements by enabling the 

direct extraction of velocities from video imagery, which is used to estimate river discharge. 

Overall, this thesis demonstrates the significant potential of emerging video-based remote 

sensing datasets and offers approaches for integrating these data into hydraulic modelling 

and discharge estimation practice. The incorporation of LSPIV techniques into flood 

modelling workflows signifies a methodological progression, especially in areas lacking 

robust data collection infrastructure. Satellite video remote sensing heralds a major step 

forward in our ability to observe river dynamics in real time, with potentially significant 

implications in the domain of flood modelling science.  
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Chapter 1 - Introduction 

1.1 Background and rationale 

Floods are the most frequent of all natural disasters with over 1.81 billion people, or 19% of 

the global population, exposed to significant risk during 1% Annual Exceedance Probability 

(AEP) flood events (Rentschler and Salhab, 2020). Acute flooding episodes are becoming 

increasingly frequent, primarily due to climate and land use change, disrupting livelihoods 

and reversing progress towards eradicating extreme poverty (Alfieri et al., 2015; Alifu et al., 

2022; Swain et al., 2020; Tabari, 2020). Exposure to flood risk in light of current and 

projected flood impacts lends urgency to the development and implementation of flood risk 

management strategies to ameliorate the socio-economic impacts of floods. Managing risks 

associated with flood events requires accurate flood risk maps which support identification 

of areas with the highest probabilities of suffering significant flood damage.  Flood risk maps 

are key decision-making tools used to characterize floods, including their expected velocities 

and depths. Given the complexity and dynamic nature of hydrological systems, numerical 

hydraulic models, which are used to create flood hazard maps (amongst other products which 

can inform the design of dams and levees, stormwater management systems, coastal defence 

systems), are an invaluable means to simulate flooding to varying degrees of complexity, 

aiding flood risk management (Pender and Faulkner, 2011).  

Hydraulic models have proven to be indispensable tools for assessing and delineating flood 

risk and flood hazard from coastal, pluvial, groundwater, dam break, estuarine, and fluvial 

sources (Grimaldi et al., 2019). Flood hazard maps will typically be derived from hydraulic 

model simulations showing areas of potential flooding while flood risk maps depict the 

potential negative impacts on the hazard, including social, economic and environmental 

(Auliagisni et al., 2022).The fluid mechanics of floodplain inundation can be characterized 

in either one, two or three dimensions. One- and two-dimensional hydraulic models are 

based on the Saint-Venant equations, also known as shallow water equations. During in-

channel flow, a river can be regarded as a 1D vector and flow can be adequately described 

using 1D Saint-Venant equations. During flood events when flow overtops river banks, 

floodplain flow is considered a predominantly 2D shallow water process and is expressed 

using either the full 2D Saint-Venant equations or the diffusion wave based derivations of 

these equations (Bates et al., 2005; Bates and De Roo, 2000; Hunter et al., 2008). Although 

floods are principally a shallow-water phenomenon, 3D processes dominate the floodplain-

channel interface. These are most accurately represented using 3D Navier-Stokes equations. 

However Bates (2022) and Wing (2019) note that the 3D recirculations that exist at the 
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floodplain-channel interface are of very small scale and provide little meaningful 

information over the large spatial scales within which floodplain inundation occurs and can 

thus be assumed to be trivial. Further, the complexity of these negligible 3D processes does 

not necessitate predictions from hydraulic models when simulating large scale flood flows 

(e.g. Fewtrell, 2008).  As a consequence, the proliferation of remotely sensed datasets 

including terrain and bathymetric data, model boundary condition data as well as 

airborne/spaceborne observations of flood events which are used to calibrate/validate 

hydraulic model predictions, full 2D and hybrid 1D-2D model codes remain the most widely 

adopted models for floodplain hazard mapping (Horritt and Bates, 2002; Hunter et al., 2008; 

Peña and Nardi, 2018; Pinos and Timbe, 2019).  

Hydraulic models, by their very nature, are an approximation of reality and their predictions 

suffer from varied limitations and uncertainty, chiefly model structural uncertainty, 

uncertainty of input data, the transient nature of the physical characteristics of flooded areas, 

and the sparsity and uncertainty of observations used for calibration and validation of model 

predictions (Bates, 2004; Di Baldassarre and Uhlenbrook, 2012). To improve hydraulic 

model prediction accuracy of the spatiotemporal patterns of flood dynamics, a rigorous 

assessment of the sources of prediction uncertainty is essential. However, it would be 

computationally prohibitive to evaluate all sources of uncertainty in hydraulic model 

predictions given that there will always be residual error in model representations of the real 

world (Beven et al., 2015). Indeed, a pragmatic approach to assessing the skill of hydraulic 

models would entail targeting and constraining established sources of uncertainty while 

balancing computational burden and the need for timely communication of model 

predictions.   

Spatially distributed calibration and validation data are critical for improving the predictive 

capability of hydraulic models. The proliferation of remotely sensed datasets for assessment 

of hydraulic model simulations has proven pivotal in understanding flood dynamics 

(Domeneghetti et al., 2019). The global availability of optical, radar and microwave 

instruments has enhanced our ability to monitor floods from space at increasingly high 

spatial and temporal resolutions. Integrating remotely sensed data with flood models via 

model calibration or validation, and data assimilation techniques, has been demonstrated to 

provide significant value in operational flood monitoring and management (e.g., Giustarini 

et al., 2015; Nguyen et al., 2022; Schumann et al., 2009). Although field-based gauging 

stations remain invaluable in constraining flood model predictions, their decline globally  

has necessitated the uptake of remote sensing observations (McCabe et al., 2017a). Thanks 
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to funding constraints and inadequate institutional frameworks (amongst other reasons), 

there has been a marked decline in the density of discharge gauges globally, including a 90% 

reduction in the number of stations reporting discharge to the WMO Global Runoff Data 

Centre (GRDC) between 1996 – 2001, as well as a 79% and 51% decline in station network 

density in Russia and North America between 1986 to 1999 (Group et al., 2001; Haile et al., 

2022; Mishra and Coulibaly, 2009; Shiklomanov et al., 2002). Indeed in some cases, the 

calibration and validation of hydraulic model predictions can only be accomplished using a 

combination of field data and remotely sensed data (Domeneghetti et al., 2014; Matgen et 

al., 2010; Montanari et al., 2009).  

The calibration of hydraulic models is traditionally accomplished by varying a friction 

parameter (Manning’s roughness coefficient, n) assigned to the main channel and floodplain, 

based on empirically derived tables (e.g., Attari and Hosseini, 2019; Chow, 1959) over 

multiple model runs until model results closely match observed benchmark data. Benchmark 

data to guide hydraulic model calibration efforts generally includes: river gauge water levels 

measured at stream gauging stations (Horritt et al., 2010; Kumar et al., 2017), surveyed post-

flood event water marks and wrack lines (Grimaldi et al., 2016a; Parkes et al., 2013), 

airborne or satellite images of flood extent (Di Baldassarre et al., 2009; A. Tarpanelli et al., 

2013) and less commonly, directly observed surface velocities from acoustic doppler current 

profilers (aDcps), radar gauges or Unpiloted Aerial Vehicles (UAVs) (Barker et al., 2018; 

Masafu et al., 2022). The calibration of hydraulic models therefore calls for multiple model 

simulation runs relying on suitable benchmark data in order to attain optimal model 

parametrization.  

Validation of hydraulic model predictions, which entails comparing a single model run to 

benchmark data independent from the calibration data set, is a prerequisite for the successful 

derivation of fit for purpose flood hazard maps. Barker et al., (2018) and Bates, (2022) 

contend that hydraulic models are in need of further rigorous and comprehensive validation, 

as high-performance computing resources and a deluge of remotely sensed data transform 

flood science from a data-poor to a data-rich field. Hydraulic model outputs typically include 

spatial patterns of flood extents, velocity magnitudes and water surface elevations from 

which other hydraulic variables can be computed including Froude number, shear stress, 

Courant number etc. Validation of the predictive skill of hydraulic models has been based 

on comparisons of how well flood extent maps match observed extents, typically drawn from 

airborne photography or satellite sensors (e.g., Bernhofen et al., 2018; Wing et al., 2017). 

Less commonly, other studies have relied on quantitative comparisons of velocity magnitude 
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and direction, collected using current/electromagnetic meters and acoustic doppler current 

profilers (aDcp), for model validation (e.g., Jowett and Duncan, 2012; Williams et al., 2013).  

Observation and monitoring of surface water dynamics has benefitted enormously from the 

rapid advancement of remote sensing technologies. A wide variety of platforms supplying 

spatially distributed observations of flood extents, water stages and more recently, velocities, 

offers the prospects of systematically evaluating the predictive skill of hydraulic models. An 

ever-growing number of remote sensing platforms, including satellite constellations, 

airborne sensors on aircraft and helicopters, as well as unpiloted aerial vehicles (also referred 

to as unpiloted aerial systems, or drones) are supplying fine scale spatial and temporal 

resolution data at unprecedented volume. This data deluge has led to the big data 

phenomenon and the evolution of data science which is offering novel techniques to 

efficiently process and analyse all this data. Advances such as artificial intelligence 

techniques (AI) offer the ability to automatically extract useful hydrometeorological 

information from multisource (e.g., microwave, optical), multitemporal and multiresolution 

remotely sensed data (Ghamisi et al., 2018). Furthermore, the opportunities offered by data 

analytics are enabling the ingestion of new sources of data, such as video remote sensing, 

into hydraulic modelling in more informative ways as compared to traditional data-

assimilation techniques. Remote sensing-derived digital elevation models (including LiDAR 

– light detection and ranging; SfM – Structure from Motion photogrammetry), land cover, 

channel morphology, inundation extents and velocities are providing powerful support for 

the development, calibration, and validation of hydraulic models.  

Whilst high resolution still imagery can provide exceptionally clear and valuable insights 

into flood extents and propagation, the advent of high-definition video sensors on board UAV 

and satellite platforms are providing temporal insights previously unattainable by traditional 

remote sensing techniques. The ubiquity of consumer grade UAVs alongside analogous 

advances in digital photogrammetry, computer vision techniques for image segmentation 

and non-contact methods of flow estimation have increased our ability to monitor river 

parameters rapidly and at reasonable costs (Eltner et al., 2021, 2019). UAV video data has 

been demonstrated to monitor and assess surface flow velocities (e.g., Koutalakis et al., 

2019; Liu et al., 2021) and derive flood extents (e.g., Girisha et al., 2019) permitting 

contactless measurements of floodplain phenomena even for difficult-to-access locations. 

Space-based optical satellite video sensors are another emerging frontier for dynamic earth 

observation, with the launch of high temporal resolution satellite-based video sensors, it is 

now possible to leverage on these platforms to estimate discharge directly from space, as 



5 

 

well monitor flood dynamics, thanks to the feature-rich temporal dimensions offered by 

video. Although plagued by the limitations of cloud cover and low spatial resolution, 

advances in computer vision techniques, such as deep learning-based cloud removal 

techniques (e.g., Ma et al., 2023; Meraner et al., 2020) as well as video super-resolution 

(e.g., Liu et al., 2022; Xiao et al., 2021), the ultra-high temporal resolution offered by 

satellite video presents important avenues to advance flood hydrology.   

Artificial Intelligence (AI) and Machine Learning (ML) techniques are radically 

transforming the possibilities for handling and processing the exploding volume and variety 

of earth observation imagery from satellites, aerial, and ground sensors. The substantial 

quantities of remote sensing data generated from multi-source, multi-scale sensors have 

heralded the ‘Big Data’ era for remote sensing, defined as a collection of datasets whose 

volume, variety, complexity and rate of production exceeds state-of-the-art/traditional data 

processing capacity and require new forms of processing to enable optimal interpretation 

(Chen and Zhang, 2014; Ma et al., 2015). Applications of AI and ML algorithms in remote 

sensing are enabling implementation of complex tasks such as super-resolution, denoising, 

scene classification, object detection, semantic segmentation by leveraging on high-

performance computing and computer vision algorithms which are helping to glean 

meaningful information from spatial big data. Further, deep neural networks, which are 

multivariate, non-parametric AI algorithms inspired by biological neural networks, are 

finding applications in flood hazard mapping and complementing outputs from traditional 

physics-based models of flood hazard (e.g. Gebrehiwot et al., 2019; Hashemi-Beni and 

Gebrehiwot, 2021; Satarzadeh et al., 2022). 

1.2 Research aim 

The emergence of airborne and space-borne optical video sensors is offering fine spatial and 

temporal resolution data with the feasibility to enhance our understanding of flood dynamics 

including flow velocities, inundation extents and water levels.  

The principal aim of this thesis is to leverage advances in remote sensing technology, 

particularly UAVs and satellite platforms, to enhance the predictive capabilities of hydraulic 

models. It strives to bridge the gap between real-world observations and computational 

simulations by utilizing video data from these platforms to validate hydraulic model 

predictions. Additionally, the thesis explores the innovative concept of estimating discharge 

using satellite video data, potentially opening new avenues for non-intrusive hydrological 

assessments. 
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To achieve this aim, a set of specific objectives (O) and research questions (RQ) were to:  

O1. Assess whether hydraulic model predictions can be accurately assessed using 

video data. 

RQ1a Can UAV-based video be used to comprehensively calibrate and 

validate hydraulic model predictions at the reach scale?  

RQ1b Can satellite-video based image velocimetry and deep-learning-based 

image segmentation be used to validate hydraulic model predictions at the 

reach scale? 

O2 Evaluate the application of satellite-based video in estimating river discharge 

from space. 

RQ2a Can image velocimetry techniques provide plausible riverine velocity 

estimates from space? 

RQ2b How well do discharge estimates based on satellite-video compare 

with ground observations and hydraulic model predictions?  

These aims and objectives are addressed within three empirical chapters that are published 

in peer-reviewed journals.  

1.3 Thesis structure 

This thesis is divided into 8 chapters structured sequentially to address each research 

question (Section 1.2). An overview of each of the chapters is provided below.  

Chapter 2 provides a comprehensive evaluation of hydraulic modelling tools and their 

present data requirements, alongside highlighting the essential contribution of remote 

sensing in developing flood models.   

In Chapter 3, an overview of the methods used in the thesis is provided, with specific 

methodologies detailed in subsequent empirical chapters. The chapter begins with an 

overview of the study sites, followed by a description of the hydraulic model. Image 

processing techniques, specifically image-based velocimetry and Structure-from-Motion 

photogrammetry are described, followed by a discussion on artificial intelligence techniques 

for image segmentation.  

In Chapter 4, non-intrusive techniques for measuring river velocities are explored, in support 

of RQ1a. The feasibility of image velocimetry in providing credible data for calibration and 

validation of 2D hydraulic models predictions is investigated within the first study 

catchment, Swindale Beck, United Kingdom.   
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This chapter is adapted from:  

Masafu, C., Williams, R., Shi, X., Yuan, Q., Trigg, M., (2022). Unpiloted Aerial Vehicle 

(UAV) image velocimetry for validation of two-dimensional hydraulic model simulations. 

Journal of Hydrology, 612, 128217. https://doi.org/10.1016/j.jhydrol.2022.128217 

Chapter 5 focuses on validating 2D hydraulic model predictions using satellite video-

derived flood extents and velocities within the Darling River, Australia to address RQ1b 

and RQ2a. 

This chapter is adapted from: 

Masafu, C., & Williams, R. (2024). Satellite video remote sensing for flood model 

validation. Water Resources Research, https://doi.org/10.1029/2023WR034545 

Chapter 6 showcases the potential of estimating river discharge using a combination of 

satellite-derived video imagery, non-contact velocity estimation techniques, and high-

resolution topography within the Darling River, Australia, addressing RQ2a and RQ2b.  

This chapter is adapted from: 

Masafu, C., Williams, R., & Hurst, M. D. (2023). Satellite video remote sensing for 

estimation of river discharge. Geophysical Research Letters, 50, e2023GL105839. 

https://doi.org/10.1029/2023GL105839 

Chapter 7 comprises a synthesis of the thesis, reiterating how each research question has 

been addressed to fulfil the overarching thesis aim. This chapter discusses the limitations of 

the research, contribution of the research to the scientific community and identifies avenues 

for potential future research directions.  

Chapter 8 concludes the thesis with a summary of the main findings.  

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jhydrol.2022.128217
https://doi.org/10.1029/2023WR034545
https://doi.org/10.1029/2023GL105839
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Chapter 2 - Modelling floods 

2.1 Introduction  

In Chapter 1, the importance of obtaining reliable spatially distributed flood model 

predictions was broadly outlined, noting that improved scientific understanding of 

floodplain processes simulated by hydraulic models will help ameliorate the negative 

impacts of ever-increasing flood events. The proliferation of newly available remote sensing 

datasets, computing power and the accelerated rise of innovative analytical techniques is 

opening up new opportunities to meet increasing demands for accurate predictions of 

phenomena associated with floods, including flow velocities, inundation extents and water 

surface elevations. The need for integrating these new data and methods into existing flood 

modelling processes is apparent and will help progress both the accuracy and near-real time 

characterization of flood velocity, depths, and extents, aiding in decision making especially 

in data poor regions. Chapter 2 will provide a detailed appraisal of hydraulic modelling tools 

and their current data needs as well as the integral role of remote sensing in the development 

of spatially accurate flood hazard maps. This chapter will further refine the research 

objectives and explicitly outline existing knowledge gaps that will be addressed in 

subsequent chapters.  

2.2 Hydraulic modelling 

2.2.1 Introduction 

The modelling of floodplain processes relies on extensive data on channel and floodplain 

geometry, time series of bulk flow rates which serve as model boundary conditions, spatially 

distributed roughness coefficients as well as data for model calibration and validation. The 

extent to which these data are available to adequately represent the complex flow interactions 

occurring at both reach and catchment scales has been the subject of several studies (e.g., Di 

Baldassarre and Uhlenbrook, 2012; Yan et al., 2015). A key driver for advances in hydraulic 

modelling has been the proliferation of remotely sensed data from air- and space-borne 

platforms. The two-dimensional representation of remotely sensed data has enabled the 

efficient parametrization of hydraulic models which generally tend to represent 

hydrodynamics of the river-floodplain continuum in two dimensions. Despite the prevalence 

of complex three-dimensional processes within the channel zone, the utilization of 3D 

models has remained modest. This is due to evidence suggesting that the heightened 

intricacy of 3D models doesn't result in significant benefits when contrasted with predictions 

based on 2D model methods (Bates, 2022; Kesler, 2023). Indeed, the computational costs of 
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simulating 3D inundation dynamics at reach or catchment scale would be prohibitive and as 

a result, most studies to date have relied on 1D and 2D representations of in-channel and 

floodplain flows.  

Although the principals of flood routing using 2D hydraulic models are well understood, an 

issue of relative importance when simulating complex channel-floodplain flows is the 

availability of appropriate data for process representation. Indeed, the data requirements for 

hydraulic modelling can broadly be categorized as; (i) input data required to parametrize the 

model, and (ii) data required to evaluate the predictions of hydraulic flood models. In this 

context, a review of data required by numerical models for flood inundation modelling is 

provided.   

2.2.2 Topographical data 

Topographical representation of the physical-land surface over which hydraulic model 

simulations occur can be characterized via numerical representations of the bare-earth 

surface known as Digital Elevation Models (DEMs). DEMs have traditionally been 

generated through classical ground surveys and digitization of topographic maps, both time-

consuming and expensive exercises which cannot always be accomplished in remote 

locations. The generation of terrain elevation at large-scale has been driven by advances in 

remote sensing techniques including the use of airborne and spaceborne Interferometric 

Synthetic Aperture Radar (InSAR), airborne/satellite photogrammetry and Light Detection 

and Ranging (LiDAR). The accuracy of hydraulic model simulations relies strongly on the 

quality of topographical data since overland flow is driven by gravity. While most platforms 

acquire terrain data as Digital Surface Models (DSMs) that capture ground objects including 

vegetation, building and other artifacts that could obstruct flow paths, flood inundation 

modelling requires the use of ‘bare earth’ topography referenced to a vertical datum. Filtering 

of objects from DSMs is therefore required for flood modelling applications (however in 

detailed modelling studies these objects are essential and could also be represented using 

appropriate manning roughness values).  

On the global scale, DEMs have been created using satellite InSAR and disseminated freely 

via open access portals. Due to its ease of accessibility, resolution and vertical accuracy, the 

most popular of global DEMs for flood inundation mapping remains the Shuttle Radar 

Topography Mission (SRTM) which was first released in February 2003 and covers around 

80% of the earth’s land surface between 60°N and 56°S (Hawker et al., 2018). Originally 

distributed at a resolution of 3-arc seconds (~90m), SRTM was re-released at 1 arc-second 

(~30m) in 2015 with a vertical accuracy of 16 m absolute error at 90% confidence world-
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wide (Mukul et al., 2017). Other global scale 1-arc-second DEM products include the 

ASTER-Global Digital Elevation Model 2 (ASTER GDEM 2) (Tachikawa et al., 2011), the 

global advance land observing satellite (ALOS) world 3D-30m (AW3D30) DEM (Tadono 

et al., 2015), TanDEM-X DEM (Krieger et al., 2007) and MERIT (Multi-Error-Removed 

Improved-Terrain) DEM (Yamazaki et al., 2019, 2017). A key limitation when using global 

DEMs for flood modelling is their low spatial resolution and significant vertical error which 

can often be larger than the amplitude of most flood waves (Archer et al., 2018; Wilson et 

al., 2007). Asides for the fact that most global DEMs, such as the popular SRTM-DEM, are 

dated and not regularly updated to account for geomorphological changes in topography, 

such as during extreme events including floods and landslides, global spatial resolution of 

these products is limited making them unsuitable for local scale applications of flood 

modelling. The requirement for local-scale flood models is essential for validating larger 

scale models amongst other uses. Thus accurate, high resolution DEMs are very important 

for modelling inherently local scale processes which cannot be captured using global DEMs.   

 

 

 

Figure 2.1 DEM data sources, spatial resolution, and vertical accuracies for different 

scales. From Schumann and Bates (2018). 
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Technological advancements have led to the production of high-precision digital surface 

models, with the two most notable technologies being high resolution laser altimetry data, 

LiDAR (light detection and ranging), and more recently, UAV based Structure-from-motion 

(SfM) photogrammetry (Figure 2.1). Although the elevation accuracies and precision 

achieved by LiDAR digital terrain models was a crucial step from coarse resolution global 

DEMs in flood inundation modelling, the availability of national-scale high-quality LiDAR 

data is still largely limited to a few countries due to high acquisition costs. UAV-based SfM 

photogrammetry has emerged as cost-effective means of acquiring high-resolution and high-

accuracy elevation information thanks to the falling costs of lightweight consumer-grade 

UAVs/drones alongside increasingly affordable photogrammetric processing software 

(Coveney and Roberts, 2017; Niethammer et al., 2012). The positional accuracy and quality 

of DTMs based on SfM photogrammetry has been demonstrated to attain accuracies 

comparable to LiDAR even without the use of ground control points (Schumann et al., 2019; 

Stott et al., 2020), further demonstrating the capability for rapidly producing DEMs on the 

centimetre to kilometre scale. The ability of computer vision algorithms deployed by SfM 

processing chains has enabled the generation of  DEM surfaces with vertical accuracies of 

up to < 20 cm at spatial resolutions ranging from 0.5 – 5 m (Carrivick and Smith, 2019). 

SfM DEMs can also provide data on surface roughness, a key hydraulic model parameter 

which will further enable detailed local-scale hydraulic modelling.   

2.2.3 Channel bathymetry data  

The accurate representation of riverbed topography, often referred to as channel bathymetry, 

is vital for accurate description of channel discharge capacity when modelling river systems. 

Often, topographic data in the form of DEMs lacks embedded accurate channel geometric 

data which can lead to erroneous hydraulic conveyance affecting simulated flood dynamics 

including water depths, velocities, time to peak and inundation extents. Detailed channel 

bathymetry data are not available in most rivers and remain sparse or outdated even in highly 

resourced countries where high resolution DEMs, such as those obtained using LiDAR 

sensors, lack detailed channel bathymetry due to the inability of LiDAR systems to penetrate 

water columns. At present, channel bathymetry cannot be reliably obtained using remote 

sensing techniques and remains a key challenge for hydraulic modelers when simulating in-

channel conveyance. 

Channel bathymetry data are traditionally collected via bathymetric surveys using total 

stations and RTK-GNSS (Real Time Kinematic – Global Navigation Satellite System) where 

cross-sectional measurements are taken at regular intervals. Other techniques include the use 



12 

 

of Sound Navigation and Ranging (SONAR) techniques on-board piloted or un-piloted 

vessels and quite popularly, the use of acoustic Doppler current profilers (aDcps) mounted 

on boats. Whilst these well-established methods generate highly accurate data, they remain 

expensive, time-consuming, and impractical in large multichannel rivers.  

Remote sensing techniques for estimating channel depth have been proposed in order to 

overcome the afore mentioned limitations of in-situ surveys and have been described as 

being either direct or indirect methods (Bandini et al., 2023).  Indirect retrievals of channel 

depths using satellite estimates of water surface elevation has been demonstrated via satellite 

altimetry (e.g., Durand et al., 2014; Jiang et al., 2019; Ma et al., 2020). Meanwhile, 

techniques that observe inundated channel topography and attempt to reconstruct channel 

cross-sections fully include bathymetric LiDAR, through-water photogrammetry based on 

SfM algorithms combined with RTK-GNSS and spectral methods relying on multispectral 

and RGB imagery for 3D reconstruction of submerged river sections (Alvarez et al., 2017; 

Dietrich, 2017; Eltner et al., 2021; Kasvi et al., 2019). Woodget et al. (2015) demonstrated 

the capabilities of UAV-SfM DEMs to retrieve submerged channel bathymetry deploying 

simple refraction correction techniques to improve their accuracy at the mesoscale (channel 

lengths between ~10 m to a couple hundred meters). Despite their promise, these techniques 

remain limited to shallow rivers with low turbidity limiting their application to a narrow 

range of river systems.  

2.2.4 Discharge characterization  

Discharge data are a key hydraulic model boundary condition and can be obtained either 

from observations of flow, or where such in-situ data are lacking, via approximations using 

hydrological models. Although observations of flow are the most accurate data source for 

parametrizing hydraulic models, they are not error-free. Water levels obtained from rating 

curves, which relate river stage (water level) measured at a gauging station to discharge, are 

subject to uncertainties especially during flood events when extrapolation has to be done 

beyond the gauge maxima. McMillan et al. (2012) report discharge measurement errors of 

up to ±40% during flood flows and estimate typical errors of ± 10-20% for medium or high 

(in-bank) flows. Di Baldassarre and Uhlenbrook (2012) further report additional sources of 

uncertainty for river flow data emanating from errors in individual stage and discharge 

measurements used to construct rating curves as well as errors introduced by unsteady flow 

conditions during flood events. The evolution of new technologies, such as aDcps has also 

offered an opportunity to collect velocity and cross-section area data, hence discharge, with 

mean relative errors of -3 to 5 % as compared to current meters and -7 to 5% as compared 
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to rating curves (Mueller, 2003; Mueller et al., 2013). Large Scale Particle Image 

Velocimetry (LSPIV) based discharges have also been found to generally be in good 

agreement (±10%) with concurrent aDcp measurements and deviating < 20% from rating 

curve observations in field studies including those by Dramais et al. (2011), Le Coz et al. 

(2010) and Lewis et al. (2018).  

Hydrological models have been used to estimate river flows by utilizing remote sensing 

inputs, such as evapotranspiration, land cover, topography and runoff, supplementing river 

discharge measurements such as in Bravo et al. (2012) who coupled a hydrological and 

hydraulic model in the Upper Paraguay River Basin. Although coupled hydrological-

hydraulic modelling approaches have been applied in flood prediction studies, such as in 

ungauged catchments (e.g., Hasan et al., 2019; Komi et al., 2017), cascading uncertainties 

from parameterization and inputs used to drive hydrological models can significantly 

degrade hydraulic model predictions. Remotely sensed datasets have been favoured in 

driving hydrological models as they are often easier to obtain, can cover extensive 

geographic regions and are generally temporally consistent (Xu et al., 2014). However, most 

of these key datasets, have been shown to be highly uncertain, such as precipitation derived 

from PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Network–Cloud Classification System) product (Moazami et al., 2014; 

Moradkhani et al., 2006) and the Tropical Rainfall Measuring Mission (TRMM) 

(AghaKouchak et al., 2009; Rauniyar et al., 2017). The poor correlation between remotely 

sensed and in-situ datasets used to drive hydrological models, as well as the tendency of 

remotely sensed datasets to underestimate extremes (Bharti et al., 2016; Lo Conti et al., 

2014; Palharini et al., 2020) remains a challenge for accurate predictions of spatio-temporal 

patterns of flooding based off coupled hydrological-hydraulic models.  

2.2.5 Model calibration and validation 

Calibration of hydraulic models is commonly attained by varying channel and floodplain 

friction coefficients based on empirically derived Manning’s n values (Chow, 1959). Bates 

et al. (2014) indicated roughness values as being a key source of uncertainty in flood 

inundation modelling. Indeed, all model calibrations are subject to uncertainty as it is 

impossible to specify with complete accuracy the initial and boundary conditions appropriate 

for model simulations. Beven (2006) and Beven and Freer (2001) provided an extensive 

analysis on the uncertainty of model calibration efforts, in particular the fact that multiple 

calibrated parameter sets can yield acceptable simulations (i.e., equifinality) therefore 

resulting model predictions will always bear some uncertainty. The calibration of hydraulic 
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models using methods that acknowledge residual parametric uncertainty have been proposed 

by Beven and Binley, (2014) who introduced the Generalized Likelihood Uncertainty 

Estimation Technique (GLUE). GLUE utilizes Monte Carlo sampling to estimate model 

predictive uncertainty and has been deployed to estimate spatially distributed uncertainty by 

Aronica et al. (2002), Jung and Merwade (2012), Liu et al. (2020) and Mason et al. (2009). 

Model calibration often uses a varied number of quantitative metrics to compare model 

simulation to benchmarks which commonly include the Nash-Sutcliffe efficiency (NSE), 

coefficient of determination (R2), percent bias (PBIAS) and a central tendency of absolute 

errors e.g., mean absolute error (MAE), root mean square error (RMSE) and mean square 

error (MSE). Traditionally, field data such as discharge values, time-series of gauged water 

levels and debris marks of peak water level have been shown to provide acceptable 

information that sufficiently helps constrain hydraulic models (e.g., Domeneghetti et al., 

2014; Reynolds et al., 2020). The use of binary metrics for comparison of modelled versus 

observed flood extent data has also been used to maximize model performance through 

calibration in various studies (e.g., Bernhofen et al., 2018; Hoch and Trigg, 2019; Wing et 

al., 2017). Contingency tables that report the number of pixels predicted correctly or 

incorrectly as wet or dry are used to compute model performance measures including the 

ubiquitous Critical Success Index (CSI), false alarm ratio, bias and hit rate.  

The proliferation of spatially detailed remote sensing datasets, such as SfM DEMs, satellite 

video flood inundation imagery and non-contact image velocimetry are enabling the rigorous 

validation of hydraulic models (Barker et al., 2018; Masafu et al., 2022). Bates (2022) 

asserted the vital significance of comprehensive hydraulic model validation using fine scale 

resolution data (such as LiDAR terrain data), arguing the proper benchmarking of flood 

models remains a key challenge for flood modelers. Further, the use of high resolution 

datasets for rigorous validation of hydraulic models has been shown to have a greater impact 

on improving model skill as opposed to advancing model physics (Fewtrell et al., 2011; 

Smith et al., 2012). The surge of comprehensive sets of remotely sensed data, particularly in 

data scarce areas, against a limited set of model validation studies that explore this wealth 

of information indicate a clear need for advancements in benchmarking of hydraulic models. 

Although there is an acknowledged lack of scientific consensus on the quantitative standards 

and criteria for evaluation of hydraulic models (Grimaldi et al., 2019; Pasternack, 2011), the 

requirement for testing model results for precision and accuracy remains paramount.  
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2.3 Remote sensing of floods 

2.3.1 Introduction 

The landscapes over which flood flows propagate are typically vast and complex with varied 

topography, making remotely sensed data useful for monitoring floods at such wide scales.  

A key issue with gathering observation data using ground stations is the fact that ground 

monitoring stations are on a persistent and pervasive decline globally, adversely impacting 

meaningful flood flow analysis (Walker et al., 2016; World Bank, 2019). The lack of 

institutional capacity to maintain gauging stations coupled with reductions in budgets for 

field maintenance are problems not unique to developing nations but indeed are significant 

issues in developed countries as well (Fekete and Vörösmarty, 2007; Grimes et al., 2022; 

Houghton-Carr et al., 2006). Further, observation gauges are typically installed in remote 

settings and quite far apart, which leads to sparse monitoring of flood dynamics in both space 

and time (Schumann et al., 2015).  Remote sensing of floods can therefore complement 

ground-based observations, providing crucial data including DEMs, land cover data, river 

velocities which can be utilized to support detailed hydraulic modelling.  

Whilst remote sensing observations are of immense value, the data provided are generally 

snapshot observations, meaning a high temporal resolution is missing which is a crucial 

element in understanding the evolution of flood events. A new generation of optical video 

sensors are however enabling the acquisition of high temporal resolution data that shall 

enable detailed studies of flood dynamics.  

Detailed reviews of efforts to integrate remotely sensed data with hydraulic models were 

presented by Bates et al. (2014a) and Schumann et al. (2009). Asides from providing direct 

observations of flood events, remotely sensed data can be integrated with hydraulic models 

via calibration of model parameters, through validation of model predictions and data 

assimilation for real time updating of flood forecasts (Barthélémy et al., 2018; Oubanas et 

al., 2018). In addressing the considerable contributions of detailed and accurate data for 

parametrizing hydraulic models, Bates (2012) underlined the importance of accurate and 

new data sources in understating flood plain inundation as opposed to efforts directed 

towards developing new numerical solutions and small increments in model physics. The 

growing availability of fine-scale remotely sensed data will vastly improve the predictive 

ability of hydraulic models and will play a greater role in addressing the principal 

uncertainties associated with field-scale applications of flood models.  
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2.3.2 Optical remote sensing  

Optical imaging sensors function by collecting incident electromagnetic radiation, spanning 

the visible (optical) range of the electromagnetic spectrum, which is then converted to visible 

imagery. Acquisition of information about floods is typically achieved via airborne or 

satellite platforms and depends upon weather conditions (primarily the absence of clouds), 

vegetation canopy cover (which might obstruct floods) as well as water quality parameters 

(such as turbidity) (Schumann, 2017). Optical techniques are an uncomplicated way of 

acquiring and processing flood imagery, with images depicting water bodies being easier to 

interpret, however the logistical set-up of dedicated flights comes at a steep price. UAV based 

sensors are now serving to alleviate these concerns, however, they suffer from low spatial  

extents as compared to satellite-based sensors. Optical satellite imagery offers varying 

spatial resolutions of data and are generally multi-mission, though the low temporal 

resolution (revisit period) of these platforms means the acquisition of useful satellite imagery 

of a flood might occur by chance depending on the satellite’s revisit orbit (Table 2.1). Optical 

remote-sensing systems can be classified according to the number of spectral bands used in 

the imaging process. First, panchromatic imaging systems acquire images with only one 

spectral band that combines red, green, and blue bands and usually displayed as a grey scale 

image. Second, multispectral imaging systems obtain images composed of multiple spectral 

bands which can be displayed in combinations know as composites. Appropriate band 

combinations require knowledge on spectral, reflectance signatures. Third, hyperspectral 

imaging systems capture and process multiple, typically a hundred or more, spectral bands 

for better discrimination of objects in imagery (Teodoro, 2016). 
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Table 2.1 Selected optical, multispectral satellites operating at coarse, medium, and high 

resolutions.  

Sensor group Satellite sensor Spectral 

bands 

Spatial 

resolution (m) 

Temporal 

resolution 

(day) 

Data 

availability 

Coarse 

resolution 

sensors 

MODIS 36 250-1000 0.5 1999-- 

Suomi NPP 

VIIRS 

22 375-750 0.5 2012-- 

MERIS 15 300 3 2002-2012 

Sentinel-3 OLCI 21 300 2 2016-- 

Medium 

resolution 

sensors 

Landsat 4-11 15-80 16 1972-- 

SPOT 1-7 4-5 1.5-20 26 1986-- 

ASTER 14 15-90 16 1999-- 

Sentinel-2 MSI 13 10-60 5 2015-- 

Planetscope  4-8 3 1 2015-- 

GaoFen-1 4 2-8 4 2013-- 

High 

resolution 

sensors 

IKONOS 5 1-4 1.5-3 1999-- 

Quickbird 5 0.61-2.24 2.7 2001-- 

WorldView 4-17 0.31-2.40 1-4 2007-- 

RapidEye 5 5 1-5.5 2008-- 

ZY-3 4 2.1-5.8 5 2012-- 

GF-1/GF-2 5 1-16 4-5 2013-- 

Pléiades Neo 6 0.3 – 1.2 0.5 2021-- 

Skysat 4 0.5 - 1 0.3-0.08 2013-- 

KOMPSAT-3A 4 0.5-2.2 0.9-2.7 2015-- 

Jilin-1 3-4 0.3-1.2 0.16 2015-- 

 

The retrieval of flood information from optical imagery often relies on the fact that water 

has a lower reflectance as compared to other landcover types, enabling the extraction of 

binary maps consisting of flooded and dry pixels. A well-established technique for 

generating these binary maps is the use of water indices used to extract flood inundation 

extents, including the popular Normalized Different Water Index (NDWI) (McFeeters, 

1996), modified NDWI (Xu, 2006), the automated water extraction index (AWEI) (Feyisa 

et al., 2014) and the water index (WI) (Fisher et al., 2016).  

Machine learning (ML), a branch of artificial intelligence that relies on vast amounts of data 

(known as training data) in order to accurately identify patterns and make predictions without 

being explicitly programmed to do so, are enabling accurate and automated extraction of 

water bodies from remotely sensed images (e.g. Elkhrachy, 2022; Munawar et al., 2022). 

https://apollomapping.com/pleiades-neo-satellite
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With an ever-increasing flood of data from diverse sources, machine learning techniques 

hold the promise of reliably detecting water bodies with higher accuracy than the well-

established water indices discussed earlier. Machine learning algorithms used in pixel-based 

analysis of remote sensing images can broadly be classed into three categories namely: (i) 

supervised learning; (ii) unsupervised learning; and (iii) reinforcement learning. In 

supervised learning the machine learning models are trained on given inputs and their 

corresponding labels/expected outputs. Unsupervised learning entails training ML 

algorithms only on input without their labels. In reinforcement learning, ML models learn to 

perform tasks through repeated trial and error, learning the optimal behaviour in a dynamic 

environment to obtain maximum reward. Data is not used as input as in supervised and 

unsupervised ML. Deep learning, a subset of ML that utilizes artificial neural networks, is a 

disruptive computer vision technology that considerably outperforms ML. Convolutional 

Neural Networks (CNNs), a prominent class of deep learning algorithms, has attained 

expert-level accuracy in classifying pixels and assigning them semantic labels (semantic 

segmentation). Pixel-level segmentation of flood extents from satellite and UAV imagery 

have successfully been conducted in previous studies (e.g. Gebrehiwot et al., 2019; 

Hashemi-Beni and Gebrehiwot, 2021; Pally and Samadi, 2022) offering the potential for 

automated real-time segmentation of flood imagery.   

2.3.3 Microwave remote sensing  

A complementary approach to optical remote sensing for flood hazard mapping is 

microwave remote sensing, which encompasses both active and passive sensors. The 

systematic application of optical sensors for monitoring flood events is limited by clouds, 

fog and vegetation which can obscure flooded surfaces. Optical sensors can only acquire 

images during the day, further limiting the atmospheric window over which flood imagery 

can be gathered. Given these limitations, microwave remote sensing, which relies on 

electromagnetic radiation with wavelengths between 1 mm to 1 m (commonly referred to as 

microwaves) offers the ability to penetrate cloud cover, haze, possible ash or powder 

coverages and heavy rainfall that typically accompanies floods, since longer wavelengths 

are unaffected by atmospheric scattering which impacts shorter optical wavelengths. The 

application of microwave imaging is also particularly useful in flood detection within small 

to medium sized catchments where the combination of cloudy weather and the rapid 

recession of flood events cannot be captured by optical instruments (Schumann and Moller, 

2015).  
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The most commonly used microwave imaging sensor is the Synthetic Aperture Radar (SAR), 

an active sensor that transmits signal and receives backscatter of surface features, capable of 

providing high-resolution microwave images of rivers smaller than 1 km in width. Amongst 

the more popular SAR missions used for flood hazard mapping are imagery acquired from 

Sentinel-1A and its twin Sentinel 1-B satellite, thanks to the convenient trade-off between 

their spatial resolution (5 m) and frequency of acquisition (12 days)  (e.g. Carreño Conde 

and De Mata Muñoz, 2019; Perrou et al., 2018; Uddin et al., 2019). Other spaceborne SAR 

missions that are relevant to flood mapping applications at high spatial resolution (i.e., 3 – 

30 m) are detailed in Table 2.2.  

Table 2.2 Selected satellite missions featuring a microwave, Synthetic Aperture Radar 

(SAR) sensor capable of flood mapping1. 

Spaceborne 

sensor2 

Sensor Frequency 

(Band, λ) 

Polarization3 Spatial resolution 

(m) 

Orbit repeat 

cycle (days)4 

RADARSAT-1 5.3 Ghz (C, 5.6 cm) HH 8-100 24 

RADARSAT-2 5.3 Ghz (C, 5.6 cm) HH, HV, VV, 

VH 

3-100 24 

TerraSAR-X & 

TanDEM-X 

9.6 Ghz (X, 3.1 cm) HH, HV, VV, 

VH 

1-16 11 

Cosmo-SkyMed 9.6 Ghz (X, 3.1 cm) HH, HV, VV, 

VH 

15-100 16 

Sentinel-1A 5.4 Ghz (C, 5.4 cm) H or V – H 

and/or V 

 

5-40 12 

SAOCOM-1 1.3 GHz (L, 23.5 cm) H and/or V – 

H and/or V 

10-100 16 

ALOS-2/PALSAR 1.3 GHz (L, 22.9 cm) HH, HV, VV, 

VH 

3-100 14 

ENVISAT 5.3 GHz (C, 5.6 cm) HH, HV, VV, 

VH 

12.5-1000 35 

RISAT-1 5.4 GHz (C, 5.6 cm) H and/or V – 

H and/or V 

Compact Pol 

1-50 25 

1 References used to compile table information include: The European Space Agency (ESA) SAR Missions 

(https://earth.esa.int/eogateway/activities/edap/sar-missions) and The National Aeronautics and Space Administration 

(NASA) Earth Data (https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar) 

2 Full text for sensor acronyms in the table: 

RADARSAT: Radar Satellite  

Cosmo-Skymed: Constellation of Small Satellites for Mediterranean basin Observation 

SAOCOM-1: Satelite de Observation y Communicacion 

ALOS-2/PALSAR: Advanced Land Observing Satellite 2/ Phased Array L-band SAR 

ENVISAT: Environmental Satellite 

https://earth.esa.int/eogateway/activities/edap/sar-missions
https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar
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RISAT-1: Radar Imaging Satellite 1 

3 Polarization: VV, vertically sent and vertically received; HH, horizontally sent and horizontally received; VH, 

vertically sent and horizontally received; HV, horizontally sent and vertically received. 

4 Repeat imaging capability at highest spatial resolution. timely acquisition can be programmed (tasked) for all 

satellites in case of emergency (usually, 24 – 48 h advance notice is required) 

Whilst microwave systems permit collection of imagery in any weather as well as during the 

night, the inaccuracies in classification of flooded areas (i.e., flooded areas mapped as dry 

and vice versa) are noteworthy (Clement et al., 2018; Scotti et al., 2020). Further, passive 

microwave remote sensing for flood mapping is limited to very large catchments (with areas 

greater than ~103 km2) given the large angular beams of these systems, which result in spatial 

resolutions as large as 20 – 100 km, making the interpretation of such imagery challenging 

(Rees, 2013). Although efforts to blend optical imagery with SAR imagery, leveraging on 

SAR’s capabilities for all-weather mapping, have been attempted (e.g. Kulkarni and Rege, 

2020; Tong et al., 2018), challenges in such image fusion abound including computational 

complexity, differences in sensor geometry and resolution as well as inconsistencies in 

temporal image registration.  Whilst the application of SAR-based flood mapping continues 

to grow thanks to current and planned high resolution sensor missions, such as the NASA-

ISRO Synthetic Aperture Radar (NISAR) mission due for launch in 2024, the requirement 

for high temporal-spatial resolution imagery to support flood modelling in small to medium 

sized catchments remains pressing as underscored in recent studies by Bauer-Marschallinger 

et al. (2022), Dasgupta et al. (2020) and Shen et al. (2019).  

2.3.4 Emergent remote sensing platforms and technologies  

Advances in near-earth flood inundation observations are being strengthened by new 

imaging technologies capable of providing fine scale datasets at resolutions unmatched by 

current satellite missions. CubeSats, a class of miniature nano-satellites satellites (10 cm x 

10 cm x 10 cm, weighing roughly 1 Kg) (Davoli et al., 2019), and drones/UAVs equipped 

with miniaturized high resolution multispectral and RGB (Red-Green-Blue bands) camera 

systems can observe the natural environment at much finer spatial and temporal scales (Table 

2.3) than possible with current satellite multi-sensor satellite platforms.   

CubeSats, which cost roughly 1/100th to 1/1000th of large space-agency missions such as 

Landsat or Sentinel,  have dramatically cut the multi-billion costs associated with launching 

of twin sensor systems, such as with Sentinel-1A and 1B. CubeSat constellations, such as 

Planet Lab’s (https://www.planet.com/our-constellations/) ‘Doves’ which are launched in 

large batches referred to as ‘flocks’ are capable of acquiring near-daily high resolution data 

(3 -5 m ground sampling distance) at a fraction of the costs which would be associated with 
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tasking commercial satellites. Large constellations of CubeSats, which are launched using 

reusable rockets, can overcome obstructions such as cloud cover as they can exploit their 

frequent revisit time to deliver high-resolution clear-sky imaging. The use of imagery 

collected using CubeSats and automatic segmentation using AI for flood mapping has been 

demonstrated by Mateo-Garcia et al. (2021) who reported acceptable performance when 

comparing water detection using a CNN and the spectral index NDWI. In their assessment 

of the capabilities of CubeSats and other such miniaturized satellites for earth observation 

Aragon et al. (2021) and Selva and Krejci (2012) note the limitations of cross-sensor 

inconsistencies when acting as a constellation as well as inadequate radiometric quality as 

compared to large mission satellites such as Landsat and Sentinel whose sensors undergo 

rigorous calibration. As CubeSats platforms are predominantly equipped with visible to near-

infrared  sensors, the temporally rich data from these platforms will complement rather than 

supplant the high resolution imagery currently acquired by conventional large satellite 

missions (McCabe et al., 2017a).  

Table 2.3 Comparison between Satellite and UAV platforms   

 Satellite UAV 

Spatial resolution/GSD 1-1000 m mm-cm 

Spatial accuracy 1-3 m mm-cm 

Flying height  >160 km m – km 

(< 1 km) 

Surface coverage  High (>10 km) Low (0.1 km) 

Observation footprint  Global Local 

Revisit period Day(s) Minutes 

Data acquisition costs  Very high Moderate-low 

Unpiloted Aerial Vehicles (UAVs) also referred to as unmanned aerial systems, unpiloted 

aerial systems or drones have considerable complementarity with satellite data and can be 

leveraged, in conjunction with hydraulic models, to understand flood dynamics. UAV remote 

sensing has been enabled by developments in computer vision and sensor miniaturization, 

offering decisive advantages in field scale flood monitoring such as; (i) the ability to collect, 

on-demand, ultra spatial resolution (centimetre to millimetre) scale data at reasonable costs; 

(ii) the ability to carry multiple sensors (optical, thermal, multi- and hyperspectral) and (iii) 

ability to be less-affected by clouds as opposed to optical satellites which are susceptible to 

low-cloud cover. Amongst the key breakthroughs of UAVs in supporting flood hazard 

mapping are the evolution of machine-learning algorithms for generating Structure-from-

Motion (SfM) high-resolution DEMs which are essential inputs for flood models. UAV-
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based ultra-high resolution RGB imagery and video for calibration and validation of 

hydraulic models has been demonstrated in various studies, including (Masafu et al., 2022; 

Yalcin, 2019). Image processing using deep learning algorithms for analysis of UAV 

imagery, such as automatic flood segmentation, are enabling accurate and near real-time 

mapping of floods enabling timely disaster and emergency response. Although the resolution 

of data supplied by UAVs remains unmatched by satellite sensors, the spatial scale of 

observations by satellites are way larger. The synergy between the spatial and temporal 

capabilities of UAV and satellite based-sensors for flood monitoring is still underexploited 

as  a lot of focus has so far been directed at the calibration and validation of satellite products 

using UAV data (Alvarez-Vanhard et al., 2021; Jiang et al., 2019). UAV-based sensors will 

continue to play a vital role in filling the observation gap between in-situ and satellite data, 

serving as a critical data source for hydraulic models.  

2.4 Discussion  

2.4.1 The role of remote sensing in constraining hydraulic model predictions  

Increasingly accurate implementation of hydraulic models will demand leveraging on the 

non-trivial advances in computational capacity (e.g., graphical and tensor processing units 

GPU and TPUs), data processing algorithms such as artificial intelligence (AI) networks 

powered by deep-learning, and the deluge of very high spatio-temporal data from a plethora 

of satellite and airborne sensors. Remote-sensing derived digital elevation models, as well 

as observations of flood extent and water levels remain important for informing flood 

modelling processes. Integrating the new generation of remote sensing data with hydraulic 

models via calibration, validation and data assimilation will open avenues for the rigorous 

assessment of the uncertainty associated with model structure, parameters, and inputs, which 

are fundamental, yet largely unexplored avenues with potential to drive advances in flood 

modelling. Further, the predicament of balancing computational efficiency with prediction 

accuracy in operational flood mapping scenarios, can now be addressed via the exponential 

growth in computing power which will help unravel the complexities of high-resolution 

remote sensing data from new sensors aboard small satellites and drones. Whilst the need 

for in situ observations in flood modelling cannot be replaced entirely by remotely sensed 

data, the problem of a strong inverse relationship between the spatial and temporal resolution 

of remotely sensed data, which has constrained the ability to rigorously assess hydraulic 

models, can now begin to be addressed.  
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Chapter 3 - Overview of methods 

3.1 Introduction  

Chapters 1 and 2 contextualized the pertinence and value of the thesis’ aim, demonstrating 

opportunities for research through leveraging on newly available remote sensing datasets 

(e.g., SfM DEMs, UAV and satellite video) and processing techniques (e.g., optical flow 

velocimetry and artificial intelligence techniques for optical image segmentation) to both 

parameterize and rigorously assess the performance of hydraulic models. With substantial 

advances in the availability of fine scale data for flood modelling, it is important to consider 

the techniques needed to process this data to enable their successful utilization in facilitating 

and constraining model predictions. In summarizing these advances and their subsequent 

relevance to progressing numerical modelling of inundation, three key themes emerge linked 

to; i) optical methods for estimation of river surface velocities; ii) generating floodplain 

topography from optical imagery, and iii) the role of AI in automated image analysis. This 

chapter will provide details about the study sites and hydraulic model used to conduct 

simulations followed by a discussion of the methods used to process optical imagery for the 

derivation of topography, velocity, and discharge. This chapter will provide a general 

explanation of the chosen techniques with further discussion and investigation detailed in 

the subsequent empirical Chapters 4, 5 and 6.  

3.2 Study sites  

3.2.1 Eden Catchment, United Kingdom 

The Eden catchment is located in Cumbria, Northwest England and covers an area of 2288 

km2, draining the uplands of the Pennines and Lake District, to its outlet via the Solway Firth 

to the Irish Sea. The principal sub-catchments are the Upper and Lower Eden, Eamont, 

Irthing, Petteril and Cladew, with the major population centres being Carilse, Penrith and 

Appleby-in-Westmorland (Figure 3.1). The Eden catchment contains two major lakes, 

Ullswater (884 ha) and Haweswater Reservoir (387 ha), as well as several small tarns and 

reservoirs which regulate flow in the catchment. The catchment is largely rural with just 1% 

classified as urban with the main land use being agricultural practice; tourism is growing in 

importance. The catchment is significant for its cultural and nature conservation with 30% 

of its area classified as an Area of Outstanding Natural Beauty (AONB) (Environment 

Agency, 2009).  
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The Upper Eden is the largest sub-catchment at ~600 km2 and drains the western slopes of 

the Pennines  with elevations ranging from 788 m above ordnance datum at the High Scald 

Fell to approximately 93 m at Temple Sowerby gauging station (Mayes et al., 2006). The 

Lower Eden is characterised by wide floodplains and contains several of the Pennine peaks 

on the eastern side, such as the Cross Fell (893 m) (Leedal et al., 2013). The Eamont sub-

catchment (158 km2), made up of majority livestock grazing land, experiences the highest 

rainfall in the catchment (approximately 1700 mm yr-1) and conveys runoff from the central 

Lake District and comprises 23 water bodies, including the Swindale Beck (Figure 3.1).  

 

 

Figure 3.1 Eden Catchment and study location (Swindale Beck). 
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Rainfall across the catchment is highest in the uplands with Eden Valley being drier due to 

the rain shadow effect from the Lake District hills to the west. Average annual rainfall is 

1183 mm (SAAR 1961 – 1990) with large variations of less than 650 mm in the lowland 

valleys to more than 2000 mm in the uplands (Mayes et al., 2006).  Upstream of Penrith 

average annual rainfall exceeds 2800 mm as compared to 920 mm across England and Wales. 

Runoff from the catchment is controlled by topographic and geological differences, with 

many of the upland tributaries rising on steep hard rock with little soil cover resulting in 

flashy runoff with high river levels occurring soon after heavy rainfall. In the lowlands 

limestone and sandstone aquifers benefit are important in maintaining baseflows.  

The Eden catchment has been instrumented extensively via the CHASM (Catchment 

Hydrology and Sustainable Management) project (O’Connell et al., 2007) with a network of 

over 11 event-recording tipping-bucket rain gauges and a network of stage gauges 

maintained by the Environment Agency and private entities allowing localized insights into 

hydrological characteristics of the catchment. Swindale Beck, a stream located within the 

Eamont sub-catchment, a partnership between a water company (United Utilities) and the 

Royal Society for the Protection of Birds (RSPB) instituted river restoration efforts in order 

to allow natural process to help manage flood risk. The stream flows north-east along 

Swindale and joins the River Lowther near Rosgill and Shap and takes in water from a ~17 

km2 area (Figure 3.1). The Swindale Beck underwent straightening approximately 160 years 

ago to clear land for grazing, appearing in straightened form in an 1869 Ordnance Survey 

Map (Dallow, 2020). Removing the beck’s natural bends not only accelerated flow 

downstream of the channel increasing the risk of flooding, this also destroyed in-river 

wildlife habitats such as gravel bars, pools and riffles. Restoration efforts began in 2016, 

with the creation of a much-longer sinuous 890 m channel replacing the 750 m of 

straightened channel, allowing for natural flooding patterns to occur with high event rainfall 

spilling onto the floodplain meadows. The restored beck allowed for more diverse flora and 

fauna to thrive whilst reconnecting the stream to its adjacent floodplain. River restoration 

schemes can produce highly variable impacts on high flow events within catchments, with 

consequent alterations in flow dynamics caused by changes in channel morphology 

warranting further empirical and modelling studies to further unravel the interconnections 

between river engineering and flood risk management (Dixon et al., 2016; Mondal and Patel, 

2018).  
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3.2.2 Murray-Darling River Basin, Australia 

The Murray and Darling River systems together form the Murray-Darling Basin (MDB), 

located in southeast of Australia and covers parts of four states – New South Wales, Victoria, 

South Australia and Queensland (Figure 3.2).  The MDB drains approximately 14% of the 

Australian continent with a drainage area of over 1 million km2 with the combined length of 

the two major rivers the Murray and Darling being ~5500 km (MDBA, 2010). The basin 

contains more than 20 other rivers and is climatically divided into the northern rivers 

(Darling system) and the southern rivers (Murray system) (Hart et al., 2021). The Murray 

River is approximately 2530 km long and rises at an elevation of 2228 m in eastern Australia 

and drops to an elevation of 150 m, gradually reducing in gradient from 0.29 m km-1 to 0.03 

m km-1. The Darling system (2740 km long) flows across New South Wales in a 

southwesterly direction and confluences with the River Murray close to the border of South 

Australia, Victoria and New South Wales (Stewardson et al., 2021).  

The Murray Darling Basin has a long term annual average rainfall of 469 mm of which 94% 

evaporates or transpires and 4% turns into runoff. The basin experiences a pronounced 

climate gradient that is also subject to the El Niño -Southern Oscillation climatic variability 

characterized by long dry spells and large flood events (Heimhuber et al., 2016). The 

hydrology of the MDB is amongst the most variable in the world with the northern basin 

experiencing a strong monsoonal influence leading to more summer dominated flow patterns 

as compared to the southern basin’s winter-dominated flow patterns (Stewardson et al., 

2021). The MDB basin has a high interannual variation in streamflow, total flow in the basin 

has varied between 6740 GL (2006) to 117,907 GL (1956) as a result of the prevailing arid 

and temperate climate of the basin (MDBA, 2010). Although largely arid, the surface water 

ecosystems of the MDB include over 70,000 lakes and roughly 20,500 km2 of wetlands 

(Brooks, 2017).  
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Figure 3.2 The Murray-Darling Basin and study location (Tilpa). 

With the exception of Canberra, there are no large cities within the basin, with around 2.2 

million people living with the basin and roughly 4 million reliant on its water resources 

(Authority, 2017). The economic mainstay within the catchment is agriculture with the 

region producing more than 50% of Australia’s irrigated produce over more than 1.5 million 

ha of land (ABS, 2019). The MDB has been the focus of debates over the consumption of 

water, with floods being a highly valued resource. Human-induced stress on the basin’s water 

resources as well as severe drought and flood cycles driven by climate change (King et al., 

2020) illustrate the need for rigorous inclusion of knowledge from new technologies to 

advance the ability to make accurate decisions in managing the MDB’s water resources. 

Earth observations for monitoring flood events as well as quantifying streamflow will 

complement existing in-situ networks and supply additional data that will help underpin 

decisions in the MDB. The capabilities for strategic management of water resources in near-

real time leveraging on advances in science and technology will offer even better options for 

water management in the MDB.  
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3.3 Hydraulic Model  

Two-dimensional hydraulic flood models have been deployed extensively in simulating river 

hydraulics and floodplain inundation dynamics (e.g. Dottori and Todini, 2013; Hunter et al., 

2008; Shen et al., 2015). Whilst a spectrum of model codes and structures exist for numerical 

modelling of flood plain dynamics, the choice of an appropriate model was driven by the 

need to balance model complexity, data requirements and the ability to resolve spatial 

resolution at reasonable computational costs. Additionally, a 2D hydraulic model code that 

was easily available and has been used in both commercial and research domains would help 

build upon existing literature and operational flood hazard modelling studies. An important 

development in 2D hydraulic modeling approaches is the emergence of sub-grid modeling 

capabilities, an extremely computationally efficient approach allowing coarse grid cells to 

be implemented over fine topographic details while also helping maintain numerical stability 

(Shustikova et al., 2019), such capabilities further helped to refine model choice. In a study 

by Néelz and Pender (2013) benchmarking 14 2D hydraulic model codes based on shallow-

water equations, the representation of both floodwater velocities and extents by all modelling 

codes was performed comparably. Thus, the current version of the Hydrologic Engineering 

Center-River Analysis System (HEC-RAS) was selected as a representative class of 

hydraulic model fitting the above criteria with which to explore this thesis’ objectives. 

Indeed, any conclusions reached in this thesis should be obtainable with other hydraulic 

model codes.  

HEC-RAS is an open-source hydraulic model developed by the U.S. Army Corps of 

Engineers that can perform both one-dimensional steady flow hydraulics and one and two-

dimensional unsteady flow river hydraulics. HEC-RAS solves both the bidimensional 2D 

Saint Venant equations (shallow water equations) and the 2D diffusion wave equations. In 

this thesis a purely 2D approach was used to characterize modelled flows and details of the 

2D solver as summarized in general terms here.  

2D shallow water equations take the form of the continuity equation expressed as:  

𝜕𝐻

𝜕𝑡
+ 

𝜕(ℎ𝑢)

𝜕𝑥
+  

𝜕(ℎ𝑣)

𝜕𝑦
+ 𝑞 = 0 

(3.1) 

 

where H is the water surface elevation, t is time, h is the water depth, u and v are the depth 

averaged velocities in the x- and y-directions, and q is the source term.  
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Momentum equations for 2D flow are expressed as:  

𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
=  −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) − 𝑐𝑓𝑢 + 𝑓𝑣 

(3.2) 

 

𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+  𝑣

𝜕𝑣

𝜕𝑦
=  −𝑔

𝜕𝐻

𝜕𝑦
+ 𝑣𝑡 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) − 𝑐𝑓𝑣 + 𝑓𝑢 (3.3) 

 

where g is gravity, νt is the eddy viscosity coefficient, cf is the friction coefficient, and f is 

the Coriolis parameter.  

The friction coefficient, cf , is determined using Manning’s formula formulated as:  

𝑐𝑓 =  
𝑛2𝑔|𝑢|

𝑅
4
3

 (3.4) 

 

where n is Manning’s n and R is the hydraulic radius. 

Before solving fluxes using the equations described, HEC-RAS prepares detailed hydraulic 

property tables for the 2D computational cells based on the underlying terrain, the so-called 

“sub-grid high resolution model” (Brunner et al., 2020; Casulli, 2009). The sub-grid 

approach allows for the 2D flow area pre-processor to prepare detailed hydraulic property 

tables even for larger mesh sizes, allowing the use of larger computational cells results in 

fewer computations and faster model run times without losing details on the underlying 

topography.  

In this thesis, the use of HEC-RAS’s adaptive mesh refinement was utilized, allowing for 

precise and detailed representation of desired results in targeted locations where additional 

detail was required. This further enhanced model run stability because refined mesh sizes 

focused on areas where sudden changes occur, which is typically within river channels or 

hydraulic structures within the flood plain.  

Assigning an appropriate computational time step that worked well with hybrid 

computational meshes, adaptive time-steps based on the Courant-Freidrichs-Lewy condition 

were estimated when using both the full momentum Saint Venant equations (3.5) and the 

diffusive wave equations (3.6) expressed as follows (Brunner et al., 2015): 
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𝐶 =  
𝑉∆𝑇

∆𝑋
 ≤ 1.0 (𝑤𝑖𝑡ℎ 𝑎 max〖𝐶 = 3.0)〗𝑜𝑟 ∆𝑇 ≤

∆𝑋

𝑉
 (𝑤𝑖𝑡ℎ 𝐶 = 1.0) 

(3.5) 

 

𝐶 =  
𝑉∆𝑇

∆𝑋
 ≤ 2.0 (𝑤𝑖𝑡ℎ 𝑎 max〖𝐶 = 5.0)〗𝑜𝑟 ∆𝑇 ≤

2∆𝑋

𝑉
 (𝑤𝑖𝑡ℎ 𝐶 = 1.0) 

(3.6) 

 

 Where C = Courant number, V = flood wave velocity (m s-1), ∆𝑇 = computational time-step (s) and 

∆𝑋 = average cell size (m).  

The basic boundary and initial condition requirements for performing unsteady two-

dimensional flow calculations in HEC-RAS consist of external, internal, and global 

boundary conditions. External boundary conditions are applied to the boundary of 2D flow 

areas and can either be flow/stage hydrographs, normal depth (calculated using an energy 

slope and Manning’s equation) or a rating curve. Internal and global boundary conditions, 

including precipitation (application of a time series of rainfall excesses on the entire 2D flow 

area, e.g. Zeiger and Hubbart, 2021), evapotranspiration and wind were not utilized in this 

thesis.  

3.4 Image processing techniques  

3.4.1 Structure from Motion (SfM) photogrammetry  

The rapid emergence of UAV-based photogrammetry for high resolution-topographic 

reconstruction has been aided by technological advancements in UAVs/drones, camera 

sensor technology and computer vision techniques, primarily Structure from Motion (SfM) 

algorithms. SfM is a technique for developing 3D models from a series of overlapping 2D 

imagery. The resolution of 3D point clouds from SfM are typically improved using Multi-

View Stereo (MVS) techniques by generation of dense point clouds, thus SfM-MVS (Figure 

3.1). UAV-SfM-MVS has several advantages over traditional ground-based photogrammetry 

techniques, LiDAR, Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) 

which are expensive, highly dependent on weather conditions and relatively challenging to 

deploy in difficult/remote terrain without risk to operators. UAV-SfM DEMs have been 

deployed in several riverine environments for reconstruction of flood events (e.g., 

(Govedarica et al., 2018; Hashemi-Beni et al., 2018; Özcan and Özcan, 2021) and are now 

a proven alternative to traditional photogrammetry. SfM-MVS produces fully 3D 

multidimensional data and can be applied at large spatial scales (from 10-2 to 106 m2 

(Carrivick and Smith, 2019; Smith and Vericat, 2015) with accuracies comparable to 
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traditional topographic survey techniques. Examining the advantages of UAV-based DEMs 

in a small river floodplain, Schumann et al. (2019) noted identical performance between 

SfM and LiDAR based DEMs for characterization of hydraulic predictions. Further, Annis 

et al. (2020) quantified the accuracy of UAV-derived DEMs against a high-resolution LiDAR 

DEM for small-scale flood hazard mapping and found simulated flow dynamics were 

significantly better reproduced by a SfM-DEM.  

The general steps for SfM photogrammetry are detailed in Figure 3.3. The focus of this 

section is to provide an overview of the SfM image processing methodology typical to SfM 

based approaches for DEM production regardless of specific software implementation. 

Whilst advances in the field of computer vision have led to a plethora of commercial 

software (e.g., Pix4DMapper, AgiSoft PhotoScan, 123D Catch/ReCap, Autodesk Image 

Modeler, Photo Modeler, Microsoft Photosynth amongst others) and open-source code (e.g.  

Bundler, VisualSFM, Python Photogrammetry), the workflow steps described here broadly 

address the approaches used to produce SfM DEMs and are based on the steps described by 

Carrivick et al. (2016), Eltner et al. (2016) and Smith et al. (2016).  

Given overlapping images acquired at different angles from UAV surveys, the first step in 

the SfM workflow aims to match the 3D location of matching features. Conventionally, 

images acquired from UAV flights will have a front overlap of 55 – 60% and a side overlap 

of 40 - 90%, with high degrees of overlap allowing for the development of detailed 3D point 

clouds following dense multi-image matching (Jiménez-Jiménez et al., 2021).  

The initial step in image processing is the identification of features (or ‘keypoints’) in 

individual overlapped images regardless of perspective or scale. Keypoints allow for the 

scene geometry to be reconstructed and can be implemented via several techniques including 

FAST (features from accelerated segment test) (Rosten and Drummond, 2005), BRISK 

(binary robust invariant scalable keypoints) (Leutenegger et al., 2011), ORB (oriented 

BRIEF) (Rublee et al., 2011), SURF (speeded up robust features) (Bay et al., 2008), KAZE 

features (Alcantarilla et al., 2012) and most commonly, SIFT (scale-invariant feature 

transform) (Lowe, 2004). Whilst SIFT has gained popularity in SfM applications, subsequent 

developments in computer vision algorithms based on deep-learning have emerged including 

DetNet (Lenc and Vedaldi, 2016), TILDE (Verdie et al., 2015), LIFT (Yi et al., 2016) and 

SuperPoint (DeTone et al., 2018).  
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Figure 3.3 SfM photogrammetry workflow. 

Keypoint matching requires the identification of corresponding points in multiple images, 

although not all keypoints will always have matches in partner images. Techniques for 

discarding of keypoint data without matches are based on the application of thresholds, such 

as SIFT’s use of the ratio of the Euclidean distance of the nearest neighbour with that of the 

second nearest, termed as the distance ratio with a minimum threshold value of 0.6 – 0.8 

(Smith et al., 2016). Using this distance ratio criteria, more than 90% of incorrect keypoint 

matches can be discarded with less than 5% of correct matches being eliminated. Muja and 

Lowe (2009) developed a k-dimensional binary partition tree to address the large high-

dimensional space of keypoint descriptors. These binary trees efficiently partition 

multidimensional data with significant reduction in search times and relies on graphical 

processing units (GPUs) (Carrivick et al., 2016). To ensure only correct keypoint 

correspondences are applied and incorrect matches are removed, a further step is applied to 

filter out erroneous keypoints. A fundamental matrix (F-matrix) is computed based on the 

location of keypoints in multiple images of the same scene. The F-matrix relies on the 

relationship between matching image keypoints in order to constrain the location precisely 
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known keypoints and is computed using the eight-point algorithm (Longuet-Higgins, 1981). 

The eight-point algorithm computes a 3D structure from a correlated pair of images when 

the spatial relationship between them is unknown. The F-matrices are computed over several 

iterations using the commonly applied random sample consensus (RANSAC) (Fischler and 

Bolles, 1981) that divides all keypoints into outliers and inliers. A set threshold is defined 

for determining keypoints considered to be outliers, RANSAC continuously samples 

different subsets until there is a 95% chance that subset contains only inlier keypoints 

(Carrivick et al., 2016; Smith et al., 2016). 

Utilizing the geometrically consistent feature correspondences from the previous step, SfM 

relies on bundle adjustment algorithms to simultaneously reconstruct a 3D geometry, 

different camera poses and the camera’s intrinsic calibration parameters. Bundle adjustment 

produces sparse point clouds and reconstructed camera poses by simultaneously solving for 

the intrinsic and extrinsic orientation parameters (Javadnejad et al., 2021; Ullman, 1979). 

Iterative minimization of a defined cost function is conducted by fitting a local quadratic 

approximation which results in optimal 3D structure and camera parameters (Carrivick et 

al., 2016; Snavely, 2011; Triggs et al., 2000).  

The outputs from the preceding SfM process are the scene geometry and a 3D point cloud 

with an undefined coordinate system. Georeferencing and scaling of the 3D point cloud 

requires a minimum of three ground control points (GCPs) with XYZ coordinates. The use 

of more than three well-distributed GCPs which are clearly visible in images and surveyed 

using RTK-GNSS or total stations is required for most SfM-MVS software workflows 

(James et al., 2019; Javernick et al., 2014). Additional optimization to minimize the 

georeferencing error and the re-projection error as a result of the use of GCP coordinates is 

available in most software packages where bundle adjustment can be re-run to optimize 

alignment.  

Multi-View Stereo image matching are used to increase the density of the georeferenced 

sparse point cloud by at least two orders of magnitude (Carrivick et al., 2016). Seitz et al., 

(2006) provide a taxonomy of MVS algorithms which can be classified into voxel-based 

methods, surface-evolution based methods, depth-map merging methods and patch-based 

methods, which are more commonly applied in SfM due to their relative cost effectiveness 

and simplicity (Lou et al., 2014; Shen, 2013; R. Zhang et al., 2022). Whilst most algorithms 

in commercial SfM software packages are considered to be ‘black box’ (Nguyen et al., 

2012), the rapid evolution of open-source code is allowing users to identify common 

underlying concepts in the SfM processing chain.  
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3.4.2 Large Scale Particle Image Velocimetry (LSPIV) 

Non-intrusive techniques for measuring river surface velocities, especially during hazardous 

flood events, have been aided by the proliferation of high-resolution imaging sensors capable 

of being deployed on UAVs and satellite platforms, as well as rapid advancements in 

computational capacities. Whilst the evolution of aDcps was instrumental for advancing 

hydrometric flow measurements in the field, their application is limited during extreme 

events such as floods. Image based techniques for estimation of velocity have primarily been 

based on two techniques; Particle Tracking Velocimetry (PTV), a Lagrangian approach that 

determines velocity vectors based on individually tracked particles in successive images, 

and Particle Image Velocimetry (PIV) which relies on cross-correlation to determine the 

displacement of a group of particles within small analysis regions. Conventional PIV 

analysis was first applied in controlled laboratory environments (see, Adrian, 1991), 

however in the mid-1990s Fujita et al., (1998) introduced techniques for field scale 

application of PIV, and thus the development of the so-called large-scale PIV (LSPIV). 

Several LSPIV-based algorithms have been proposed and utilized for estimation of riverine 

velocities, and streamflow, including Surface Structure Image Velocimetry (SSIV - Leitão 

et al., 2018) and digital particle image velocimetry (Thielicke and Stamhuis, 2014).  

Although both PIV and PTV based techniques are relatively inexpensive, relying on 

consumer-grade cameras and open-source software for image analysis, LSPIV has found 

wider application in field studies as compared to PTV. Whilst PTV relies on the 

identification and tracking of highly resolved individual tracers, LSPIV requires a 

comparatively lower concentration of tracers, usually a group of particles/speckle patterns 

rather than individual tracers, in order to compute surface velocities. Indeed, a large number 

of studies on the hydraulic applications of image velocimetry in natural environments, such 

as during floods when tracers are likely to cluster rather than be evenly distributed across 

the water surface, have been based on LSPIV (e.g. Al-mamari et al., 2019; Dramais et al., 

2011; Huang et al., 2018; Le Boursicaud et al., 2016). Tauro et al. (2017) further note that 

in outdoor settings, the large-scale flow behaviour captured by LSPIV allows for analysis of 

lower resolution image frames, allowing for the investigation and mapping of spatial flow 

structures in difficult-to-access environments.  

The first step in LSPIV workflows is recording images to be used for analysis, this is 

generally accomplished through optical video sensors mounted on still standing structures, 

such as bridges, UAVs, and recently satellite-based sensors (Legleiter and Kinzel, 2021a) 

(Figure 3.4). Recording of images using UAVs and other space-borne sensors is generally 

done from a nadir perspective rather than obliques angles, which eliminates the requirement 



35 

 

for complex image transformations which can negatively influence the accuracy of 

velocimetry results (Pearce et al., 2020a). Analysis of images using LSPIV requires the 

presence of visible tracers/seeds/particles on the water surface, in sufficiently illuminated 

settings, in order for the displacement of these tracers to be tracked in a series of images. 

Since tracers are not always sufficient in natural streams, artificial seeding – the introduction 

of tracers such as corn ships, eco-foam, or wood shavings, can be conducted to enable 

tracking of their movement and measure surface velocities. Following image acquisition and 

extraction of frames for analysis the next key steps in LSPIV generally include image 

preprocessing, image orthorectification and image processing. 

Preprocessing of images before inferring surface velocities will generally be preceded by 

image stabilization, to account for camera/platform movements due to wind, drift or orbiting 

(in the case of UAVs and satellite platforms) which can result in erroneous computation of 

velocities based on the motion of the imaging platform rather than the advection of flow. 

Following stabilization, images can be pre-processed to increase the contrast between tracers 

and the water. Manipulation of stabilized images is also conducted to reduce glare and can 

be accomplished via operations such as contrast stretching, histogram equalization and 

application of band pass filters. 

In order to scale the pre-processed image sequences from a pixel coordinates to real-world 

coordinates as well as avoid distortion due to perspective effects, geometrical projections 

can be conducted either via the application of direct scaling functions based on established 

pixel and metric co-ordinate relationships or full image orthorectification, based on ground 

control points (GCPs). In this thesis, conventional orthorectification techniques based on 

GCPs was applied to calibrate images to surveyed coordinates. Explicit 2D transformations 

are possible when GCPs and the river surface are on a similar plane and requires at least 4 

GCPs proximal to the river banks in order to increase the reliability of orthorectification 

(Jolley et al., 2021; Moraitis and Baltas, 2020; Tauro et al., 2014). Le Coz et al. (2014) 

recommend having more than 10 GCPs distributed within the field of view of the camera, 

which increases redundancy of the orthorectification network thus improving the accuracy 

of velocimetry results.  
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Figure 3.4 Large Scale Particle Image Velocimetry (LSPIV) implementation, (a) 

UAV/Drone/Satellite based optical sensors capture videos of river surface with tracers; (b) 

LSPIV velocity vector generation explained in graphics; (c) Conceptualization of the 

LSPIV image processing algorithm. 

In estimating surface velocities, classical two-dimensional cross-correlation is applied 

between pairs of orthorectified images separated by a given time interval, Δt. Cross-

correlation is computed between an interrogation area (IA - Figure 3.4) in an initial frame 

and IAs located within a search area (SA) in a subsequent frame. A group of particles 

forming a pattern is used to trace displacement with a pair of particles yielding maximum 

cross-correlation resulting in a candidate velocity vector. The cross-correlation coefficient, 

Rab, is expressed as (Fujita et al., 1998; Muste et al., 2008a):  
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Where MX and MY are the sizes of the interrogation areas, and aij and bij are the 

distributions of the gray-level intensities in the two interrogation areas separated by the 

time interval dt (refer to Figure 3.4). 

 

Following generation of velocity vectors postprocessing to remove erroneous velocity 

vectors can be conducted based on manual removal of vectors, the use of local median filters, 

imposing correlation thresholds or via flow continuity analysis methods (e.g., Perks, 2020; 

Thielicke and Stamhuis, 2014; Westerweel and Scarano, 2005). Whilst a certain amount of 

noise is inevitable in PIV analyses, different algorithms deploy techniques, such as data 

smoothing (Raffel et al., 1998) in order to improve the accuracy of generated velocity vector 

maps. In this thesis, all LSPIV workflows are based on the open access PIVLab algorithm 

(Thielicke and Stamhuis, 2014) which has been utilized in various field scale investigations 

of riverine velocities (e.g., Cao et al., 2022; Koutalakis et al., 2019; Koutalakis and Zaimes, 

2022; McIlvenny et al., 2022).  

3.4.3 Deep learning based semantic segmentation. 

Deep learning models, a class of artificial neural networks, have emerged as a powerful tool 

for digital image processing thanks to their ability to learn from vast amounts of unstructured 

data. An important application of deep neural networks is in the domain of computer vision, 

with application use-cases including image classification, object detection and segmentation, 

in increasing order of their complexity. Image segmentation is a commonly used digital 

image processing technique that aims at grouping similar regions or segments of an image 

based on the characteristics of the pixels in the image. Image segmentation modes are 

divided into three categories based on the information extraction task: (i) Semantic 

segmentation, (ii) Instance segmentation and (iii) Panoptic segmentation. Semantic 

segmentation, also called pixel-level segmentation, entails the classification of each pixel 

belonging to the same object class. Instance segmentation models detect and classify each 

object in an image and classifies pixels on the basis of their ‘instances’ of occurrence rather 

than classes. This task is analogous to object detection but with the added task of segmenting 

a detected object’s boundaries. Panoptic segmentation is a combination of semantic and 



38 

 

instance segmentation, involving pixel-level labelling as well as identification of each object 

instance in an image. 

 

 

Figure 3.5 Image segmentation techniques.  

Image segmentation techniques can generally be described as falling under two categories: 

(1) traditional techniques and (2) deep learning-based techniques (Figure 3.5). Algorithms 

based on traditional techniques can broadly be categorized as being either spectrally-based 

(such as thresholding-based and feature space-clustering algorithms, see, for example, Abd 

Elaziz et al., 2019; Pare et al., 2020; Sarkar and Das, 2013; Upadhyay and Chhabra, 2021), 

spatially-based (such as edge-based, region growing, region merging and splitting, and graph 

based such as in Bleau and Leon, 2000; Camilus and Govindan, 2012; Padmapriya et al., 

2012; Preetha et al., 2012) or a hybrid of both methods.  

Deep learning-based image segmentation relies on training neural networks and can 

accomplish superior accuracy as compared to traditional segmentation techniques (Minaee 

et al., 2020). The most prominent deep-learning-based image segmentation models typically 

use an encoder-decoder architecture e.g., U-Net (Ronneberger et al., 2015) (Figure 3.6). 

Lately, a disruptive new class of models known as foundation models, has emerged. 

Foundation models are AI models pre-trained on extremely large datasets that can be adapted 
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to a wide range of tasks, including tasks for which they have not previously been trained for. 

Foundation models for image segmentation are based on the use of convolutional neural 

networks, including Facebook’s Segment Anything Model (SAM) (Kirillov et al., 2023), 

which is considered to be the first foundation model for image segmentation. Foundation 

models are still in their infancy have been criticized for their inductive biases and lack of 

explainability due to the depth of the neural network layers and size of training datasets used 

(Bommasani et al., 2021). 

 

 

 

Figure 3.6 U-Net architecture (CNN).  

Convolutional Neural Networks (CNNs) are the most successful and widely used 

architecture in the field of computer vision and have been applied to many tasks including 

image classification (Lee and Kwon, 2017; Sultana et al., 2018), super resolution (Dong et 

al., 2014; Tai et al., 2017; Tian et al., 2022) and semantic segmentation (Yurtkulu et al., 

2019; C. Zhang et al., 2022). Deep learning-based neural network architectures have 

outperformed classical machine learning techniques in the semantic segmentation of 

remotely sensed imagery, including Bayesian networks (BN, Dechesne et al., 2021; Xiong 

et al., 2020), k-nearest neighbours (k-NN, Garg et al., 2021; Su et al., 2022), Support Vector 

Machines (SVM, Farag et al., 2005; Moliner et al., 2020; Song and Civco, 2004), Markov 

random field (MRF, Kato and Zerubia, 2012; Zheng and Wang, 2014), decision trees and 

Random Forest techniques (DT, RF, Sevak et al., 2017; Smith, 2010) due to their ability to 

detect the most salient features efficiently and accurately in images without manual feature 

engineering or preprocessing. CNNs do not require human supervision in identifying 

important features and are designed to learn spatial hierarchies automatically and adaptively 

in images, allowing them to generalize well to unseen or new data.  
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CNN architectures are composed of three layers, convolutional layers, pooling layers and 

fully connected or dense layers. Convolutional layers are the key building block of the 

CNNs, they rely on a series of filters to extract important features, such as edges, lines, and 

textures. These filters, known as feature detectors, consist of a small matrix of weights which 

are convolved with the input image to produce a feature map. A filter with a defined size will 

usually be applied to a region within the input image and will shift until the entire image has 

been covered, producing multiple feature maps which contain a discrete set of learned 

features. Outputs from the convolutional layer are then passed through a nonlinear activation 

function (Hao et al., 2020) and passed on to the pooling layer. Pooling layers downsample 

the feature maps (reduce the spatial size) received from the convolutional layers, decreasing 

the computational power required to process the data and reducing the risk of overfitting. 

Two types of pooling are generally applied, and this can either be average or max pooling. 

Average pooling averages the elements visible in the region of the feature map covered by 

the filter while max pooling returns the maximum values from the portion of the image 

covered by the filter. Unlike convolution layers which are used for feature detection, pooling 

layers are used for feature selection. Outputs from the convolutional and pooling layers are 

then passed through one or more fully connected layers which make a prediction about the 

class or label of the input image.  

CNNs for semantic segmentation are generally based on encoder-decoder type structures. 

The encoder is usually a pre-trained classification network (for example VGG (Simonyan 

and Zisserman, 2015), ResNet (Krizhevsky et al., 2017), GoogLeNet (Szegedy et al., 2015)) 

and extracts features used for segmentation of the input image using the knowledge acquired 

from the pre-training through transfer learning. Since outputs from the encoder are usually 

of low dimensions, the decoder is used to reconstruct a segmentation mask of the same height 

and width as the input image. In this thesis, a U-Net encoder was used. Although a broad 

spectrum of deep learning neural networks have been proposed for semantic segmentation 

of images, amongst the most popular encoder-decoder type architectures that have attained 

state-of the art performance include U-Net (Ronneberger et al., 2015) (Figure 3.6), PSPNet 

(Zhao et al., 2017) , DeepLab (Chen et al., 2017). Although deep learning-based analysis of 

remote sensing imagery is still in its infancy, there is promising evidence for its use in flood 

hazard mapping studies.  

Although CNNs have been the go-to architecture for image segmentation, as images have 

grown more intricate and varied, CNNs have faced challenges capturing long-range 

dependencies, contextual nuances, and global interactions within images. Transformers, a 
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type of deep learning architecture, have recently emerged as a competitive alternative to 

CNNs. The transformer architecture was originally proposed for sequence to sequence 

learning and natural language processing tasks (Tunstall et al., 2022; Wolf et al., 2020). 

Transformer-based language models, such as the Generative Pre-Trained Transformer 

(GPT), have attained popularity, such as the ChatGPT (Liu et al., 2023) AI chatbot, and led 

to breakthroughs in language understanding, generation, translation, and more, and continue 

to drive progress in the field of natural language processing. This led to the adaptation of 

transformers for processing image data. The Vision Transformer (ViT) was proposed by 

(Dosovitskiy et al., 2021). Different from traditional CNNs, ViTs process images as 

sequences of fixed-size patches, enabling them to capture global context and relationships 

between pixels at various scales (Khan et al., 2022). Their key feature is the self-attention 

mechanism, which allows ViTs to weigh the importance of different patches in relation to 

each other, facilitating the understanding of spatial hierarchies and long-range dependencies 

within images (Han et al., 2022). This holistic perception enhances their ability to recognize 

intricate patterns, objects, and their interactions, leading to accurate and context-aware 

image analysis. ViTs have demonstrated remarkable performance in tasks like image 

classification, object detection, and segmentation, offering a promising alternative to 

traditional CNN-based approaches in the field of computer vision (Karimi et al., 2021; 

Strudel et al., 2021; Yang et al., 2022). 

Although ViTs have attained state-of-the-art performance in many computer vision tasks, 

they do not necessarily outperform CNNs across the board (Yuan et al., 2023). In fact, ViTs 

and CNNs complement each other in image segmentation by combining their respective 

strengths. Whilst ViTs leverage self-attention mechanisms to obtain global connects and 

long-range dependencies across images, CNNs excel at capturing local features through 

convolutional layers enabling them to identify intricate details that are crucial for accurate 

segmentation. By integrating CNNs and ViTs, enhanced segmentation accuracy can be 

attained through a comprehensive understanding of both fine-grained and high-level image 

characteristics.  

3.5 Summary  

The methods presented in this chapter will serve as the foundation for the subsequent 

empirical chapters. The utilization of Structure from Motion (SfM) photogrammetry will be 

examined for the creation of high-resolution Digital Elevation Models (DEMs) (Chapter 4), 

which are essential for accurate terrain representation in flood modelling. Additionally, the 

application of image velocimetry is investigated as a means to estimate river surface 
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velocities from video data (Chapters 4, 5 and 6). The incorporation of deep-learning 

techniques into image segmentation offers an approach for precise flood pixel identification 

within complex visual datasets (Chapter 5). These methodologies collectively pave the way 

for the empirical chapters that follow, where their practical implementation is aimed at 

advancing the theoretical understanding of hydraulic processes and also practically 

enhancing the predictive capabilities of hydraulic models.  
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Chapter 4 - Unpiloted Aerial Vehicle (UAV) image velocimetry 

for validation of two-dimensional hydraulic model 

simulations 
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Highlights  

• A 2D hydraulic model fully calibrated/validated using LSPIV surface velocities. 

• Performance of LSPIV on par with aDcp calibrated/validated model.  

• Velocity depth-averaging using the Probability Concept significantly constrains 

model prediction errors. 

• LSPIV is justified as an alternative dataset for parametrising 2D hydraulic models.   

Abstract 

Non-intrusive image-based techniques for measuring surface river velocities have rapidly 

evolved as a cost-effective and safe means for quantifying flow patterns. Large-scale particle 

image velocimetry (LSPIV) can provide instantaneous surface velocities over a large spatial 

footprint rapidly and with little pre-calibration as compared to traditional techniques. 

Assessment of the spatial distribution of flow velocities in hydraulic models has been 

comparatively harder to achieve than assessment of depth due to logistical challenges but 

would be aided using large observational datasets that represent the variability and 

distribution of flow hydraulics. Additionally, the efficacy of image velocimetry in assessing 

the accuracy of outputs from 2D hydraulic models has not been addressed. Here, we 

demonstrate how LSPIV can be used to calibrate and validate 2D model predictions in a 

gravel bed river reach. LSPIV velocities are depth-averaged using standard velocity 

coefficients (α) and then using the Probability Concept (PC) - a probabilistic formulation of 

velocity distributions that accounts for non-standard velocity profiles, typical in field 

settings. UAV surveys were used to acquire video for LSPIV and imagery for Structure from 

Motion (SfM) topographic modelling. We use spatially dense acoustic doppler current 

profiler (aDcp) velocity data for benchmark assessment of the velocity outputs of HEC-RAS 

2D model simulations. 2D model prediction error, based on seeded LSPIV velocities, was 

within range (4.2%) of the aDcp parametrised model, with improvements in modelled versus 

predicted velocity correlations (up to 7.7%) when using PC to depth average LSPIV 

velocities. Validation bias reduced significantly (11%) with tighter error distributions when 

compared to the aDcp based model. Although additional hydraulic measurements are 

required to parametrise the Probability Concept algorithm, the performance of 2D hydraulic 

models calibrated/validated with LSPIV velocities is on par with traditional techniques, 

demonstrating the potential of this non-intrusive, low-cost approach.  
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4.1 Introduction 

Two-dimensional (2D) hydraulic modelling has been widely used to assess flood risk at 

varying temporal (such as hourly to daily) and spatial scales (including regional to 

catchment). The assessment of 2D model simulations has previously been achieved by 

comparing model outputs to observations of water surface elevations, extents, and depths 

(Bernhofen et al., 2018; Cea et al., 2014) and, less commonly, velocity (Barker et al., 2018; 

Fischer et al., 2015). Previous investigations (e.g., Gard, 2008; Lane et al., 1999; Pasternack 

et al., 2006; Williams et al., 2013) utilized velocity measurements collected using 

conventional sensors (acoustic Doppler current profilers; aDcp) to assess 2D model 

performance. However, the use of velocity observations obtained using traditional 

measurements to assess 2D models has notable challenges, including safety considerations 

during high discharge events and limitations on the spatial extent of observations that can be 

acquired. There remains a pressing need for velocity data that fully samples the range and 

distribution of channel velocities to validate 2D hydraulic models (Barker et al., 2018; Cea 

et al., 2014; Wagner and Mueller, 2001).  

The advent of powerful, cost-efficient computing power and precise remote sensing datasets 

has offered an avenue for new, high quality, fine spatial scales benchmark data, for the 

validation of flood models (Wing et al., 2017). In particular, the use of Unpiloted Aerial 

Vehicles (UAVs) as a non-contact method to investigate flood extents has eliminated the 

need to deploy staff in dangerous field conditions (DeBell et al., 2016; Eltner et al., 2020; 

McCabe et al., 2017; Perks et al., 2020; Tokarczyk et al., 2015). The fine spatial and 

temporal resolution of UAV data has also allowed for the mapping of velocity dynamics of 

flood events at unprecedented scales (Al-mamari et al., 2019; Smith et al., 2014) leading to 

improved insights into local catchment processes. Additionally, UAV topographic surveys 

based on Structure from Motion (SfM) are providing fine scale digital terrain models 

(DTMs), which are enhancing model parametrisation efforts, such as better descriptions of 

surface roughness for calibrating Mannings roughness (DeBell et al., 2016). 

Image velocimetry has generated considerable interest in hydrology, presenting capabilities 

to derive spatially distributed surface flow velocities at high temporal resolution using UAVs 

as a camera platform (Koutalakis et al., 2019; Pizarro et al., 2020b; Tauro et al., 2017). 

Although various image velocimetry algorithms have been applied to monitor river flows 

(Cao et al., 2020; Perks et al., 2020), Large-Scale Particle Image Velocimetry (LSPIV) is the 

most commonly used algorithm and is in many respects considered proven and tested 

(Jodeau et al., 2017). LSPIV, the large-scale implementation of PIV techniques in outdoor 
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environments, is based upon Eulerian principles (Euler, 2008), where the average 

displacement of cluster particles within an interrogation window is measured. This can be 

differentiated from Particle Tracking Velocimetry (PTV) methods, which are based on 

Lagrangian motion (Amelinckx, 1971) that tracks the motion of individual particles over 

time.  Depth-averaged velocities may then be retrieved from LSPIV surface velocities using 

logarithmic velocity profiles, by fitting power laws to velocity profiles (Welber et al., 2016; 

Wilcock, 1996) or using a velocity coefficient to adjust surface velocities (Le Coz et al., 

2010).  

Whilst a great deal of research has been dedicated to the development and assessment of the 

performance of various image velocimetry algorithms, such as the impact of seeding 

densities under low flow conditions (Pearce et al., 2020), inter-comparisons of algorithm 

implementation under diverse hydro-geomorphic settings (Perks et al., 2020) and 

development of workflows to compute and benchmark surface flow velocities (Eltner et al., 

2019), few studies have systematically assessed the accuracy of LSPIV based surface flow 

velocities in natural environments. The need for high quality data to validate flood models, 

coupled with a benchmark evaluation of image velocimetry data in both high and low flows, 

has significant potential in reducing uncertainty associated with spatially distributed model 

predictions.  

Research evaluating the capability of 2D hydraulic models to accurately reproduce the 

spatial distribution of water velocity has been limited. Several studies have validated 2D 

models using aDcp velocity data. For example, Williams et al. (2013) demonstrated the 

capability of spatially dense RTK-GNSS (Real Time Kinematic – Global Navigation 

Satellite System) positioned Acoustic Doppler Current Profiler (aDcp) data in the calibration 

and verification of a 2D hydraulic model. Meanwhile, Barker et al. (2018) evaluated aDcp 

and kayak (positioned with RTK-GNSS) particle surface velocity vector methods to validate 

a 2D model, concluding that surface velocity tracking data outperforms fixed-point data 

validation for all the statistical validation metrics. In practice, most 2D model assessment 

efforts that have used velocity data have done so using limited-location samples, usually 

with selected cross-sections, where 1D current meter time-averaged velocity data or 2D 

acoustic instrumentation measurements have been collected, leaving room for significant 

uncertainties and errors. For example, Kasvi et al. (2015) used four aDcp cross-sections to 

validate a 2.1 km long 2D model, Tiffan et al. (2001) used two aDcp cross-sections to 

validate a 33 km long 2D model while Parsapour-Moghaddam and Rennie (2018) used one 

aDcp cross-section to validate a 0.19 km long 3D model. They all concluded that more field 
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data would have resulted in more robust validation outcomes. When simulating flow 

dynamics using 2D models, a small number of cross-sections to assess model simulations 

are insufficient. It is also time-intensive to identify appropriate cross-sections and then gather 

velocity measurements. Further, classical wading and aDcp methods are not evolving with 

the scales of model assessment required and they remain remarkably slow field techniques 

(Pasternack, 2011). In summary, the acquisition of aDcp velocity measurements are limited 

in: (i) shallow rivers, as observations can only be acquired beyond a vertical blanking 

distance; (ii) turbulent conditions due to boat instability and bedload transport; and (iii) high 

velocities due to logistical challenges. With respect to the latter challenge, in some situations 

remote controlled boats (Flener et al., 2015) and RTK-GNSS positioning can be used to 

overcome bias in bottom tracking due to bedload transport (Rennie and Church, 2010; 

Williams et al., 2015) but challenges monitoring high flows still remain prevalent in many 

situations.  

Although the use of non-contact methods to estimate surface velocities in riverine 

environments has been demonstrated (e.g., Pearce et al., 2020; Pumo et al., 2021; Ran et al., 

2016), the majority of studies have relied on a commonly established multiplicative constant 

known as a velocity-index, typically varying between 0.70 to 0.90, for the computation of 

depth-averaged velocity (Bechle and Wu, 2014). The use of a constant velocity-index for 

translation of surface velocities not only fails to account for atypical velocity distributions, 

such as when maximum velocity occurs below the water surface, but it also assumes that the 

vertical-velocity distributions in a river channel can be characterized using a logarithmic or 

power law, which is not always true (Moramarco et al., 2017). An alternative approach for 

accurately estimating two-dimensional velocity distributions, based on the entropy 

probability density function of velocity, was proposed by Chiu (1987). Previous studies have 

demonstrated that the maximum entropy method can be a suitable means to constrain 

velocity bias towards known parameters, thus serving as a suitable approach to relate surface 

velocities to depth-averaged velocities (Marini et al., 2011).  

The first objective of this paper is to investigate whether spatially continuous surface 

velocities computed using LSPIV can be used to accurately calibrate and validate 2D 

hydraulic model simulations in a natural environment. We aim to demonstrate the utility of 

models fully parametrised using LSPIV, as compared to those calibrated/validated using 

spatially dense aDcp data. The second objective is to evaluate the utility of the entropy-based 

surface velocity method Chiu (1987), named Probability Concept (PC), as a mathematical 

basis for transforming LSPIV-derived surface velocities to depth-averaged velocities, in 
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order to account for velocity distributions that do not conform to logarithmic or power laws 

within a shallow gravel-bed river. We provide an explicit assessment of the variance between 

numerical model velocity simulations based on aDcp observations and LSPIV derived 

estimates. The spatial uncertainties in 2D model simulations based on both aDcp and LSPIV 

are assessed using standard hydraulic model performance metrics. Advancing prior studies 

in this research domain (e.g., Barker et al., 2018; Pasternack et al., 2006), this work presents 

a hitherto untested application of spatially explicit, high-resolution LSPIV-derived velocities 

in calibrating and validating a 2D hydraulic model. Calibration and validation terminology 

used in this paper follows the definitions of Refsgaard and Henriksen (2004).  

The following sections describe the study site, outline the methods that are used to generate 

the model topography and detail the field surveys used to acquire aDcp, LSPIV and 

electromagnetic flow meter measurements. The next section presents the results from 2D 

calibration and validation using aDcp, then LSPIV measurements.  A discussion follows that 

examines the hydraulic predictions and assesses the uncertainty and value of both model 

simulations.  

4.2 Study Site 

This investigation is undertaken along a restored reach of Swindale Beck, Cumbria, England 

(Figure 4.1), which is a 13.4 km2 sub-catchment of the River Eden. Restoration of the study 

reach was undertaken in 2016 and involved channel re-meandering, with 890 m of a new 

sinuous channel, positioned along the course of a paleochannel, replacing 750 m of 

straightened channel (Wildhaweswater, 2020). Post-restoration, the river is considerably 

more geomorphologically diverse, being characterised by pools, riffles and gravel bars; and 

is geomorphologically active in response to high flow events. The floodplain is mostly 

vegetated with species-rich hay meadow, bog, and grassland. Catchment descriptors derived 

from the UK Flood Estimation Handbook (FEH) (Institute of Hydrology, 1999) were used 

to estimate the median annual maximum flood (QMED) which is 26.96 m3  s-1. A telemetry 

gauging station (United Utilities station 761113) records stage in the river at a weir every 15 

minutes from 1997 to present (Hankin et al., 2019). The extent of the 2D hydraulic model 

domain is shown in Figure 4.1; within this extent a set of image velocimetry and aDcp 

observations were acquired along a reach that is approximately 540 m long.  
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Figure 4.1 (A) Orthomosaic image of the Swindale (351074E 512754N, British National 

Grid) study reach (left) and hillshaded SfM DEM (right) showing the extent of the 2D 

model domain and investigated sub-reaches; (B, C) aDcp survey transects (black traces); 

(D, E) LSPIV surface velocity 

4.3 Methodology  

The experiments conducted within the study reach are described in the experimental 

framework (Figure 4.2), which commenced with the acquisition of UAV imagery (still; 

oblique), used to generate a detailed terrain model using SfM photogrammetry (section 

4.3.1.2). UAV video sequences were subsequently acquired on 24 February 2021 over two 

sub-reaches (hereafter referred to as SW1 and SW2; Figure 4.1).  
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Figure 4.2 Experimental framework.  

Conventional water velocity measurements were conducted using an aDcp (section 4.3.2) 

and a current meter (section 4.3.3). aDcp river velocity measurements were collected during 

the falling limb of a storm event that occurred on 24 February 2021 and peaked at 20.6 m3  

s-1. The aDcp dataset was processed to derive velocity magnitude vectors which were used 

to calibrate/validate the 2D hydraulic model. UAV videos were processed using the LSPIV 

algorithm, PIVlab (Thielicke and Stamhuis, 2014) to generate instantaneous surface velocity 

vectors (section 4.3.4). A subsequent field campaign to acquire flow meter measurements 

was conducted on 21 June 2021 during the summer low flow period at an average discharge 

of 2.5 m3 s-1. Flow meter measurements provided detailed vertical velocity distribution 

profiles that were used to parametrise the Probability Concept algorithm (Chiu, 1987) for 

depth averaging of LSPIV surface velocities (section 4.3.5). Hydraulic modelling was then 

performed using a 2D model (HEC-RAS 6.0 (Brunner et al., 2020)) following which an 

assessment of model velocity outputs was conducted using conventional aDcp 

measurements and LSPIV measurements. The following sub-sections provide further details 

on these methods. 

4.3.1 DTM generation 

4.3.1.1 Inundated area: RTK-GNSS and echo-sounding 

A field campaign was undertaken using a hybrid approach to map dry and inundated areas 

of the study reach. A Leica GS10 receiver was positioned over a surveyed base station in 

GNSS mode. To survey channel bathymetry within the study reach, a combination of wading 

surveys using a Leica GS10 antenna mounted on a pole, in RTK-GNSS mode, and vertical 
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beam echo sounding observations from a Sontek M9 aDcp with RTK-GNSS positioning 

from a Leica GS16 RTK-GNSS antenna were deployed. During the wading survey, an 

operator traversed the river channel collecting bed, bank toe and water edge RTK-GNSS 

points with approximately 1 m point spacing. The resulting composite (wading-based and 

aDcp-based) dataset comprised over 13,000 bed level measurements with a mean density of 

1.77 points m-2. 

A DTM of the river channel was then generated in ArcGIS Pro by interpolating a Triangular 

Irregular Network (TIN) from the aggregated wading and aDcp-based RTK GNSS datasets. 

A Delaunay conforming triangulation was used ensuring that breakline segments were 

densified. Linear interpolation was then used to convert the channel TIN into a 0.2 m DTM.   

4.3.1.2 Dry areas: SfM Photogrammetry  

SfM with multiview stereo photogrammetry (hereafter together referred to as SfM 

photogrammetry (Carrivick and Smith, 2019)) was used to generate a DEM of the study area 

using images acquired by a DJI Phantom 4 RTK UAV. SfM photogrammetry is a technique 

used to generate a three-dimensional point cloud (i.e., structure) from the motion of a camera 

across a scene of interest (Escobar Villanueva et al., 2019). DEMs that have been generated 

using SfM are now widely used to investigate river floodplain environments (e.g., Annis et 

al., 2020; Javernick et al., 2014; Schumann et al., 2019). 
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Figure 4.3 Simplified workflow of Pix4D SfM processing steps. 

Pix4D software was used for SfM photogrammetry following the method reported in Stott 

et al. (2020), with guidance based on James et al., (2019) (Figure 4.3). SfM processing 

parameters used in this study are summarised in Table 4.1. 944 images from the UAV were 

automatically geotagged with WGS84 coordinates during acquisition. These were then 

transformed to the ETRS89 geodetic reference system, used in the UK as the datum for the 

Ordnance Survey reference system. SfM processing in Pix4D was largely automated and 

comprised three-stages to generate both Digital Surface Models (DSMs) and bare terrain 

DEMs.  The initial step involved the computation of key points on the images to enable 

matching. Matched images were then processed using automatic aerial triangulation and 

bundle block adjustment to create a 3D point cloud of the study area.   
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Table 4.1 SfM photogrammetry survey and processing specification, based on James et al. 

(2019) guidance. 

Setting: Survey Type Gravel Bed River Survey 

 Location  Swindale Beck, Cumbria, England 

 Latitude, Longitude 54.515347°, -2.741841° 

 Date (dd/mm/yyyy) 11/15/2020 

Equipment: Camera Manufacturer DJI 

 Camera Model FC6310R_8.8_5472×3648 

 Number of Images 944 

 Number of Flights 1, Flying 5 Flight Blocks 

 Image size (pixels) 5472 × 3648 

 Sensor Size 1” CMOS; Effective pixels: 20 M (13.2 × 8.8 mm) 

 Focal Length 8.55 mm; 3658.3 pixels 

 Lens Type FOV (Field of View) 84◦, 8.8 mm 

 Sensor Shutter Type Rolling 

 Mechanical Shutter Speed 8-1/2000s 

 Electronic Shutter Speed 8-1/8000s 

Survey Design: Flight Height (m) 70 

 Ground Sampling Distance 2.276 cm 

 Area Covered (km2) 0.304 

 Perspective of Images Oblique (15◦) 

 Image Overlap (front) 80% 

 Weather  Sun and Cloud, <20 mph Winds, 10 ◦C 

Photogrammetric 

Processing: 

Software Pix4D Mapper Version 4.4.12 

 Keypoints Image Scale  1 (original image size) 

 Matching Image Pairs Aerial Grid or Corridor 

 Calibration Method Standard 

 Internal Parameters Optimization All 

 External Parameters Optimization  All 

 Lens Used Perspective Lens 

Internal 

Camera 

Parameters 

Focal 

Length 

(mm) 

Principal Point 

x (mm) 

Principal Point 

y (mm) 
R1 R2 R3 T1 T2 

Initial Values 8.580 6.385 4.304 -0.269 0.112 -0.033 0.000 -0.001 

Optimised 

Values 
8.618 6.405 4.253 -0.267 0.112 -0.034 0.000 -0.001 

Uncertainty 

(Sigma) 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Manual classification of Ground Control Points (GCPs) was then carried out. A matrix of 18 

ground control targets, each measuring 0.6 x 0.6 m, were laid out within the study reach on 
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dry land. A Leica GS10 GNSS antenna, mounted on a 2 m pole, was used to observe each of 

the ground control targets for at least 5 minutes in GNSS static mode. Postprocessing of the 

raw GNSS observations relative to the base station observations was carried out using 

proprietary Leica GeoOffice software to establish the true coordinates of the ground control 

targets. To independently evaluate errors in subsequent processing, 5 targets were used as 

check points (Figure 4.1a).  

The second and third processing steps involved the generation of a DSM using an inverse 

distance weighting algorithm and generation of a bare earth DTM by classifying a dense 

point cloud using a proprietary Pix4D machine learning algorithm. The accuracy of the UAV-

Derived DEM was acceptable (Table 4.2), with Root Mean Square Errors (RMSE) for CPs 

being <0.05 m. The fused 0.2 m SfM DTM (Figure 4.1a) served as the final topographic 

surface for 2D modelling.  

Table 4.2 Localisation accuracy per check point and mean errors in the three coordinate 

directions for the SfM DTM. 

Dimension 
Check Points (CP) 

X (m) Y (m) Z (m) 

Mean Error -0.009 -0.007 0.001 

Root Mean Square (RMS) Error 0.013 0.014 0.048 

 

4.3.2 aDcp Velocity Survey Data 

Acoustic survey velocity measurements were acquired using a SonTek M9 RiverSurveyor.  

The theory of aDcp system operation is discussed in detail by Kostaschuk et al. (2005) and 

Simpson (2001). The M9 RiverSurveyor is equipped with four profiling beams (3.0 and 1.0 

MHz) and one 0.5 MHz vertical beam for depth measurement. Due to the shallow nature of 

the river, all velocity measurements used the 3 MHz transducers. The aDcp was mounted on 

an SonTek Hydroboard and calibrated as outlined by Williams et al. (2013). Accurate 

positioning of the moving aDcp was provided by a Leica GS16 RTK-GNSS receiver fitted 

on the trimaran boat. This provided RTK corrections to position depth and velocity 

observations. 

Field aDcp surveys were conducted during a hydrograph recession in winter (February 

2021). Average discharge during the survey was 13.1 m3  s-1. During field measurements, the 

aDcp was dragged in a zig-zag trajectory by two operators standing on opposite sides of the 

riverbank. Each survey provided over 1000 sample points at a mean spacing of 1 m between 
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transects (Figure 4.1; B-C), with some minor spacing alterations being made to 

accommodate riverine features such as riffles and shallow gravel bars.  

The aDcp logged approximately 1,124 georeferenced velocity ensembles in the x and y 

directions. Post-processing of the raw aDcp outputs focused on the horizontal components 

(x and y) of mean velocity. Sontek’s proprietary RiverSurveyor Live software was used to 

export the datasets to MATLAB, where a custom script was written to extract the horizontal 

velocity vectors. Depth-averaged velocity magnitude was then calculated from the two 

horizontal velocity vectors, x and y. Measurements that failed to meet location thresholds 

(less than 4 GNSS satellite observations or where Horizontal Dilution of Precision (HDOP) 

was greater than 8) were discarded (Environment Canada, 2004). Points close to the channel 

edges were also disregarded as the ability of aDcps in measuring shallow-water velocities is 

limited by side-lobe interference and the instrument’s blanking distance (distance below the 

transducer where velocity cannot be measured) (Mueller et al., 2013). 

4.3.3 Flow Meter Measurements 

A Valeport Electromagnetic (EM) Flow Meter, widely used for wading measurements, was 

used to acquire two-dimensional water velocities (Figure 4.4). The EM flow meter has an 

accuracy of ± 0.5% of readings (plus 5 mm) and a range of -5 m s-1 to 5 m s-1 with the ability 

to operate at a minimum depth of 0.05 m. Velocity data were collected at six cross-sections. 

The vertical velocity profile of each vertical was sampled beginning from the channel bottom 

to the water surface with a minimum of six (and mean of eight) individual velocities 

measured. This procedure was repeated from the left to the right bank of each cross-section 

to confirm the location of the vertical containing the maximum velocity. The vertical 

containing the maximum velocity at each cross-section, referred to as the y-axis (Fulton et 

al., 2020b), was then used to parametrise a Probability Concept algorithm (Chiu and Hsu, 

2006) for depth-averaging of surface velocities in subsequent field experiments.  
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Figure 4.4 Locations of cross-section velocities acquired using a current meter at sub-

reach SW2. 

4.3.4 Image velocimetry (LSPIV) surface velocities  

Hydraulic applications of LSPIV are based on the conventional PIV technique (Adrian, 

1991), which was first modified and applied to riverine environments by Fujita et al. (1998). 

The computation of flow velocities in LSPIV is achieved by interrogating consecutive 

orthorectified images using cross-correlation algorithms (e.g., Dobson et al., 2014; Ran et 

al., 2016). Surface velocity is then computed by dividing the displacement of tracer particles 

by the time interval, Δt. LSPIV analysis yields time-averaged 2D surface velocity surfaces, 

which can be filtered for errors, commonly based on velocity magnitude thresholds. A 

comprehensive discussion of the concepts and applications of LSPIV in riverine 

environments is provided in Muste et al. (2008) and Tauro et al. (2017).  

In this study, video sequences were acquired at select locations (Figure 4.1; D-E) along the 

study reach using the same DJI Phantom 4 RTK UAV used in acquiring images for SfM 

photogrammetry. Videos were captured using the UAV’s default 1” CMOS, 20 MP camera 

(8.8 mm focal length) at a native resolution of 4K (3840 x 2160) and a frame rate of 29.97 

frames per second (fps) in non-RTK mode. During the field campaign, six videos were shot 

at a flying height of 30 m above the Swindale Beck, with a ground sampling distance (GSD) 
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of 0.82 cm/pixel. All videos were shot at nadir with the UAV’s anti-shake 3-axis gimbal 

countering vibration effects to deliver stable video scenes.  

To ensure the synchronicity of data collection between the two methods (aDcp and UAV 

videos), given their joint role in evaluating the hydraulic model, timing of the surveys was 

kept very close. The UAV videos were acquired immediately following aDcp surveys to 

minimize temporal discrepancies and maintain as close a resemblance of discharge 

conditions as possible. Specifically, the video acquisition was initiated within 15 minutes of 

completing the aDcp measurements. This approach was adopted to enhance the accuracy of 

hydraulic model evaluation by reducing potential variations introduced by temporal 

differences between data collection methods.  

We processed video sub-samples of 5 min 27 sec (SW1) and 4 min 04 sec (SW2) both 

recorded at 30 m height. From the videos recorded during the field campaigns, a total of 856 

consecutive images were extracted at a frame rate of 10 Hz. Table 4.3 summarizes the 

experimental conditions and frames used in the LSPIV analysis.  

Table 4.3 LSPIV parameters adopted for the study. 

Reach Experimental Conditions fps Frame window Number of frames 

SW1 Seeded 10 6505 - 8641 214 

SW1 Unseeded 10 2381 - 4517 214 

SW2 Seeded 10 4513 - 6649 214 

SW2 Unseeded 10 1559 - 3659 214 

 

To enhance optical tracking of surface water features, which are central to the determination 

of surface water velocities (Pizarro et al., 2020b), we continuously introduced biodegradable 

Ecofoam cornstarch chips at a straight and narrow section of the stream during video 

recording. The displacement rate of these highly contrasting artificial tracers (also known as 

‘seeds’), in clear water where the channel bed was largely visible, provided a sufficiently 

distinct background for surface velocity computations.  

4.3.4.1 PIVlab Analysis  

The open-source toolbox PIVlab (Thielicke and Stamhuis, 2014), developed in MATLAB 

(R2021a, MathWorks, Natick, MA, USA), was used to analyse the UAV images. The PIVlab 

processing workflow consists of three key stages: (1) image pre-processing; (2) image 

evaluation and (3) post-processing.  
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Individual frames from the two videos were first extracted (in PIVlab) at the frame windows 

detailed in Table 4.3. This entailed a visual inspection of the videos to identify sequences 

with either relatively uniform, dense seeding, or plain river flow. These respective windows 

were trimmed and extracted for further analysis. Although the UAV flights were conducted 

during favorable weather conditions, further stabilization of the extracted images was 

conducted in the Rectification of Image Velocity Results (RIVeR) toolbox (Patalano et al., 

2017) to counter residual camera movements. Stabilized images were loaded on to PIVlab 

for the first stage of analysis; image pre-processing.  

The image pre-processing steps were conducted to enhance the appearance of tracers with 

respect to the background. The PIVlab algorithm applies a Contrast-limited adaptive 

histogram equalization (CLAHE) filter (set to 20 pixels) to enhance contrast in images. We 

further utilized the high pass filter to supress low frequency background information from 

the images, which helped emphasize particle tracers in the images.  

PIVlab features two different cross-correlation algorithms for image evaluation, D-CC 

(single pass Direct Cross-Correlation) and FFT window deformation (Fast Fourier 

Transform correlation with multiple passes and deforming windows). Both techniques are 

based on cross correlation of small sub-images (interrogation areas, IAs) of image pairs. To 

estimate the correlation between image frames this study utilized FFT window deformation 

due to; 1) its computational efficiency (as compared to DCC), and 2) increased accuracy due 

to the ability to run several passes of FFT correlation on the same dataset, yielding high 

spatial resolution velocity vectors at a high signal-noise-ratios, according to the methodology 

described in Thielicke and Stamhuis (2014).  

To obtain optimal parameters for LSPIV analysis, we conducted sensitivity tests on the 

sampling rate of image sequences and number of passes of different IA kernels in PIVlab. 

PIV analysis for all scenarios was conducted using four passes with progressively reducing 

IA window sizes (Table 4.4). Initial IA sizes were chosen based on criteria suggested by 

Pumo et al. (2021) considering values that were not lower than 50% of the minimum image 

dimensions and higher than twice the maximum presumable frame-frame displacement. 

Sensitivity analysis was carried out on the video acquired over reach SW1 at a single cross-

section (Figure 4.5).  
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Figure 4.5 Location of transect across which sensitivity analysis was conducted at sub-

reach SW1. 

We follow the method reported in (Pearce et al., 2020b) to conduct our sensitivity analysis. 

Three configurations were processed with varying sampling rates: 2, 5, 10, 15 fps, providing 

12 different configurations for each scenario (seeded/unseeded), therefore a total of 24 

different runs were conducted (Table 4.5). Velocity outputs from these runs were gridded at 

0.2 x 0.2 m yielding 33 cells, the average cell velocities were then computed. This cell size 

was sufficient to capture cross-sectional changes in velocities. Median values for each cell 

were then computed across all 12 configurations for each scenario (seeded/unseeded). A 

score was then computed for each configuration for each cell based on the absolute deviation 

between the configuration specific velocity and the median cell velocity. These scores were 

added up along the cross-section, providing a total score for each configuration; the lower 

the score, the less variance that is associated among the configurations. 
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Table 4.4 Sensitivity analyses of key parameters in PIVlab, all measurements in pixels. IA 

= Interrogation Area (px), SA = Search Area (px).  

 Configuration 1 Configuration 2 Configuration 3 

SA (px) 128 256 512 

IA (px) 64 128 256 

 

Results of the sensitivity analyses showed that LSPIV computations using PIVlab are very 

sensitive to parametrization dependant on both the (video) frame sampling rate and the IA 

and SA sizes. Calculated sensitivity scores are summarized in Table 4.5. The sensitivity 

scores are overall lower for sampling rate at 10 fps with an average score of 0.57. Thus, the 

configuration with the lowest variance from the mean was a sampling rate of 10 fps with SA 

= 256 and IA = 128, which was used to compute LSPIV surface velocity measurements.  

Table 4.5 Sensitivity scores for PIVlab at cross-section X (C1 = Configuration 1, C2 = 

Configuration 2, C3 = Configuration 3 – See Table 4.4). Light colours represent lowest 

sensitivity scores increasing as the colour gradient darkens. The configuration with the 

lowest sensitivity score is reported in bold text.  

2 fps 5 fps 10 fps 15 fps 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

0.193 0.155 0.494 0.488 0.631 0.307 0.403 0.139 1.168 2.129 1.116 1.267 

 

The width of the IAs for subsequent passes was obtained by halving the width relative to the 

previous pass. PIV analysis was performed with a first pass IA of 256 x 256 px, a second 

pass of 128 x 128 px, then 64 x 64 px, followed by 32 x 32 px all with 50% overlap. The use 

of smaller IAs resulted in higher resolution vector maps, however this also increased noise 

and the number of erroneous correlations.  

Derivatives from PIVlab are referenced to an image coordinate system whose origin is 

typically the top-left of the 2D plane. Calibration of the analysed images was performed to 

convert the analysed vector units from pixels per frame to m s-1 with reference to control 

points (GCPs) positioned using the same survey techniques used to observe the position of 

GCPs for SfM photogrammetry. To georeference the velocity vectors, we specified the 

offsets of our known co-ordinate system in PIVlab, this shifted the image coordinates and 

mapped them into a projected coordinate reference system (OSGB 1936/British National 

Grid) that was consistent with the DTM.  
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Post-processing of the vector fields involved a data validation process in PIVlab where 

erroneous vectors (outliers) were filtered using thresholds which were semi-automatically 

derived by comparing each velocity vector with a lower and upper threshold (primary 

velocities, u: -0.4 to 0.31 m s-1; secondary velocities, v: -0.36 to 0.35 m s-1). Following tests 

varying the standard deviation and local median filters (key determinants in the vector 

validation process) we arrived at values of 8 and 3 respectively for removal of outliers. 

Finally, residual noise in the vectors was removed by applying a data smoothing technique 

based on a penalized least squares method (Garcia, 2010).  

4.3.5 LSPIV Depth-Averaged Velocities  

4.3.5.1 Surface Velocity Index 

To convert the LSPIV surface velocity results to depth averaged velocities, a surface velocity 

index/coefficient (also referred to as alpha, α, in several studies (e.g., Fulton et al., 2020(a); 

Hauet et al., 2018; Moramarco et al., 2017) was computed using a nonlinear Generalized 

Reduced Gradient optimization algorithm (Solver). We utilized velocities from the aDcp 

calibrated model (at the calibration sub reach SW1) to arrive at an appropriate theoretical 

depth-averaging constant. Several objective functions were used to optimize Solver in order 

to derive a α value, in this case; (i) a value of regression slope between the LSPIV surface 

velocities and (aDcp) model depth-averaged velocities that yielded a value as close to unity 

(1) as possible; (ii) the mean velocity difference between LSPIV and (aDcp) model velocities 

(a difference of ~0 m s-1); and (iii) a mean error of ~0%. The optimization algorithm referred 

to the gradient of each objective function as the input values changed and when the 

partial derivatives equalled zero, an optimum solution of the surface velocity 

index/coefficient was derived.  

4.3.5.2 Probability Concept (PC) 

Whilst field velocity measurements from the aDcp and the 2D model are depth averaged, 

LSPIV measurements represent surface flow velocities. A conventional method for 

transforming surface velocity, usurf, to depth-averaged velocity, uvert involves the use of a 

constant, known as a surface velocity-index (α) (e.g., Creutin et al., 2003; Le Coz et al., 

2010; Legleiter and Kinzel, 2021; Tauro et al., 2017). The use of α to translate surface 

velocities to depth-averaged velocities is a simple yet convenient method that assumes that 

the vertical velocity profile is monotonous and can be characterized by a logarithmic 

distribution or power law (Hauet et al., 2018; Huang, 2018). The variability of published α 

values (0.70 to 0.90) at any given cross-section with stage and variations in channel 
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geometry makes it difficult to select an appropriate value and is thus unreliable for 

conversion of surface velocities to mean velocities (Fulton et al., 2020b). Moreover, the use 

of a constant α coefficient fails to account for the dip-phenomenon (Moramarco et al., 2017), 

where the maximum velocity, umax, occurs below the water surface due to the presence of 

secondary currents, resulting in α > 1 (Fulton and Ostrowski, 2008; Fulton et al., 2020a). 

Dramais et al. (2011) and Welber et al. (2016) established that the principal source of error 

in LSPIV discharge estimates is the use of a singular α coefficient since cross-section specific 

values from field measurements differed significantly. This justified the acquisition of 

several cross-section velocity profiles in order to derive α values using the Probability 

Concept.  

The Probability Concept, developed by Chiu (1987), is based on Shannon’s Information 

Entropy and can be used to characterize non-standard velocity distributions where umax, 

occurs below the water surface. The probabilistic approach provides a numerical basis for 

the transformation of surface velocities to depth-averaged velocities and provides a least 

biased two-dimensional velocity distribution that is constrained by known parameters 

(Marini et al., 2011). Velocity and depth data are collected to establish a y-axis, which is a 

vertical in the stream cross-section that contains the maximum surface velocity (Fulton et 

al., 2020a). Chiu and Hsu (2006) established that the location of the y-axis rarely coincides 

with the thalweg, is static, and insensitive to variations in flow, stage, velocity, or channel 

geometry.  

Surface velocities measured using LSPIV were transformed to depth-averaged velocities 

using the PC that is based on Chiu’s original velocity distribution equation (Chiu and Chiou, 

1986), which maximizes entropy f(u) in order to find the best velocity distribution fit. 

Equations (4.2) to (4.5) summarize the Chiu equations used, where the probabilistic velocity 

distribution at any point in the cross-section (y-axis) is represented by Equation (4.1): 

 

𝑢 =
𝑢𝑚𝑎𝑥

𝑀
 𝑙𝑛 [1 + (𝑒𝑀 − 1) 𝐹(𝑢)] (4.1) 

 

where u = velocity as a function of depth at the y-axis; umax = maximum velocity at the y-

axis; M = dimensionless probability parameter that describes velocity distribution; and  

𝐹(𝑢) =  ∫ 𝑓(𝑢)𝑑𝑢
𝑢

0
 which is the cumulative distribution function, or the probability of a 

randomly sampled point velocity less than or equal to u. At cross-sections where umax falls 
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below the water surface, velocity distribution at the y-axis can be characterized by Equation 

(2): 

 

𝑢 =  
𝑢𝑚𝑎𝑥

𝑀
 𝑙𝑛 [1 + (𝑒𝑀 − 1) 

𝑦

𝐷 − ℎ
𝑒𝑥𝑝 (1 −  

𝑦

𝐷 − ℎ
) ] (4.2) 

 

 

where D = total distance from the channel bottom to the water surface at the y-axis, y = 

incremental distance from the channel bottom to the water surface, h = vertical distance from 

the water surface to umax. An orthogonal coordinate system is used to translate the velocity 

distribution from probability space to physical space and is used to describe the variables h, 

D and y in Equation (2). Where umax occurs at the water surface, the velocity distribution at 

the y-axis is defined by Equation (3): 

 

𝑢 =  
𝑢𝑚𝑎𝑥

𝑀
 𝑙𝑛 [1 + (𝑒𝑀 − 1) 

𝑦

𝐷
𝑒𝑥𝑝 (1 −  

𝑦

𝐷
)] (4.3) 

 

 

The probability distribution f(u), M and h/D are all constant at a channel cross-section where 

umax occurs below the water surface, LSPIV-derived surface velocities are used to estimate 

umax assuming u is equal to uD, which is the velocity as which y equals D (Chiu and Hsu, 

2006) and is represented by Equation (4): 

 

𝑢𝑚𝑎𝑥 = 𝑢𝐷 × 𝑀 × {𝑙𝑛 [1 + (𝑒𝑀 − 1)
1

1 − 
ℎ
𝐷

𝑒𝑥𝑝 (1 −
1

1 −  
ℎ
𝐷

)]}

−1

 (4.4) 

 

The parameter φ, which is a function of M, was then derived following (Fulton et al., 2020b), 

using point velocities measured along the y-axis from the channel bed to the water surface. 

Current meter vertical velocity and depth measurements were used to compute umax, M(φ), 

and h/D using a non-linear least-squares estimator in R v4.1.0 (R Core Team, 2013). The 

Gauss-Newton nonlinear least-squares method was used to solve for φ, which is a surrogate 

for umean/umax. 
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4.3.6 2D Hydraulic Modelling  

The open-source Hydrologic Engineering Centre - River Analysis System (HEC-RAS 

version 6.0), developed by the US Army Corps of Engineers, was used to simulate depth-

averaged flow conditions. Two-dimensional unsteady state flow was solved using the full 

momentum (Saint-Venant) equations. Despite the intensive computational demand, 

application of the Saint-Venant equations allowed for a detailed and accurate representation 

of velocity distributions (Pilotti et al., 2020) in the relatively flat mixed-flow river regime 

that characterizes Swindale Beck. HEC-RAS has previously been used to study channel 

hydraulics in a wide variety of studies (e.g., Afshari et al., 2018; Shustikova et al., 2019; 

Yalcin, 2020); further details on the numerical scheme are available in Brunner (2002, 2018).  

4.3.6.1 Model configuration and calibration 

A heterogenous 2D computational mesh of the Swindale Beck reach was generated, using a 

cell size of 5 x 5 m. HEC-RAS implements a sub-grid bathymetry approach that allows for 

implementation of a coarse grid on fine topographic surfaces, which saves on model 

computation time. To simulate fine-scale flow velocity commensurate to the resolution of 

measurements from the aDcp and image velocimetry, the spatial resolution of the 

computational reach was refined to 0.5 x 0.5 m between the channel banks by enforcing a 

break-line running along the thalweg.  

A discharge hydrograph from the United Utilities gauging station was used as the inflow 

boundary condition, with flow scaled (by a factor of 0.9) to the catchment size, since the 

actual gauging station was located 650 m downstream from the upstream boundary. An 

energy slope gradient, equivalent to the normal depth, was estimated by computing the bed 

slope along the terrain profile. The energy slope value was used as the outflow boundary 

condition, situated downstream of the computational mesh. To avoid errors arising from 

downstream backwater effects and upstream velocity distributions, the boundaries were 

located appropriately downstream from the domain of interest.   

The 2D model was calibrated at sub-reach SW1 for both the aDcp model (hereinafter 

referred to as model MaDcp) and the LSPIV model (hereinafter referred to as model MLSPIV)  

by adjusting a spatially discretized manning’s roughness coefficient n and eddy viscosity 

coefficients until model simulations closely matched observed (aDcp and LSPIV) velocities 

(Figure 4.6). Model simulations were calibrated by varying a spatially discretized Manning’s 

roughness coefficient, n, whilst keeping the n of the overbank zones constant at 0.035. We 

further calibrated the models using the eddy viscosity terms by turning on HEC-RAS’s 
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turbulence mixing coefficients. Since eddy viscosity in HEC-RAS’s numerical scheme is 

computed as the sum of the Longitudinal Mixing Coefficient DL, the Transverse Mixing 

Coefficient DT and the dimensionless Smagorinsky Coefficient Cs, these mixing parameters 

were calibrated to the spatially distributed aDcp (model MaDcp) and LSPIV velocities (model 

MLSPIV). The conservative turbulence model formulation, which ensures little to no 

momentum loss, was utilized., Variable-time step control using the Courant-Friedrichs-Lewy 

condition was used to ensure model stability and better model velocity distributions.  

4.3.6.2 Calibration/Validation Performance Assessment  

LSPIV and aDcp observed velocities were compared to the model simulation runs, with the 

aDcp calibrated model (model MaDcp) serving as an initial benchmark of minimum validation 

performance indicators. Whilst there are no set standards for 2D model performance 

assessment, Pasternack (2011) proposed a rigorous suite of metrics, which can be used to 

assess 2D model validation performance. Complemented with some of the hydrological 

validation metrics presented by Moriasi et al. (2007) and Biondi et al. (2012), most of the 

uncertainty in 2D shallow-water models can be quantified. Thus the assessment metrics used 

were: (i) regression analysis evaluating the slope of the regression line between observed 

versus predicted velocities, the y-intercept, regression slope standard error, regression 

intercept standard error and the coefficient of determination, R2 ; (ii) hydrological 

performance metrics; Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS) and ratio of the 

root mean square error to the standard deviation of observations (RSR); (iii) error statistics; 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Standard Deviation of Error 

(SDE) and the Mean Absolute Percentage Error (MAPE).  

4.4 Results 

The results are presented as follows: First, we report the 2D model calibration results at sub-

reach SW1 using a subset of aDcp data, which formed the benchmark for field velocity 

observations (model MaDcp) (section 4.4.1). Results of a separate model similarly calibrated 

at SW1 using LSPIV surface velocity data (model MLSPIV) are then presented (section 4.4.1). 

This is followed by results from the validation model MaDcp using aDcp data at sub-reach 

SW2 (section 4.4.2.1). Results of the validation performance of model MLSPIV using LSPIV 

surface velocities, depth-averaged using a spatially constant theoretical coefficient (referred 

to as LSPIVα) are then presented (section 4.4.2.2). Further detailed results of the validation 

of model MLSPIV velocity simulations are reported, based on a sub-set of LSPIV surface 
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velocities within a 1 m distance of three field cross-sections, all depth-averaged using the 

Probability Concept (hereinafter referred to as LSPIVPC) (section 4.4.2.3).  

 

4.4.1 2D Model Calibration 

A sensitivity analysis of the appropriate bed roughness, based on previous modelling studies 

using HEC-RAS (e.g., Shustikova et al.,2019), set starting n values in the range of 0.025 to 

0.033 and was adjusted by 0.002 increments to a final value of 0.030 (model MaDcp) and 

0.032 (model MLSPIV). Eddy viscosity is computed as the sum of the longitudinal (DL), 

transverse (DT) and Smagorinsky coefficients (dimensionless, Cs) in the HEC-RAS 

numerical modelling scheme. Figure 4.6 shows the calibrated model velocity predictions for 

sub-reach SW1 using the aDcp and LSPIV datasets. Simultaneously adjusting the turbulence 

mixing and dispersion parameters yielded final values of DL = 1, DT = 0.3 and Cs = 0.05 for 

model MaDcp and; DL = 1.4, DT = 0.26 and Cs = 0.03 for model MLSPIV with both 

parameterisations yielding the lowest errors in the distribution of modelled velocities. In 

scenarios characterized by non-turbulent flow, such as during normal discharge rather than 

flood events, the influence of turbulence mixing coefficients on calibration outcomes 

remained modest. This observation aligns with the nature of non-turbulent flow conditions. 

The Mannings n roughness coefficients exhibited a more substantial impact on the 

calibration process as opposed to the turbulence mixing and dispersion parameters. The 

limited effect of turbulence mixing coefficients could be attributed to the absence of 

turbulent flow, emphasizing the heightened significance of Mannings n modifications in 

characterizing hydraulic behaviour during regular discharge conditions which were observed 

during this survey.  Computational grid sizes were discretized for the channel and floodplain, 

with a refined grid size of 0.5 m in-channel and 5 m for the rest of the floodplain yielding 

optimum model performance.   
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Figure 4.6 Calibration results of 2D model simulations at sub-reach SW1. Model MaDcp 

(a) and model MLSPIV (b) velocity predictions. Scatter plots of aDcp (c) and LSPIVα (d) 

velocity observations versus model predictions. (In the box plots, the boundary of the box 

closest to zero indicates the 25th percentile, the black line within the box marks the 

median, and the boundary of the box farthest from zero indicates the 75th percentile. Points 

above or below the plots indicate outliers outside the 10th and 90th percentiles). 

Table 4.6 shows the error analysis results from the calibrated models. Higher precision of all 

benchmarks was observed when the river’s flow was seeded versus when left unseeded. 

These results are corroborated by other studies, such Pearce et al. (2020), Dal Sasso et al. 

(2021) and Liu et al. (2021) who showed that the LSPIV algorithm performs better when 

tracers (which are important for mapping flow fields between image frames), whether natural 

or artificial, are abundant on the water surface. Because of the drastic drop in most 

assessment benchmarks when using the unseeded flow scenario to calibrate the 2D hydraulic 

model (most notably bias (13.2%), and R2 (37.5%)) we used only the seeded runs for model 

calibration. The uncertainty associated with insufficient seeding is discussed (section 

4.5.2.1).  
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Table 4.6 2D model calibration/validation metrics for Models MaDcp and MLSPIV 

 
Model MaDcp 

 
Model MLSPIV 

Calibration 

(aDcp) 

Validation 

(aDcp) 

Seeded 

Calibration 

(LSPIVα) 

Unseeded 

Calibration 

(LSPIVα) 

Seeded 

Validation 

(LSPIVα) 

R2 0.70 0.70 0.76 0.52 0.75 

NSE 0.65 0.67 0.75 0.23 0.76 

PBIAS -4.76% 0.13% -2.48% 10.71% 0.02% 

MAE, m s-1 0.07 0.06 0.09 0.13 0.09 

RSR 0.59 0.58 0.49 0.87 0.50 

Trendline Slope 0.74 0.85 0.76 0.82 0.75 

Regression Slope Standard Error 0.0463 0.0401 0.0204 0.0395 0.0199 

Regression Intercept Standard Error 0.0332 0.0189 0.0143 0.0208 0.0137 

n 112 196 445 410 461 

Note. R2 = coefficient of determination; NSE = Nash-Sutcliffe efficiency; PBIAS = percent bias; 

RMSE = root mean square error; MAE = Mean absolute error, SD = standard deviation; RSR = 

ratio of the root mean square error to the standard deviation of observed data; n = number of 

observations  

4.4.2 2D Model Validation   

4.4.2.1 aDcp Model Validation  

aDcp data were used to validate the 2D model at sub-reach SW2 (Figure 4.7) and set a 

benchmark for comparison with model MLSPIV which was fully calibrated and validated 

using LSPIV velocity fields. Results from the aDcp model validation are detailed in Table 

4.6, with a final R2 of 0.70 and slope of 0.85. Similar studies (e.g., Gard., 2008; Lane et al., 

1999; Pasternack et al., 2006) have reported R2 of predicted versus modelled velocity values 

ranging from 0.4 to 0.99 with slopes between 0.6 and 1.  The results from this study were in 

the upper range of published results. The hydrological performance indicator NSE yielded 

an acceptable value at 0.67 with a PBIAS of 0.13%. This shows the 2D model tended towards 

an overestimation bias, with high velocity values being underpredicted whilst low values 

were overpredicted, similar to the findings of Barker et al. (2018).  
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Figure 4.7 Validation results of 2D model simulations at sub-reach SW2. Model MaDcp (a) 

and model MLSPIV (b) velocity predictions. Scatter plots of aDcp (c) and LSPIVα (d) 

velocity observations versus model predictions. 

4.4.2.2 LSPIVα Model Validation  

Model MLSPIV (calibrated using LSPIV data) was validated against all the performance 

metrics used to evaluate the validation performance of model MaDcp. A surface velocity index 

(α) of 0.89 (derived using the method described in section 4.3.5.1) was used to depth average 

the LSPIV velocities at SW2, further optimising the validation results. Referencing the 

standard error of the regression slope, Model MLSPIV had a validation error magnitudes half 

that of Model MaDcp. A PBIAS value of 0.02% indicated a slight model overestimation bias, 

which is consistent with the findings of Liu et al. (2021) and can also be attributed to the use 

of a singular coefficient (α) to transform surface velocities to depth-averaged velocities.  

Overall, there was a strong correlation between modelled velocities and LSPIVα velocities 

with a R2 value of 0.75 and slope of 0.75. These high correlation values can be attributed to 

not only the quality of the model, but also the abundance of LSPIV observations which 
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enabled the full statistical structure of the correlation to be revealed, as opposed to having 

fewer validation points which would tend to be biased to low or intermediate velocities.  

4.4.2.3 LSPIVPC Model Validation  

Different from the initial validation of the model MLSPIV, which relied on a theoretical 

constant (α) to translate LSPIV surface velocities to depth averaged velocities, a probability-

based cross-sectional validation of the model was carried out using the Probability Concept 

to further understand LSPIV’s performance (referred to as LSPIVPC) in 2D model validation. 

Three cross-sections (Figure 4.4) were collected at sub-reach SW2 using an EM flow meter 

and vertical velocity profiles sampled at these locations were used to compute φ, following 

which LSPIV velocity vectors within a 1 m range of the respective cross-sections were 

extracted for further model validation.  

Values of φ, which is constant at any cross-section and used to transform umax to umean, ranged 

from 0.539 to 0.571, which is consistent with previously published work (Chiu and Hsu, 

2006; Fulton et al., 2020b, 2018; Moramarco et al., 2017) where values ranging from 0.522 

to >1 have been reported.  Table 4.7 shows the velocity distributions at the y-axis for each 

cross-section of interest, which was established through repeat current-meter wading 

measurements.  

Table 4.7 Probability-Concept-derived metrics and velocities measured using a Valeport 

electromagnetic current meter at three cross-sections along the Swindale Beck (M = 

dimensionless parameter characterizing velocity distribution; φ = a function of M equal to 

the ratio of the mean velocity to the maximum velocity; us = surface velocity in m s-1; umax 

= maximum velocity; y-axis = vertical depth in a cross-section that contains the maximum 

velocity in metres, m). 

Cross-section 

Probability-Concept Metrics 

M 
(dim) 

φ 
(dim) 

Us 

(m s-1) 
umax 

(m s-1) 
Water depth at y-axis 

(m) 

XS-1 0.325 0.571 0.493 0.493 0.14 

XS-2 1.169 0.595 0.053 0.053 0.29 

XS-3 0.478 0.539 0.041 0.041 0.35 

 

Goodness-of-fit statistics (Table 4.8) showed the model was validated with correlations 

outperforming the LSPIVα validation results for all but one cross-section (XS-1), which was 

located slightly downstream of a riffle bend making it susceptible to well documented 

turbulence-closure uncertainties at such points (Barker et al., 2018). R2 correlation values 
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ranged from 0.73 – 0.81 (Figure 4.8a), despite the reduction in data points used to evaluate 

2D model performance, indicating that φ represented an appropriate velocity distribution 

unique to each profile. PBIAS values revealed a bias in which higher velocity values were 

underestimated by LSPIVPC and lower values overestimated, similar to the findings of 

Pasternack et al. (2006), indicating the 2D model less accurately reproduced the highest and 

lowest flows in the channel.  

Table 4.8 Velocity magnitude validation metrics comparing LSPIVPC velocities versus 

HEC-RAS (modelled) velocities. 

Cross-section 
LSPIVPC Validation Metrics 

R2 NSE PBIAS Trendline Slope RS. Standard Error RI. Standard Error 

XS-1 0.73 0.67 6.42% 0.91 0.1471 0.0423 

XS-2 0.81 0.81 0.91% 0.73 0.0843 0.0310 

XS-3 0.78 0.68 3.74% 1.04 0.0656 0.0206 

 

Velocity magnitude correlations between modelled and observed (LSPIVPC) velocities 

closely tied to 1:1 linearity with regression slopes ranging from 0.73 – 1.04 (Table 4.8) 

following conditioning of the regression slope at each section using φ, these results are well 

within peer-reviewed studies of 2D model validation (Barker et al., 2018; Pasternack et al., 

2006). Comprehensive scatterplot analysis when validating a 2D model using velocity 

magnitude should also include results of zero intercept values, which were suggested by 

Pasternack et al. (2006) to be < 5% of maximum velocity. All regression zero intercept values 

were well below this threshold. 
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Figure 4.8 Scatter plots of LSPIVPC vs HEC-RAS velocity magnitudes with linear 

regression fits, 95% confidence (CI) and prediction (PI) intervals; (b) Variation in absolute 

LSPIVPC velocity error (ε) as compared to modelled velocities across the six cross-

sections. Individual velocity error observations are represented by the coloured dots. 

Horizontal line in the boxplot indicates the median, box shows the interquartile range 

(IQR), and the whiskers are 1.5*IQR; (c) Absolute percentage errors (ε) in estimating 

depth-averaged velocity using the standard velocity index (α, white) and the Probability 

Concept approach (PC, φ) at cross-sections XS1 – 3 (red dot indicates mean error).   

Mean absolute LSPIVPC velocity magnitude error (as compared to calibrated model results) 

across all cross-sections was less than the 15-30% benchmark suggested by Pasternack, 

(2011), with the highest value being 24.35%, while the highest median error was 24.01% 

(Figure 4.8b). The negative mean velocity differences, following depth averaging using φ at 

each cross-section, can all be explained by the fact that most velocity values were quite low 

(<0.5 m s-1) yet the model typically overpredicted low velocities. Percent rank analysis of 

all deviations revealed that 98% of the velocity values had error less than 50%, with outliers 

falling within a maximum error bin of 75%. Further, mean errors from using LSPIVPC 
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velocities for model validation reduced by 7.7% as compared to depth averaging using a 

single constant (α) (Figure 4.8c).  

 

Figure 4.9 Velocity magnitude error histograms for all LSPIVPC cross-sections (relative to 

model MLSPIV predictions) with overall error in the background (grey). 

The histogram analysis of error distributions (Figure 4.9) revealed that 98.2% of the data 

from LSPIVPC cross sectional validation had an error of 50% or less. The mean absolute 

velocity error across all sections was 16.86% with error peaks observed at XS-3 where 

94.4% of the data had errors of 35% or less.  

4.5 Discussion 

4.5.1 Advanced sampling of spatial velocity distributions  

The calibration and validation of a 2D model using both conventional aDcp and LSPIV 

velocities was demonstrated, with the performance of the model fully calibrated/validated 

using LSPIV data being on par with results reported in peer-reviewed literature (Table 4.6, 

4.8). With both approaches yielding valid performance, discussion focuses on the additional 

novelties introduced by using LSPIV surface velocity datasets combined with the Probability 

Concept (PC) for derivation of a velocity depth-averaging index (φ).  

Although field measurements of velocity using aDcps can be achieved for depths >80 m 

(e.g., Sontek’s M9), the impracticality of deploying them in very fast and deep waters 

precludes their ability to sample very high velocity events. Further, aDcps cannot be operated 

in very shallow rivers due to the instrument’s blanking distance. In contrast, the capability 
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of LSPIV to sample a boarder range of velocities allowed for the collection of previously 

unattainable velocity data. Statistical analyses of the results revealed the first key novelty of 

this study, which was the remarkable improvement in model validation performance when 

using (seeded) LSPIV to parametrise a 2D model instead of aDcp data. Plotting LSPIVPC 

velocities against model results yielded coefficient of determination values (R2) of between 

0.73 and 0.81, which was up to 10% better when compared to the model fully parametrised 

using aDcp data (MaDcp), and among the highest values reported in peer-reviewed literature 

for direct velocity magnitude validation of 2D models (e.g., Barker et al., 2018; Fischer et 

al., 2015; Gard, 2008). A statistical explanation offers insight into this high performance; 

with the ability of LSPIV to sample and obtain a wide range and distribution of velocities 

(as compared to the aDcp), a better characterization of the spatial patterns of velocity was 

available for analysis. In addition, the number of LSPIV observations, which was several 

orders of magnitude higher than that of the aDcp at both sub-reaches, helped reveal the full 

statistical structure of the correlations as opposed to having fewer observations which would 

tend to be biased to either low or intermediate velocities. As suggested by Pasternack (2011), 

an appropriate benchmark for determining whether a model has been validated, based on 

velocity simulations, should be centred on the magnitude of measurements observed as the 

greater the number of observations, the better the spread of velocity distributions and the 

resultant R2 correlations.  

Departing from the well-established method of using selected cross-sections to validate 2D 

models, we successfully validated model performance across a wider range of velocities 

spanning varying morphological structures, which are typically left out in velocity validation 

studies. The LSPIV surface velocity measurements were generally in very good agreement 

with the model simulations which can partly be attributed to the rather shallow depth and 

high gradient of the gravel bed channel. Given these hydraulic settings, the accuracy of 

LSPIV velocities tended to be higher than the aDcp’s, which depends on extrapolation of the 

top and bottom subsections of the channel to compute velocities. Similar to an earlier study 

by Baird et al. (2021), the 2D model overpredicted high velocities and underpredicted low 

velocities in both modelling scenarios, underlining the added benefit of LSPIV that sampled 

a significantly wider range of velocity bins for a robust analysis of the 2D model’s 

performance. The spatially dense coverage of LSPIV not only captured the diversity and 

transitions of low-flow velocity fields but presented the possibility for mapping surface 

velocities in high flow, steep channel sections where bankfull flow conditions could typically 

have ruled out model validation using aDcp observations due to physical inaccessibility (e.g.  

Abu-Aly et al., 2014; Sawyer et al., 2010). 
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4.5.2 Uncertainty  

4.5.2.1 Uncertainty of LSPIV surface velocity measurements  

The accuracy of image velocimetry techniques in field conditions is heavily influenced by 

the ability to identify and track surface features, which are central in the computation of 

surface velocity (Dal Sasso et al., 2021b; Pizarro et al., 2020a; Tauro et al., 2017). Recent 

studies by Pizarro et al., 2020b) introduced a tracer seeding metric known as the seeding 

distribution index (SDI) in an attempt to identify the optimal spatial distribution of tracers. 

However, the errors computed using all the image frames from their study were not different 

from the optimal window suggested by the SDI. Therefore, the experimental settings adopted 

in this study focused on the overall performance of natural/unseeded velocity estimates 

versus seeded estimates in assessing spatial velocity outputs from the 2D model.  

Field experiments using artificial seed tracers had better model calibration performance 

across all assessment metrics when compared to unseeded scenarios (Table 4.6). The 

coefficient of determination (R2) dropped by 37.5% when the flow was left unseeded. This 

reduction in collinearity between simulated (model) and observed (LSPIV) data for the 

unseeded scenarios was unsurprising as the magnitude and spatial distribution of the u and 

v components of velocity magnitude tended to dramatically decline. The NSE results further 

underlined the strong influence of seeding on the reliability of LSPIV results, with 

differences of up to 50% in the residual variance in velocity compared to the measured 

variance. These results are consistent with the findings of Pearce et al. (2020) who observed 

a high sensitivity of LSPIV to seeding density when assessing aDcp velocities. Although the 

reliability of LSPIV results diminishes dramatically under unseeded conditions, Naves et al. 

(2021) demonstrated that the presence of bubbles caused by raindrops could positively 

influence cross-correlation algorithms. This implies future scope for the application of these 

methods during flooding events, which are typically accompanied by heavy rainstorms.  

4.5.2.2 Variability in velocity coefficient, α 

The accurate derivation of a velocity coefficient, α, which represents the ratio of surface 

velocity to depth-averaged velocity remains a key source of uncertainty in the use of non-

contact methods to compute mean channel velocities (Dal Sasso et al., 2021a). Dramais et 

al. (2011) identified the variability of α as the dominant source of error when using LSPIV 

to compute velocity estimates, recommending the derivation of site-specific α values. To the 

best of our knowledge, previously published studies have generally utilised the standard 

value of α (0.85), assuming a logarithmic vertical velocity distribution (e.g., Le Coz et al., 

2010, Lewis et al., 2018), or derivation of a power-law exponent (e.g., Johnson and Cowen, 
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2017) when translating surface velocities to depth-averaged velocities. The variability of φ 

in gravel bed rivers has been reported to be larger (Lee and Julien, 2006) further suggesting 

the requirement for locally calibrated α values. Moreover, α values derived assuming a 

monotonous velocity distribution fail to account for the ‘dip phenomenon’, where maximum 

flow velocity, umax occurs below the water surface resulting in α > 1.  

Using Chiu’s PC (Chiu, 1987), which is based on Shannon’s Information Entropy (Shannon, 

1948), we successfully computed α at three cross-sections within the study sub-reaches. The 

entropy method showed marked variability in α across XS1-3 (Table 4.7), with analysis 

showing that our results were on the lower end of published values (0.539 – 0.658). Whilst 

the use of cross section specific α in depth averaging LSPIV values had no impact the 

coefficient of determination (R2) tests, there was a notable trend in the improvement of other 

validation metrics such as the best-fit trendline slope (i.e., slope tending towards 1) and the 

values of regression slope standard error and regression intercept standard error all 

improving substantially.  

Results from our study propose that the use of default values of α is insufficient in gravel 

bed rivers, likely due to the influence of bed roughness, as suggested by Hauet et al. (2018). 

We suggest that probabilistically derived values of α yield better estimates of depth-averaged 

LSPIV velocity with the ability to account for the dip-phenomenon. As highlighted in Table 

4.7, where surface velocities align with maximum velocities, the utilization of φ continued 

to demonstrate superior performance. This is attributed to φ's inherent flexibility in 

accommodating variations in vertical velocity profiles and spatial distributions, even in 

scenarios where the surface velocities mirror the maximum velocities. The effectiveness of 

φ in these instances stems from its capacity to capture subtle variations in velocity profiles 

throughout the water column. Unlike the α coefficient, which relies on a simplified approach, 

φ, informed by a probability concept, provides a more nuanced and accurate representation 

of depth-averaged velocities. This adaptability allows φ to address the intricacies of real-

world velocity distributions, showcasing its utility beyond scenarios where surface velocities 

diverge from maximum velocities. This observation underscores the broader applicability of 

φ in enhancing the accuracy of depth-averaging techniques, offering valuable insights into 

the spatial and vertical variations of velocities within natural environments.  

Overall, we find that the use of locally derived α using Chiu’s (Chiu, 1987) probability 

function more accurately constrains velocity bias at all cross-sections (Table 4.8) with 

average errors of 27.73% (Probability Concept, φ) and 18.90% (α) indicating a 37.9% 

improvement in velocity predictions. These findings are expected and corroborated by other 
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studies such as Moramarco et al. (2017). The median error did not exceed 24% and 34% for 

the Probability Concept and velocity index methods respectively with the 95th percentile of 

errors at every cross-section being lower when assuming a non-logarithmic velocity 

distribution. Our field experiments show that using alternative velocity distribution 

approaches provides better fits of depth-averaged velocity profiles than reliance on 

theoretical a priori indices commonly used in several studies. Further research is necessary 

to ascertain the variability of φ with different discharges as well as its dependence on cross-

sectional distancing.  

4.6 Conclusion  

This investigation has shown that a 2D hydraulic model can be accurately calibrated and 

validated using image velocimetry data, yielding results comparable to traditional aDcp 

approaches. Further, we established that the uncertainty commonly associated with depth-

averaging surface flows in standard LSPIV workflows can be significantly reduced using 

numerical methods, based on the channel’s hydraulic parameters (φ, y-axis, umax) rather 

than relying on the often-used constants or indices based on an assumption of logarithmic 

velocity distributions in channels. The use of probabilistically derived φ for surface 

velocity averaging resulted in error reductions of up to 7.7% when validating a hydraulic 

model; however, the Probability Concept approach does require in-channel cross-section 

measurements to obtain y-axis (profile with maximum velocity) data. To the authors’ 

knowledge, the joint deployment of LSPIV with the Probability Concept for estimation of 

depth-averaged channel velocities in assessing simulated flows in a natural gravel bed river 

has not been demonstrated previously. This study allowed two other significant 

conclusions to be reached. First, whilst image velocimetry and aDcp yielded comparable 

model performance, the greater size of the LSPIV dataset, which spanned a wider range of 

flows and depths, allowed for the full statistical structure of field measurements to be 

revealed. However, the limitations of LSPIV-derived surface velocity fields were clear in 

conditions where there is sparse seeding on water surfaces or in poorly illuminated 

conditions. Whilst this assessment is not a direct comparison between LSPIV and aDcp 

observations, it demonstrates the capabilities of LSPIV in deriving meaningful data that 

can be used to calibrate and validate 2D models. Second, and more broadly, the use of 

high-quality datasets to validate model performance is key for the reduction in uncertainty 

in model predictions. The overall reduction in error distributions and low bias during 

model validation demonstrates that LSPIV, coupled with the Probability Concept, is a fit 

for purpose tool in evaluating reach-scale hydraulic model predictions.  
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Chapter 5 - Satellite video remote sensing for flood model 

validation 
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Key Points 

• Satellite video derived flood extents and velocities successfully validate 2D 

hydraulic model predictions. 

• Test-time augmentation during deep learning inference improved flood extent 

delineation and enhanced 2D model validation metrics.  

• Incorporating characterization of discharge uncertainty into hydraulic model 

predictions resulted in more accurate model validation.  

 

Abstract 

Satellite-based optical video sensors are poised as the next frontier in remote sensing. 

Satellite video offers the unique advantage of capturing the transient dynamics of floods with 

the potential to supply hitherto unavailable data for the assessment of hydraulic models. A 

prerequisite for the successful application of hydraulic models is their proper calibration and 

validation. In this investigation, we validate 2D flood model predictions using satellite 

video-derived flood extents and velocities. Hydraulic simulations of a flood event with a 5-

year return period (discharge of 722 m3 s-1) were conducted using HEC-RAS 2D in the 

Darling River at Tilpa, Australia. To extract flood extents from satellite video of the studied 

flood event, we use a hybrid transformer-encoder convolutional neural network (CNN)-

decoder deep neural network. We evaluate the influence of test-time augmentation (TTA) – 

the application of transformations on test satellite video image ensembles, during deep neural 

network inference. We employ Large Scale Particle Image Velocimetry (LSPIV) for non-

contact-based river surface velocity estimation from sequential satellite video frames. When 

validating hydraulic model simulations using deep neural network segmented flood extents, 

critical success index peaked at 94% and on average improved by 9.5% when TTA was 

implemented. We show that TTA offers significant value in deep neural network-based 

image segmentation, compensating for aleatoric uncertainties. The correlations between 

model predictions and LSPIV velocities were reasonable and averaged 0.78. Overall, our 

investigation demonstrates the potential of optical space-based video sensors for validating 

flood models and studying flood dynamics.  
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5.1 Introduction 

Satellite video presents a significant advance in remote sensing. This novel technology 

enables the acquisition of high-definition video from space (Xiao et al., 2018), offering the 

potential for novel hydrological applications and providing unique insights into flood 

dynamics, flow pattern, and disaster management and recovery. As more of the world’s 

population faces exposure to floods (Rentschler and Salhab, 2020; Tellman et al., 2021) there 

is an ongoing need to assess how fine-scale earth observation data, such as satellite video, 

can be used to improve the calibration and validation of two-dimensional flood inundation 

models. There are, however, inherent tradeoffs between the challenge of acquiring stable 

video from a non-geostationary platform in sun-synchronous orbit, the duration and pixel 

size of satellite videos, and the integration and ingestion of satellite video derived data 

products into existing hydrological modelling frameworks (Ghamisi et al., 2018; McCabe et 

al., 2017b; Shu et al., 2021). To harness the value of these big data, deep learning, a facet of 

artificial intelligence (AI), offers potential to handle the volumes of data associated with 

satellite video and to automatically learn and extract flood extent patterns in this data, 

opening up a plethora of opportunities to progress research in water sciences (Shen, 2018; 

Sit et al., 2020; Z. Sun et al., 2022). Although traditional machine learning techniques have 

been widely used to delineate flood extents in traditional satellite imagery (Qi et al., 2020; 

Su et al., 2020), satellite video scenes present unique challenges in the form of limited 

annotated data and complexity of both spatial and temporal information, which calls for 

advanced architectures suited for understanding the complex spatial and temporal 

relationships present in dynamic video scenes. Further developments in optical flow 

monitoring techniques, a facet of computer vision, are enabling the analysis of the motion 

of objects within a sequence of images or video frames. Specifically, non-intrusive optical 

flow-based techniques for estimation of velocities in rivers have been demonstrated as viable 

tool for acquiring spatially distributed flow velocity information in natural environments 

(Pearce et al., 2020a; Perks et al., 2019). Estimating surface river velocities from satellite-

based video is a promising domain for flood science, although issues around the low 

temporal resolution of satellite video, image pre-processing and satellite platform drift 

demand further investigation.  

Two dimensional hydraulic models are an integral tool for understanding flood dynamics. 

Outputs from these models are actively used for flood risk management (Tsakiris, 2014), 

infrastructure design (Shrestha et al., 2022), disaster preparedness (Nkwunonwo et al., 2020) 

as well as in modeling the future of flooding under different climate change scenarios 
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(Mishra et al., 2018), thus aiding in the design of long-term adaptation strategies. Inundation 

modeling using hydraulic models serves as the principal tool for understanding the intensity 

of riverine flood hazards. Despite their extensive applicability, two dimensional hydraulic 

models have rarely undergone rigorous validation against observed data to assess the skill 

of their predictions (Pasternack, 2011; Wing et al., 2021). In general, 2D modelling studies 

often use minimal data to assess model accuracy, meaning that models typically target the 

most basic performance benchmarks, and in many cases, models have simply not been 

validated (Molinari et al., 2019). Indeed, many regions around the world lack comprehensive 

and high-quality data of commensurate coverage that can be used to validate these models 

(Rollason et al., 2018). A handful of studies that exemplify the validation of 2D models 

include those by Bernhofen et al. (2018), Eilander et al. (2023) and Wing et al. (2017). These 

studies utilized satellite-derived flood extents to validate global flood models, which offer a 

macro-level understanding of flood risk and do not capture the fine-scale intricacies of local 

flood dynamics. Even fewer studies report the validation of two-dimensional hydraulic 

model simulations using velocities, such as Barker et al. (2018), Fischer et al. (2015) and 

Williams et al. (2013) who relied upon traditional point-velocity measurements for assessing 

model skill. In fact, whilst some two-dimensional models might accurately replicate flood 

extents, substantial deviations of simulated velocity might be observed when compared to 

field observations (Li et al., 2022). Further, there is wide recognition that both two-

dimensional models and observations come with their own set of uncertainties such as those 

linked to extreme discharge measurements, terrain data accuracy and observation field data 

errors which can introduce discrepancies when validating models (Grimaldi et al., 2016a; 

Schumann, 2017). A systematic investigation of the role of alternative spatially distributed 

datasets for validating 2D flood models is pertinent.  

Remote sensing for flood inundation studies relies on two categories of sensors for 

monitoring surface water dynamics - microwave and optical sensors (Dasgupta et al., 2018; 

Grimaldi et al., 2020). Flood water pixel identification from optical satellite imagery has 

conventionally largely relied on spectral water indices (e.g. the Normalized Difference Water 

Index (NDWI) (McFeeters, 1996) and the modified NDWI (Xu, 2006)) as well as supervised 

and unsupervised classification. These techniques have been known to misclassify 

(overestimate) water bodies (Khalid et al., 2021). Machine learning methods, such as 

Support Vector Machine (SVM) classifiers and Random Forest (RF) algorithms have also 

been adopted in several floodplain mapping studies (e.g. Mobley et al., 2021, Nandi et al., 

2017) and have been shown to be complex and slow, thus ineffective for real-time flood 

hazard mapping (Lee et al., 2017). Big data analytics and computer vision techniques 



82 

 

(specifically, deep learning) are now paving the way for automated delineation of flood 

extents with high accuracy (J. Wang et al., 2022). Deep convolutional neural networks 

(CNNs) have revolutionized binary and multi-class image classification and are especially 

relevant in time-sensitive applications such as flood inundation mapping (Shastry et al., 

2023). CNNs overcome several key limitations of traditional machine learning in image 

classification tasks; they are highly scalable and can process large amounts of complex data 

with little human intervention. CNNs can also leverage on transfer learning; the use of 

networks pre-trained on extremely large datasets, then fine-tuned for new tasks, enhancing 

model generalization, and avoiding overfitting (Tan et al., 2018). Convolutional neural 

networks (CNNs) have benefited greatly from the rapid development of large labeled 

datasets, such as ImageNet, which offer high-quality training images at an unprecedented 

scale (1.3 million training images, 50,000 validation images and 100,000 test images 

spanning 1000 classes), allowing generic features learned to be used in complex 

classifications of presumably disparate datasets (Huh et al., 2016; Ridnik et al., 2021; 

Yamashita et al., 2018). 

Semantic image segmentation using CNN-based networks entails pixel-level identification, 

classification, and labelling. Applications of deep learning networks for semantic 

segmentation of floods in remote sensing images have mostly been demonstrated on fully 

convolutional networks (FCNs) and to a lesser extent, encoder-decoder architectures. 

Hashemi-Beni and Gebrehiwot (2021) utilized FCN-8s to generate binary classification 

maps of flood inundated areas. Gebrehiwot et al. (2019) applied a CNN-based network 

(FCN-16s) to extract flooded regions from UAV imagery. Basnyat et al. (2021) utilized a 

modified version of the U-Net architecture for binary segmentation tasks on their flood 

detection system while Girisha et al. (2019) successfully utilized both FCN-32s and U-Net 

for semantic segmentation of UAV videos within an urban zone.  

Transformers, a class of neural network architecture originally built to solve sequence to 

sequence problems in natural language processing (e.g., the transformer based-chatbot 

ChatGPT (Generative Pre-trained Transformer) (Liu et al., 2023)), have now been adapted 

as a complement to CNNs for semantic segmentation of remotely sensed imagery attaining 

state-of-the-art performance (see, for example, Gu et al., 2022; Xu et al., 2021; Zhang et al., 

2022). Transformers, unlike CNNs, rely on “self-attention” mechanisms which allows them 

to extract and use information from arbitrarily large contexts of the input data (e.g., pixels 

in an image) simultaneously. It enables the network to capture long-range dependencies and 

consider global context, making it well-suited for understanding complex patterns and 
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relationships within the data. CNNs on the other hand can only exploit local information 

correctly due to their small convolutional kernel sizes. However, it's worth noting that due 

to the quadratic complexity of self-attention, Transformers can be computationally more 

expensive, especially for large images, and do not generalize well when trained on 

insufficient amounts of data, as compared to CNNs. Consequently, hybrid architectures that 

combine the strengths of transformers and CNNs to achieve a balance between global 

context modeling and computational efficiency for semantic segmentation tasks have been 

proposed (e.g., A. He et al., 2023; Q. He et al., 2023; Zhou et al., 2023). Although the 

adoption of these architectures is still evolving, their robustness in understanding complex 

scenes which exhibit large variations within the same class and subtle differences between 

different classes, such as in video remote sensing, is yet to be explored.  

Traditional methods for measurement of instantaneous water flow velocity, including 

impellor-type current meters, electromagnetic flow meters, acoustic Doppler velocimeters 

and acoustic Doppler current profilers (aDcp) remain limited during flood conditions due to 

logistical challenges such as inaccessibility of flooded areas, flow turbulence as well as 

limitations in instrument measurement ranges. Image velocimetry, a non-contact method 

used to measure fluid flow velocities by analyzing images of flow patterns, such as those 

from video, has gained traction as a method of collecting river velocity data (e.g., Dal Sasso 

et al., 2021; Pearce et al., 2020). Large Scale Particle Image Velocimetry (LSPIV) is a 

frequently adopted technique for water-surface velocity analysis and relies on tracking the 

motion of appropriate artificial or natural ‘seeding’ particles, such as bubbles or debris, 

between successive images in a time series. LSPIV based on Unpiloted Aerial Vehicle (UAV) 

video has been demonstrated in several studies (e.g., C. Chen et al., 2021; Lewis et al., 2018; 

W.-C. Liu et al., 2021). Legleiter and Kinzel (2021) successfully derived surface river flow 

velocities from satellite video to within 8.65% of independent radar gage based 

measurements, building upon the work of Kääb et al. (2019) who utilized near-simultaneous 

satellite still images (acquired with a nominal time lapse of  ~90 seconds between each other) 

to estimate river surface velocities in the Yukon River, Alaska. Depending on the video 

acquisition frame rate, video sequences of between 8 – 30 seconds are sufficient for image 

velocimetry over large spatial extents in rapid fashion (Legleiter and Kinzel, 2020; Pearce 

et al., 2020a; Strelnikova et al., 2023). The next step in the domain of satellite video-based 

image velocimetry is the deployment of these velocity estimates in an operationally useful 

manner – the validation of hydraulic model predictions.  
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The aim of this investigation is to present the first attempt at validating flood model 

simulations using satellite video observations. The principal contributions of this work are 

threefold. First, we leverage on the temporal richness of satellite video to fine-tune a hybrid 

CNN-Transformer network for semantic segmentation of flood extents. Specifically, we 

evaluate the accuracy of six variants of a transformer encoder – CNN decoder architecture 

in segmenting our test video image. Second, we utilize optical flow techniques to analyze 

the motion of naturally occurring features between consecutive video frames to estimate the 

velocity of flow in our study reach. Finally, we utilize these flood extents and velocities to 

validate 2D flood model outputs, explicitly accounting for uncertainty in our 2D modelling. 

As non-intrusive optical flow measurement and deep-learning based techniques for 

delineation of flood pixels in near-real time evolve, and further constellations are established, 

satellite video presents a potential opportunity to exploit a temporally rich data source, 

capable of providing data to comprehensively validate flood model predictions. Though 

limited to cloud-free acquisitions, the unmatched temporal resolution of satellite video can 

compensate for the limitation of optical atmospheric imaging windows.  

5.2 Data and methodology 

5.2.1 Overview  

The investigation consisted of four stages (Figure 5.1). In stage 1, Jilin-1 satellite video-

based flood extents are derived using a state-of-the-art deep-learning network. We adopt a 

hybrid architecture consisting of a transformer-based encoder and a CNN-based decoder, 

this allows us to integrate the strengths of both transformers and CNNs. Whilst CNNs excel 

at local feature extraction, transformers are stronger at capturing global context and long-

range dependencies. This hybrid approach for semantic segmentation allows us to benefit 

from the strengths of each architecture. Specifically, we adopt SegFormer (Xie et al., 2021) 

as the encoder, a lightweight yet efficient and powerful model that has attained state-of-the-

art semantic segmentation performance on popular benchmarks like the Cityscapes dataset 

and ADE20K (Cordts et al., 2015; Zhou et al., 2017). We utilize a U-Net decoder which 

allows the model to leverage multi-level information, reconstruct spatial details, and 

efficiently integrate low-level and high-level features to generate accurate and fine-grained 

segmentation masks. We evaluate the segmentation capabilities of six different variants of 

the SegFormer encoder, from SegFormer B0 to B5 and narrow down on one model series. 

We train the selected deep learning model, relying on transfer learning and Test-Time 

Augmentation (TTA) for improved flooded class prediction accuracy. TTA involves the 

creation of augmented copies of a test dataset, following which the deep-learning network 



85 

 

returns ensemble predictions of class labels which are averaged to produce segmentation 

maps.  

 

Figure 5.1 Experimental framework. 

(Note. CVAT = Computer Vision Annotation Tool; LiDAR = Light Detection and Ranging) 

In Stage 2, we utilize LSPIV to compute river surface velocity vectors over two cloud-free 

subsets of our video (Figure 5.2). Stage 3 involves simulation of a recent flood event using 

a hydraulic model (Hydrologic Engineering Centre - River Analysis System (HEC-RAS) 

version 6.0) driven by uncertain discharge estimates derived from Bayesian analysis of 

stage-discharge relations (see section 2.3.2). This HEC-RAS 2D model is calibrated using 

stage height from the gauge at Tilpa (Figure 5.2). Stage 4 validates the HEC-RAS 2D model  

predictions using both the deep-learning segmented images from Stage 1, and the velocity 

vectors estimated in Stage 2.  
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5.2.2 Study Area 

The study area covers a 6.5-km-long section of the middle Darling River at Tilpa floodplain, 

located in north-western New South Wales (NSW), which is part of the Murray-Darling 

River basin in south-eastern Australia (Figure 5.2). A gauging station at Tilpa (Station 

number 425900) records water course discharge every 15 min from 1995 to present, for an 

upstream catchment area of 502,500 km2. Extreme multi-day rainfall, caused by a series of 

deep low-pressure systems, resulted in intense storms and major flooding in eastern New 

South Wales from 22 February to 9 March 2022. Between 19 January and 11 February 2022, 

the Darling River at Tilpa was above major flood level (11.5 m), with the flood wave peaking 

at 12.3 m on 31 January 2022 (Bureau of Meteorology, 2022).  The town of Tilpa 

experienced extensive floodplain inundation.  

 

Figure 5.2 The Darling River at Tilpa study area, located in the Murray-Darling basin 

(shaded inset), New South Wales, Australia, with a basemap of Jilin-1 satellite video 

acquired at 23:12 UTC on 5 February 2022. Panels A and B indicate flood model 

validation locations. Panel C presents the hybrid mesh used in hydraulic modelling.  
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The Darling River at Tilpa has a river style (Brierley et al., 2002) that is meandering, is 

planform controlled and features discontinuous floodplain. Creeks are connected to the 

Tilpa’s main channel and fill with water when the Tilpa’s stage is high. This complex 

floodplain configuration demands high-resolution 2D flood inundation modelling. We 

calibrated our HEC-RAS 2D model using stage height observations from the gauging station 

at Tilpa (Figure 5.2) and validated our model simulations at two locations (A and B, Figure 

5.2), geographical extents that adequately represent the complexity of the floodplain and 

enabled us to capture fine scale flood hydraulics at a resolution sufficient to comprehensively 

assess inundation dynamics. Additionally, using these two locations, rather than the whole 

study area, overcomes the potential problem of jagged prediction patches, which are artifacts 

associated with the reconstruction of large sized deep learning-based prediction mosaics. 

This is a limitation when making flood pixel predictions using neural networks which 

generally results in data loss around the border of large image patches (Heller et al., 2018; 

Yuan et al., 2021). 

5.2.3 Data 

5.2.3.1 Satellite Video 

Satellite video (Table 5.1) was acquired on 5 February 2022 at 23:12 UTC by Jilin-1 GF-03, 

which is part of the Jilin-1 constellation operated and developed by Chang Guang Satellite 

Technology Company. The video has a spatial resolution of 1.22 m and was acquired at 5 

frames per second for a duration of 28 seconds, yielding 140 frames, with each frame 

measuring 12000 x 5000 pixels.  
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Table 5.1 Jilin-1 GF03C02 Satellite sensor specifications and video product information  

Attribute Details 

Product components and format 

 

Video file – AVI 

Individual video frames – TIFF Images 

Image mode 

 

 

Gaze imaging 

Conventional and multi-target pushbroom 

imaging/space target imaging 

Spectral bands 

 

 

 

RGB (Bayer pattern) 

Red B1: 580-730 nm 

Green B2: 490-580 nm 

Blue B3: 430-520 nm 

Scene size 14.4 km x 6 km 

Orbit 

 

Type: Sun-synchornous 

Altitude: 535 km 

Spatial Resolution (Ground Sampling Distance) 1.2 m  

Video duration  28 s 

 

5.2.3.2 Rated Discharge  

5.2.3.2.1 Rating Curve Uncertainty Estimation  

The influence of rating curve uncertainties on streamflow time series estimates is particularly 

pronounced in natural river systems, especially during floods, when a rating curve is 

typically extrapolated beyond the maximum gauging in the rating, resulting in significant 

systematic errors (Horner et al., 2018). The propagation of errors from flood model forcing 

data (i.e. streamflow) to eventual model outputs warrants explicit consideration of 

uncertainties associated with the rating curve. Kiang et al. (2018) investigated different 

techniques for estimation of stage-discharge rating curve uncertainty concluding that the 

choice of methods is fully dependent upon the constraints of the specific application. 

Bayesian inference has however been suggested as a robust technique to handle independent 

gauging errors and provide precise discharge series uncertainty envelopes (Ocio et al., 2017) 

and was adopted here.  

Rating curve uncertainty in this investigation is assessed using the BaRatin (Bayesian Rating 

Curve) method (J. Le Coz et al., 2014) which combines uncertain gaugings and prior 

hydraulic knowledge to derive uncertain stage-discharge relations. The BaRatin framework 

defines stage and discharge measurement uncertainties as Gaussian distributions with a mean 

of zero and is composed of three main components; i) a measurement error model, consisting 

of prior estimates of parameters based on preliminary hydraulic analysis of a gauging station, 
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ii) Posterior rating curves, which are a derived from a simulation consisting of gauging data, 

and iii) The application of Markov Chain Monte Carlo (MCMC) and Bayesian inference to 

sample the posterior distribution of the rating curve parameters relying on information 

contained in observed gaugings. The eventual rating curve equation is based on a matrix of 

hydraulic controls that relates discharge Q to stage h using power functions: 

𝑄(ℎ) =  ∑ (1[𝑘𝑟−1; 𝑘𝑟](ℎ)× ∑ 𝑀(𝑟, 𝑗) × 𝑎𝑗(ℎ − 𝑏𝑗)
𝑐𝑗

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑗=1

)

𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑟=1

 (5.1) 

 

In the above equation, M(r,j) is the matrix of controls, and the notation 1I(h) denotes a 

function equal to 1 if h is included in the interval I, and 0 otherwise. Segments in the rating 

curve (Nsegment) are user defined while segment limits kr, coefficients aj and exponents cj are 

inferred.  

For our flood model simulations, we forced our hydraulic model using streamflow time 

series (Figure 5.3) based on two scenarios: (a) Qobs, observed discharged drawn directly from 

the Tilpa gauging station (Qobs was obtained from a stage-discharge rating curve); and (b) 

Qmaxpost, discharge computed from measured stage and the MaxPost rating curve (a rating 

curve that maximizes the posterior distribution of a set of parameters inferred from the Bayes 

theorem (see Kiang et al. (2018) for detail). The Qmaxpost streamflow timeseries is based on 

uncertain rating curves (with 95% confidence bounds), computed by Bayesian analysis of 

prior hydraulic controls and gagings with individual uncertainties.  
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Figure 5.3 (a) Timeseries plot of stage and dsicharge for the Darling River at Tilpa 

gauging station from Feb 2021-2022. (b) Posterior rating curves and associated 

uncertainties derived using the BaRatin method. (c) Discharge time series. Qobs is the 

observed discharge. Qhigh and Qlow are discharges with associated stage (non-systematic 

and systematic stage measurement errors) and rating curve (parametric errors and 

structural/remnant errors) uncertainty. Qmaxpost is the upper 95% confidence band of a 

streamflow timeseries based on an uncertainty analysis of the rating curve. The rug plot to 

the right depicts the distribution of Qobs and Qmaxpost discharges. 

5.2.4 Deep learning Model 

5.2.4.1 Transformer-based encoder 

Transformer based models were initially designed for Natural Language Processing tasks 

and excelled over CNNs and Recurrent Neural Network models (e.g., Long-Short Term 

Memory that process sequence elements recursively and can only attend to short-term 

context) thanks to their ‘self-attention mechanism’. In the context of semantic segmentation, 

the self-attention mechanism helps the model understand the relationships between different 

spatial locations (pixels) in an image. By using self-attention, Transformers can capture long-
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range dependencies and understand global context, which is essential for accurate semantic 

segmentation, where the label of a pixel may depend on distant regions in the image. 

Although the field of deep learning is evolving rapidly, the most successful transformer 

architectures adapted for semantic segmentation tasks include Vision Transformer (ViT) 

(Dosovitskiy et al., 2021), Swin Transformer (Z. Liu et al., 2021) and SegFormer (Xie et al., 

2021). Here we leverage on SegFormer, which uses a hierarchical Transformer architecture 

(called "Mix Transformer") as its encoder and a lightweight decoder for segmentation. 

SegFormer’s encoder leverages tokenization, self-attention, and hierarchical aggregation to 

efficiently capture important visual information from input images, making it well-suited for 

semantic segmentation tasks. Here, we fine-tune six variants of SegFormer (B0 – B5) with 

increasing model sizes offering improved performance at the cost of increased computational 

requirements.  

5.2.4.2 Convolutional Neural Network (CNN)-based decoder 

Convolutional neural networks (CNNs) are a widely used architecture in deep learning, 

initially proposed by Fukushima (1980) and refined by Lecun and Bengio (1995). CNNs, a 

class of artificial neural networks, are mostly defined as a series of layers, with the initial 

layers performing feature learning and the final layers performing classification. CNNs 

consist of three types of layers: a) convolutional layers, which are the first layers to extract 

features from an input image whose outputs (feature maps) are then passed on to sequential 

layers; b) pooling layers, which take feature maps as inputs and progressively reduce the 

spatial size of the feature maps, controlling model overfit; and c) an activation function 

applied to the outputs of the CNN that enable the model to capture non-linear behavior in 

the input data (Hosseiny, 2021).  

Whilst a plethora of deep-learning CNNs exist, the most prominent architectures that have 

attained state-of-the art performance in semantic segmentation of remote sensing images are 

U-Net (Ronneberger et al., 2015), Google’s DeepLab (Chen et al., 2017) and PSPNet (Zhao 

et al., 2017). In a comparative study of semantic segmentation of remote sensing images 

using the three aforementioned models, Hu et al., (2019) reported U-Net achieving the best 

accuracy. A more recent investigation by Sun et al., (2022), who similarly carried out an 

intercomparison of the three CNN networks, found U-Net outperforming the other three 

models in the segmentation of remotely sensed images.  

Originally developed for biomedical image segmentation, U-Net (and its variants) has 

gained prominence in diverse fields for its ability to leverage on data augmentation to 
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efficiently learn from a small number of annotated images. U-Net’s fairly simple 

architecture, consisting of a downsampling (encoder) and upsampling (decoder) path allows 

for precise localization of segmented pixels.  The U-Net decoder is a crucial component that 

contributes to the strength of the U-Net architecture in semantic segmentation tasks. The 

decoder is responsible for upsampling the low-resolution feature maps from the encoder to 

the original input image resolution while also fusing multi-level features to create final 

segmentation maps. Thanks to the U-Net decoder’s low memory requirements as well as its 

ability to be trained end-to-end (meaning both the encoder and decoder are learned jointly 

during the training process) we deployed a U-Net decoder for our segmentation tasks.  

5.2.4.3 Neural Network Training  

Training deep neural networks typically requires a vast amount of data, which may not 

always be available. Here, rather than train our model from scratch, we fine-tuned our 

encoder to improve its segmentation capabilities on our dataset. Fine tuning entails taking a 

pre-trained model’s encoder (in our case, SegFormer models B0-B6) and further training it 

on a specific dataset, the objective being to adapt the learned features to perform well on a 

new task. For instance several studies have utilized pre-trained models, such as VGG16 or 

ResNets, which have learned to recognize general image features from ImageNet, then fine-

tuned the models on much smaller datasets for specific image segmentation tasks (see, for 

example Hashemi-Beni and Gebrehiwot, 2020; Tong et al., 2020). 

We leverage on the temporal richness of video to extract images used for fine-tuning our 

model. Although our video was acquired at a native frame rate of 5 Hz (resulting in 140 

images in sequence), we subsample our video at a much lower frame rate of 1 Hz by retaining 

only every 10th frame from the original 5 Hz series resulting in a sequence consisting of 28 

images. Skipping frames enabled us to decouple temporal information in our images. When 

frames are skipped, the information captured in one frame is temporally further apart from 

the information in the skipped frames. As a result, the sequential order of frames is disrupted, 

and the temporal information becomes less tightly coupled, reducing the strength of 

autocorrelation. Also, because there was minimal movement or low temporal variation in 

consecutive satellite video scenes, by skipping frames, we omit redundant or near-duplicate 

information, which leads to a reduction in autocorrelation since repetitive patterns are less 

prominent.  

To ensure that all our extracted frames were aligned and free from any motion artifacts as a 

result of the satellite platform’s vibrations, we aligned our images in TrakeEM2 (Cardona et 
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al., 2012) using the SIFT (Scale-Invariant Feature Transform) algorithm adopting the same 

workflow as that used by Legleiter and Kinzel (2021) in stabilizing their satellite video 

frames. In TrakEM2, frame alignment was accomplished using Scale-Invariant Feature 

Transform (SIFT), a technique used to align multiple images or frames from a video to 

ensure their spatial coherence and accuracy in subsequent analyses (see, for example, Ma et 

al. (2016)). For each frame, SIFT detects and extracts distinctive key points and matches 

these points in adjacent frames to identify corresponding features. Based on the matched key 

points, TrakEM2 estimates the transformation (e.g., translation, rotation, scale) required to 

align the frames properly and applies the necessary adjustments to align the frames, ensuring 

that they match spatially and temporally. Stabilized frames were exported to Intel’s open-

source image annotation tool CVAT (Computer Vision Annotation Tool) and were manually 

labelled. Labeled masks were then converted to binary format in Python (with background 

= 0, flood = 1). These annotated masks served as the ground truth for training and validation 

of our deep neural network.   

At the training stage, the full-sized satellite images could not be loaded on to the network 

due to memory limitations, a common challenge faced when training deep learning models 

which require extensive memory to store input images, weight parameters and activations as 

images are channeled through the network. Therefore, the original images were split into 

patches of 256 x 256 x 3. To artificially diversify and increase the size of our training dataset, 

we deployed data augmentation. Data augmentation is a technique that reduces 

generalization errors (model overfitting) by adding a range of deformations and noise to the 

training data. To implement data augmentation, we used the Albumentations library (Buslaev 

et al., 2020) in Python, where we applied vertical and horizontal flips, transposition, grid 

distortions, elastic transforms and random gamma to both the images and corresponding 

binary masks. A total of 5660, 1698 and 566 image patches (256 x 256 x 3) were used for 

training, validation and testing the network. 
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Figure 5.4 End-to-end deep learning network training, validation, and testing pipeline.   

To initiate training, pre-trained ResNet-34 SegFormer weights were imported and hyper-

parameters set as follows: we used a batch size of 8 and a learning rate of 1 x 10-4 with a call 

back to reduce the learning rate by a factor of 2 x 10-4 when the validation metric 

(Intersection-Over-Union/Jaccard Index) stopped improving. The deep learning model was 

implemented within the PyTorch deep-learning framework and trained on an NVIDIA 

GeForce RTX 2070 Super GPU for 150 epochs. The trained network learned to associate 

images and masks and make an independent prediction on a test image which was 

independent of the 28 frames used in the original training/validation/testing pipeline.  

5.2.4.4 Neural Network Evaluation Metrics 

Model segmentation performance was assessed using two metrics, Binary Cross Entropy 

loss (LBCE) and the Intersection Over Union (IoU; also known as the Jaccard Index).  

LBCE, compares model predicted probabilities to the ground truth labels (see section 2.3.1), 

which can either be 0 or 1. It then computes a score that penalizes the probabilities based on 



95 

 

the distance from the expected values. LBCE calculates the difference between the actual and 

precited probability distributions for predicting class 1 (Jadon, 2020). The score is 

minimized, and a perfect value is zero: 

𝐿𝐵𝐶𝐸 = −
1

𝑛
 ∑(𝑌𝑖  ⋅ 𝑙𝑜𝑔 �̂�𝑖  + (1 − 𝑌𝑖)  ⋅ log(1 −  �̂�𝑖))

𝑛

𝑖=1

 (5.2) 

 

where Y denotes the ground truth label while �̂� is the precited probability of the classifier.  

IoU is a simple ratio that compares how close a pixel is between the training sample and 

predicted regions (Bebis et al., 2016):  

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (5.3) 

 

where A and B denote the ground truth and the prediction segmentation maps respectively. 

IoU ranges between 0 and 1. If the model prediction is perfect, IoU = 1. The lower the IoU, 

the worse the predicted result. 

Since our binary segmentation task involved a dataset with an inherent class imbalance, we 

utilize LBCE and IOU as our loss functions during model training. Although we report other 

metrics including recall, precision and the F1 score, we do not use them as loss functions 

during training as these metrics would strongly bias our results to the class that occupies a 

large portion of our images (flood imagery has disproportionately few pixels per image being 

identified as flooded).   

Precision, Recall and F1 Score were reported for a threshold of 0.5 on the prediction 

probabilities. Precision measures the accuracy of the positive predictions made by the model. 

It is the ratio of the true positive (TP) predictions to the sum of true positives and false 

positives. Recall measures the ability of the model to correctly identify positive instances. It 

is the ratio of true positive predictions to the sum of true positives and false negatives (FN). 

The F1 score is the harmonic mean of precision and recall. It provides a balance between the 

two metrics and is a single value that summarizes the model's overall performance. These 

indicators can be expressed as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.4) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.5) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.6) 

Where TP, FP, TN, and FN mean true positive, false positive, true negative, and false 

negative respectively. 

5.2.4.5 Test-time Augmentation (TTA)  

Although data augmentation has been widely used when training deep learning networks, a 

less common way of improving semantic segmentation prediction accuracy is Test-Time 

Augmentation (TTA) (see, for example, Gonzalo-Martín et al., 2021; Liu et al., 2022; 

Moshkov et al., 2020; Wieland et al., 2023). TTA involves applying augmentation 

transformations on the test image to create an ensemble of predictions, which are then 

averaged, to improve prediction results. Assuming x to be our input image and τ a 

transformation operation, choosing 𝛵 = {𝜏1, 𝜏2, … , 𝜏|𝜏|} as a set of augmentations at model 

inference time, we can formulate test-time augmentation as:  

𝑦𝑡𝑡𝑎 =
1

|𝛵|
 ∑ Θ𝑡𝑎𝑟𝑔𝑒𝑡(𝜏1(𝑥))

|𝛵|

𝑖=1

 (5.7) 

 

where Θ𝑡𝑎𝑟𝑔𝑒𝑡 is the neural network trained on our target dataset (satellite video frames). 

In our application, we supplied the network with a full-sized satellite video scene, which is 

patched into 256 x 256 x 3 sized patches without overlap. The network then made predictions 

on multiple transformations of the image patches, creating an ensemble of predictions. The 

transformations were then reverted, a process known as dis-augmentation, following which 

predictions were averaged, thresholded then stitched back to the original full-size image 

using the Patchify library in Python.  

Image parsing which assigns semantic class labels, in this case flooded vs non-flooded 

pixels, for our trained deep learning network returned probability maps, which were 

thresholded to binarize final pixel classes.  Assuming a base (true) segmentation probability 
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map is returned by the network during testing, binary segmentation is done by thresholding 

as follows (Hong et al., 2021): 

𝑃 =  𝛿(𝑝(𝑦)), 𝜏 (5.8) 

 

Where 𝑃 ∈ {0,1}𝑊𝑥𝐻 is a predicted segmentation label and 𝑝(𝑦)is the true probability map 

of the potential segmentation labels 𝑦 ∈ {0,1}𝑊𝑥𝐻for an image with height H, and width W. 

𝛿 is the thresholding function with a threshold 𝜏. We set a fixed 𝜏 value of 0.5 for our model 

training and testing.  

5.2.4.6 LPSIV Velocity estimation  

Whilst a variety of image velocimetry algorithms have been deployed for river surface 

velocity estimation (see Perks et al. (2020) for a summary), we rely on the frequently used 

PIVLab algorithm (Thielicke and Sonntag, 2021; Thielicke and Stamhuis, 2014) for our 

LSPIV analysis. Our general LSPIV workflow is depicted in Figure 5.1. For ease of 

processing, we crop our original video, focusing on the reaches A and B (Figure 5.2). We 

sub-sample our videos to lower frame rates of 1, 0.5 and 0.25 Hz by retaining only the 5th, 

10th, and 20th frames respectively from the original 5 Hz series. By lowering the frame rate, 

the time interval between consecutive images is increased. Resultantly, tracked features 

move farther between frames, leading to larger displacements which translate to larger 

feature sizes in the PIV analysis, making it easier for the PIV algorithm to accurately track 

the features. We then stabilize all our images in TrakEM2 to counter any residual motion 

effects from the satellite platform.  

We import and process our images in PIVLab. To optimize the quality of our velocimetry 

results, we pre-process the images by applying contrast limited adaptive histogram 

equalization (CLAHE) (Pizer, 1990; Yadav et al., 2014), which enhances the contrast and 

improves the visibility of details in an image. We also applied an intensity high-pass filter 

which removed low-frequency background noise and enhanced the visibility of flow features 

in the images, making it easier for the PIV algorithm to accurately detect and track them 

(Thielicke and Stamhuis, 2014). A crucial parameter input to the PIVLab algorithm is the 

interrogation area (IA) usually measured in pixels. Whilst a large interrogation area may 

improve the accuracy of velocity measurements, it can also lead to a loss of spatial 

resolution. Conversely, a small IA may provide higher spatial resolution but could also be 

sensitive to noise or errors in particle tracking. A step-size, which is usually 50% of the IA, 
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determines the spacing of PIV output vectors. Here, we utilized an IA of 128 pixels with 

reducing sizes over 4 passes (i.e., 128 – 64 – 32 – 8 pixels). For our PIV analysis, we utilized 

the FFT window deformation (direct Fourier transform correlation with multiple passes and 

deforming windows) cross-correlation algorithm (for details, see;  Astarita, 2008; Thielicke 

and Sonntag, 2021; Thielicke and Stamhuis, 2014). We postprocessed our computed 

velocities to remove spurious velocity vectors due to poor particle tracking, image artifacts, 

or other issues. Our post-processing specifically entailed setting a standard deviation filter 

which was used to filter out noisy or erroneous velocity vectors from the calculated velocity 

field based on their standard deviation values (set to PIVLab’s default value of 8 in our 

study). Velocity vectors were georeferenced within PIVlab from an image coordinate system 

back into a projected coordinate reference system (GDA 1994 MGA Zone 55) and exported 

to ArcGISPro for analysis.  

5.2.5 Flood Model 

Two dimensional (2D) flood flow modelling was accomplished using HEC-RAS version 

6.0, building on previous flood modelling studies using this code (e.g. Mokhtar et al., 2018; 

Navarro-Hernández et al., 2023; Pradhan et al., 2022). The model domain was 4.4 x 7.7 km. 

Topography was defined from a 1 m resolution LiDAR-based bare-earth digital surface 

model acquired when the river channel was dry (Geoscience Australia, 2022). A 

heterogenous 2D computational mesh was generated using a cell size of 30 x 30 m within 

the floodplain and 2 x 2 m between channel banks (Figure 5.2). The HEC-RAS model 

domain extended from upstream of box A and downstream of box B as shown in Figure 5.2. 

Model upstream inflow boundary conditions were set using data from the gauge located at 

Tilpa, with 15-minute interval gauged streamflow being used. We simulated two scenarios 

with different upstream boundary forcing:  model Mobs, based on observed discharge data; 

and model Mqmaxpost using uncertain streamflow estimates (see section 2.3.2.1). An energy 

slope value was used as the outflow boundary condition; the gradient, equivalent to the 

normal depth, was estimated by computing the bed slope along the terrain profile. Unsteady 

2D flow simulations were conducted from 00:00 4 February to 23:59 6 February 2022 using 

HEC-RAS’s diffusive wave equations since the flood wave was not highly 

dynamic (Brunner et al., 2020; Yalcin, 2020).  

Model calibration data were available in the form of stage height from the gauge at Tilpa 

(Figure 5.2). 2D model runs (see section 2.3.2.1) were calibrated by adjusting a spatially 

discretized (meaning a different n value for the channel and floodplain) manning’s roughness 

coefficient n over a parameter space between 0.025 – 0.033, with 0.002 increments until 
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model simulations closely matched observed stage height data. Given the large, wide, and 

gently sloping nature of the river in a relatively flat terrain, spanning a domain of less than 

8 km, the likelihood of significant discharge variations between the input boundary and 

gauging station was deemed minimal. The gradual flow and expansive character of the River 

Darling reduced the potential for substantial changes in discharge over the short distance 

considered. Moreover, the use of stage measurements at the calibration location ensured a 

localized validation, emphasizing the appropriateness of this workflow for the specific 

hydraulic characteristics of the Darling River at Tilpa. Modelled stage height accuracy was 

assessed using two commonly used metrics (Moriasi et al., 2007), the percent bias (PBIAS) 

and root-mean-square error (RMSE).   

5.2.5.1 Analysis: Flood model validation using observed extents 

We validated models Mobs and Mqmaxpost against flood masks derived from the observed 

satellite video frames. HEC-RAS modelled, and satellite video-derived flood extents were 

converted into binary masks (wet/dry) representing only flood extent, then overlapped, using 

ArcGISPro software. To preserve the detail of the model output’s higher resolution, 

specifically close to the floodplain where model performance matters most due to the 

occurrence of complex inundation dynamics, and because comparison of validation 

performance needed to be done at the same spatial resolution, binary masks derived from 

the satellite video frames were resampled using the nearest neighbor method to 1 m. During 

resampling, binary pixel interpolation did not yield new additional values, avoiding false 

accuracy errors. Since we were resampling a binary raster with only one of two values (0 or 

1), each new pixel in the target 1 m resolution raster was assigned the value of the nearest 

corresponding pixel, meaning extents of the binary raster remained unchanged because no 

new information was introduced. The extent of overlap between the modelled inundation 

boundaries and the observed satellite video, were calculated according to the number of 

pixels that showed model agreement, overprediction and underprediction, as per the states 

in Table 5.2. Data from these computations were then used to calculate performance scores. 

Table 5.2 Confusion matrix of cell descriptors in binary classification of flood masks 

 Wet in observed data Dry in observed data 

Wet in model simulation A1 B2 

Wet in model simulation C3 D4 

 

To analyse model skill in reproducing the observed flood inundation extent, we rely on well-

established spatial performance measures which account for the most critical attributes of 
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model simulation precision: model bias (E), hit rate (HR) - proportion of the observed flood 

event that was successfully predicted by the model, the false alarm ratio (F) and a rigorous 

composite measure (Critical Success Index, CSI) which penalized model overpredictions 

(Bates et al., 2021; Bernhofen et al., 2018; Wing et al., 2017).  

Error bias (E) which indicates whether the model is biased towards overprediction or 

underprediction: 

𝐵𝑖𝑎𝑠 =  
𝐹𝑚 ∩ 𝐹𝑜 +  𝐹𝑚 

𝐹𝑚 ∩ 𝐹𝑜 +  𝐹𝑜
− 1 (5.9) 

where 𝐹𝑚 is the total modelled flood extent. A Bias score of 0 indicates an unbiased model 

while positive and negative scores indicate a tendency towards overprediction and 

underprediction respectively.  

The hit rate (HR) which measures proportion of observed flood that was simulated by the 

model, ignoring whether the observed flood extents were exceeded. HR can range from 1 

(entire flood captured) to 0: 

𝐻𝑅 =
𝐹𝑚 ∩ 𝐹𝑜

𝐹𝑜
 (5.10) 

where 𝐹𝑜 is the total observed flood extent. The HR ranges from 1 (entire flood captured) 

to 0. 

The false alarm ratio (F), a measure of whether the model has a tendency to overpredict 

flood extent and can range from 0 (no false alarms) to 1 (all false alarms): 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑎𝑟𝑒𝑎𝑎𝑟𝑒𝑎

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑎𝑟𝑒𝑎 + ℎ𝑖𝑡𝑎𝑟𝑒𝑎
 (5.11) 

 

The Critical Success Index (CSI) accounts for both overprediction and underprediction and 

can range from 0 (no match between modelled and observed data) to 1 (perfect match 

between modelled and observed data). CSI ignores areas that are dry in both the modelled 

and observed data, as these can be aptly predicted by the flood model and so would bias 

results: 

𝐶𝑆𝐼 =
𝐹𝑚 ∩ 𝐹𝑜

𝐹𝑚 ∪ 𝐹𝑜
 (5.12) 
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where 𝐹𝑚 ∩ 𝐹𝑜is the intersection of the modelled and observed flood extent, or number of 

correct predictions, and 𝐹𝑚 ∪ 𝐹𝑜is the union of modelled and observed extent. The CSI 

ranges from 1 (best) to 0 (worst).  

5.2.5.2 Analysis: Flood model validation using observed velocities 

Whereas the HEC-RAS 2D model is developed to estimate depth-averaged water velocities, 

satellite video-based LSPIV computations yielded surface river velocities. For a like to like 

comparison, we depth-average our LSPIV velocities. A well-established technique for 

converting surface velocities into depth averaged velocity is by utilizing published values of 

depth-averaging constants, also referred to as alpha coefficients, α (Biggs et al., 2021; 

Creutin et al., 2003). Rantz (1982) proposed α values of between ~0.85 – 0.86 for natural 

channels. Hauet et al. (2018) recommend α values of 0.8 for water depths of less than 2 m 

and 0.9 for greater water depths with an uncertainty of ±15% at 90% confidence level within 

natural rivers. Vigoureux et al. (2022) suggested α values of between 0.85 – 1.2 for their 

LSPIV analysis and experimented with values between 0.8 to 1.0 for their depth averaging 

constants. To quantify the impact of choice of α coefficient on our estimated velocities, we 

utilize α coefficients of between 0.7 and 1.  

We compare HEC-RAS model predictions with LSPIV velocities via linear regression where 

we fit a linear trend line and use R2 and slope as indicators of model performance. The 

coefficient of determination, R2, value between HEC-RAS 2D model velocities and LSPIV 

remains unaffected when the LSPIV velocities are adjusted by varied α values. However, 

other statistical indicators are sensitive to the choice of α coefficient, including the mean 

velocity difference between model and LSPIV-based velocity (with an optimum difference 

of 0 m s-1), which we use to evaluate the accuracy of our validation.  

5.3 Results  

5.3.1 Segmentation accuracy  

We evaluated the segmentation performance of six variants of our model based on 

SegFormer encoders (B0 – B5) of increasing sizes, all pre-trained on ImageNet, to select an 

architecture that robustly segments flood pixels from a satellite video test image set. We 

retained the same hyperparameters of learning rate, batch size and number of epochs for all 

models during the testing phase to attain a fair comparison between the different backbones.  
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Table 5.3 Segmentation accuracy for increasing sizes of SegFormer encoders (B0- B5) 

coupled with a U-Net decoder 

 LBCE IoU F1 Score Recall Precision 

SegFormer-BO/U-Net 0.2522 0.8178 0.8789 0.8826 0.917 

SegFormer-B1/U-Net 0.2597 0.8192 0.8848 0.8959 0.9138 

SegFormer-B2/U-Net 0.3515 0.7383 0.8171 0.8396 0.8253 

SegFormer-B3/U-Net 0.3218 0.8186 0.8791 0.8801 0.9212 

SegFormer-B4/U-Net 0.3456 0.8196 0.8819 0.8889 0.9161 

SegFormer-B5/U-Net 0.2518 0.8276 0.8878 0.8972 0.9181 

Bold font highlights optimal values.  

Quantitative results of model performance are detailed in Table 5.3. Overall, we find 

segmentation performance of all models to be satisfactory (IoU >0.7). In general the 

performance of the deep-learning networks was on par with values reported in literature 

where hybrid CNN/transformer networks have been deployed for semantic segmentation  

(e.g. T. Wang et al., 2022). Unsurprisingly, we found the SegFormer-B5/U-Net network 

attained the most accurate scores across all metrics, except for the precision metric where 

the SegFormer-B3/U-Net network returned a better score of 0.9212. This can be explained 

by the higher number of parameters which leads to better segmentation accuracy, but at the 

cost of additional computational demand. Visual test results are presented in Figure 5.5 and 

further support the quantitative scores from model training and testing.  
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Figure 5.5 Results of the semantic segmentation of a sample satellite video patch using 

varied combinations of SegFormer encoders coupled with a U-Net decoder. The annotated 

mask serves as the ground truth with water pixels labelled blue, background pixels labelled 

white.  

5.3.2 Flood model calibration 

The 2D hydraulic model was calibrated to observed stage at the Tilpa gauging station by 

varying Manning’s n roughness. The calibration focused on the narrow range of high-stage 

measurements (12.12 – 12.14m) to specifically address the period of peak flood conditions. 

This targeted approach ensured rigorous evaluation under circumstances of heightened 

uncertainty (McMillan et al., 2012), crucial for accurately modelling and managing extreme 

flood events. In our investigation, both models were considered to be adequately calibrated 

with RMSE (0.46 m, 0.45 m) and PBIAS (0.77, 0.16) for models Mobs and Mqmaxpost 

respectively (Table 5.4), comparable to ranges reported in other similar studies (Timbadiya 

et al., 2011; Zeiger and Hubbart, 2021). Median error (Figure 5.6c) increased marginally for 

model Mobs with both models showing a strong correlation between modelled and observed 

stages (R2 of 0.72 and 0.71) for models Mobs and Mqmaxpost respectively (Figure 5.6).  
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Table 5.4 2D model calibration metrics for Models Mobs and Mqmaxpost. Model predictions 

are calibrated against observed stages over a time step of 15 minutes on 5th February 2022 

(04:00 – 12:30). 

 Model Mobs Model Mqmaxpost 

Manning’s n RMSE, m PBIAS RMSE, m PBIAS 

0.025 1.30 -8.08 0.81 -4.65 
0.027 1.11 -6.64 0.53 -0.32 
0.029 0.72 -1.94 0.56 2.29 
0.031 0.46 0.77 0.45 0.16 
0.033 0.51 2.48 0.61 2.20 

 

 

Figure 5.6 HEC-RAS calibration results. Observed water surface elevations are compared 

against calibrated model Mobs (a) and Mqmaxpost (b) predictions over a time step of 15 

minutes on 5th February 2022 (04:00 – 12:30). Coefficient of determination (R2) and 

RMSE represent the results of regression analysis of the data. (c) Raincloud plot, a boxplot 

with a half-side violin plot, showing the error distributions for both models.  In the 

boxplots, the bold centerline represents the median score, the box encompasses the 2nd and 

3rd quartiles, and the top and bottom whiskers respectively represent the largest and 

smallest values within 1.5 times the interquartile range. 
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5.3.3 Flood extent validation using deep learning-based flood extents 

Results from validation of both models at locations A and B (Figure 5.2) using satellite-video 

derived flood extents are detailed in Table 5.5. The predictive accuracy of both models was 

tested by choice of uncertainty associated with model forcing data (streamflow) and the 

influence of TTA. We report both results in detail in the following sections.  

Table 5.5 Validation metrics for models Mobs and Mqmaxpost against observed satellite video 

data at validation locations A and B (see Figure 5.2). 

Validation 

Area 
Model Error Bias (E) 

Critical Success 

Index (CSI) 

False Alarm Ratio 

(F) 
Hit Rate (HR) 

A Mobs  1.085 0.910 0.085 0.993 

A Mobs TTA 1.050 0.941 0.053 0.994 

A Mmaxpost  1.020 0.873 0.077 0.941 

A Mmaxpost TTA 0.986 0.896 0.049 0.938 

B Mobs  1.072 0.7 0.204 0.853 

B Mobs TTA 0.808 0.803 0.003 0.805 

B Mmaxpost  1.152 0.716 0.221 0.898 

B Mmaxpost TTA 0.868 0.862 0.004 0.865 

Note. Mobs = Model forced using observed streamflow, = Model forced using uncertain streamflow, 

TTA = Test-time Augmentation applied to validation images 

5.3.3.1 Model comparison scores   

We assess the performance of both models at validation locations A then B, followed by a 

summary of the key findings from both reaches.  

At validation location A, the predictive skill of both model Mobs and Mqmaxpost was nearly 

similar, with CSIs ranging between 0.873 – 0.91. For both models, CSI declined when the 

models were validated against lower-quality observations, without implementation of TTA. 

When the model was forced using uncertain streamflow data, CSI averaged 0.918 as 

compared to 0.891 when using observed streamflow, a 3% improvement in performance. 

Average model bias declined marginally (by 3.3%) when forcing our model with uncertain 

streamflow.  

At validation location B, we observed lower values of CSI, ranging between 0.700 – 0.862, 

representing, on average, a 16% decline in model accuracy. Similar to validation location A, 

model performance scores improved across the board when TTA was applied. We however 
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observe a consistent drop in model hit rate when TTA is applied at both validation location 

A and B.  

For both models at both validation locations, underestimation of the flood extent is 

concentrated in the downstream end of the study reach (validation location B) where, on 

average, the hit rate was 85.5% as compared to 96.7% in validation location A. To 

contextualize these results, the skill of both models is in line with previous studies (e.g. 

Ongdas et al., 2020 using Sentinel-1B) who reported HR scores of between 59% - 77%. The 

models forced with uncertain streamflow data yielded superior results for all assessment 

metrics except for HR which declined whenever we applied TTA. Validation bias overall 

ranged between 0.808 – 1.152, with our scores being in line with those from other 

comparable validation studies in literature ranging from -1 – 5 (e.g. Wing et al., 2021, 2017 

using a combination of HEC-RAS model outputs and Special Flood Hazard Maps from the 

United States Geological Service). 

5.3.3.2 Test-time Augmentation (TTA) and model performance scores 

Figure 5.7 shows an overview of the influence of TTA in the binarization of flood pixels in 

the observed data. Results differed substantially when TTA was applied during validation of 

both models Mobs and Mqmaxpost at both locations. At both reaches, CSI scores ranged from 

0.7 to 0.91, and improved to between 0.803 – 0.941 when TTA was implemented. Overall, 

these CSI  results are in line with other flood model validation studies which range from 0.1 

to 0.9 (e.g. Mester et al., 2021; Wing et al., 2017).  
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Figure 5.7 Semantic segmentation results at reach A (a) and B (b): The first panel to the 

top left shows the observed satellite video flood image followed by HEC-RAS model flood 

outputs (all sampled at the same time stamp) from Models Mobs, Mmaxpost and 

corresponding binary segmentation maps from zoomed-in insets with no TTA then TTA 

applied.  

HR scores generally followed a negative trend when TTA was implemented as compared to 

the other performance measures. Since this metric only considers the proportion of wet 

observed pixels, ignoring whether observed flood extents were exceeded, increasing the 

flood pixel class had an inverse impact on the flood capture. For both models at both 

validation locations, average HR scores decreased by 0.1% (at location A) and 4.8% (at 

location B). With TTA implemented, both models Models Mobs and Mmaxpost reached a nearly 

similar skill level across all metrics, indicating the importance of TTA in our segmentation 

strategy, which resulted in better agreement between model predicted and observed flood 

extents.  

5.3.4 Flood velocity validation using LSPIV  

Figure 5.8 shows the comparison of satellite-derived velocity estimates against 2D model 

predictions, depth averaged using varying α coefficients (see section 2.6.2) . Gard (2008) 

provide criterion for assessing whether 2D model predictions are validated or not based on 

the correlation coefficient between measured and simulated velocities, with a correlation of 

0.6 – 0.8 being moderately strong and 0.8 to 1 being very strong. Further, Ballard et al. 

(2010) proposed that an R-value of 0.6 (R2 =0.36) constitutes a validated 2D model, with 

Pasternack (2011) recommending R2 of between 0.4 to 0.8 between observed versus 2D 
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model predicted velocities. Correlations between both model predictions and LSPIV 

velocities were reasonable and averaged 0.78. Water velocities predicted by both model 

variants at both reaches were generally within the observed variability of the LSPIV data.   

 

Figure 5.8 Satellite video-based LSPIV velocities versus HEC-RAS 2D model simulations 

for Models Mobs and Mmaxpost at reach A (a), (b) and reach B (c), (d) respectively.  

We find that accounting for discharge uncertainty had minimal influence on velocity 

validation metrics. A key influence on the accuracy of 2D model velocity predictions, 

however, was choice of α coefficient. We report consistently low values of mean absolute 

error as α approaches 1, with an average value of 0.12 m s-1. We partly attribute these results 

to the use of high-quality topography for our 2D modelling. These results affirm the findings 

of previous work, such as that by Lane et al. (1999) who similarly found that topographic 

specification has a larger role to play in constraining model velocity predictive ability as 

compared to inflow data.  
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5.4 Discussion  

5.4.1 Flood extent segmentation using a hybrid Transformer/CNN network. 

Satellite video, unlike traditional still imagery, is composed of both static and motional 

context (temporal information), with static context being the scenes that remain relatively 

still or unchanged, with minimal or no movement over a period of time and motional context 

encompassing dynamic elements. Both static and motion-based contexts share a significant 

correlation, with image semantic segmentation particularly benefiting from the static context 

(e.g., Hashemi-Beni and Gebrehiwot, 2020; Leach et al., 2022) and the latter in video 

semantic segmentation (Hu et al., 2020; Li et al., 2018). Although research into means for 

simultaneously exploiting both the static and motional contexts has been attempted (G. Sun 

et al., 2022), we did not pursue this line of inquiry for the reasons we outline forthwith.  

While video segmentation can be valuable for analyzing dynamic changes during a flood 

event and for various research purposes, image segmentation provides a focused and 

practical approach for flood model validation tasks, where the primary goal is to assess 

model accuracy based on specific flood extents at critical time points. Hydraulic flood model 

predictions are typically produced as snapshots in time, representing flood extents at specific 

time points. By using a single image for validation, our validation process aligns naturally 

with the instantaneous nature of the 2D hydraulic model outputs. Additionally, state-of-the-

art deep learning models, such as 3D convolutional networks or spatio-temporal 

transformers, can be computationally intensive for video semantic segmentation and may 

require specialized hardware to achieve real-time performance. Moreover, many current 

deep learning models process video frames independently, leading to limited temporal 

consistency in segmentation results. We therefore opted to exploit image semantic 

segmentation.  

In evaluating the performance of our hybrid transformer-encoder, CNN-decoder structure, 

we evaluated segmentation performance with increasing SegFormer encoder depths (i.e., 

SegFormer B0-B5). The training and inference performance of our six models were largely 

comparable (Table 3), with the SegFormerB5 encoder yielding the best performance, thanks 

to it having the greatest number of trainable parameters (81M as compared to 60, 44, 24, 13 

and 3M for the models B0 to B4). Although it has been shown that transformers make strong 

encoders for semantic segmentation tasks (L. Wang et al., 2022), they come with the cost of 

increased computational requirements. For our decoder, we find the original (vanilla) U-Net 

architecture still allowed us to obtain acceptable performance. In fact, while several variants 

of the U-Net architecture have been proposed (e.g., Attention U-Net, Inception U-Net, U-
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Net++) to improve segmentation performance, studies have found that the marginal 

segmentation performance gains of these new architectures may not be worthwhile as they 

come at significantly increased complexity and computational demand (e.g. Kugelman et 

al., 2022). Our results demonstrate that a vanilla U-Net decoder, combined with a 

transformer backbone can still provide comparable and competitive segmentation results. 

This finding has significance as the operationalization of these segmentation techniques will 

have greater impact when the complexity of model structures is low and accuracy high, 

which would encourage adoption in flood mapping studies. We note that although other 

hybrid structures composed of transformer-based encoder and CNN-based decoder 

architectures exist (e.g. TransUNet based on the vision transformer (J. Chen et al., 2021) and 

DC-Swin (L. Wang et al., 2022) based on the Swin transformer (Z. Liu et al., 2021)), it 

would be unmanageable to test them in this investigation. We speculate that any performance 

gains would be marginal at best.  

Image segmentation performed by deep neural networks exploits two powerful features; (1) 

the capacity of deep learning architectures to overcome data scarcity by leveraging on 

previously trained networks and, (2) data augmentation techniques, which are used to 

increase the diversity and size of the training dataset by applying various transformations to 

the original images which improves the model's generalization performance by reducing 

overfitting and capturing more representative features of the underlying data distribution. A 

recent study by Wieland et al. (2023) attributed improvements to their segmentation 

performance as a result of data augmentation, which helped introduce variations, as would 

be expected in real-world scenarios, that were otherwise not present in their training dataset. 

Wieland et al. (2023) and Gonçalves et al. (2023) also found that adapting pre-trained 

models (trained on non-remote sensing specific databases such as ImageNet) which are fine-

tuned on a custom dataset, like in our case, led to superior model performance as opposed to 

initializing a model with random weights. Although domain-specific datasets of flood 

images with labelled masks exist, such as Sen1Floods11 based on  Sentinel 1 and 2, 

(Bonafilia et al., 2020), SEN12-FLOOD based on a set of multimodal SAR and multispectral 

satellite imagery (Rambour et al., 2020), WorldFloods based on Senitnel-2 images (Mateo-

Garcia et al., 2021) and FloodNet (Rahnemoonfar et al., 2021) training a good deep-learning 

model on data from disparate sensors remains a complex task due to issues including the fact 

that data from different sensors may have significant domain shifts, meaning that statistical 

characteristics (e.g., color distribution, resolution, lighting conditions) of the data can vary 

widely. Deep learning models are sensitive to such variations, and when faced with data from 

disparate sensors, they may struggle to generalize well to unseen sensor data. Further, data 
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from disparate sensors may have inconsistencies in labeling or annotation standards with 

ground truth labels not being directly comparable between sensors, leading to challenges in 

creating a consistent and accurate training dataset. 

The uncertainty of inundation data used to validate our models has the potential to introduce 

observational bias. That said, our bias scores were all positive and small, indicating that 

satellite video derived flood extents either largely matched or were slightly overestimated 

by model predictions. Satellite-based observations, both optical and radar, face well 

documented limitations including cloud cover as well as uncertainties associated with the 

timing of sensor overpass relative to the advancement of the flood wave. Incorporation of 

some of these observational uncertainties (such as timing of the sensor overpass) would 

clearly offset some of the error related to our validation. Previous studies have relied on 

machine learning models (e.g. Tanim et al., 2022), thresholding techniques (e.g. Tiampo et 

al., 2022) and histogram-based models (e.g. Singh and Kansal, 2022) to derive flood extents 

for model validation. Departing from these well-established methods, our trained neural 

network extracted flood extents from RGB images in a topographically complex natural river 

floodplain. Our results demonstrate that satellite video RGB imagery, which is essentially a 

stack of images rich in temporal dynamics rather than a snapshot in time, can attain 

acceptable accuracies for flood model validation and can be used in place of 

multispectral/hyperspectral imagery. Further, as satellite video remote sensing is emerging 

as a key technology in earth observation, there is great scope for advancing the synergy 

between deep learning algorithms and high spatial/temporal resolution RGB data in 

operational flood hazard mapping studies.  

5.4.2 Effects of TTA on segmentation performance  

Although implementing TTA introduced additional computational overhead during 

inference, since we had to process multiple augmented versions of each test image, the 

performance gains offered outweighed the computational cost. Similar to the findings of Liu 

et al. (2022) who utilized TTA during semantic segmentation of their remote sensing images, 

we found that the skill of both our models improved. In general, both models Mobs and 

Mqmaxpost were highly sensitive to TTA with significant disparity between model skill at both 

validation locations reported (Table 5.5). CSI, model bias and F scores all improved 

significantly, while the flood capture/hit rate decreased, indicating an increase in model 

overprediction as the segmented flood pixel class reduced. The sensitivity of model CSI 

performance to TTA was heighted more in validation location B where flood extent was less 

constrained by topography leading to more favourable F scores as compared to location A. 
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It is further manifest from our results that where model performance matters most, in zones 

of complex channels with localised spill, our HR, CSI and F scores remained high, 

demonstrating satisfactory flood extent prediction accuracy by our hydraulic model. Overall, 

we find that TTA helped our model to generalize better and reduced overfitting to our test 

image set.  

5.4.3 2D Model validation using satellite video derived flood extents.  

The performance of our 2D hydrodynamic models in reproducing observed flood extent 

varied significantly, highlighting a key result – that discharge data uncertainty is a 

fundamental driver of out-of bank flood processes and plays a crucial role in model 

evaluation. It is well established in literature that an assessment of the uncertainty of input 

boundary data is cardinal to any model validation exercise (Grimaldi et al., 2016b; Hoch and 

Trigg, 2019). Streamflow data from stage-discharge relations has been reported to have 

errors as much as 20% or more during extreme floods (McMillan et al., 2012), further 

underlining the importance of quantifying discharge data uncertainty when deriving 

inundation maps from hydraulic models (Bales and Wagner, 2009). We observed that the 

input boundary condition (inflow hydrograph) had a strong effect on the modelled flood 

extent at both the lower and upper reaches of our study area where flood capture (HR) varied 

by an average of 5% when using uncertain discharge estimates to drive our model, which 

also explained the variance in other validation scores. Although inundation extent by itself 

may not be sufficient for the assessment of model skill, and is primarily effective in flat 

extensive floodplains (Hesselink et al., 2003), our results account for uncertainty typically 

ignored in most inundation modelling studies.  At a minimum, we propose that an 

appropriate application of 2D model simulations for generation of flood inundation maps 

must account for discharge uncertainty, especially in highly variable terrain, if reliable extent 

maps are to be expected. 

Although most of the differences between the skill of our models could be attributed to 

streamflow uncertainty, there remains some uncertainty linked to the satellite observation 

data, likely linked to the timing of image acquisition. Previous research (Horritt, 2006) found 

that satellite inundation data may have added uncertainty if the overpass does not coincide 

with the advancement of the flood wave, which was the case in our investigation as the 

satellite video was acquired during the receding phase of the flood event when the floodplain 

was gradually dewatering.  Nevertheless, an improvement in identifying flooded pixels 

correctly when using uncertain streamflow estimates shows that our analysis adopted a 

reasonable compromise with regards to total uncertainties and that the presence of 
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uncertainty in the observed satellite video did not significantly impact our findings. These 

conclusions further advance the evidence rendered by Grimaldi et al., (2016) who similarly 

singled out the uncertainties of upstream boundary conditions as the prime propagator of 

error when calibrating and validating hydraulic models. Therefore, evaluating the skill of 

models remains a challenging task due to the residual uncertainty in validation data coupled 

with the inconsistencies inherent in evaluation metrics, whose reliability varies depending 

on flood magnitude.  

5.4.4 Limitations in applying satellite video for flood model validation 

Our study evidenced the utility of satellite video datasets in assessing reach scale 2D 

hydraulic model simulations. The likely future proliferation of nanosatellite constellations 

will lead to more opportunities to acquire satellite video. However, satellite video datasets 

come with limitations that can affect their applicability and accuracy in analyzing river 

dynamics. While video datasets capture dynamic changes over the time of recording, their 

spatial resolution is still limited compared to dedicated high-resolution still imagery. 

Moreover, limited spectral bands in satellite video means that some information relevant to 

river dynamics is not available, especially when compared to multispectral still imagery and 

Synthetic Aperture Radar (SAR) data. Near-infrared (NIR) bands are particularly beneficial 

in providing crucial information for delineating flood extents. SAR imagery, which operates 

in the microwave region of the electromagnetic spectrum and can capture data under various 

atmospheric conditions and at different times (night and day) make it highly reliable during 

stormy or cloudy conditions when optical sensors are ineffective. Similar to other 

commercial satellite data, satellite video is not yet open access and requires tasking for image 

acquisition. Further, the current satellite video imaging catalogue is very limited compared 

to other publicly available still image satellite data.  

Our use of temporally and spatially autocorrelated data from the same event for both training 

and testing can lead to overestimation of the deep neural network’s performance. This is 

because the network was not challenged with data that significantly differed from what it 

had already encountered. This narrow dataset scope limited our neural network’s exposure 

to diverse flood characteristics like varying water levels, different terrain types, or urban 

versus rural flood dynamics. In urban settings, complexity increases due to diverse features 

like buildings, roads, and varied land use. Our hybrid deep neural network fine-tuned with 

rural catchment data, might not perform as well in urban landscapes without additional 

training on urban-specific features. To address the potential overestimation of our network's 

performance due to the use of autocorrelated data, we fine-tuned a deep neural network that 
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had been pre-trained on ImageNet, a large and diverse dataset encompassing a wide range 

of scenes and objects. This preliminary training provided our model with a foundational 

understanding of varied features and textures, which is beneficial for initial feature detection 

in flood scenarios.  

Despite this initial step, the use of more diverse and distinct flood scenes for training and 

testing remains crucial. While the pre-training on ImageNet partially compensated for the 

lack of diversity in our flood-specific dataset, it cannot entirely substitute for the direct input 

of varied flood scenes. Future research could focus on incorporating datasets that include 

multiple flood events from different geographical locations and times. This will significantly 

improve the ability of deep neural networks to generalize and perform accurately across 

various real-world flooding scenarios. Additionally, the challenge of determining optimum 

threshold values in semantic segmentation was amplified by our dataset’s limited diversity. 

Addressing this limitation by testing and optimizing deep neural networks across a variety 

of flood events would aid in identifying more universally applicable threshold values. The 

development of more adaptable neural network models, capable of adjusting threshold 

parameters based on the characteristics of each unique flood event, remains a key area for 

future improvement. In our study, we acknowledge a limitation inherent to satellite imagery, 

which may not effectively identify very small flood depths, such as those measuring a few 

centimeters. It is imperative to highlight that our hydraulic model output deliberately 

maintains these small flood depths without any filtering. This strategic decision is grounded 

in the pursuit of a holistic representation of flood extents, aligning with established practices 

in flood modelling (Bernhofen et al., 2018; Wing, 2019; Wing et al., 2017). By retaining the 

entirety of the hydraulic model output, we ensure transparency, objectivity, and a 

comprehensive assessment of the flooding scenario in our study area. 

Nonetheless, our approach is pioneering in its use of satellite video for flood analysis, 

providing a valuable proof of concept and a baseline for future models that could be trained 

and validated on more varied datasets. 

5.4.5 2D Model validation using satellite video derived velocities.  

Although our 2D model predictions performed on par with results from scientific literature 

(Barker et al., 2018; Pasternack, 2011), the uncertainty associated with the choice of a depth-

averaging constant remained consistent. Complexities surrounding spatial variations of flow 

velocities, channel geometry, bed roughness and the transient nature of river flows means 

that published depth-averaging constants must be used judiciously. Similar to other studies 

where LSPIV velocities were depth-averaged using α coefficients (e.g., Le Coz et al., 2010; 
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Masafu et al., 2022; Vigoureux et al., 2022), we find that α value of between 0.9 – 1 to be 

more realistic. Recognizing that 2D models, like all models, have limitations that impact 

their accuracy and reliability, we acknowledge that in fact, a more robust means to validate 

the accuracy of our satellite-based LSPIV velocities would be against aDcp or other observed 

data such as that collected by current/electromagnetic meters – the gold standard for field-

based river velocity measurements. However, here we aim to build upon previous studies 

that have estimated river surface velocities (Legleiter and Kinzel, 2021a) and further show 

that an independent satellite-video dataset can attain equally comparable results which can 

be validated by 2D model simulations.  

5.4.6 Satellite video for flood risk science: current status and future 

perspectives  

High resolution full-color earth observation video presents a fundamental paradigm shift 

away from the conventional periodic snapshots offered by most current satellite platforms 

with imagery sensors. Although full-motion satellite video offers previously unavailable 

temporal insights for monitoring flood dynamics, this data will not necessarily replace 

conventional earth observation missions but rather they will augment current sensors to 

foster further advances in hydrological process understanding. Moving from single image 

analysis to processing video streams presents a unique challenge due to the sheer size of 

satellite video. However, parallel developments in data analytics such as machine and deep-

learning techniques are making processing of such big datasets less computationally 

intensive. Satellite video sensors suffer from the key constraint of cloud cover which impairs 

their ability to provide quality imagery during potentially critical storms which are typically 

accompanied by cloudiness. However, as demonstrated here, for large catchments where a 

period of clear skies follows a storm and the passage of a flood wave has relatively long 

duration, daylight acquisition satellite video is feasible. Although spatial and temporal-based 

cloud removal methods in optical satellite imagery have been proposed (e.g. Huang et al., 

2015; Li et al., 2019), their application in satellite video scenes is yet to be explored and 

changes in cloud obscuration are likely to be minimal during a single video sequence.  

Nanosatellite constellations, such as CubeSats, which are highly modular and inexpensive 

imagers, are rapidly allowing real-time delivery of RGB video with very high-frequency 

revisits, up to 15 minutes for some constellations (Ivliev et al., 2022; Liddle et al., 2020; 

Lomaka et al., 2022; Marinan et al., 2013). As satellite video becomes increasingly available 

to commission, new opportunities for applications such as direct estimation of discharge 

from space are now in the horizon. Legleiter and Kinzel, (2021) used satellite video to 
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estimate flow velocities of the Tanana River directly from space. The production of digital 

surface elevation models using satellite video and Structure-from-Motion (SfM) 

photogrammetry type techniques was proposed by d’Angelo et al., (2016, 2014). Combining 

space-derived velocities with quality digital elevation and bathymetry data presents the 

potential for estimating discharge from flash floods and ungauged catchments where in-situ 

gauges might be too expensive to install and operate. The UK’s Centre for Ecology and 

Hydrology FluViSat study (“FluViSat - Hydrological Flow Measurements from Satellite 

Video,”, https://www.ceh.ac.uk/our-science/projects/Fluvisat, last access: 16 August 2023) 

currently underway, is another application that will aim to demonstrate computation of 

surface velocities and river discharges using satellite video. Nanosatellite constellations, 

which are any satellite with a mass between 1 – 10 kg including Cubesats and SunSats, are 

widely believed to the future of low Earth orbit observations. These satellites are cheap to 

launch and provide high revisit capabilities as compared to other larger satellite missions. 

Such disruptive earth observation technologies, combined with rapidly advancing big data 

analytics will transform satellite video applications in flood hydrology.  

5.5 Conclusion  

Using satellite video-derived flood extents and velocities, we were able to assess the skill of 

a two-dimensional hydraulic model to predict a flood event. Two sets of simulations were 

undertaken, with one set focused on simulating the flood event whilst accounting for 

discharge uncertainty while the other set did not account for discharge uncertainty. Flood 

extents were derived from satellite video scenes using a hybrid transformer-encoder 

convolutional neural network (CNN)-decoder deep neural network. Leveraging on the 

transformer’s self-attention mechanism and CNN’s effectiveness at local spatial feature 

detection, we attained robust predictions of flood pixels. Implementation of test-time 

augmentation while delineating flood extents resulted in further improvements in 

segmentation performance. Validation of both models using flood extents showed good 

model performance. Models were also validated using satellite based LSPIV; to the best of 

our knowledge, this study presents the first attempt of this nature to use satellite derived 

LSPIV velocities for validating 2D model predictions. Although there remains uncertainty 

with regards to choice of a depth-averaging constant (α), our linear regression models still 

showed that model-predicted and LSPIV velocities had a significant statistical relationship. 

This demonstrates the notable benefits of non-contact-based velocity estimation from space, 

especially during high flow conditions when the use of traditional river velocity 

measurement techniques is precluded. Although discrepancies between model and satellite-

https://www.ceh.ac.uk/our-science/projects/Fluvisat
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derived flood extents can be linked to other uncertainties, such as those associated with the 

satellite data itself, topography, and the model, this study emphasized the importance of 

accounting for uncertainty in discharge; a dominant yet often neglected source of uncertainty 

which is especially heightened during flood events. We find that accounting for discharge 

uncertainty had less impact on metrics associated with velocity-based validation than those 

associated with inundation extent. This is likely due to the fact that model velocity estimates 

are subject to greater spatial variability from factors such as hydraulic parameters, roughness 

coefficients and channel geometry. The wider implication of this study is the demonstration 

that high resolution satellite video has significant potential as a source of temporally rich 

data for the validation of velocity and extent predictions. With rapid advances in remote 

sensing sensor technologies and constellations, satellite video is likely to become more 

straightforward and cheaper to commission. In many regions of the world, where ground-

based hydrological observations are not routine, this will open the door for wide-scale 

observations of flow velocities and extents in real-time, enabling further progress in the 

science of flood modelling.  
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Chapter 6 - Satellite video remote sensing for estimation of river 

discharge 
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Key Points 

• Satellite video acquired along 12.6 km of the River Darling, Australia, at 5 Hz for 

28 s during a 1-in-5-year storm event.  

• Satellite video-based velocities coupled with high resolution topography estimate 

riverine discharges to within 15% of in situ gauge data. 

• Parametrization of non-contact velocimetry and choice of a depth-averaging 

coefficient (α) influence the accuracy of discharge estimates.  

Abstract 

We demonstrate that river discharge can be estimated by deriving water surface velocity 

estimates from satellite-derived video imagery when combined with high-resolution 

topography of channel geometry. Large Scale Particle Image Velocimetry (LSPIV) was 

used to map surface velocity from 28 s of 5 Hz satellite video acquired at a 1.2 m nominal 

ground spacing over the Darling River, Tilpa, Australia, during a 1-in-5-year flood. We 

stabilized and assessed the uncertainty of the residual motion induced by the satellite 

platform, enhancing our sub-pixel motion analysis, and quantified the sensitivity of image 

extraction rates on computed velocities. In the absence of in-situ observations, LSPIV 

velocity estimates were validated against predictions from a calibrated 2D hydrodynamic 

model. Despite the confounding influence of selecting a surface velocity depth-averaging 

coefficient, inference of discharge was within 0.3 – 15% compared with gauging station 

measurements. These results provide a valuable foundation for refining satellite video 

LSPIV techniques.  
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6.1 Introduction  

Globally, 29% of the world’s population is exposed to flood risk and insecure water supplies, 

yet knowledge of the river discharges upon which flood and water resource management 

depends remains inadequate (Rentschler and Salhab, 2020). Global monitoring networks for 

quantifying river discharge are in decline, gauging remains logistically difficult and there 

are political influences on data sharing (King et al., 2018; Lins, 2008; Zakharova et al., 

2020). However, satellite-based remote sensing approaches to monitoring discharge are 

helping to alleviate these issues (e.g., Sichangi et al. 2016). 

Approaches to satellite-based river discharge monitoring typically rely upon statistical and 

hydraulic approximations to make indirect estimates of river discharge. Widely applied 

satellite radar altimetry measures water elevations at virtual river cross-sections (Revel et 

al., 2023; Angelica Tarpanelli et al., 2013; Zakharova et al., 2020) and near-simultaneous 

optical imagery can be used to infer water surface flow velocity from space (Kääb et al., 

2019). Other satellite approaches have relied on remote sensing of discharge (RSQ) 

algorithms, which retrieve hydraulic variables from remotely sensed data and then relate 

these quantities to river discharge (Q) (e.g., Gleason and Durand, 2020; Riggs et al., 2022). 

These techniques are limited by relatively coarse spatial resolution and the requirement for 

near-simultaneous satellite swath overlaps, constraining global coverage.  

High resolution commercial satellite video sensors can record the dynamics of river flow 

and floods. Optical flow measurement algorithms can estimate velocity by tracking the 

movement of visible features between frames (e.g., Eltner et al., 2019; Perks et al., 2020). 

Currently, optical satellite video acquired by low earth orbiting sensors offer spatial 

resolutions (pixel sizes) ranging from 0.9 – 1.2 m at frame rates up to 30 Hz [e.g. SkySat 

(Bhushan et al., 2021) and Jilin-1 (European Space Agency, 2022) constellations]. Inference 

of flow velocities using satellite video has previously been demonstrated by Legleiter and 

Kinzel (2021), who used 17 frames of cloud-free satellite video acquired by Planet Labs 

SkySat constellation of the Tanana River in central Alaska. Surface flow velocities were 

estimated to within 8.65% of radar gauging measurements and were further assessed using 

asynchronously acquired acoustic Doppler current profiler (aDcp) velocity data.  

We apply and test the use of satellite video-based velocities for estimating discharge. We 

couple freely available, high-resolution topographic data with velocity estimates derived 

from satellite video Large-Scale Image Velocimetry (LSPIV) (Lewis et al., 2018; Muste et 

al., 2008b) and some critical assumptions regarding channel hydraulics to estimate flood 

discharge following monsoonal rainfall in Darling River at Tilpa, Australia. The accuracy of 
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satellite video-derived velocity estimates was assessed via comparison to hydraulic model 

simulations; and discharge estimates were compared with in-situ gauging station 

observations. 

6.2 Study Area 

The River Darling at Tilpa is located within the Murray-Darling basin, with a 502,500 km2 

drainage area (Matheson and Thoms, 2018; Murray-Darling Basin Authority, 2010) (Figure 

6.1). The river basin has a strongly episodic climate, with large floods followed by lengthy 

dry spells due to the influence of the El-Niño-Southern Oscillation (Grimaldi et al., 2019). 

Prolonged rainfall across south-eastern Australia from late February to early April 2022 led 

to a flood event with a 5-year return period (Q = 722 m3 s-1). This location is ideally suited 

to testing our ability to measure river discharge using non-contact, image-based velocity 

calculation techniques due to the availability of: (i) cloud-free satellite video sensor 

overpass; (ii) high-resolution LiDAR digital elevation model (DEM) that was acquired when 

the river bed was dry and;  (iii) gauged in-situ discharge observations at Tilpa (Station 

number 425900; Water New South Wales, https://realtimedata.waternsw.com.au/, last 

access: 6 March 2023).  

 

Figure 6.1 Study area indicating investigated reaches A and B.  

https://realtimedata.waternsw.com.au/
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6.3 Data and Methods 

6.3.1 Satellite Video 

Satellite video was acquired over our study area on 5 February 2022 at 23:12 UTC by a Jilin-

1 GF-03 sensor, part of the constellation by the Chang Guang Satellite Technology Company. 

Video had a 1.22 m spatial resolution and native frame rate of 5 Hz for 28 seconds. To 

counter sensor platform movement and scene ‘morphing’ due to the changing view angle of 

the satellite overpass, we stabilized the video using FIJI’s TrakEM2 plugin (Cardona et al., 

2012; FIJI-ImageJ, 2020; Schindelin et al., 2012). FIJI is an open-source image processing 

toolkit. TrakEM2 relies on a Scale Invariant Feature Transform (SIFT) algorithm to align 

image stacks based on common features. To avoid geometric distortions, and because all 

video frames had a similar resolution, we utilized an affine transform to register our image 

stacks.  

Temporal displacement errors related to image stabilization can significantly influence the 

accuracy of LSPIV velocities. We quantified the temporal distribution of frame-by-frame 

residual motion, by evaluating the cumulative frame-by-frame displacement (d) of six 

manually selected ground control points (GCPs; Figure 1) in every frame of the stabilized 

frame sequence. The movement of these GCPs post-stabilization provided a clear picture of 

the residual motion. To analyze this residual motion, we employed the differential Root 

Mean Square Difference metric (d(RMSD)) (Ljubičić et al., 2021). The d(RMSD) metric 

quantified the magnitude of the residual displacement of static features, based on a pixel 

intensity RMSD. This RMSD metric operates by directly comparing several subregions 

within subsequent images. In each subregion, it calculates the differences in pixel intensities 

at corresponding locations between two images. These differences are then squared, summed 

over all pixels in the subregions, and averaged. The square root of this average provides the 

d(RMSD) value. This value quantified residual motion magnitude and aided in 

understanding the temporal distribution of residual displacements in the video. 

6.3.2 Large-scale Particle Image Velocimetry  

LSPIV, based on Eulerian principles of motion (Euler, 2008), was originally introduced by 

Fujita et al., (1998), enabling the estimation of instantaneous flow velocities from a series 

of consecutive images. Here, LSPIV velocities were computed using PIVlab (Thielicke and 

Sonntag, 2021; Thielicke and Stamhuis, 2014).  

Computation of surface flow velocities in PIVlab is attained by cross-correlation algorithms 

applied to orthorectified images recorded at a known time interval. We evaluate the accuracy 

of both Fast Fourier Transform window deformation (direct FFT correlation with multiple 
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passes and deforming windows) and Ensemble correlation (Figure 2). Interrogation areas 

(IA), which are small windows of defined size (in pixels), are used to track the displacement 

of image patterns within a chosen larger search area (SA) in subsequent images. The multi-

pass FFT window deformation approach allows for the spatial resolution of velocity 

measurements to be improved through multiple reductions in the size of the interrogation 

areas over which correlations are calculated. Ensemble correlation is better suited for 

sparsely seeded images as it relies on averaging correlation matrices followed by detecting 

a correlation peak with the resultant benefit of lower bias and displacement errors (Thielicke 

and Sonntag, 2021).  Given the relatively coarse spatial resolution of satellite video frames 

for PIV, where inter-frame movement of features are small, often less than the width of a 

single pixel (e.g. Legleiter and Kinzel, 2021), PIVlab’s sub-pixel motion estimation 

functions allow for more accurate and reliable sub-pixel peak determination. PIVlab 

implements both 2.3-point and 9-point Gaussian functions to resolve sub-pixel 

displacements (see Thielicke, 2014 for detail) making sub-pixel motion estimation possible.  

We focused on two cloud-free and straight river reaches A and B (Figure 1) to reduce 

computational cost. Image pre-processing was performed to amplify the visibility of surface 

tracers with respect to the background (riverbanks/static ground), applying a Contrast-

limited adaptive histogram equalization (CLAHE) filter (with a window size of 8 pixels, 

matching our smallest IA size, see section 3.2.1) to enhance image contrast (Li and Yan, 

2022; Masafu et al., 2022). Pre-processing of images for LSPIV has a significant impact on 

the quality of flow velocity estimates. Although image enhancement techniques such as high 

pass filters and intensity capping (amongst a multitude of others) exist, CLAHE offered a 

balanced approach to image enhancement due to its ability to enhance local contrast and 

visibility of tracer particles without excessively amplifying noise.  

Distinct features on the water surface were difficult to discern in the raw images, which 

would be expected in natural rivers observed from the height of the optical sensor. However, 

CLAHE contrast enhancement enabled the tracking of seeding surrogates in the image 

sequences, which occur when specular reflection formed by incident light interacts with free-

surface deformations on the river. Image intensity variations associated with these surface 

deformations were visible in post-processed images.  
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6.3.2.1 Sensitivity to Image Frame Rate and PIV algorithm 

The primary free parameters in LSPIV are the sampling frequency (frame extraction rate), 

interrogation (IA) and search (SA) areas; optimal configurations vary significantly (Kim et 

al., 2008; Legleiter and Kinzel, 2020; Sharif, 2022). IA should be small enough to eliminate 

spurious velocities whilst being large enough to accommodate an adequate window for 

surface pattern tracking (Tauro et al., 2018; Zhu and Lipeme Kouyi, 2019). Sampling 

frequency (frame extraction rate) and the IA are closely coupled and must be considered in 

tandem, with frame-to-frame displacement influencing the accuracy of pattern/particle 

detection on images.  

FFT window deformation and Ensemble correlation algorithms were utilized with the 

maximum allowable number of PIV algorithm passes within PIVlab (four) for our sensitivity 

analysis (see Zhu and Lipeme Kouyi, 2019). We processed images using an IA of 64×64 

pixels, with successive passes of 32×32, 16×16 and 8×8 pixels, all with 50% overlaps, 

corresponding to a minimum spatial distance of 9.8 m. SA sizes for our analyses were 128, 

64, 32 and 16 pixels. For the ~70 m wide river, this was sufficient to allow the detection of 

displaced surface features. Whilst smaller IAs would allow for higher-resolution vector 

maps, this would also significantly increase noise and thus the number of erroneous 

correlations.  

We processed two configurations based on FFT window deformation and ensemble 

correlation algorithms at three sampling rates (1, 0.5 and 0.25 Hz), resulting in 6 different 

LSPIV runs for each scenario. These sampling frequencies resulted in image sequences 

consisting of 28, 14 and 7 frames which enabled us to experiment with varied frame 

extraction rates for image-based velocity analysis. Subsampling our original 5 Hz video to 

lower frame rates (similar to the approach taken by Legleiter and Kinzel, 2021) was 

beneficial for detecting velocities, especially for slower-moving phenomena. At a lower 

frame rate, features in our video had more time to move between frames, resulting in larger 

displacements that are easier to detect and measure, particularly when dealing with a nominal 

ground resolution of 1.2 m.  

Following LSPIV cross-correlation, we post-processed the resultant velocity fields to filter 

out spurious velocities. Specifically, we utilized filters that removed velocity vectors that 

differed by 8 x (PIVLab’s default threshold) the standard deviation from the mean velocity, 

and further applied a local median filter threshold of 3 x 3 pixels to remove outliers. Velocity 

vectors were georeferenced within PIVlab from an image coordinate system back into a 
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projected coordinate reference system (GDA 1994 MGA Zone 55). We used GCP 

coordinates to assess the accuracy of our georeferencing against actual locations, using 1 m 

Maxar satellite imagery. 

6.3.2.2 Validation of PIV velocity vectors  

We use a calibrated 2D hydraulic model to evaluate the accuracy of LSPIV velocities. 2D 

models offer particular value as they can map velocities in diverse hydraulic conditions 

rather than at a few idealized sections, including locations where the range and resolution of 

traditional equipment (such as aDcps and current meters) is limited or where the deployment 

of velocity sensors can be complex, time-consuming, and hazardous, particularly during 

flood events when flow depths and velocities prevent field deployment.  

6.3.2.2.1 HEC-RAS 2D Hydrodynamic Modelling 

The hydrodynamic model HEC-RAS (6.4.1), developed by the U.S. Army Corps of 

Engineers (USACE) has been used in various catchments for one-dimensional (1D), two-

dimensional (2D), and coupled (1D/2D) flood simulation studies (see, for example, 

Costabile et al., 2020; Dasallas et al., 2019; Patel et al., 2017). Here we perform unsteady 

flow modelling using HEC-RAS’s full 2D Saint Venant equations (full momentum) as we 

aim to obtain detailed velocities and water surface elevations for a river in flood flow.  

The input data requirements and parameters for 2D modelling were: a digital terrain 

model; a computational mesh; boundary conditions; computation simulation interval and 

Manning’s roughness coefficient values. Topographical data was a 1 m resolution LiDAR-

based bare-earth digital surface model acquired when the river channel was dry (Geoscience 

Australia, 2022). A hybrid 2D computational mesh was defined using a cell size of 30 x 30 

m across the floodplain and 2 x 2 m between channel banks. Model upstream inflow 

boundary conditions were set using data from the gauge located at Tilpa (Figure 6.1), with 

15-minute interval gauged streamflow being used. The model’s downstream boundary 

condition was normal depth, which required a single energy slope to be computed (0.0028) 

which is then in turn used in a Manning's equation to compute the downstream stage for any 

flow occurring.  

6.3.2.2.2 Model Calibration 

Model calibration data were available in the form of stage height from the gauge at Tilpa 

(Figure 6.1). 2D model runs were calibrated by adjusting a spatially discretized manning’s 

roughness coefficient n over a parameter space between 0.025 – 0.033 until model 
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simulations closely matched observed stage height data. Modelled stage height accuracy was 

assessed using two commonly used metrics (Moriasi et al., 2007), the percent bias (PBIAS) 

(Equation 6.1) and root-mean-square error (RMSE) (Equation 6.2).   

 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=0

 (6.1) 

 

𝑅𝑀𝑆𝐸 =  √∑
(𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)2

𝑛

𝑛

𝑖=0

 (6.2) 

where 𝑌𝑠𝑖𝑚 is simulated values,  𝑌𝑜𝑏𝑠 is observed values and n is the number of 

observations.  

 

The 2D hydraulic model was calibrated to observed stage at the Tilpa gauging station by 

varying Manning’s n roughness values in the range of 0.025 to 0.033, with 0.002 increments.  

n values of 0.031 minimized stage simulation error. In our investigation, the 2D model was 

considered to be adequately calibrated with RMSE (0.46 m) and PBIAS (0.77), comparable 

to ranges reported in other similar studies where HEC-RAS 2D flood flow simulations were 

calibrated against observed water levels (see, for example, Iroume et al., 2022; Timbadiya 

et al., 2011; Zeiger and Hubbart, 2021).  

6.3.2.2.3 LSPIV velocity vector validation metrics  

We verified the accuracy of our PIV derived vectors against derived velocity predictions 

from our calibrated HEC-RAS 2D model. We used a suite of validation metrics commonly 

used in literature including basic statistical measures such as mean absolute error (MAE) 

and RMSE-observations standard deviation ratio (RSR) (Equations 6.3 and 6.4 

respectively). We also report regression analysis results including regression slope and 

intercept standard errors and R2 values.  

 

𝑀𝐴𝐸 =  
∑ |𝑌𝑜𝑏𝑠 − 𝑌𝑠𝑖𝑚|𝑛

𝑖=1

𝑛
 (6.3) 
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𝑅𝑆𝑅 =  
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=  

√∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚)2𝑛
𝑖=0

√∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠,𝑚𝑒𝑎𝑛)2𝑛

𝑖=0

 (6.4) 

where 𝑌𝑠𝑖𝑚 is simulated values,  𝑌𝑜𝑏𝑠 is observed values and n is the number of 

observations.  

6.3.3 Discharge estimation using LSPIV velocities 

The velocity-area method was used to calculate discharge (Q) (Turnipseed and Sauer, 2010). 

Channel depth and velocity are integrated from discrete locations along a channel’s width.  

Discharges estimated at each vertical sections spanning the channel width are summed to 

total discharge (Q) (Cohn et al., 2013). 

𝑄 = ∑ 𝐴𝑖𝑣𝑖

𝑚

𝑖=1

= ∑ 𝑏𝑖𝑑𝑖𝑣𝑖

𝑚

𝑖=1

 

 

where m = number of verticals across channel; Ai = cross-sectional area of vertical  i?; bi = 

width of vertical i = (xi+1 – xi-1)/2 with x = horizontal distance of vertical from the edge of 

water; di = average depth of vertical i; and vi = average downstream velocity in vertical i. We 

define a minimum of 25 vertical subsections at each cross-section, with sub-sectional area 

extending half the distance to the preceding and following measurements.  
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Figure 6.2 Discharge estimation workflow 

Water depths were estimated by intersecting the flood extent limits in the satellite imagery 

with a DEM. Depths at each vertical are computed by subtracting the local bed elevation 

from the maximum water elevation along a cross-section (Figure 6.2) from a 1 m resolution 

LiDAR DEM with a vertical and horizontal accuracy of 0.3 m and 0.8 m respectively 

(Geoscience Australia, 2022). The DEM was acquired when the river channel was dry, 

effectively incorporating bathymetry. Since PIVLab provides discrete velocity 

measurements at specific vector locations, interpolation was necessary to obtain continuous 

velocity maps. Here we used inverse distance weighting, a spatial interpolation approach 

where sample points are weighted based on their distances from the unknown location being 

interpolated. LSPIV-derived surface velocities along cross-sections are converted to depth-

averaged using a specified coefficient α. Hauet et al. (2018) and Le Coz et al. (2010) 

constrain α between 0.8 – 1 for deep natural channels experiencing flood discharges. 
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6.4 Results  

6.4.1 LSPIV velocity accuracy 

Stabilization and georectification of frames used in PIV are subject to errors that propagated 

uncertainty to computed velocity estimates. Maximum, minimum, and mean displacement 

errors associated with stabilization of extracted frame sequences were 0.42, 0.055, 0.237 and 

0.442, 0.15, 0.261 pixels for reach A and B respectively, all less than a single pixel width. 

Total georectification root mean square error (RMSE) was 0.5 and 0.77 m at reach A and B, 

respectively. Since our smallest search area was 8 pixels, equivalent to a distance of 9.8 m, 

our residual georeferencing errors were 5.1% and 7.9% of the spacing between our PIV 

velocity vectors.   

Results of the frame-by-frame analysis of residual motion showed that our GCP locations 

had a high R2 of the d(RMSD) metric at both reach A and B (Figure 6.3 a, b). The 

displacement of our GCPs in the stabilized frame sequence further confirmed that all our 

residual motion at both reaches was within the subpixel range, with average displacements 

of 0.475 and 0.462 pixels at reach A and B respectively (Figure 6.3 c, d).  

 

Figure 6.3 Displacement vs. RMSD for Ground Control Points in reach A (a) and B (b). 

Each color-coded scatter point corresponds to a different GCP, showing how the 

displacement within a predefined area around each point affects the RMSD. Stabilization 
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effectiveness across Ground Control Points (GCPs) in reach A (c) and B (d). These plots 

present the calculated RMSD values for each GCP across different frames, showing the 

stabilization performance. Each point represents the distance (distortion measure) at a GCP 

for a specific frame, offering insights into the temporal consistency of stabilization 

accuracy.  

Figures 6.4 and 6.5 summarize the results of the quantitative velocity accuracy assessment 

of LSPIV (processed using both FFT and Ensemble correlation PIV algorithms at frame rates 

of 0.25, 0.5 and 1 Hz) against calibrated HEC-RAS 2D model predictions.  

 

Note. R2 = coefficient of determination; RMSE = root mean square error; n = number of observations 

Figure 6.4 Comparative visualization of river flow velocities. (a) and (d): HEC-RAS 2D 

model-derived velocity fields at reaches A and B. (b), (c), (e) and (f): Surface velocity vectors 

derived from satellite-based LSPIV, computed using different algorithms. The LSPIV 

velocity vectors are positioned to correspond precisely with the locations used in the HEC-

RAS 2D model. (g) to (h): scatter plots showing correlations between LSPIV velocities and 

HEC-RAS 2D model predictions.  
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Figure 6.5 LSPIV surface velocity maps for reaches A and B computed using varied frame 

rates. 

Regression analysis results in R2 values of 0.32 – 0.51 (p < 0.001) between LSPIV estimates 

and HEC-RAS 2D model velocities. To contextualize these results, Legleiter and Kinzel 

(2021) attained R2 values of between 0.34 – 0.39 when comparing aDcp versus satellite 

video-based PIV velocities across their study area. Root Mean Square Error (RMSE) values 

at the 0.25 Hz frame rate were 0.18 m s-1 for FFT and 0.22 m s-1 for EC in Reach A, and 0.16 

m s-1 for FFT and 0.20 m s-1 for EC in Reach B. Our results indicated a tendency of the FFT 

algorithm to underestimate flow velocities in both study reaches. Specifically, for Reach A, 

the Mean Error observed was −0.071 m s-1 suggesting that the FFT algorithm, on average, 

estimated velocities lower than those predicted by the HEC-RAS model. Similarly, in Reach 

B, this underestimation persisted, albeit to a slightly lesser degree, with a Mean Error of 

−0.041 m s-1. 
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Table 6.1 Error metrics for validation of PIV velocity magnitude vectors against HEC-

RAS 2D model predictions at reach A and B using different combinations of PIV 

algorithms and frame rates. 

  Reach A Reach B 

Error metric PIV Algorithm 
Frame rate (Hz) Frame rate (Hz) 

0.25 0.5 1 0.25 0.5 1 

R2 
FFT 0.32 0.002 0.03 0.51 0.06 0.04 

EC 0.29 0.02 0.05 0.38 0.19 0.08 

RMSE, m s-1 
FFT 0.18 1.06 1.32 0.16 1.30 1.54 

EC 0.22 1.07 1.31 0.2 1.23 1.52 

MAE, m s-1 
FFT 0.15 1.04 1.30 0.14 1.29 1.52 

EC 0.18 1.06 1.29 0.17 1.21 1.51 

RSR 
FFT 0.98 25.79 85.43 0.79 24.15 113.3 

EC 0.89 13.72 38.07 0.88 8.61 263.2 

RS Standard Error 
FFT 0.048 0.284 0.749 0.051 0.271 1.087 

EC 0.040 0.148 0.331 0.052 0.094 2.495 

RI Standard Error 
FFT 0.065 0.098 0.065 0.081 0.093 0.111 

EC 0.056 0.051 0.032 0.081 0.042 0.292 

n  300 300 300 203 203 203 

Note. R2 = coefficient of determination; RMSE = root mean square error; MAE = Mean 

absolute error; RSR = ratio of the root mean square error to the standard deviation of 

observed data; RS Standard Error = regression slope standard error; RI Standard Error = 

regression intercept standard error; FFT = direct Fourier transform correlation with 

multiple passes and deforming windows; EC = Ensemble correlation; n = number of 

observations 

6.4.2 Discharge accuracy 

The measured discharge was 582.01 m3s-1 at the Tilpa gauge at 23:12 UTC on 5/2/2022. 

LSPIV-based discharge estimates were computed at three cross-sections located in each 

reach (Figure 6.1) and ranged from 429.7 m3 s-1  to 710.1 m3 s-1, with median discharges of 

536.2 m3 s-1 (reach A) and 483.4 m3 s-1 (reach B). Mean absolute percentage error for LSPIV-

based discharge estimate was 10% (reach A) and 19.7% (reach B), with significant 

sensitivity to α. At both reaches, we experimented with α values between 0.7 – 1.0; previous 

studies have found that α values of between 0.8 – 1 are appropriate for computing depth-

averaged velocities in natural rivers with a depth of greater than 2 m (Hauet et al., 2018; 

Vigoureux et al., 2022). At reach A, α values in the range 0.8 - 0.9 minimize the difference 

between PIV-derived discharge and gauged discharge to within 15%. At reach B a narrow 
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band of α values in the range 0.94 - 0.97 minimize the error, and values in the range 0.9 - 1.0 

result in MAE < 10%.   

Table 6.2 LSPIV-based discharge estimates at reaches A and B 

Cross-
section 

PIV Algorithm 
Alpha Discharge Mean Absolute Error PBIAS 

(α) (m3 s-1) (m3 s-1) (%)  

XS-A1 

FFT 
0.7 497.7 84.31 14.49% -0.14 

0.8 568.8 13.21 2.27% -0.02 

0.9 639.9 57.89 9.95% 0.10 

Ensemble 

Correlation 

0.7 389.1 192.91 33.15% -0.33 

0.8 444.7 137.31 23.59% -0.24 

0.9 500.3 81.71 14.04% -0.14 

XS-A2 

FFT 

0.7 454 128.01 21.99% -0.22 

0.8 518.9 63.11 10.84% -0.11 

0.9 583.8 1.79 0.31% 0.00 

Ensemble 

Correlation 

0.7 404.9 177.11 30.43% -0.30 

0.8 462.7 119.31 20.50% -0.20 

0.9 520.6 61.41 10.55% -0.11 

XS-A3 

FFT 
0.7 469.2 112.81 19.38% -0.19 

0.8 536.2 45.81 7.87% -0.08 

0.9 603.3 21.29 3.66% 0.04 

Ensemble 

Correlation 

0.7 425.7 156.31 26.86% -0.27 

0.8 486.5 95.51 16.41% -0.16 

0.9 547.3 34.71 5.96% -0.06 

XS-B1 

FFT 
0.7 423.4 158.61 27.25% -0.27 

0.8 483.9 98.11 16.86% -0.17 

0.9 544.4 37.61 6.46% -0.06 

Ensemble 

Correlation 

0.7 330.1 251.91 43.28% -0.43 

0.8 377.3 204.71 35.17% -0.35 

0.9 424.4 157.61 27.08% -0.27 

XS-B2 

FFT 
0.7 427.5 154.51 26.55% -0.27 

0.8 488.6 93.41 16.05% -0.16 

0.9 549.6 32.41 5.57% -0.06 

Ensemble 

Correlation 

0.7 489.3 92.71 15.93% -0.16 

0.8 559.2 22.81 3.92% -0.04 

0.9 629.1 47.09 8.09% 0.08 

XS-B3 

FFT 
0.7 375.9 206.11 35.41% -0.35 

0.8 429.7 152.31 26.17% -0.26 

0.9 483.4 98.61 16.94% -0.17 

Ensemble 

Correlation 

0.7 385.6 196.41 33.75% -0.34 

0.8 440.7 141.31 24.28% -0.24 

0.9 495.8 86.21 14.81% -0.15 
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Note. FFT = direct Fourier transform correlation with multiple passes and deforming 

windows; RMSE= Root Mean Square Error; PBIAS = percent bias 

6.5 Discussion 

6.5.1 LSPIV velocity estimation 

We quantified video stabilization uncertainties using the d(RMSD) metric. Our mean values 

of displacement following stabilization were both within the subpixel range, with mean 

d(RMSD) being slightly higher than the mean displacement values we obtained following 

initial stabilization using SIFT (section 6.3.1). The presence of a lower mean displacement 

alongside higher d(RMSD) values highlighted the complex nature of surface flow dynamics 

and the challenges in capturing these using satellite based LSPIV. It underscored the 

importance of considering not just the average movement but also the distribution and 

variability of movement across the video frames. Given our discharge analysis was 

conducted using velocities derived from a 0.25 Hz sampling rate (i.e., displacements >1 

pixel), stabilization errors did not significantly impact the accuracy of our computed 

velocities (at the 0.25 Hz sampling rate, which provided best correspondence to modelled 

velocities).  

Our sensitivity analysis (section 6.3.2.1) highlighted the significance of frame sampling 

frequency when computing LSPIV velocities, similar to other investigations (e.g. Legleiter 

and Kinzel, 2021; Muste et al., 2008; Pearce et al., 2020). In lieu of reference field velocity 

measurements, we conducted a direct comparison to 2D model velocity predictions. 

Statistical analysis of LSPIV velocity deviations, using our best-case scenario of 0.25 Hz 

processed using the FFT algorithm, showed that LSPIV tended to underestimate velocities 

compared to 2D model predictions. Our analysis showed variability in the performance 

metrics (R2, RMSE, ME) across different algorithms and settings, indicating the accuracy 

and reliability of satellite PIV can be context-dependent: R2 values for both algorithms 

ranged from 0.29 to 0.51. Potential reasons for this variability include limitations due to 

satellite image resolution, atmospheric interference, and the inherent limitations of PIV in 

capturing the complex flow dynamics. Both algorithms generally performed better at Reach 

B than at Reach A, indicating that channel geometry and flow conditions could impact PIV 

accuracy. Additionally, some variability may be associated with 2D hydrodynamic model 

uncertainty (Dewals et al., 2023; Pasternack, 2011; Bates, 2022). Whilst calibrated 2D 

models are a viable means to assess PIV velocities for cases where flows exceed the safe 

operating ranges of conventional sensors, we recommend PIV velocity assessment with 

aDcp measurements.  
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6.5.2 Discharge accuracy assessment 

LSPIV-based surface velocities, combined with preexisting, independent information on 

channel bathymetry, have been successfully used to obtain river discharge estimates in 

previous studies (e.g. Le Coz et al., 2010; Lewis et al., 2018). Using the velocity-area 

technique, we estimate discharge with a maximum mean absolute error of 35% which could 

be reduced to 0.3% and 3.78% at reaches A and B, respectively, by tuning α. The accuracy 

and precision of our reported discharge estimates compare favourably with Sun et al. (2010) 

and Lewis et al. (2018) who computed river discharges using LSPIV-based measurements 

to within -5 to 7% and < 20% respectively. The ephemeral nature of the River Darling at 

Tilpa is advantageous for acquiring high accuracy bathymetric topography, here using 

airborne LiDAR. In other ephemeral locations, lower resolution datasets with near-global 

coverage could be used for large rivers. In temperate and tropical locations, direct 

bathymetric surveys or bathymetry derived from multispectral satellite imagery, altimetry 

(e.g., Liu et al., 2020; Moramarco et al., 2019) or the inference of depths from PIV-derived 

velocities using a flow resistance equation-based framework (Legleiter and Kinzel, 2021b) 

would be required. Despite these additional data demands, our results demonstrate that 

satellite-based optical video sensors could be deployed for near real-time estimation of 

riverine velocity and discharge, within tolerable uncertainties common to traditional 

discharge estimation techniques.  

6.5.3 Variability of surface coefficient values, α 

Our satellite-video based LSPIV discharge estimation procedure yielded promising results, 

in terms of absolute flow magnitude, but the selection of the coefficient (α), used to convert 

surface to depth-averaged velocities, remains a source of uncertainty in discharge estimation. 

Fulton et al. (2020), Moramarco et al. (2017) and Welber et al. (2016) all observed local 

variability of α (0.52 – 0.78; 0.85 – 1.05 and 0.71 – 0.92 respectively) when estimating 

discharge using non-contact techniques, attributable to variations in stage (especially during 

higher flows due to changes in wetted channel perimeter), channel geometry, slope, and 

channel alignment. Significant shifts in the error of LSPIV-based discharges due to variations 

in α indicated that sufficient cross-section specificity in defining α is critical to our technique.  

Higher α values generally led to less error in our discharge estimates, particularly in areas 

where LSPIV velocities differed substantially from velocities in the hydraulic model sued 

for benchmarking. Hauet et al.,'s. (2018) recommendation of α values based on a river's 

hydraulic radius and depth, with a noted uncertainty of ± 15% at a 90% confidence level, are 

consistent with the optimal values reported here. However, without an empirically 
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formulated, river-specific α based on in-situ measurements, the appropriate values of α 

remains largely unclear (Legleiter et al., 2023).  

When estimating flood flows in remote locations where remote sensing instruments are the 

sole source of depths (i.e., derived from a DEM), experimenting with values provided by 

Rantz, (1982) (α  = 0.85 or 0.86), Turnipseed and Sauer (2010) (α  = 0.84 – 0.90), and, in 

extreme cases, α > 1 due to non-standard velocity distributions (see, for example, Moramarco 

et al., 2017) is a sensible approach to improve the precision of flow measurements from 

surface velocimetry techniques. On average, in our study the α values that led to the closest 

approximations of observed discharge were all less than unity, indicating our velocity-depth 

distributions could be well approximated using logarithmic or power laws. The variability 

of our best fitting, cross-section averaged α at our reaches implies that the commonly used 

default value of 0.85 is not always appropriate in field conditions where spatial 

heterogeneities in channel beds have a significant impact on velocity profiles. Although we 

provide a method for assessing the variability of α, calibration of site-specific α values based 

on traditional contact measurements remains the preferred solution for accurate discharge 

estimation.  

6.6 Conclusion  

Satellite-based PIV presents a promising tool for estimating river discharges during cloud-

free conditions. Key to constraining uncertainty and enhancing the accuracy and reliability 

of LSPIV-derived velocity estimates is the stabilization of satellite video frames and the 

independent assessment of residual error, particularly for sub-pixel displacements. 

Performance metrics from the comparison of PIV velocity magnitude vectors against 2D 

model predictions of surface velocity exhibited reasonable correspondence. The FFT 

algorithm at a frame rate of 0.25 Hz, revealed best correspondence, but differences between 

study reaches highlight how site-specific characteristics can influence LSPIV performance. 

The observed R2 values (0.3 - 0.5) highlight the need for careful consideration in the 

application of PIV techniques, particularly for low-frame-rate satellite videos. LSPIV 

accuracy also depends on α. Using realistic α values (0.7 to 1.0) from literature, our resulting 

error and bias was -6.9 m3 s-1/-0.01 and -85.6 m3 s-1/-0.15 at our study reaches. Despite these 

uncertainties, when combined with high-resolution topographic data, the ability of satellite-

based LSPIV to provide large-scale, non-intrusive river surface discharge measurements in 

inaccessible or dangerous areas remains a compelling advantage. The level of accuracy 

offers a promising foundation for enhancing LSPIV methodologies; uncertainties are 

comparable to traditional methods and avoid the need for extrapolation of rating curves 
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during high flow conditions. While acknowledging the necessity for further ground truthing 

to assess uncertainty, there is considerable potential for satellite video to be used to estimate 

discharge.  
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Chapter 7 - Synthesis and discussion 

This chapter discusses the substantive research contributions made in this thesis. For this, 

each of the research questions outlined in section 1.2 are addressed. A critical assessment of 

the methods is then made, followed by an identification of prospective future research 

directions building on the work presented herein. 

7.1 Synthesis 

2D hydraulic model predictions are typically delivered with a degree of uncertainty and yet 

the robust validation of the skill of these models has been sporadic, thanks to the paucity of 

observations. New methods were adopted to harness the temporal richness of imagery from 

UAV and satellite platforms to extract velocities for 2D model validation.  This marked the 

first instance where such comprehensive validation has been undertaken, bridging the gap 

between new image velocimetry techniques and their tangible application in 2D hydraulic 

modelling. The choice of a depth averaging parameter when converting surface velocities 

into depth-averaged velocities was a common theme across all empirical chapters and is 

recognized as a significant source of uncertainty, even though efforts to address this were 

made through use of the probability concept. Another significant highlight was the 

application of satellite video, combined with high resolution topography to estimate river 

discharge. Although satellite video offers previously unattainable high temporal resolution 

data, the limitations of cloud cover, typical with optical sensors, were notable through a 

significant reduction of the portion of video available for analysis. Thus, while these new 

age datasets offer a venue for comprehensively validating 2D model predictions, their 

fidelity still warrants further assessment before they can attain widespread adoption.  

7.2 Discussion 

RQ1a. Can UAV-based video be used to comprehensively calibrate and validate hydraulic 

model predictions at the reach scale? 

The first published example of the comprehensive calibration and validation of a hydraulic 

model using velocities derived from UAV video was presented in Chapter 4. Flood modelling 

plays a pivotal role in understanding and managing the complex dynamics of flood events. 

However, a persistent challenge has been the limited utilization of surface velocities in 

calibrating and validating these models. Traditionally, flood models have primarily relied on 

hydrological inputs and water level data for calibration, with surface velocities often 

overlooked due to the technical complexities associated with their measurement. Chapter 4 

addressed the challenge of assessing spatial velocity distributions in hydraulic models and 
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demonstrated how UAV-based LSPIV velocities can be utilized to calibrate and validate 2D 

hydraulic model predictions in a gravel bed river reach.  Chapter 4 further delved into the 

uncertainty surrounding the accurate determination of the velocity coefficient α, which 

relates surface velocity to depth-averaged velocity, especially in non-contact velocity 

computation methods. Prior research (Dramais et al., 2011; Vigoureux et al., 2022) had 

highlighted the significant influence of α variability on error in LSPIV-based velocity 

estimation. Chapter 4 successfully employed Chiu's Probability Concept (PC), based on 

Shannon's Information Entropy, to compute α values for specific cross-sections, revealing 

considerable variation across them. Locally derived α values demonstrated improved 

accuracy in constraining velocity bias and resulted in substantial enhancements in velocity 

predictions. These findings are aligned with existing research (Fulton and Ostrowski, 2008; 

Fulton et al., 2020a) and suggest that probabilistically determined α values better 

accommodate the intricacies of field-based velocity distributions, emphasizing the 

significance of considering alternative velocity distribution approaches when depth-

averaging LSPIV velocities. 

RQ1b. Can satellite-video based image velocimetry and deep-learning-based image 

segmentation be used to validate hydraulic model predictions at the reach scale? 

Chapter 5 presented results from investigations attempting to validate 2D model predictions 

using a combination of satellite based LSPIV measurements and flood extents drawn from 

individual RGB satellite video frames. When validating flood models using satellite-based 

LSPIV, despite achieving results comparable to existing scientific literature (Barker et al., 

2018; Pasternack, 2011), the uncertainty tied to selecting a depth-averaging constant, α, 

which was identified in Chapter 4, persisted. The interplay of flow velocities, channel 

morphology, bed roughness, and transient river behaviours necessitate careful application of 

published depth-averaging constants in LSPIV workflows. 2D model predictions were 

further validated using flood extents segmented by a hybrid transformer-encoder CNN-

decoder neural network, with the influence of Test-time augmentation (TTA) on 

segmentation performance examined. While TTA enhanced metrics like CSI, model bias, 

and F scores significantly, the flood capture rate decreased, indicating increased model 

overprediction as flood pixel classification decreased. Model validation highlighted the 

impact of uncertain discharge data on flood extent accuracy, emphasizing the significance of 

quantifying discharge data uncertainty for reliable inundation mapping. Crucially, areas with 

complex channels and localized spill showed sustained high scores in HR, CSI, and F, 

indicating satisfactory flood extent prediction accuracy by our hydraulic model. 
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RQ2a. Can image velocimetry techniques provide plausible riverine velocity estimates from 

space? 

Chapter 6 presented the estimation of riverine velocities based on satellite-LSPIV. 

Sensitivity analysis emphasized the importance of frame sampling frequency in computing 

LSPIV velocities, as seen in previous satellite-video based LSPIV field studies (such that of 

Legleiter and Kinzel, 2021). In the absence of reference measurements, we directly 

compared LSPIV velocities to those from a 2D model (HEC-RAS) simulation. Statistical 

analysis revealed that LSPIV tended to underestimate velocities compared to the 2D model 

predictions. While acknowledging the limitations of 2D models, primarily due to 

simplifications of the complex three-dimensional flow of water, neglecting variations in 

vertical flow profiles that can occur in real-world scenarios, it was still demonstrated that 

calibrated 2D models can be used to assess LSPIV velocities, particularly for high flows 

where conventional sensors are limited. 

RQ2b. How well do discharge estimates based on satellite-video compare with ground 

observations and hydraulic model predictions?  

Quantification of river discharge remains integral to effective flood risk management, 

emergency response and policy making efforts. Chapter 6 furthered previous work on 

satellite based LSPIV velocity estimation by combining high resolution bathymetric data to 

derive discharge estimates. By employing the velocity-area technique, discharge estimates 

closely match gauged measurements to within a 0.3% average difference, when the depth 

averaging constant α was finetuned. Although the satellite-video based LSPIV discharge 

estimation procedure yielded promising results in terms of absolute flow magnitude the 

choice of the coefficient (α) for converting surface to depth-averaged velocities remained a 

significant source of uncertainty in discharge estimation. In remote locations, using 

empirically derived values or experimenting with different values of α can enhance flow 

measurement precision. It was found that site-specific α calibration based on traditional 

measurements is the preferred approach for accurate discharge estimation. 

Riverine velocities derived from satellite video, computed LSPIV, showed promising 

alignment with predictions from a hydraulic model. Notably, the hydraulic model used was 

of high resolution and was driven by observed discharges. While there existed some 

inherent uncertainties in comparing the satellite-derived velocities with the hydraulic 

model's predictions, the methodology demonstrated significant value. Particularly in 

regions where direct observations of velocities are scarce or unavailable, leveraging 

satellite video data processed via LSPIV offers an innovative and efficient approach to 



141 

 

estimate flow velocities. This advancement in remote sensing and hydraulic modelling 

convergence suggests potential for broader applications, especially in areas where 

traditional data collection is challenging or hazardous. Such methods can greatly enhance 

our understanding of flow dynamics and offer more comprehensive flood risk assessments. 

7.3 Critical assessment of methodology  

Throughout this thesis, various limitations have been identified in both the research 

presented here, as well as in the underlying research upon which some of this work is based. 

7.3.1 Limitations of LSPIV in riverine hydrometry  

Whilst LSPIV holds promise as a remote sensing technique for river surface velocity 

estimation, velocity data generated from LSPIV workflows are far from perfect. Even though 

this thesis has shown that these imperfect data can be useful in fine-tuning hydraulic models, 

the explicit quantification of errors related to this data is imperative. Indeed, the limitations 

discussed here are common across LSPIV studies and have been adequately characterized in 

the empirical chapters. Reporting these limitations is key in order to enhance reproducibility 

of investigations and allow for credible inter-study comparison.  

LSPIV assumes that riverine flow is two-dimensional and that the surface patterns detected 

accurately represent the velocity distribution throughout the water column. This assumption 

might not hold in cases of complex three-dimensional flow patterns. During river floods, 

three-dimensional flow patterns can indeed become more prominent due to the increased 

complexity of the flow dynamics (Bates, 2022). Whilst the dominance of these flow patterns 

can vary based on factors such as the river’s morphology, discharge magnitude, channel 

geometry and the presence of obstacles, research into how these impact LSPIV 

measurements is necessary.  

The variability of depth-averaging coefficients for converting LSPIV surface velocity 

estimates into depth-averaged values has been a common theme throughout this thesis. In 

Chapters 4 and 7, it was found that the choice of the coefficient (α) has a significant influence 

on the accuracy of LSPIV surface velocity estimates. Indeed, when comparing LSPIV-

derived velocities to those computed by 2D hydraulic models, the choice of α is an additional 

parameter that needs to be calibrated, introducing uncertainty into the comparison process. 

Furthermore, turbulence and secondary flow patterns (e.g., eddies) can significantly affect 

velocity profiles across the water column. A single depth-averaging coefficient cannot fully 

account for these complex flow dynamics, potentially leading to mismatches between 

estimated depth-averaged velocities and those computed by 2D models. The work in Chapter 
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4 begins to explore this issue highlighting the challenges of accurately representing the 

complex and variable flow dynamics in rivers.  

It was further observed that when comparing LSPIV to 2D model velocities, there was an 

increase in scatter with increasing flow velocities (< 2 m s-1). The observed scatter could be 

a result of the combined influence of uncertainties in both the 2D model and LSPIV 

measurements. Interactions between inaccuracies in model predictions and the depth-

averaging limitations of LSPIV could amplify discrepancies, especially as flow velocities 

increase. Additional field measurements and model validation in high-velocity scenarios to 

cross-verify results and identify specific areas of discrepancy seem to be means to further 

understand this phenomenon.  

In windy conditions, particles used for velocity tracking may experience advection and 

drift, leading to difficulties in accurately following their trajectories. This can result in 

errors in LSPIV surface velocity measurements. Additionally, high winds can create 

turbulence and waves on the water surface, making it challenging for LSPIV to accurately 

track and measure surface velocities. This turbulence may affect the movement of tracer 

particles, leading to inaccuracies in velocity calculations. This calls for careful site 

selection when conducting these measurements.  

The Large-Scale Particle Image Velocimetry (LSPIV) technique involves various parameters 

that need to be carefully selected to ensure accurate and reliable velocity measurements, as 

was shown in Chapters 4, 5 and 6. The uncertainty related to the choice of LSPIV parameters 

can stem from a multitude of factors such as frame rate and image resolution, georeferencing, 

parametrization of the PIV algorithm (choice of interrogation area sizes), image 

enhancement techniques and image resolution amongst other sources such as those discussed 

in Jolley et al. (2021), Kim  (2006) and  Perks et al. (2016). Resolving these uncertainties 

requires a combination of careful experimental design, advanced image processing 

techniques, and validation procedures. In fact, to account for the conflating effects of all 

these uncertainties, a multivariate sensitivity analysis is necessary in order to attain insight 

into the cooperative effects of all sources of error in LSPIV measurements. A systematic and 

iterative approach, along with a thorough understanding of the flow conditions seem to be 

an appropriate means for parameter selection which will improve the accuracy of velocity 

measurements obtained using LSPIV. 
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7.3.2 Limitations of Satellite video datasets  

This thesis evidences the utility of satellite video datasets in assessing reach scale 2D 

hydraulic model simulations. It is envisaged that in time, the proliferation of nanosatellite 

constellations will lead to the ready availability of satellite video for similar studies. 

However, satellite video datasets come with limitations that can affect their applicability and 

accuracy in analysing river dynamics. While video datasets capture dynamic changes over 

time, their spatial resolution is still limited compared to dedicated high-resolution still 

imagery. Further, the limited spectral bands in satellite video means that some information 

relevant to river dynamics is not available, unlike when using standard still satellite imagery. 

Similar to other commercial satellite data, satellite video is not yet open access and requires 

tasking for image acquisition. Further, the current satellite video imaging catalogue is still 

rather limited as compared to other publicly available satellite data. In Chapter 5, it was 

demonstrated that the processing and interpretation of satellite video is a complex endeavour 

that requires advanced image processing techniques. Finally, ensuring the accurate 

validation of satellite video-derived river dynamics can be challenging due to the limited 

availability of ground truth data. The difficulty of acquiring accurate field measurements in 

order to validate satellite video remote sensing observations can hinder the assessment of 

accuracy. Challenges including limited accessibility of some remote or politically sensitive 

locations as well as constraints linked to geographic, environmental, and logistical 

constraints make it hard to collect ground truth data. However, it is envisaged that 

availability of more satellite video data will allow for more locations to be analysed and 

improve confidence in the quality of space-based video. 

7.3.3 Limitations of 2D hydraulic modelling  

All numerical models are required to make some form of numerical approximations in order 

to simulate flow. Assumptions touching on various factors such as channel geometry and 

boundary conditions can introduce uncertainties in model results. Furthermore, the selection 

of appropriate parameters for the calibration of 2D models can be affected by the problem 

of model equifinality (Beven, 2006) where multiple different model parameter combinations 

can produce equally satisfactory fits to observed data. Addressing the issue of model 

equifinality can require approaches such as extensive sensitivity and uncertainty analysis or 

assimilation of additional data (such as remotely sensed data) in order to help constrain 

model outputs. In 2D hydraulic models, vertical variations in flow are generally not well 

accounted for, leading to potential inaccuracies especially in regions with steep topography 

and intricate geometries. In such cases, 3D models are better suited to offer accurate 
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representation of complex flow phenomena, although this comes with significant 

computational, data and expertise requirements. Despite these limitations, 2D models remain 

valuable tools for characterizing flood dynamics with the choice between 1D, 2D or 3D 

models depending on the objectives of the modelling exercise, available data, computational 

resources and the desired level of accuracy.  

7.4 Contributions to wider research  

Improving the accuracy of 2D hydraulic models is pivotal in the endeavour to reduce flood 

risk. The rigorous calibration and validation of these models will ensure that predictions of 

flood depths, velocities, and inundation extents closely mirror reality, which is crucial for 

decision making. This thesis has applied extensive hydraulic modelling, acquisition, and 

analysis of field data, complemented with new-age satellite data, in order to advance flood 

science. The research in this thesis has contributed to flood risk modelling in a number of 

ways.  

(i) Chapter 4 demonstrated, for the first time, that 2D hydraulic models can be 

effectively calibrated and validated using velocities obtained through Large-

Scale Particle Image Velocimetry (LSPIV) techniques. This approach yielded 

accuracies comparable to traditional observations conducted with Acoustic 

Doppler Current Profilers (aDcps). It was further shown that the use standard 

depth-averaging coefficients (α) in LSPIV workflows can introduce significant 

uncertainty to velocity estimates, as opposed to using channel-specific choice of 

the coefficients (α). Although the aDcp has been the gold standard for acquiring 

velocity data in hydrology, LSPIV velocities can serve as a reliable substitute. 

The successful integration of LSPIV data into flood modelling techniques 

represents a methodological advancement, particularly in regions where data 

collection infrastructure is limited. This insight is transformative as it introduces 

a cost-effective alternative to calibrating and validating flood models without the 

need for expensive and complex instrumentation. 

(ii) Chapter 5 was also the first study to show the integration of satellite video and 

deep learning into 2D hydraulic modelling workflows to provide more accurate 

and dynamic insights into flood events. By successfully using satellite video 

imagery to validate 2D model simulations, the operational utility of satellite 

video for hydrological applications was demonstrated. Although satellite video 

imposes significant pre-processing and computational costs, results obtained in 

this chapter showed their utility in improving hydraulic modelling predictions. 
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This research validates the use of emerging technologies, such as deep learning 

and image velocimetry, in hydrological applications bridging the gap between 

remote sensing, deep learning, and hydrology. The integration of image 

velocimetry to estimate surface river velocities from satellite video imagery 

opens avenues for addressing the challenge of obtaining real-time flow velocity 

information during flood events. Additionally, the use of a hybrid deep neural 

network for precise mapping of flood extents from satellite video imagery offers 

a departure from traditional methods such as thresholding and rule-based 

approaches. Deep learning methods for flood imagery segmentation offer 

contextual understanding and excel at capturing spatial context and relationships 

within images automatically, leading to more objective results as compared to 

traditional methods which often rely on user-defined thresholds or rules. 

Advancements offered by deep-neural networks in delineating food extents will 

have far-reaching implications for flood monitoring systems.  

(iii) Chapter 6 offered a significant leap forward in satellite remote-sensing based 

discharge estimation via a pioneering approach of integrating satellite video-

derived velocities and high-resolution topography. This marked a significant 

departure from conventional methods such as those based on satellite altimetry, 

which measure water level changes as a proxy for discharge, or other indirect 

methods relying solely on hydraulic equations. The advance here stemmed from 

the ability to observe and incorporate real-time river behaviour, made possible 

by utilization of satellite video velocities. The findings in Chapter 6 guide future 

applications of these techniques and highlights where targeted improvements 

may yield the best accuracy gains when computing discharge via satellite remote 

sensing for wide rivers (>50 m).  

7.5 Perspectives on future research 

The findings in this thesis suggest several directions for future research which are discussed 

below.  

7.5.1 Harnessing LSPIV Velocity Data for Improved Hydraulic Modelling 

Chapter 4 provides a strong foundation for future research into means of using LSPIV 

velocities for real-time flood forecasting and management. The development of techniques 

to assimilate LSPIV data in real-time into 2D hydraulic models could further enhance their 

predictive capability during ongoing flood events. Leveraging on data assimilation 

techniques, such as those previously applied by Barthélémy et al. (2018) and Neal et al. 
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(2009), LSPIV velocity data can be integrated into hydraulic models, optimizing model 

parameters in real-time and thus enhancing the accuracy of model simulations. Further 

research could also explore the integration of data from multiple sensors, including both 

LSPIV and aDcp, which could provide a more robust dataset for model calibration and 

validation. Multi-sensor integration could potentially mitigate limitations and uncertainties 

associated with individual methods. Given that the studies here were mostly focused on rural 

catchments, an interesting direction to extend this research would encompass modelling and 

acquiring LSPIV-velocities in complex river terrain and urban environments. Hydraulic 

models struggle to accurately predict flow behaviour in areas such as river confluences or 

urban environments. Concurrently, it would be interesting to investigate how LSPIV-derived 

velocities perform in challenging urban settings with intricate flow dynamics and artificial 

structures. Insights gained from urban catchments could help refine model parameters that 

are less influenced in rural catchments, making these parameter adjustments more applicable 

across various scenarios. 

7.5.2 Spatial and Temporal Trends in α Variability through LSPIV-Hydraulic 

Model Integration 

The spatial and temporal variability of the depth-averaging coefficient, α, could further be 

investigated by integrating LSPIV velocity data with hydraulic model predictions. Analysing 

LSPIV data over time intervals and comparing resulting depth-averaged velocities with 

model outputs could indicate how α values change in response to varying flow regimes.  The 

spatial variability of α could also be investigated through integrating LSPIV data into 

hydraulic models, which can provide insights into patterns and trends in alpha value changes 

as relates to variations in channel geometry, bed roughness and flow conditions.  

7.5.3 AI-Driven Advancements in 2D Hydraulic Modelling 

Recent advances in AI and computing power have the potential to significantly enhance 2D 

hydraulic modelling, as was demonstrated in Chapter 5. In fact, responsibility now lies on 

hydraulic and flood modellers to adapt current physical flood models to take full advantage 

of AI-driven techniques, particularly deep learning, which can assist in calibrating and 

validating 2D hydraulic models more efficiently. AI-powered hydraulic modelling can 

bridge the gap between hydrology, geospatial analysis, and computer science and offer a 

transformative leap in 2D hydraulic modelling of floods. As and when satellite video datasets 

become more available, future research could investigate how generative AI models, such as 

such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs), can 

generate high-resolution synthetic images that closely resemble real-world satellite video 



147 

 

frames. These synthetic images can augment the limited observational data available, 

allowing for higher-quality inputs to the 2D hydraulic models. Generative AI could also be 

explored for inferring river channel bathymetric information by analysing satellite video 

frames and estimating water depths, with the potential to integrate this information into 2D 

hydraulic models, further improving the representation of terrain and flow interactions. This 

could advance the application of the techniques trialled in Chapter 6 where globally available 

topographic datasets, such as SRTM DEMs, can be explored, rather than the LiDAR 

topography used in this thesis, which is not always available globally.  
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Chapter 8 - Conclusion 

In an effort to contribute to the refinement of outputs from 2D hydraulic models, this thesis 

integrated satellite and UAV video, LSPIV techniques and AI-driven analysis, offering a 

multi-faceted approach into providing an understanding of flood dynamics at reach scale. In 

particular, the field of satellite remote sensing is witnessing an explosive growth in datasets 

encompassing various spatial, spectral, and temporal resolutions, thanks to advancements in 

satellite technology and sensor capabilities.  In parallel, there has been a significant growth 

in computing power, driven by advances in hardware, cloud computing, and parallel 

processing technologies. The convergence of explosive growth in remote sensing datasets 

and computing power holds transformative potential for flood sciences. The work in this 

thesis has showcased how 2D physics-based hydraulic models can leverage on contemporary 

datasets and methods. This should open up diverse research pathways that will ultimately 

lead to improved flood prediction capabilities.  

There is still a sore need for more rigorous validation of 2D hydraulic models. In this thesis, 

it was shown how the adoption of advanced remote sensing techniques will help overcome 

some of the legacy technical, logistical, and methodological challenges associated with 

traditional data for model validation. The use of video from the rapidly ubiquitous airborne 

platforms was shown to enhance the accuracy and reliability of model predictions by 

addressing the limitations of traditional calibration/validation methods. Surface river 

velocities derived from high resolution aerial imagery offer unprecedented spatial coverage 

that allowed for assessing the accuracy of 2D model predictions across different flow 

regimes and eco-hydraulic conditions where traditional measurement methods struggle to 

capture accurate flow velocities especially during extreme flow conditions such as high 

floods or low-flow periods. It is speculated that the use of these non-intrusive techniques, 

which eliminate the need for personnel to operate within hazardous flood conditions and also 

ensure no disruption to the natural flow conditions unlike invasive physical sensors, will be 

able to offer the opportunity to validate specific hydraulic processes such as flow separation 

and eddy formation with even better accuracies.  

The estimation of velocities and discharge using satellite video can offer a transformative 

solution to the problem of inadequate river discharge data globally, especially in the wake 

of declining numbers of gauging stations globally. Although concomitant topographical data 

is required for application of space-based discharge estimation techniques demonstrated in 

this thesis, the resolution of globally available DEMs is rapidly improving, therefore a 

crucial parameter is velocity. Satellite video can offer near-real time to real-time discharge 
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information which can further serve as independent validation to traditional discharge 

measurement techniques. Although satellite video data will be particularly beneficial for the 

comprehensive understanding of river flow dynamics, particularly for transboundary rivers 

and basins, more work on validation of these measurements remains.  

Overall, the findings in this thesis underscored how through rigorous validation of 2D 

hydraulic models, it is possible to quantify and minimize the uncertainties associated with a 

multitude of input parameters, including topographic data, boundary conditions and 

roughness coefficients, enhancing confidence in 2D models’ predictive capabilities. 

Evolving environmental conditions such as land-use changes and changes in channel 

morphology can significantly alter the dynamics of flood events. To accurately account for 

these changes, 2D hydraulic models must be validated against recent and relevant data, 

which will ensure that the full complexity of hydraulic phenomena is captured, resulting in 

more reliable flood predictions and improved management of flood risk.   
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