7,232 research outputs found

    Explanation in constraint satisfaction: A survey

    Get PDF
    Much of the focus on explanation in the field of artificial intelligence has focused on machine learning methods and, in particular, concepts produced by advanced methods such as neural networks and deep learning. However, there has been a long history of explanation generation in the general field of constraint satisfaction, one of the AI's most ubiquitous subfields. In this paper we survey the major seminal papers on the explanation and constraints, as well as some more recent works. The survey sets out to unify many disparate lines of work in areas such as model-based diagnosis, constraint programming, Boolean satisfiability, truth maintenance systems, quantified logics, and related areas

    Quantified Constraints in Twenty Seventeen

    Get PDF
    I present a survey of recent advances in the algorithmic and computational complexity theory of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern research directions

    Finding counterfactual explanations through constraint relaxations

    Get PDF
    Interactive constraint systems often suffer from infeasibility (no solution) due to conflicting user constraints. A common approach to recover infeasibility is to eliminate the constraints that cause the conflicts in the system. This approach allows the system to provide an explanation as: "if the user is willing to drop out some of their constraints, there exists a solution". However, one can criticise this form of explanation as not being very informative. A counterfactual explanation is a type of explanation that can provide a basis for the user to recover feasibility by helping them understand which changes can be applied to their existing constraints rather than removing them. This approach has been extensively studied in the machine learning field, but requires a more thorough investigation in the context of constraint satisfaction. We propose an iterative method based on conflict detection and maximal relaxations in over-constrained constraint satisfaction problems to help compute a counterfactual explanation

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure
    • …
    corecore