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Abstract
I present a survey of recent advances in the algorithmic and computational complexity theory
of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern
research directions.
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1 Introduction

The Quantified Constraint Satisfaction Problem (QCSP) might be thought of as the dissolute
younger brother of its better-studied restriction, the Constraint Satisfaction Problem (CSP).
The CSP has been called Königsproblem1 as it sits at the interface between Combinatorics,
Logic and Universal Algebra. The QCSP is a logical generalisation of the CSP whose
combinatorial definition is ugly. Similarly, although the algebraic theory of the QCSP is
useful, its algebraic objects are a bit unwieldy since surjective operations are not closed under
composition. CSPs are ubiquitous in Computer Science, especially when one considers them
in their infinite-domain generality, while QCSPs can not nearly claim to be so important
in applications. This is no doubt due to modelling difficulties induced by the universal
quantifier in the absence of disjunction, together with the lack of ability to relativise (guard)
the universal quantifiers. The variant of QCSP in which both quantifiers may be relativised
(for the CSP this is called the list or conservative case) has in fact been fully classified [7].
The only remaining QCSPs for which such relativisation is not desirable are the Boolean
QCSPs. These are long since classified and Quantified Satisfiability itself, better-known as
QBF (Quantified Boolean Formulas) – which is indeed useful – may be considered its own
research area, and is therefore left out of the scope of this survey (see [75]).

In my papers on QCSP, I have often cited its use in planning [93] and modelling non-
monotonic reasoning [56], but inspection of both these papers reveals this is just the Boolean
case of QBF. There are various claims for the usefulness of non-Boolean QCSPs but specific
explanations are sparse and even the examples given for QCSPs often involve more than just
conjunction in the quantifier-free part (Example 1 in [89] is of this form). Thus, what is left
of the true non-Boolean QCSP is a problem I believe to be mostly of interest to theorists,
especially those who are not afraid of getting their hands dirty. For this is the lot of the
researcher into complexity of QCSPs! However, in this quagmire there is still beauty to be
found and interesting structured classifications are known often mixing curiously techniques
combinatorial and algebraic. Indeed, the complexity researcher can even draw succour from

1 King of problems, rather than problem of kings.
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the spurious claim that QCSPs are more important than CSPs since a classification for the
former embeds that of the latter.

1.1 Previous Surveys

I know of two previous articles on general QCSPs that might be considered as surveys,
both written by Hubie Chen [32, 36]. Neither is marketed as as a survey, [32] serves as an
introduction to the topic and [36] is a more reflective piece from the viewpoint of the author.
In this survey, I will try to be more comprehensive, within the scope, and at least in regard
of recent work. However, this article is not intended to be introductory, and will not even
contain definitions for all the concepts introduced.

After a section of background, this survey will have three principal sections, corresponding
to what I see as the three largest research themes into non-Boolean QCSPs in the past decade.
In Section 4, I will survey the state-of-the-art in classical complexity classifications for QCSP
while in Section 5, I will discuss the recent work done in the area of their parameterized
complexities. In Section 6, I will look at new algorithms for QCSPs and proof theories for
their evaluation.

2 Preliminaries

In this article we tend toward the logical definitions for constraint satisfaction. A constraint
language may therefore be seen as a relational first-order structure (possibly with constants).
Relational structures are denoted B with domain B of cardinality |B|. Infinity might appear
in two guises, either in the domain size or number of relations in the signature. When there
is an infinite number of relations there is an issue as to how they are encoded, so we prefer
to avoid this within computational problems. When we describe a constraint language as
finite, we mean both in the domain size and the number of relations. We sometimes talk of a
constraint language or structure (or CSP) with constants where we assume that all elements
of the domain are named by their own constant.

The logic associated with CSP, the fragment of first-order containing just ∃, ∧ and =,
is usually known as primitive positive (pp) logic. The generalisation to QCSP involves the
restoration of ∀ to primitive positive logic and appears in the literature, like the devil, under
a myriad of names. In older mathematical logic texts it is known as positive Horn [74] while
more modern works term it quantified constraint formulas [33], quantified conjunctive-positive
[41], quantified conjunctive [20, 37], conjunctive positive [28] and even few [32] (this last is
from forall-exists-wedge). The foundational [18] even leaves the logic unnamed. Since positive
conjunctive is not among these names, it is the designation this article will use.

For a constraint language B, the problem QCSP(B) takes as input a sentence φ of positive
conjunctive logic and returns a yes-instance precisely when φ is true on B, denoted B |= φ.
The problem CSP(B) is defined similarly but for primitive positive logic. We sometimes also
refer to the (Q)CSP of B as a disingenuous shorthand for (Q)CSP(B).

Note that, in fullest generality, the (so-called uniform) QCSP takes as input a pair (φ,B),
where we may imagine finite B to be given by listing domain and tuples in relations, and
asks whether B |= φ. The (non-uniform) problems QCSP(B) are examples of right-hand
restrictions of QCSP, where left-hand restrictions involve limiting the form of the positive
conjunctive sentence that may be input.

A quantifier block (sequence of quantified variables) is in Π2k when it begins with
universally quantified variables and alternates between the two quantifiers no more than
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2k − 1 times thereafter. Π2k-CSP(B) is the restriction of QCSP(B) in which the positive
conjunctive input is restricted to be prenex with quantifier block Π2k.

A homomorphism from a structure A to a structure B in the same signature is a function
f from A to B such that for each k-ary relation R, if R(x1, . . . , xk) holds in A, then
R(f(x1), . . . , f(xk)) holds in B. An endomorphism of B is a homomorphism from B to
itself. A structure is a core when all of its endomorphisms are automorphisms. The CSP is
well-known to be equivalent to the homomorphism problem, that given finite input A and B,
asks whether there is a homomorphism from A to B? In this guise, it is apparent whence
the names left- and right-hand restrictions, seen in the previous paragraph, arose. Let us
dwell a little on what makes the CSP equivalent to the homomorphism problem, i.e. how
we translate between primitive positive sentences and relational structures. This is through
the juxtaposition of canonical query and canonical database [77], where one turns a prenex
primitive positive sentence to a relational structure by mapping variables vi to elements vi

and positive atoms R(v1, . . . , vk) in the conjunction to tuples (v1, . . . , vk) in a relation R.
An algebra is a first-order functional structure. Algebras are denoted A with domain A. If

R is anm-ary relation over B and f is a k-ary operation on B, then we say f preserves R if, for
any (x1

1, . . . , x
m
1 ), . . . , (x1

k, . . . , x
m
k ) ∈ R we have also (f(x1

1, . . . , x
1
k), . . . , f(xm

1 , . . . , x
m
k )) ∈ R.

When f preserves R we also say that R is invariant under f and f is a polymorphism of
R. A constraint language B is preserved by f if all of its relations are. Note that the
unary polymorphisms of B are precisely its endomorphisms (whence the term polymorphism).
Let Pol(B) be the set of polymorphisms of B and let Inv(A) be the set of relations on A
which are invariant under (each of) the operations of A. Pol(B) is an object known in
Universal Algebra as a clone, which is a set of operations containing all projections and closed
under composition (superposition). I will conflate sets of operations over the same domain
and algebras just as I do sets of relations over the same domain and constraint languages
(relational structures). Indeed, the only technical difference between such objects is the
movement away from an ordered signature, which is not something we will ever need. Let 〈A〉
be the clone generated by (the set of operations) of A and let s(〈A〉) be this clone restricted
to its surjective operations. Finally, let sPol(B) be the set of surjective polymorphisms of
B and let 〈B〉pp and 〈B〉pc be the class of relations definable on B in primitive positive and
positive conjunctive logic, respectively.

The algebraic approach to CSP and QCSP is based on the following observations, each
producing a Galois Correspondence. Let B be a constraint language and A an algebra, over
the same finite domain. Then,

Inv(Pol(B)) = 〈B〉pp [63, 14] & Inv(sPol(B)) = 〈B〉pc [18]
Pol(Inv(A)) = 〈A〉 [92] & sPol(Inv(A)) = s(〈A〉).

We consider a Galois Correspondence to be an order-inverting isomorphism between two
lattices. This is exactly in line with the original correspondence of Evariste Galois, except
that we will allow our lattices to be infinite. The order-inverting isomorphisms are given
by Inv and Pol, for the CSP above left, between clones and sets of relations closed under
primitive positive definability. For the QCSP above right, they are given by Inv and sPol,
between the surjective reducts of clones and sets of relations closed under positive conjunctive
definability (the second part of this correspondence, appearing on the bottom row above, is
seldom noted in the literature). It is stated in [33] that a careful reading of the proof from
[18] shows that conjunctive positive definability in 〈B〉pc may even be replaced with its Π2
fragment. Thus, on finite structures, positive conjunctive logic collapses to its Π2 fragment.

The consequence of the Galois Correspondence is that whenever Pol(B) ⊆ Pol(B′) there
is a logspace reduction from CSP(B′) to CSP(B). Note that B and B′ must share the same
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domain. Similarly, when sPol(B) ⊆ sPol(B′) there is a logspace reduction from QCSP(B′) to
QCSP(B). Thus, the (surjective) polymorphisms control the complexity of these problems.

I assume a basic familiarity with the modern theory of Computational Complexity. For
more details on complexity classes, I refer the reader to [91] for (classical) Complexity Theory
and [54] for Parameterized Complexity. Further, I will carelessly use tractable as a synonym
for polynomially solvable. For finite B, we note that the problems CSP(B), Π2k-CSP(B) and
QCSP(B) are in the complexity classes NP, ΠP

2k and Pspace, respectively.

2.1 More Algebra
Let [n] := {1, . . . , n}. An operation f is called idempotent if, for each x, f(x, . . . , x) = x. It
is a majority if it is ternary and satisfies f(x, x, y) = f(x, y, x) = f(y, x, x) = x. It is Mal’tsev
if it is ternary and satisfies f(x, x, y) = f(y, x, x) = y. On a totally ordered domain, the
binary operations min and max return the minimum and maximum of their two arguments,
respectively. A semilattice operation is a binary operation that is associative, commutative
and idempotent. Both min and max are semilattice operations. For 2-semilattice, one relaxes
associativity to the weaker condition f(f(x, x), y) = f(x, f(x, y)). A unit for a semilattice
operation f is an element i so that f(x, i) = x for all x. A k-ary operation f is called a set
operation if f(x1, . . . , xk) = f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}. An algebra
is called idempotent trivial if all of its idempotent operations are projections. A constraint
language is called idempotent trivial if its polymorphism clone is.

Majority operations can be generalised to k-ary near-unanimity operations, which satisfy
f(x, . . . , x, y) = f(x, . . . , y, x) = . . . = f(y, . . . , x, x) = x. This definition can now be
relaxed for weak near-unanimity operations which are idempotent operations that only satisfy
f(x, . . . , x, y) = f(x, . . . , y, x) = . . . = f(y, . . . , x, x). Finally, a k-ary operation t is Taylor if
it satisfies a system of identities t(x1

i , . . . , t
k
i ) = t(y1

i , . . . , y
k
i ), for i ∈ [k], in the variables x

and y, where xi
i = x and yi

i = y. One can see that weak near-unanimities are examples of
Taylor operations.

For a finite-domain algebra A we associate a function fA : N→ N, giving the cardinality of
the minimal generating sets of the sequence A,A2,A3, . . . as f(1), f(2), f(3), . . ., respectively.
We may say A has the g-GP if f(m) ≤ g(m) for all m. The question then arises as to
the growth rate of f and specifically regarding the behaviours constant, logarithmic, linear,
polynomial and exponential. Wiegold proved in [98] that if A is a finite semigroup then fA is
either linear or exponential, with the former prevailing precisely when A is a monoid. This
dichotomy classification may be seen as a gap theorem because no growth rates intermediate
between linear and exponential may occur. We say A enjoys the polynomially generated
powers property (PGP) if there exists a polynomial p so that fA = O(p) and the exponentially
generated powers property (EGP) if there exists a constant b so that fA = Ω(g) where
g(i) = bi.

For a finite-domain, idempotent algebra A, k-collapsibility may be seen as a special form
of the PGP in which the generating set for Am is constituted of all tuples (x1, . . . , xm) in
which at least m − k of these elements are equal. k-switchability may be seen as another
special form of the PGP in which the generating set for Am is constituted of all tuples
(x1, . . . , xm) in which there exists ai < . . . < ak′ , for k′ ≤ k, so that

(x1, . . . , xm) = (x1, . . . , xa1 , xa1+1, . . . , xa2 , xa2+1, . . . , . . . , xa′
k
, xa′

k
+1, . . . , xm),

where x1 = . . . = xa1−1, xa1 = . . . = xa2−1, . . . , xak′ = . . . = xam
. Thus, a1, a2, . . . , ak′ are

the indices where the tuple switches value. Note that these are not the original definitions
[33, 35] but they are provably equivalent [27]. We say that A is collapsible (switchable) if there
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exists k such that it is k-collapsible (k-switchable). For any finite algebra, k-collapsibility
implies k-switchability and for any 2-element algebra, k-switchability implies k-collapsibility.
Chen originally introduced switchability because he found a 3-element algebra that enjoyed
the PGP but was not collapsible [35].

An alternative algebraic formulation of the CSP and QCSP has the form, for the latter, of
QCSP(A) for some algebra A. One might imagine a restriction here to surjective operations
but it seems tractability may be found beyond this. The input to this problem is of the
form (φ,B) where B is a finite constraint language which is invariant under A. Note that B
and A share the same domain and for fixed, finite A, the problem to determine if input B is
invariant under A is in polynomial time.

2.2 Various Digraphs
A digraph is a structure with a single binary relation E; if this is symmetric then it is further
a graph. A (self-)loop on a vertex x is an instance of (x, x) ∈ E. A graph without self-loops
is termed irreflexive and a graph with loops on every vertex is termed reflexive. Sometimes
we term a graph partially reflexive to emphasise we are somewhere inbetween.

A clique is an irreflexive graph where all distinct vertices are adjacent. A k-partite graph
is one whose vertices may be partitioned into k classes where there are no edges between
vertices in the same class. If all other edges are present one refers to a complete k-partite (or
multipartite) graph. A graph is a tree if it is connected and contains no cycles, and a forest
is the disjoint union of trees. A pseudotree is a connected graph with at most one cycle, and
a pseudoforest is the disjoint union of pseudotrees.

A semicomplete digraph is an irreflexive graph so that for distinct x, y at least one of
(x, y), (y, x) ∈ E. A tournament further satisfies that precisely one of (x, y), (y, x) ∈ E. A local
tournament satisfies, for every x and distinct y and z, such that either both (x, y), (x, z) ∈ E
or both (y, x), (z, x) ∈ E, that there be precisely one of the edges (y, z) or (z, y) in E. A
source (respectively, sink) in a digraph is a vertex with in-degree (respectively, out-degree)
zero. A digraph is smooth if it has neither source nor sink.

2.3 The Modern Study of CSPs
The foundational paper for studying the complexity of CSPs came in 1978 from Thomas
Schaefer [95] in which he proved a P versus NP-complete dichotomy for Boolean CSPs. The
classification has six tractable classes which we will give below alongside their associated
polymorphism. The characterisation with polymorphisms appeared first in [70] which is the
foundational paper for the algebraic approach to CSPs.

0-valid (constant 0) Horn (min) bijunctive (majority)
1-valid (constant 1) dual Horn (max) affine (Mal’tsev)

Note that there are unique operations on the Boolean domain that are majority and Mal’tsev,
respectively. Obviously, this applies also to min and max once the order 0 < 1 is assumed.
The outstanding conjecture in the area of finite-domain CSPs was later formulated by Feder
and Vardi in [58] and is that these are all either in P or are NP-complete, which is surprising
given these CSPs appear to form a large microcosm of NP, and NP itself is thought unlikely
to have this dichotomy property since the work of [79]. It seems Feder and Vardi tried very
hard to reproduce an argument à la Ladner, in a logic that can express all finite-domain
CSPs, yet failed. The original Feder-Vardi conjecture did not specify where the boundary
between P and NP-complete should be, but this has now been concretely conjectured in
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the algebraic language [21]. This conjecture remains unsettled, although dichotomy is now
known on substantial classes, e.g. structures with domains of size ≤ 3 [95, 22] and smooth
digraphs [68, 5].2

The conjectured complexity delineation in [21] was that a finite-domain constraint language
B that is expanded with all constants should be so that its CSP is NP-complete precisely if
Pol(B) has a G-set as a factor. Remember that all polymorphisms of a constraint language
expanded with its constants are idempotent. We will not define what it is for a G-set to be a
factor since there are various more modern specifications that are more user-friendly for our
purposes. For example, the condition for tractability is equivalent to possessing a Taylor
operation [81] or a weak near-unanimity operation [84]. We note that the backward direction
to this conjecture is known to be true [21].

3 Background

Schaefer announced a dichotomy theorem for Boolean QCSP in the same paper as he proved
the dichotomy for Boolean CSP [95]. The proof was omitted and the result in any case could
ostensibly only apply to the situation with constants (0 and 1) allowed in instances. The
resolution of the Pspace-hard cases in the case where constants do not appear was finally
given much later, independently in [47] and [48]. Schaefer was also quite vague about how to
extend the polynomial algorithms for subclasses of Boolean CSP to the same subclasses of
Boolean QCSP, and articles fleshing out these algorithms continued for a number of years:
[72] (Horn and dual-Horn cases), [1] (bijunctive case).

The situation for non-Boolean QCSPs seems to have been taken up largely only in the
new millennium with two communities working on the problem, one more applied, with a
background in Constraint Programming [16, 15, 64, 60] and one more theoretical with a
background in Algorithms and Complexity (and often Universal Algebra) [18, 33]. Both
communities are united in their attempts to take established algorithmic methods for CSPs,
such as local consistency and linear equations and adapt them for QCSPs. I belong to the
theoretical community, and the main thrust of this survey will be in this direction.

Following Schaefer, and in line with the like program for CSPs, the bulk of the research into
complexity of QCSPs in the theoretical community has been in the non-uniform, right-hand
framework in which one parameterises the problem by the constraint language. We already
noted that such a complexity taxonomy for QCSPs embeds the similar one for CSPs. This is
because CSP(B) and QCSP(B ] 1) are polynomially equivalent for all B, where B ] 1 denotes
the disjoint union of B with an isolated element. The algebraic approach to QCSP was
pioneered in [17] whose expanded journal version (also with another author) appeared much
later as [18]. This early work gave the Inv-sPol Galois Correspondence already mentioned
and provided uniform explanations of QCSP tractability for classes of problems based on
the presence of certain surjective (even idempotent) polymorphisms. This fruitful approach
was continued in [33] where the key idea of collapsibility was introduced. Collapsibility was
originally introduced as a (relational) property of constraint languages but was later explored
as a property of idempotent algebras [33]. When a constraint language B, expanded with all
constants, is collapsible then the evaluations of instances φ of QCSP(B) may be reduced to a
polynomial system of instances of CSP(B), and so the maximal complexity of the problem is

2 Petar Markovic announced a proof of dichotomy for 4-element domains in 2011. The argument has
since passed several years in confinement for refinement. It is in preparation as this goes to press. Very
recently, Dmitriy Zhuk has announced a proof for the 5-element case (at AAA 91, February 2016, Brno).
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reduced to NP [33]. If, further CSP(B) is in P, then this yields polynomial solvability for the
QCSP.

Another manner of extension of ideas from the CSP to the QCSP arises in [39] where the
notion of establishing strong k-consistency3 is generalised for the QCSP. Establishing strong
k-consistency is a well-known procedure for solving various CSPs, dating back to at least
[53, 97] and is now known to be an algorithm for an even larger class of problems since its
relationship with a certain pebble game was uncovered in [78]. It will be convenient to assume
that our constraint language is closed under projections of its relations and further that our
input φ is closed under projections of its aliquot atoms (thus, for example, if it contains an
atom R(v1, . . . , vk) then it also contains atoms corresponding to each ∃viR(v1, . . . , vk)). We
say that φ is k-consistent (with respect to B) if, for every assignment α of k − 1 variables
x1, . . . , xk−1 from φ to elements from B that satisfy the conjuncts of φ that involve no
other variables than x1, . . . , xk−1, and for every variable xk from φ, the assignment α can be
extended to xk such that all conjuncts of φ that involve no other variables than x1, . . . , xk are
satisfied on B by the extension of α. We say that φ is strongly k-consistent if φ is j-consistent
for all j with 2 ≤ j ≤ k. We would say that φ is globally consistent if φ is k-consistent for all
k > 0.

When strong k-consistency implies global consistency, then we have that establish-
ing strong k-consistency will be an algorithm for the CSP. Further, establishing strong-k-
consistency is an algorithm for the CSP for a large class of constraint languages including
those preserved by near-unanimity [71] and set [50] polymorphisms.

In [39], a suitable pebble game is found for the variant of establishing k-consistency
associated with the QCSP and this gives positive algorithms for left-hand restrictions where
a generalisation of treewidth comes into play (we will return to this line of enquiry later).
Returning to the land of dexterity, establishing k-consistency is shown to be a polynomial
algorithm for QCSP(B) when B is preserved by a near-unanimity operation. Something
stronger than establishing [strong] k-consistency is termed establishing default k-consistency
[39] and this is shown to give a polynomial algorithm for QCSP(B) when B is preserved
by an idempotent set operation f that has an additional property termed unique minimal
coherent set with respect to f [39, 31]. As it happens, both of these classes of polymorphism
bestow collapsibility and so the polynomial algorithm is implied from [33], together with the
corresponding works on the CSP [50]. However, the direct algorithm explained through the
pebble game gives a simple and unifying description of these tractabilities.

3.1 Constants and Idempotency
The complexity classification problem for finite-domain CSPs is greatly facilitated by the fact
that one may assume that all constants are primitive positive definable, up to isomorphism.
This is due to the key notion of cores (recall these are structures for which all endomorphisms
are automorphisms). Every finite-domain constraint language is homomorphically equivalent
to a constraint language that is a core and in this core all constants are primitive positive
definable up to isomorphism. In the algebraic language this corresponds to the assumption,
without loss of generality, that all polymorphisms are idempotent. A robust notion of core
for positive conjunctive logic and QCSP is not exactly known. The putative notion Q-core of
[42] has been successfully deployed in complexity classifications [85, 83], as we shall see later;
however, many of its properties (even “uniqueness”) are not yet clear. Thus, it is not known

3 The authors of [39] call this establishing k-consistency but I align with, inter alia, [78].
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if the QCSP algebraic classification may be reduced, from sets of surjective operations, to
idempotent clones. Certainly, a constraint language, agreeing on all positive conjunctive
sentences, with constants up to isomorphism positive conjunctive definable, is not always
possible [42]. As a result of this, a certain amount of the literature on QCSP classifications is
based on the idempotent assumption and consequently only deals with constraint languages
already expanded with constants. This is true for many of the papers in which algebra plays
a central role, for example, [33, 27]. Even in the foundational [18], all of the polymorphisms
giving tractability are idempotent (if the idempotent reduct of sPol(B) is tractable for QCSP
then clearly so is sPol(B) itself). Thus, although the results of [18] apply where sPol(B)
need not contain only idempotent operations, the work itself may be said to focus on the
idempotent. Several works involving combinatorial results operate in the wilderness outside
of idempotency [86, 85, 83] but the only totally algebraic paper in this terra incognita (sic!) is
[44]. In this last work, the object of study is QCSP(A) where A is a monoid. It follows from
collapsibility that this problem is always in NP and the authors give a P versus NP-complete
dichotomy with the condition for tractability being that A is a block group that is generated
by its regular elements. The condition for tractability of CSP(A), even in the more general
situation in which A is a semigroup, is just A being a block group [23]. The really interesting
thing about the QCSP classification here is an explanation of tractability through a binary
monoid operation f that may not be idempotent. Curiously, the tractability comes from a
term operation generated by f that may not even be surjective (though f itself is). However,
when this term operation is restricted to the so-called idempotents of A it is surjective (indeed,
idempotent).

4 Classical Complexity

The modern sport for complexity classifications for QCSP was apparent already in [18]. In
this paper the new algebraic methods were leveraged to obtain the first trichotomy for QCSP.
A binary relation is a graph of a permutation if it is the set of pairs {(i, π(i)) : i ∈ [n]} for
some permutation π. Let B be a constraint language on [n] that contains all (n!) graphs of
permutations. Then QCSP(B) is either in P, is NP-complete or is Pspace-complete (Theorem
7.4 in [18] deals with n ≥ 3, the remainder come from Schaefer [95]). The polynomial cases
possess either a majority or Mal’tsev polymorphism. For NP membership of the NP-complete
cases, an early form of “collapsibility” appears as Proposition 7.1. Then, for the remaining
cases of NP-hardness, the classification for CSP from [49] is cited.

The next QCSP classification seems to have come in [30]. 2-semilattice polymorphisms r
are sufficient to make the CSP tractable [24] but for QCSP(Inv(r)), Chen observed two types
of behaviours, namely being in P and being co-NP-hard [30]. The separating criterion has to
do with the number of strongly connected minimal components in the graph given by E(x, y)
iff r(a, b) = a. When this number of minimal components is one (it is unique) the problem
is in P, otherwise it is co-NP-hard. The situation for semilattice operations s is more fully
understood. QCSP(Inv(s)) is in P, if f has a unit, else QCSP(Inv(s)) is Pspace-complete
(the Pspace-hardness in this case seems to be due to Bulatov in [18] and did not appear in
any previous version of that paper).

A largely combinatorial approach to QCSP complexity was followed in the works [86, 85,
83], deriving various classifications, although the algebraic method was used for tractability
arguments in the latter two. These papers were an amusing diversion for their authors but
do not necessarily shed much light on how one might argue for complexity classifications
in general. The graphs considered in these papers are all instances of partially reflexive
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pseudoforests, for which a complexity classification for the Retraction problem is known.
The Retraction problem may be seen as the CSP in which all constants are available (the
CSP classification for partially reflexive pseudoforests without constants is nearly trivial).

In [85] a dichotomy is given for QCSP(H) whereH is a partially reflexive forest. In the case
of partially reflexive forests, this is between NL and NP-hard, whereas for partially reflexive
paths it is between NL and Pspace-complete. A key idea here is loop-connectedness, which
asks whether the subgraph induced by the self-loops is connected. This plays an important
role in the classification of the Retraction problem for (partially reflexive) pseudoforests in [59].
In [85] it is noted that loop-connectivity of a partially reflexive tree H is a sufficient criterion
for NL membership of QCSP(H), and this is witnessed by a majority polymorphism (thus
even when H is expanded with constants the problem remains in NL). However, it is not a
necessary condition and a simple example is furnished by the undirected path on five vertices,
P10100, with the middle vertex as well as one end a loop. This is clearly not loop-connected,
yet QCSP(P10100) is in NL. Indeed, QCSP(P10100) coincides with QCSP(P100), where P100 is
the undirected path on three vertices with a loop at one end. Clearly, P100 is loop-connected,
and so the result follows. It is here where the notion of Q-core explored in [42] is useful,
because the Q-core of P10100 is P100. Indeed, when H is a partially reflexive tree that is a
Q-core all of the known classifications for the QCSP (from [86, 85, 83]) are consistent, in the
sense of P versus NP-hard, with the classification for the Retraction problem in [59]. Note
that the jump from pseudotrees to pseudoforests creates a disconnected graph which causes
a collapse in QCSP complexity to NP; and even further to NL, in the case that the graph
has a loop or is bipartite.

The QCSP complexity classification for irreflexive pseudotrees is given in [86] (one can
easily infer the result for irreflexive pseudoforests). Finally, the classification for partially
reflexive cycles is given in [83]. An interesting observation appearing in this classification is
the identification of a QCSP tractable graph C1110, the undirected 4-cycle with three self-
loops, without a majority polymorphism. Indeed, C1110 is even a Q-core. This is surprising
because all tractable cases from the classification for partially reflexive forests possess these
majorities in their Q-core.

In [27], a QCSP classification is given for the case of partially reflexive paths expanded with
constants. Here, the distinction between NL and NP-hard perfectly follows the classification
of [59], but now the case NP-complete becomes possible (some NL cases become NP-complete,
for example, this is the case for P10100 expanded with constants). Thus, we reach here a
classification which is a trichotomy between NL, NP-complete and Pspace-complete, where
we had a dichotomy without constants between NL and Pspace-complete. Note that once we
expand with constants we have a constraint language that is both a core and a Q-core.

In [51], a more advanced marriage of combinatorics and algebra was attempted, and for
the first-time this mixed approach gave quite sophisticated algebraically proven lower bounds.
Semicomplete digraphs are cores so one may assume without affecting QCSP complexity that
they are expanded with constants naming their vertices and that their polymorphisms are all
idempotent. The complexity classification for QCSP(H), where H is a semicomplete digraph,
given in [51] is rooted in the long proof that smooth semicompletes with more than one cycle
are idempotent trivial. It follows that QCSP(H) is Pspace-complete in this case [18]. Note
that the only smooth semicompletes with no more than one cycle are the directed 2- and
3-cycles. It turns out QCSP(H) is also Pspace-complete when H is a smooth semicomplete
with more than one cycle with a sequence of sinks added (respectively, sources added). The
remainder of the classification is simple, if H has both a source and a sink, then QCSP(H) is
in NP; and if H is the directed 2- or 3-cycle with a sequence of sinks (respectively, sources)
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added, then QCSP(H) is in NL. The NP-complete cases (source and sink plus more than
one cycle) can be inferred from the classification for the CSP [4].

4.1 Bounded Alternation
An interesting restriction of the QCSP addresses the case where one allows only bounded
alternation of the quantifiers in a (prenex) input instance. An interesting application for the
Π2-CSP is given in Section 3 of [6] (but note the universal quantifiers are relativised). The
situation for Boolean constraint languages parallels the QCSP, with the problems Π2k-CSP(B)
being ΠP

2k-complete precisely when QCSP(B) is Pspace-complete [69].
Bounded alternation reappeared in the theoretical study of the QCSP in the remarkable

paper [34] where it was noted that for certain constraint languages B, Π2k-CSP(B) is in co-NP,
for each k. Indeed, an example of co-NP-completeness may be given by some constraint
languages invariant under a semilattice operation without unit [34, 30]. In fact, if f is a
semilattice operation, then either Π2k-CSP(Inv(f)) is in P, if f has a unit, or otherwise Π2k-
CSP(Inv(f)) is co-NP-complete. Let us recall the dichotomy for the QCSP in this situation,
already mentioned, that QCSP(Inv(f)) is in P, if f has a unit, else QCSP(Inv(f)) is Pspace-
complete [18]. So, it seems for bounded alternation QCSP, there are three complexity regimes
above P: NP-complete, co-NP-complete and maximal complexity (Π2k-complete), where for
the QCSP there are only NP-complete and Pspace-complete.

Chen proved in [35] that a computationally effective form of PGP is sufficient to place
Π2k-CSP(A) in NP. Subsequently, Zhuk has proved that switchability is the only type of
PGP for finite algebras [101], thus all forms of PGP associated with finite-domain Π2k-CSP
and QCSP are computationally effective.

4.2 Counting Quantifiers
Quite recently has appeared, in the context of the CSP, the study of counting quantifiers of
the form ∃≥j [87]. These quantifiers allow one to assert the existence of at least j elements
such that the ensuing property holds, so on a structure B with domain of size |B|, the
quantifiers ∃≥1 and ∃≥|B| are precisely ∃ and ∀, respectively. Thus one can study variants of
CSP(B) in which the input sentence to be evaluated on B remains positive conjunctive in its
quantifier-free part, but is quantified by various counting quantifiers from some non-empty
set. For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B) takes as input a sentence given by a
conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X. It then asks
whether this sentence is true on B. In this fashion, the X-CSP may be seen as a natural
generalisation of the CSP and QCSP.

In [87] a panoply of classifications is given for X-CSP(B), mostly for the situation where B
is some kind of graph. In general, as with the QCSP, complexities of the form P, NP-complete
and Pspace-complete are readily available and classifications are either trichotomies or
dichotomies between P and NP-hard. Interestingly, when one has access to all the quantifiers
∃≥1, . . . ,∃≥|B| the intermediate complexity NP-complete seems to disappear (at least I do not
know a case of it). The problems X-CSP(H) are completely characterised, for any X ⊆ [|H|],
when H is an undirected clique or cycle, into the classes P, NP-complete and Pspace-complete.
Then the problem {1, 2}-CSP(H) is considered where H is an undirected graph, something
of a companion to the theorem of Hell and Nešetřil that these CSPs are in P if H is bipartite
and are NP-complete otherwise. The authors show that {1, 2}-CSP(H) is in P if H is a forest
or a bipartite graph with a 4-cycle, and is NP-hard otherwise. For bipartite graphs H that are
neither forest nor contain a 4-cycle it is even shown that {1, 2}-CSP(H) is Pspace-complete.
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Finally, a trichotomy theorem is shown for {1, 2}-CSP(H) when H is a complete multipartite
graph, with such problems being either in L, NP-complete or Pspace-complete.

The algebraic method, so potent in understanding the complexity of CSPs and QCSPs
has recently been tailored to counting quantifiers [25]. The algebraic objects may be seen
as a kind of expanding polymorphism. Call an operation f : Bk → B j-expanding if, for
all X1, . . . , Xk ⊆ B such that |X1| = . . . = |Xk| = j, we have |f(X1, . . . , Xk)| ≥ j. This
condition at j = 1 is trivial (it says that f is a function) and at j = |B| asserts surjectivity.
For X ⊆ {1, . . . , |B|}, we say that f is X-expanding if it is j-expanding for all j ∈ X. Now,
the relations that are X-pp-definable over B are exactly those that are preserved by the
X-expanding polymorphisms of B. In the case of {1}-pp and {1, |B|}-pp, this includes the
Galois Correspondences we have already met.

Applying this algebraic theory, as was done with the QCSP, à la [18], would be splendid
but a number of the arguments seem to fail for expanding polymorphisms (though Mal’tsev
seems to go through).

4.3 Infinite Domains
The study of QCSP(B), for infinite-domain B, is not as advanced as the like program for
CSPs, and was pioneered in [8]. The authors gave an L, NP-complete, co-NP-hard trichotomy
for equality languages, which are those constraint languages that admit a first-order definition
in (Q; =).

In the modern systematic study of infinite-domain CSPs, the first classification following
equality languages was that for temporal languages [10], that admit a first-order definition
in (Q;<), and it seems the major thrust in infinite-domain QCSPs today is in this class.
Note that (Q; =) and (Q;<) both admit quantifier elimination and all first-order definable
relations are already quantifier-free definable, say in conjunctive normal form (CNF). For
the classification of [8] a key role is played by negative and positive languages. The latter
do not permit negation of any form while the former is broadly the opposite, allowing only
disequalities in CNFs except for singleton clauses (conjuncts) of equality. When B is an
equality language, QCSP(B) is in L if B is negative, QCSP(B) is NP-complete if B positive
but not negative4, and co-NP-hard otherwise.

In the papers [29, 28], a classification for QCSPs is given for the positive temporal
languages, that is with a positive definition in (Q;≤), where the authors show that these
QCSPs are either in L, NL-complete, P-complete, NP-complete or Pspace-complete. Each of
these cases is both algebraically and syntactically characterised. In the history of temporal
CSPs, the fragment Ord-Horn played a key role [90]. In [46] a subclass known as Guarded
Ord-Horn is established as tractable for QCSP. The significance of this class is noted in [100]
where it is shown that Guarded Ord-Horn languages are the only tractable case within the
dually-closed (if language B over numeric domain pp-defines k-ary R then it also pp-defines
{(−x1, . . . ,−xk) : (x1, . . . , xk) ∈ R}) Ord-Horn languages. That is, when B is a dually-closed
temporal language that is not Guarded Ord-Horn, then QCSP(B) is co-NP-hard [100].

In [9] it is shown that temporal constraint languages with polymorphism min (also max)
and mx (also its dual) have a tractable QCSP. I will leave the polymorphism mx undefined
but suffice it to say that it plays an important role in the temporal CSP classification [11].

Counting quantifiers have also been taken to the domain of the equality languages in [88]
with various classifications given. Here it is appropriate to also consider quantifiers of the

4 A relation is both negative and positive when it is just a conjunction of equalities.
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form ∀>j , meaning that the associated binding holds on all but at most j elements of the
domain.

5 Parameterized Complexity

There has been a plethora of papers in recent years devoted to the parameterized complexity
of model-checking classes of structures in various fragments of first-order logic. QCSP(B) is
nothing other than the model-checking problem for positive conjunctive logic on the singleton
class {B} and so it is unsurprising that this new line of research impinges upon its study.

The paper [20] considers the positive conjunctive model-checking problem for posets
where the sentence and poset are both input but where the poset is restricted to come from a
certain class. A preliminary result shows a concrete, four-element poset for which the QCSP
is NP-hard (most likely one could prove this is Pspace-complete). The main result then is
that model-checking positive conjunctive logic on bounded width posets is FPT, where the
parameter is the sentence size. In fact, they prove a stronger result where the class of posets
is unrestricted, that is model-checking positive conjunctive logic on posets is FPT, where
the parameter is the sentence size plus the poset width. The paper is a companion to one
proving a result similar to the first but for existential logic [19]. This line of enquiry was
pursued by other authors culminating in the demonstration that model-checking first-order
logic on posets is FPT when the parameter is the sentence size plus the poset width [62].
Parameterized intractability also features in [20], where the model-checking problem for
positive conjunctive logic on posets of bounded depth and bounded cover-degree is shown to
be co-W[2]-hard.

Another research direction has to do with left-hand restrictions, where the class from
which the input sentence comes is restricted. In this area results usually may appear in
both classical and parameterized flavours since they appear as gaps between P and not FPT
(assuming W[1] = FPT). The first outstanding result in this area is due to Grohe [66], in
which it is noted, when relational arity is bounded, that if the restricted class of primitive
positive sentences does not possess bounded tree-width, the model-checking problem for this
class is not FPT, unless W[1] = FPT. In this line of research the parameter is always the
size of the sentence. The converse, that bounded-treewidth yields tractability for this model-
checking problem was already known [61], so this result gives a typical type of classification
theorem, based on a complexity-theoretic assumption. It is not immediately apparent what
the graph-theoretic property of bounded-treewidth means for a class of sentences, yet the
translation between primitive positive sentences and relational structures through canonical
query and canonical database has been discussed. It is similarly possible to consider such
measures for other classes of arity-bounded first-order formulas, and this line of thought was
pursued by other authors. Bounded treewidth alone does not guarantee tractability for the
model-checking problem for positive conjunctive logic unless both the relational arity and
constraint language size are bound [65].

A precursor of Grohe’s result was furnished in [67] where only classes of sentences satisfying
a certain closure property (broadly speaking that of isomorphism, when the sentence is
viewed as a graph) were considered. This situation was generalised for positive conjunctive
logic in [40] and then to full first-order logic in [38]. The key notion in these works, and the
closure condition alluded to, is graphical closure. A class of sentences is graphically closed if
it satisfies two types of closure, the first syntactic and the second graphical. The syntactic
closure deals with types of logical equivalence including de Morgans laws, associativity,
commutativity and distributivity, together with some rules when a bound variable does
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not a appear free in a literal in a conjunct or disjunct. The graphical closure deals with
substitutions of relation symbols in atoms, such that if, e.g., E and F are ternary relation
symbols in the signature, then any sentence containing the atoms E(x, y, x) may have this
substituted by F (x, y, x) (di-graphical might be more appropriate here, since the order and
multiplicity of x and y matter). The main result of [38] uses a relative of tree-width to
discern for which graphically closed sets of sentences Φ of bounded arity model-checking
first-order logic is FPT. Specifically, if Φ satisfies a condition known as bounded thickness
then the model-checking problem is in P and therefore FPT; otherwise it is not (assuming
FPT 6= W [1]). The restriction of bounded thickness to positive conjunctive sentences is
elimination width, for which the gap between P and not FPT was proved in [40]. The
polynomial result of that paper subsumes the earlier polynomial result of [39], where the
notion of treewidth was differently generalised for positive conjunctive logic.

Finally, a true analog of Grohe’s Theorem, for positive conjunctive logic, not making the
assumption of graphical closure, has been given in [43].

A further investigation into parameterized complexity comes in the very recent [57] where
a new parameter prefix pathwidth is introduced for QBF. Atserias and Oliva [2] had previously
shown that, in contrast to SAT, many of the well-known decompositional parameters (such
as treewidth and pathwidth) do not reduce the complexity of QBF. The main reason for this
appears to be a blindness of these parameters towards the quantifier dependencies between
variables of a QBF formula. Prefix pathwidth mitigates some of these difficulties and it is
proved that QBF is FPT with respect to this parameter (and the width of the dependency
poset). The result directly applies also to QCSP with any bounded domain size and hence
has been eligble for inclusion in this survey.

6 Proof Theory and Evaluation

The canonical proof system for propositional formulas in CNF is Resolution [52, 94] in which
one tries to prove a system of clauses is contradictory. This, therefore, gives the proof theory
for SAT. Resolution has been extended for QBF to the popular system of Q-Resolution
[76]. Q-Resolution, being a system for QBF, is outside the scope of this survey, but in [37]
Chen identifies two of its weaknesses as being the restriction to the Boolean domain as well
as requiring the input sentence to be in prenex form. In his QCSP proof system (glorious
in its anonymity) he overcomes these shortcomings. Egly [55] had previously proposed a
proof system for non-prenex QBF, but Chen’s system appears to be the first to allow for the
possibility of a non-Boolean domain. The width notion of this proof system is associated
with the notion of k-judge-consistency which implies an earlier notion of consistency which
Chen and Dalmau used to demonstrate algorithmic tractability in [39].

Recall the positive conjunctive sentence width notion arising from [38] (cf. Section 5) was
elimination width. We now designate the Q-width of a positive conjunctive sentence to be the
maximum of its elimination width and any arity of a relation appearing within. Chen’s work
[37] has an algorithmic side-effect, giving a simple generic polynomial method for deciding
the (uniform) instances (φ,B) of QCSP where we assume φ has Q-width bounded by some
constant k. Of course the polynomiality of this has long since been known but relies on
such non-trivial-but-tractable devices as the computing of tree decompositions. The positive
algorithmic result from [37] extends that from the earlier [39] in two important ways: firstly,
there is no prenex assumption; and, secondly, the notion of Q-width is more general than the
generalised treewidth. We also already mentioned that k-judge consistency implies the earlier
notion of consistency, which can be seen as a further generality of [37] over [39], though this
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allows the condition in the former to activate the algorithm in the latter. It might also be
said that in [37] a bird’s eye view of the landscape is obtained through a marriage between
the proof system and its associated algorithm.

7 Future Prospects

In [36], Chen made a number of natural conjectures regarding QCSPs, typically concerning
idempotent algebras A. My favourite speculated that QCSP(A) should be in NP if A has
the PGP and is otherwise Pspace-complete (see Conjectures 5 and 6 in [36]). Dmitriy
Zhuk has settled the backward direction by proving that the only form of PGP for finite-
domain algebras is switchability [101]. I suspect there is some tight relationship between
NP-membership for the QCSP, and PGP in the associated algebra, which will soon find
expression.

A structure is ω-categorical if it is up to isomorphism the only countably infinite model of
its first-order theory. The Galois Correspondence Inv-Pol is known to hold for ω-categorical
constraint languages [12] and has been instrumental in a number of recent CSP classifications
(e.g. [11, 13]). For the operational side one needs to insist the clones satisfy a certain
topological (local) closure [96]. It is not known whether Inv(sPol(B)) = 〈B〉pc for ω-categorical
B. The best general result in this direction involves the periomorphisms of [45] which work
on periodic elements in Bω, which have the form (b1, . . . , bk)ω. The periodic elements induce
a countable substructure Bper in Bω and a periomorphism is a homomorphism from this
structure to B. The fact that Bper is countable permits the use of a standard back-and-
forth argument whence it is shown that if a relation is invariant under the periomorphisms
of ω-categorical B, then indeed it is positive conjunctive definable. The correspondence
Inv(sPol(B)) = 〈B〉pc is known, a posteriori, when B is an equality language [8]. For languages
first-order definable in (Q;<) it is still in general open.

Meanwhile, let us leave the unfinished classification for temporal QCSPs to ponder that
for equality languages. In the conference version of [8] the trichotomy was announced to
be between L, NP-complete and Pspace-complete but the greater lower bound was reduced
to co-NP-hard in the journal version. The culprit is the erroneous supporting Theorem
4.1, for which one can construct a counterexample, and from which the missing Galois
Correspondence of the previous paragraph would have followed (Theorem 4.1 holds for
infinite direct products). The major open question from the journal version is whether
QCSP(Q;x = y → y = z), known to be co-NP-hard, is in fact Pspace-complete. Were this
to be Pspace-complete, it would complete the promotion of all the outstanding co-NP-hard
cases to Pspace-complete. However, were it to be in co-NP, for example, there would remain
additional work to be done, not to mention that the trichotomy would become a tetrachotomy,
since many cases, including QCSP(Q;x = y → u = v), are known to be Pspace-complete.

It would be interesting to unite the results of [86, 85, 83] into a QCSP classification for
partially reflexive pseudoforests with the classes likely to be NL, NP-complete and Pspace-
complete. Even a partial classification into NL and NP-hard might require a patience and
diligence that could remain unrewarded by the result. For partially reflexive pseudoforests
that are Q-cores, most likely the NL/ NP-hard boundary follows that for Retraction [59].

A number of open questions arise regarding CSP with counting quantifiers and the most
interesting relate to potential applications of the new algebraic theory. A more combinatorial
question is as to the precise complexity of {2}-CSP(K4), where K4 is the 4-clique, which is
known to be in P but not in L or NL. This question is interesting as it is the only case in the
classification of X-CSP(H) in [87], where H is an undirected clique or cycle, that is known
to be in P but not L.
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The question of the idempotent remains a thorn in our side. For every finite B, is there a
finite C so that, say, QCSP(B) and QCSP(C) are polynomially equivalent, and all constants
are positive conjunctive definable in C up to isomorphism? We know this is not true if we
strengthen polynomial equivalence to positive conjunctive equivalent [42].

The QCSP program initiated in [51] continues a fascinating combinatorial-algebraic
program itself well-established, e.g. in [80, 26, 3]. Bandelt has classified both which reflexive
and which bipartite graphs admit a majority polymorphism (see [3]). Indeed, the distinction
between majority and not is established for partially reflexive trees in [85]. In a similar vein,
in [26] it is established precisely which digraphs have a Mal’tsev polymorphism. Curiously,
Malt’sev digraphs also have a majority [73]. The business of [51] is more in line with several
investigations of Benoit Larose into idempotent triviality (see [80]). Other recent work has
focused on whether certain constraint languages for which we know the CSP classification
follow also the conjectured algebraic classification (which indeed they do). MacGillivray
and Swarts [82] prove that the (irreflexive) locally semicomplete digraphs whose CSPs are
tractable are exactly those that admit a weak near-unanimity polymorphism, and Wires has
proved [99] that the partially reflexive tournaments whose CSP with constants is tractable
are exactly those that admit a Taylor polymorphism. Recall that a finite idempotent algebra
generates a weak near-unanimity operation iff it generates a Taylor operation. It would be
fun to establish which irreflexive locally semicomplete and partially reflexive tournaments are
idempotent trivial, with a view to leveraging this knowledge towards a QCSP classification,
of the kind in [51].

The outstanding question left open in parameterized complexity in the region of QCSP,
though somewhat superseding it, is to unify the works [38] add [43]. That is, to give a
theorem à la Grohe, as the latter, for full first-order logic.
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