95 research outputs found

    Practical packet combining for use with cooperative and non-cooperative ARQ schemes in wireless sensor networks

    Get PDF
    Although it is envisaged that advances in technology will follow a "Moores Law" trend for many years to come, one of the aims of Wireless Sensor Networks (WSNs) is to reduce the size of the nodes as much as possible. The issue of limited resources on current devices may therefore not improve much with future designs as a result. There is a pressing need, therefore, for simple, efficient protocols and algorithms that can maximise the use of available resources in an energy efficient manner. In this thesis an improved packet combining scheme useful on low power, resource-constrained sensor networks is developed. The algorithm is applicable in areas where currently only more complex combining approaches are used. These include cooperative communications and hybrid-ARQ schemes which have been shown to be of major benefit for wireless communications. Using the packet combining scheme developed in this thesis more than an 85% reduction in energy costs are possible over previous, similar approaches. Both simulated and practical experiments are developed in which the algorithm is shown to offer up to approximately 2.5 dB reduction in the required Signal-to-Noise ratio (SNR) for a particular Packet Error Rate (PER). This is a welcome result as complex schemes, such as maximal-ratio combining, are not implementable on many of the resource constrained devices under consideration. A motivational side study on the transitional region is also carried out in this thesis. This region has been shown to be somewhat of a problem for WSNs. It is characterised by variable packet reception rate caused by a combination of fading and manufacturing variances in the radio receivers. Experiments are carried out to determine whether or not a spread-spectrum architecture has any effect on the size of this region, as has been suggested in previous work. It is shown that, for the particular setup tested, the transitional region still has significant extent even when employing a spread-spectrum architecture. This result further motivates the need for the packet combining scheme developed as it is precisely in zones such as the transitional region that packet combining will be of most benefit

    同時送信型無線ネットワークの物理層に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 森川 博之, 東京大学教授 相田 仁, 東京大学教授 廣瀬 明, 東京大学准教授 中山 雅哉, 東京大学准教授 落合 秀也University of Tokyo(東京大学

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Energy-aware network coding circuit and system design

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-78).Network Coding (NC) has been shown to provide several advantages in communication networks in terms of throughput, data robustness and security. However, its applicability to networks with resource constrained nodes, like Body Area Networks (BANs), has been questioned due to its complexity requirements. Proposed NC implementations are based on high-end CPUs and GPUs, consuming hundreds of Watts, without providing enough insight about its energy requirements. As more and more mobile devices, sensors and other low power systems are used in modern communication protocols, a highly efficient and optimized implementation of NC is required. In this work, an effort is made to bridge NC theory with ultra low power applications. For this reason, an energy-scalable, low power accelerator is designed in order to explore the minimum energy requirements of NC. Based on post-layout simulation results using a TSMC 65nm process, the proposed encoder consumes 22.15 uW at 0.4V, achieving a processing throughput of 80 MB/s. These numbers reveal that NC can indeed be incorporated into resource constrained networks with battery-operated or even energy scavenging nodes. Apart from the hardware design, a new partial packet recovery mechanism based on NC, called PPRNC, is proposed. PPRNC exploits information contained in partial packets, similarly to existing Hybrid-ARQ schemes, but with a PHY-agnostic approach. Minimization of the number of retransmitted packets saves transmission energy and results in higher total network throughput, making PPRNC an attractive candidate for energy constrained networks, such as BANs, as well as modern, high-speed wireless mesh networks. The proposed mechanism is analyzed and implemented using commercial development boards, validating its ability to extract information contained from partial packets.by Georgios Angelopoulos.S.M

    Quantifying, generating and mitigating radio interference in Low-Power Wireless Networks

    Get PDF
    Doctoral Programme in Telecommunication - MAP-teleRadio interference a ects the performance of low-power wireless networks (LPWN), leading to packet loss and reduced energy-e ciency, among other problems. Reliability of communications is key to expand application domains for LPWN. Since most LPWN operate in the license-free Industrial Scienti c and Medical (ISM) bands and hence share the spectrum with other wireless technologies, addressing interference is an important challenge. In this context, we present JamLab: a low-cost infrastructure to augment existing LPWN testbeds with accurate interference generation in LPWN testbeds, useful to experimentally investigate the impact of interference on LPWN protocols. We investigate how interference in a shared wireless medium can be mitigated by performing wireless channel energy sensing in low-cost and low-power hardware. For this pupose, we introduce a novel channel quality metric|dubbed CQ|based on availability of the channel over time, which meaningfully quanti es interference. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our metric has strong correlation with the Packet Reception Rate (PRR). We then explore dynamic radio resource adaptation techniques|namely packet size and error correction code overhead optimisations|based on instantaneous spectrum usage as quanti ed by our CQ metric. To conclude, we study emerging fast fading in the composite channel under constructive baseband interference, which has been recently introduced in low-power wireless networks as a promising technique. We show the resulting composite signal becomes vulnerable in the presence of noise, leading to signi cant deterioration of the link, whenever the carriers have similar amplitudes. Overall, our results suggest that the proposed tools and techniques have the potential to improve performance in LPWN operating in the unlicensed spectrum, improving coexistence while maintaining energy-e ciency. Future work includes implementation in next generation platforms, which provides superior computational capacity and more exible radio chip designs.A interferência de r adio afeta o desempenho das redes de comunicação sem o de baixo consumo - low-power wireless networks (LPWN), o que provoca perdas de pacotes, diminuição da e ciência energética, entre outros problemas. A contabilidade das comunicações e importante para a expansão e adoção das LPWN nos diversos domínios de potencial aplicação. Visto que a grande maioria das LPWN partilham o espectro radioelétrico com outras redes sem o, a interferência torna-se um desafio importante. Neste contexto, apresentamos o JamLab: uma infraestrutura de baixo custo para estender a funcionalidade dos ambientes laboratoriais para o estudo experimental do desempenho das LPWN sob interferência. Resultando, assim, numa ferramenta essencial para a adequada verificação dos protocolos de comunicações das LPWN. Para al em disso, a Tese introduz uma nova técnica para avaliar o ambiente radioelétrico e demostra a sua utilização para gerir recursos disponíveis no transceptor rádio, o que permite melhorar a fiabilidade das comunicações, nomeadamente nas plataformas de baixo consumo, garantindo e ciência energética. Assim, apresentamos uma nova métrica| denominada CQ - concebida especificamente para quantificar a qualidade do canal r adio, com base na sua disponibilidade temporal. Mediante dados adquiridos em v arias redes sem o Wi-Fi, instaladas no edifício de uma biblioteca universitária, demonstra-se que esta métrica tem um ótimo desempenho, evidenciando uma elevada correlação com a taxa de receção de pacotes. Investiga-se ainda a potencialidade da nossa métrica CQ para gerir dinamicamente recursos de radio como tamanho de pacote e taxa de correlação de erros dos códigos - baseado em medições instantâneas da qualidade do canal de radio. Posteriormente, estuda-se um modelo de canal composto, sob interferência construtiva de banda-base. A interferência construtiva de banda-base tem sido introduzida recentemente nas LPWN, evidenciando ser uma técnica prometedora no que diz respeito à baixa latência e à contabilidade das comunicações. Na Tese investiga-se o caso crítico em que o sinal composto se torna vulnerável na presença de ruído, o que acaba por deteriorar a qualidade da ligação, no caso em que as amplitudes das distintas portadoras presentes no receptor sejam similares. Finalmente, os resultados obtidos sugerem que as ferramentas e as técnicas propostas têm potencial para melhorar o desempenho das LPWN, num cenário de partilha do espectro radioelétrico com outras redes, melhorando a coexistência e mantendo e ciência energética. Prevê-se como trabalho futuro a implementação das técnicas propostas em plataformas de próxima geração, com maior flexibilidade e poder computacional para o processamento dos sinais rádio.This work was supported by FCT (Portuguese Foundation for Science and Technology) and by ESF (European Social Fund) through POPH (Portuguese Human Potential Operational Program), under PhD grant SFRH/BD/62198/2009; also by FCT under project ref. FCOMP-01-0124-FEDER-014922 (MASQOTS), and EU through the FP7 programme, under grant FP7-ICT-224053 (CONET)

    Wireless sensor systems for sense/decide/act/communicate.

    Full text link

    D21.3 Analysis of initial results at EuWIN@CTTC

    Get PDF
    Deliverable D21.3 del projecte europeu NEWCOM#The nature of this Deliverable of WP2.1 (“Radio interfaces for next-generation wireless systems”) is mainly descriptive and its purpose is to provide a report on the status of the different Joint Research Activities (JRAs) currently ongoing, some of them being performed on the facilities that are available at EuWInPeer ReviewedPreprin

    Towards low power radio localisation

    Get PDF
    This work investigates the use of super-resolution algorithms for precision localisation and long-term tracking of small subjects, like rodents. An overview is given of a variety of techniques for positioning in use today, namely received signal strength, time of arrival, time difference of arrival and direction of arrival (DoA). Based on the analysis, it is concluded that the direction finding signal subspace based techniques are most appropriate for the purposes of our system. The details of the software defined radio (SDR) antenna array testbed development, build, characterisation and performance evaluation are presented. The results of direction finding experiments in the screened anechoic chamber emulating open-space propagation are discussed. It is shown that such testbed is capable of locating sources in the vicinity of the array with high precision. It can estimate the DoAs of more simultaneously working transmitters than antennas in the array, by employing spread spectrum techniques, and readily accommodates very low power sources. Overall constraints on the system are such that the operational range must be around 50 – 100 m. The transmitter must be small both volumetrically and in terms of weight. It also has to be operational over an extended period of around 1 year. The implications of these are that very small antennas and batteries must be used, which are usually accompanied by very low transmission efficiencies and tiny capacities, respectively. Based on the above, the use of ultra-low power oscillator transmitters, as first cut prototypes of the tag, is proposed. It is shown that the Clapp, Colpitts, Pierce and Cross-coupled architectures are adequate. A thorough analysis of these topologies is provided with full details of tag and antenna co-design. Finally the performance of these architectures is evaluated through simulations with respect to power output, overall efficiency and phase noise.Open Acces
    corecore