7 research outputs found

    Selection of Marine Security Policy using Fuzzy-AHP TOPSIS Hybrid Approach

    Get PDF
    The research was focused on the integration of Fuzzy set theory with Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to choose the optimum maritime security policy to achieve Indonesia recognition as the world's maritime axis. The method used is AHP with fuzzy based enhancement. Here, the weight of each criterion is calculated to overcome the criticism of the scale of unbalanced rating, uncertainty, and inaccuracy in the pairwise of comparison process. The best recommendation for Indonesian maritime policies is multi task single agency which is greatly infuenced by several factors such as technology, regulations, infrastructure, economic, politic, and socio-culture.  The finding shows that the hybrid approach is able to produce the best recommendation for Indonesian maritime security policy

    Implementasi Fuzzy ELECTRE Untuk Penilaian Kerusakan Akibat Bencana Alam

    Full text link

    ELECTRE I Based Relevance Decision-Makers Feedback to the Location Selection of Distribution Centers

    Get PDF

    ELECTRE I Based Relevance Decision-Makers Feedback to the Location Selection of Distribution Centers

    Get PDF
    The location selection of distribution centers is one of the important strategies to optimize the logistics system. To solve this problem, under certain environment, this paper presents a new multicriteria decision-making method based on ELECTRE I. The proposed method helps decision-makers to select the best location from a given set of locations for implementing. After having identified decision-makers, the criteria, and the set of locations, the factors influencing the selection are analyzed in order to identify the best location. A sensitivity analysis is then performed to determine the influence of criteria weights on the selection decision. The strength of the proposed method is to incorporate decision-makers' preferences into the decision-making process. In addition, the proposed method considers both quantitative and qualitative criteria. Finally, the selected solution is validated by both tests of concordance and discordance simultaneously. A case study is provided to illustrate the proposed method

    Multi criteria decision making for assisting business angels in investments

    Get PDF
    The roles of business angels (BAs) are especially important in view of both decreasing the levels of formal venture capital investment and growing the average amount of individual deals. Angel investors typically invest at an earlier stage of growth and provide more business guidance than venture capital providers. Therefore, angel investors are the key players in generating high-growth companies, essential to regional economic development. As a result, they have attracted the attention of policy makers. Thus, this research attempted to improve the conception of decision-making criteria used by the BAs for investment, and reports the findings of an exploratory project that analysed the Malaysian BAs’ decision-making process. A hierarchy of multiple criteria decision making (MCDM) model based on fuzzy sets theory and VIKOR (in Serbian: Vise Kriterijumska Optimizacija I Kompromisno Resenje) method were proposed in order to look into the decision making process. For this reason, 5 main criteria and 29 sub criteria were developed to be evaluated by 5 well-known BAs to assess and rate the criteria and alternatives using fuzzy linguistic variables. For the purpose of illustration, an empirical case study was conducted on Malaysian BAs and the results are presented with numerical examples. The final finding of the research suggested that Johor is the most suitable city for investment. Kuala Lumpur, Penang, and Sabahare placed in the subsequent ranks. The proposed framework had been successfully applied for the decision making process, and could be used by other BAs for their cases with slight modifications

    Sustainable Industrial Engineering along Product-Service Life Cycle/Supply Chain

    Get PDF
    Sustainable industrial engineering addresses the sustainability issue from economic, environmental, and social points of view. Its application fields are the whole value chain and lifecycle of products/services, from the development to the end-of-life stages. This book aims to address many of the challenges faced by industrial organizations and supply chains to become more sustainable through reinventing their processes and practices, by continuously incorporating sustainability guidelines and practices in their decisions, such as circular economy, collaboration with suppliers and customers, using information technologies and systems, tracking their products’ life-cycle, using optimization methods to reduce resource use, and to apply new management paradigms to help mitigate many of the wastes that exist across organizations and supply chains. This book will be of interest to the fast-growing body of academics studying and researching sustainability, as well as to industry managers involved in sustainability management

    Advanced Safety Methodology for Risk Management of Petroleum Refinery Operations

    Get PDF
    Petroleum refineries are important facilities for refining petroleum products that provide the primary source of energy for domestic and industrial consumption globally. Petroleum refinery operations provide significant contribution to global economic growth. Petroleum refineries are complex, multifaceted systems that perform multiple phase operations characterized by a high level of risk. Evidence based major accidents that have occurred within the last three decades in the petroleum refineries, around the world, indicates losses estimated in billions of US dollars. Many of these accidents are catastrophes, which have led to the disruption of petroleum refinery operations. These accidents have resulted in production loss, asset damage, environmental damage, fatalities and injuries. However, the foremost issue analysed in literatures in relation to major accidents in petroleum refineries, is the lack of robust risk assessment and resourceful risk management approaches to identify and assess major accident risks, in order to prevent or mitigate them from escalating to an accident. Thus, it is exceptionally critical to readdress the issue of petroleum refinery risk management with the development of a more dependable, adaptable and holistic risk modelling framework for major accident risks investigation. In this thesis, a proactive framework for advanced risk management to analyse and mitigate the disruption risks of petroleum refinery operations is presented. In this research, various risk elements and their attributes that can interact to cause the disruption of PRPU operations were identified and analysed, in order to determine their criticality levels. This thesis shows that the convergent effect of the interactions between the risk elements and their attributes can lead to the disruption of petroleum refinery operations. In the scheme of the study, Fuzzy Linguistic Preference Relation (FLPR), Fuzzy Evidential Reasoning (FER) and Fuzzy Bayesian Network (FBN) methodologies were proposed and implemented to evaluate the criticality of the risk elements and their attributes and to analyse the risk level of PRPU operations. Also, AHP-fuzzy VIKOR methodology was utilised for decision modelling to determine the optimal strategy for the risk management of the most significant risk elements’ attributes that can interact to cause the disruption of PRPU operations. The methodologies proposed and implemented in this research can be utilised in the petroleum refining industry, to analyse complex risk scenarios where there is incomplete information concerning risk events or where the probability of risk events is uncertain. The result of the analysis conducted in this research to determine the risk level of petroleum refinery operations can be utilised by risk assessors and decision makers as a threshold value for decision making in order to mitigate the disruption risk of PRPU operations. The decision strategies formulated in this thesis based on robust literature review and expert contributions, contributes to knowledge in terms of the risk management of petroleum refinery operations. The result of the evaluation and ranking of the risk elements and their attributes can provide salient risk information to duty holders and decision makers to improve their perceptions, in order to prioritise resources for risk management of the most critical attributes of the risk elements. Overall, the methodologies applied in this thesis, can be tailored to be utilised as a quantitative risk assessment tool, by risk managers and decision analysts in the petroleum refining industry for enhancement risk assessment processes where available information can sometimes be vague or incomplete for risk analysis
    corecore