12,902 research outputs found

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Lex-Partitioning: A New Option for BDD Search

    Full text link
    For the exploration of large state spaces, symbolic search using binary decision diagrams (BDDs) can save huge amounts of memory and computation time. State sets are represented and modified by accessing and manipulating their characteristic functions. BDD partitioning is used to compute the image as the disjunction of smaller subimages. In this paper, we propose a novel BDD partitioning option. The partitioning is lexicographical in the binary representation of the states contained in the set that is represented by a BDD and uniform with respect to the number of states represented. The motivation of controlling the state set sizes in the partitioning is to eventually bridge the gap between explicit and symbolic search. Let n be the size of the binary state vector. We propose an O(n) ranking and unranking scheme that supports negated edges and operates on top of precomputed satcount values. For the uniform split of a BDD, we then use unranking to provide paths along which we partition the BDDs. In a shared BDD representation the efforts are O(n). The algorithms are fully integrated in the CUDD library and evaluated in strongly solving general game playing benchmarks.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    The place of expert systems in a typology of information systems

    Get PDF
    This article considers definitions and claims of Expert Systems ( ES) and analyzes them in view of traditional Information systems (IS). It is argued that the valid specifications for ES do not differ fran those for IS. Consequently the theoretical study and the practical development of ES should not be a monodiscipline. Integration of ES development in classical mathematics and computer science opens the door to existing knowledge and experience. Aspects of existing ES are reviewed from this interdisciplinary point of view

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Memory-Efficient Symbolic Heuristic Search

    Get PDF
    A promising approach to solving large state-space search problems is to integrate heuristic search with symbolic search. Recent work shows that a symbolic A * search al-gorithm that uses binary decision diagrams to compactly rep-resent sets of states outperforms traditional A * in many do-mains. Since the memory requirements of A * limit its scal-ability, we show how to integrate symbolic search with a memory-efficient strategy for heuristic search. We analyze the resulting search algorithm, consider the factors that affect its behavior, and evaluate its performance in solving bench-mark problems that include STRIPS planning problems

    Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned

    Get PDF
    Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types

    Symbolic Search in Planning and General Game Playing

    Get PDF
    Search is an important topic in many areas of AI. Search problems often result in an immense number of states. This work addresses this by using a special datastructure, BDDs, which can represent large sets of states efficiently, often saving space compared to explicit representations. The first part is concerned with an analysis of the complexity of BDDs for some search problems, resulting in lower or upper bounds on BDD sizes for these. The second part is concerned with action planning, an area where the programmer does not know in advance what the search problem will look like. This part presents symbolic algorithms for finding optimal solutions for two different settings, classical and net-benefit planning, as well as several improvements to these algorithms. The resulting planner was able to win the International Planning Competition IPC 2008. The third part is concerned with general game playing, which is similar to planning in that the programmer does not know in advance what game will be played. This work proposes algorithms for instantiating the input and solving games symbolically. For playing, a hybrid player based on UCT and the solver is presented
    corecore