1,613 research outputs found

    A permanent-magnet hybrid brushless integrated starter-generator for hybrid electric vehicles

    Get PDF
    A new permanent-magnet (PM) hybrid brushless (PMHB) machine is proposed and implemented as the integrated startergenerator (ISG) for hybrid electric vehicles (HEVs). It has the advantages of higher torque density than other PMHB machines and much wider speed range than other PM brushless machines. The key is to tune its dc-field winding current in such a way that three major modes of ISG system operation for HEVs, namely, engine cranking, battery charging, and torque boosting, can be achieved effectively. The finite-element method is employed to simulate its steady-state and dynamic performances. Finally, a 2-kW prototype is constructed and tested to experimentally verify the simulation results and the validity of the proposed ISG system. © 2010 IEEE.published_or_final_versio

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali

    Comprehensive high speed automotive SM-PMSM torque control stability analysis including novel control approach

    Get PDF
    Permanent magnet synchronous machines (PMSM) are widely used in the automotive industry for electric vehicle (EV) and hybrid electric vehicle (HEV) propulsion systems, where the trend is to achieve high mechanical speeds. High speeds inevitably imply high current electrical frequencies, which can lead to a lack of controllability when using field oriented control (FOC) due to sampling period constraints. In this work, a comprehensive discrete-time model is fully developed to assess the stability issues in the widely used FOC. A speed-adaptive control structure that overcomes these stability problems and extends the speed operation range of the PMSM is presented. Also, a numerical methodology from which the maximum operating stable frequency can be computed in advance of any experimentation, is developed. All contributions are accompanied and supported by numerical results obtained from an accurate MATLAB/Simulink model.Peer ReviewedPostprint (published version

    New design of switched reluctance motor using finite element analysis for hybrid electric vehicle applications

    Get PDF
    Switched reluctance motors (SRMs) have been gaining increasing popularity and emerging as an attractive alternative to traditional electrical motors in hybrid vehicle applications due to their simple structure, ruggedness, ability of fault-tolerance, extremely high-speed operation, high power density, and low manufacturing cost. However, large torque ripple and acoustic noise are well-known as their major disadvantages. This thesis presents a novel five-phase 15/12 SRM which features higher power density, very low level of vibration with flexibility in controlling the torque ripple profile. This design is classified as an axial field SRM, hence it needs 3-dimensional finite-element analysis model. Nonetheless, an alternative 2-dimensional model is developed and simulated using FEA software (MagNet) in order to analyze the proposed model. The findings from the simulation is scrutinized and analyzed to realize various design features along with performance of the model. The finding in reference to the proposed axial field model is then compared with existing radial field models to validate its performance improvement. The manufacturing issues were addressed to prove its feasibility and cost effectiveness in conjunction with its assembly competences. Taking all the aspects into account superiority of new model\u27s efficiency is comprehended to justify its application in HEV application

    FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Full text link

    Vector Control and Experimental Evaluation of Permanent Magnet Synchronous Motors for HEVs

    Get PDF
    The 2004 Toyota Prius exceeded sales expectations and led the automotive industry to realize that there is a healthy market for hybrid electric vehicles (HEVs). The Prius uses two interior permanent magnet motors to manipulate power flow throughout the drive system. Permanent magnet synchronous motors (PMSMs) are most suitable for HEVs and full electric vehicles due to their high efficiency, high power density, and fast dynamic response. This thesis will present vector control theory for PMSMs, with focus on interior permanent magnet motors. The primary 50kW drive motor and inverter of the 2004 Toyota Prius Synergy drive system was removed for an intensive thermal, electrical, and mechanical evaluation in a dynamometer test cell at Oak Ridge National Laboratory. These evaluations include locked rotor, back-EMF, and motoring operation region tests. The resulting data is presented to reveal characteristics such as torque capabilities, thermal limitations, and motor efficiencies for all toque-speed operation points. One of the most challenging tasks of the evaluation was to solve problems related to electromagnetic interference (EMI). The pulse width modulation (PWM) driven high voltage converter/inverter is a large source of electromagnetic field radiation and nearby low level signals, including control circuitry for the hybrid system, will experience EMI if proper countermeasures are not taken. Methods to reduce electromagnetic field radiation and practices to prevent EMI are discussed

    Inverter Design for SiC-based Electric Drive Systems with Optimal Redundant States Control of Space Vector Modulation

    Get PDF
    The need for inverters with ever increasing power density and efficiency has recently become the driving factor for research in various fields. Increasing the operating voltage of the whole drive system and utilizing newly developed SiC power switches can contribute towards this goal. Higher operating voltage allows the design of drives with lower current, which leads to lower copper losses in cables and machine, while SiC switches can drastically increase the inverter efficiency. Offshore renewable power generation, such as tidal power, is a typical application where the increase of operating voltage can be highly beneficial. The ongoing electrification of transportation calls also for high power electric powertrains with high power density,where SiC technology has key advantages.In the first part of the thesis, suitable control schemes for inverters in synchronous machine drive systems are derived. A properly designed Maximum Power Point Tracking algorithm for kite-based tidal power systems is presented. The speed and torque of this new tidal power generation system varies periodically and the inverter control needs to be able to handle this variable power profile. Experimental verification of the developed control is conducted on a 35 kVA laboratory emulator of the tidal power generation unit.Electric drives using multilevel inverters are studied afterwards. Multilevel inverters use multiple low-voltage-rated switches and can operate at higher voltage than standard two-level inverters. The Neutral Point Clamped (NPC) converter is a commonly used multilevel inverter topology for medium voltage machine drives. However, the voltage balancing of its dc-side capacitors and the complexity of its control are still issues that have not been effectively solved. A new method for the optimal utilization of the redundant states in Space Vector pulse-width-Modulation (SVM) is proposed in this thesis in order to control its dc-link voltages. Experimental verification on a 4-kV-rated prototype medium-voltage PMSM drive with 5-level NPC converters is conducted in order to validate the effectiveness of the proposed control technique.Low switching and conduction losses are typical characteristics of SiC switches that can be utilized to build inverters with high power density, due to the increased efficiency and smaller form-factor. Due to the above, SiC power modules have been particularly attractive for the automotive industry. The design approach of 2-level automotive inverters has been studied in this project. Moreover, a new design approach for the cooling system of automotive inverters has been developed in this thesis, which fine-tunes the inverter heatsink utilizing standard legislated test routines for electric vehicles. Multiple conjugate-heat-transfer (CHT) computation results showcase the iterative optimization procedure on a test-case 250 kW (450 A) automotive SiC inverter.Finally, the experimental testing of high power machine drives in order to verify the control and the hardware design is an important step of the development process. Thus, the performance of the prototype 450 A SiC 2-level inverter has been been experimentally validated in a power hardware-in-the-loop (P-HIL) set-up that emulates an automotive drive system. Several challenges have been addressed with respect to the accurate modelling of the motor and the control of the circulating power in the system. A new control technique utilizing the redundant states of the SVM has been developed for this set-up to effectively suppress the zero-sequence current to 3.3 % of the line current at rated power

    Feasibility of high frequency alternating current power distribution for the automobile auxiliary electrical system

    Get PDF
    This study investigates the feasibility and potential benefits of high frequency alternating current (HFAC) for vehicle auxiliary electrical systems. A 100Vrms, 50kHz sinusoidal AC bus is compared with 14V DC and 42V DC electrical systems in terms of mass and energy efficiency. The investigation is focused on the four main sub-systems of an on-board electrical network, namely: the power generation, power distribution, power conversion and the electrical loads. In addition, a systemlevel inquiry is conducted for the HFAC bus and a comparable 42V DC system. A combination of computer simulation, analytical analysis and experimental work has highlighted benefits for the HFAC power distribution sub-system and for low-torque motor actuators. Specifically, the HFAC conductor mass is potentially 70% and 30% lighter than comparable 14V DC and 42V DC cables, respectively. Also, the proposed cable is expected to be at least 80% more energy efficient than the current DC conductor technology. In addition, it was found that 400Hz AC machines can successfully replace DC motor actuators with a rated torque of up to 2Nm. The former are up to 100% more efficient and approximately 60% lighter and more compact than the existing DC motors in vehicles. However, it is argued that the HFAC supply is not feasible for high-torque motor actuators. This is because of the high energy losses and increased machine torque ripple associated with the use of HFAC power. The HFAC power conversion sub-system offers benefits in terms of simple power converter structure and efficient HFAC/DC converters. However, a significant limitation is the high power loss within HFAC/AC modules, which can be as high as 900W for a 2.4kW load with continuous operation. Similar restrictions are highlighted for the HFAC power generation sub-system, where up to 400W is lost in a 4kW DC/HFAC power module. The conclusion of the present work is that the HFAC system offers mass and energy efficiency benefits for the conventional vehicle by leveraging the use of compact lowtorque motor actuators and lightweight wiring technology

    Exploring classification for sentiment analysis from halal based tweets

    Get PDF
    Globally, social media is gaining popularity and redefining how people interact with one another online. Malaysian individuals, for example, are increasingly reliant on social media platforms such as Facebook and Twitter as well as LinkedIn, Pinterest, Instagram, and other similar sites. Consider sentiment analysis to be a sub-category of social listening. A social media sentiment analysis has uncovered the public's current feelings on a particular topic or brand. Sentiment analysis is a technique for characterizing and capturing emotional states from unstructured text. The most important part of sentiment analysis is to evaluate a body of text to comprehend the opinion expressed by it. It usually assigns a polarity of “positive”, “negative” or “neutral”. It uses an algorithmic technique to capture people's thoughts, sentiments, and emotions by incorporating Natural Language Processing and Machine Learning technology. Sentiment analysis in Malaysia's social media is challenging to perform since posts are frequently written in a mixed language, usage of English and Malay with embedded jargon and various district dialect. The classification was performed based on Malaysia halal certification scheme for each tweet to acquire the class label's frequency value based on the sentiment analysis process's polarity results. It will demonstrate social media users' proclivity for posting and can act as a reference point for users when making decisions. An analysis of amounted 500 tweets with the hashtag #sijilhalal elicited information regarding people's feelings, preconceptions, and attitudes toward various issues related to halal certification in Malaysia. The discovery of a person's emotions concerning halal topics is visualized. Muslims' views are of importance to #sijilhalal awareness
    corecore