5,188 research outputs found

    Extracting causal rules from spatio-temporal data

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23374-1_2This paper is concerned with the problem of detecting causality in spatiotemporal data. In contrast to most previous work on causality, we adopt a logical rather than a probabilistic approach. By defining the logical form of the desired causal rules, the algorithm developed in this paper searches for instances of rules of that form that explain as fully as possible the observations found in a data set. Experiments with synthetic data, where the underlying causal rules are known, show that in many cases the algorithm is able to retrieve close approximations to the rules that generated the data. However, experiments with real data concerning the movement of fish in a large Australian river system reveal significant practical limitations, primarily as a consequence of the coarse granularity of such movement data. In response, instead of focusing on strict causation (where an environmental event initiates a movement event), further experiments focused on perpetuation (where environmental conditions are the drivers of ongoing processes of movement). After retasking to search for a different logical form of rules compatible with perpetuation, our algorithm was able to identify perpetuation rules that explain a significant proportion of the fish movements. For example, approximately one fifth of the detected long-range movements of fish over a period of six years were accounted for by 26 rules taking account of variations in water-level alone.EPSRCAustralian Research Council (ARC) under the Discovery Projects Schem

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Turing Patterns and Biological Explanation

    Get PDF
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can be compared with experimental data, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific explanation

    Spacetime topology from the tomographic histories approach I: Non-relativistic Case

    Full text link
    The tomographic histories approach is presented. As an inverse problem, we recover in an operational way the effective topology of the extended configuration space of a system. This means that from a series of experiments we get a set of points corresponding to events. The difference between effective and actual topology is drawn. We deduce the topology of the extended configuration space of a non-relativistic system, using certain concepts from the consistent histories approach to Quantum Mechanics, such as the notion of a record. A few remarks about the case of a relativistic system, preparing the ground for a forthcoming paper sequel to this, are made in the end.Comment: 19 pages, slight chang in title and corrected typos in second version. To appear to a special proceedings issue (Glafka 2004) of the International Journal of Theoretical Physic
    • …
    corecore