28 research outputs found

    A New Extension of the Rank Transform for Stereo Matching

    Full text link

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Compound Models for Vision-Based Pedestrian Recognition

    Get PDF
    This thesis addresses the problem of recognizing pedestrians in video images acquired from a moving camera in real-world cluttered environments. Instead of focusing on the development of novel feature primitives or pattern classifiers, we follow an orthogonal direction and develop feature- and classifier-independent compound techniques which integrate complementary information from multiple image-based sources with the objective of improved pedestrian classification performance. After establishing a performance baseline in terms of a thorough experimental study on monocular pedestrian recognition, we investigate the use of multiple cues on module-level. A motion-based focus of attention stage is proposed based on a learned probabilistic pedestrian-specific model of motion features. The model is used to generate pedestrian localization hypotheses for subsequent shape- and texture-based classification modules. In the remainder of this work, we focus on the integration of complementary information directly into the pattern classification step. We present a combination of shape and texture information by means of pose-specific generative shape and texture models. The generative models are integrated with discriminative classification models by utilizing synthesized virtual pedestrian training samples from the former to enhance the classification performance of the latter. Both models are linked using Active Learning to guide the training process towards informative samples. A multi-level mixture-of-experts classification framework is proposed which involves local pose-specific expert classifiers operating on multiple image modalities and features. In terms of image modalities, we consider gray-level intensity, depth cues derived from dense stereo vision and motion cues arising from dense optical flow. We furthermore employ shape-based, gradient-based and texture-based features. The mixture-of-experts formulation compares favorably to joint space approaches, in view of performance and practical feasibility. Finally, we extend this mixture-of-experts framework in terms of multi-cue partial occlusion handling and the estimation of pedestrian body orientation. Our occlusion model involves examining occlusion boundaries which manifest in discontinuities in depth and motion space. Occlusion-dependent weights which relate to the visibility of certain body parts focus the decision on unoccluded body components. We further apply the pose-specific nature of our mixture-of-experts framework towards estimating the density of pedestrian body orientation from single images, again integrating shape and texture information. Throughout this work, particular emphasis is laid on thorough performance evaluation both regarding methodology and competitive real-world datasets. Several datasets used in this thesis are made publicly available for benchmarking purposes. Our results indicate significant performance boosts over state-of-the-art for all aspects considered in this thesis, i.e. pedestrian recognition, partial occlusion handling and body orientation estimation. The pedestrian recognition performance in particular is considerably advanced; false detections at constant detection rates are reduced by significantly more than an order of magnitude

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Forum Bildverarbeitung 2016

    Get PDF
    Bildverarbeitung spielt in vielen Bereichen der Technik zur schnellen und berührungslosen Datenerfassung eine Schlüsselrolle. Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 1. und 2. Dezember 2016 in Karlsruhe als Veranstaltung des Karlsruher Instituts für Technologie und des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung stattfand, enthält die Aufsätze der eingegangenen Beiträge. Darin wird über aktuelle Trends und Lösungen der Bildverarbeitung berichtet
    corecore