30,957 research outputs found

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version

    A State-Based Regression Formulation for Domains with Sensing Actions<br> and Incomplete Information

    Full text link
    We present a state-based regression function for planning domains where an agent does not have complete information and may have sensing actions. We consider binary domains and employ a three-valued characterization of domains with sensing actions to define the regression function. We prove the soundness and completeness of our regression formulation with respect to the definition of progression. More specifically, we show that (i) a plan obtained through regression for a planning problem is indeed a progression solution of that planning problem, and that (ii) for each plan found through progression, using regression one obtains that plan or an equivalent one.Comment: 34 pages, 7 Figure

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201

    Regression with respect to sensing actions and partial states

    Full text link
    In this paper, we present a state-based regression function for planning domains where an agent does not have complete information and may have sensing actions. We consider binary domains and employ the 0-approximation [Son & Baral 2001] to define the regression function. In binary domains, the use of 0-approximation means using 3-valued states. Although planning using this approach is incomplete with respect to the full semantics, we adopt it to have a lower complexity. We prove the soundness and completeness of our regression formulation with respect to the definition of progression. More specifically, we show that (i) a plan obtained through regression for a planning problem is indeed a progression solution of that planning problem, and that (ii) for each plan found through progression, using regression one obtains that plan or an equivalent one. We then develop a conditional planner that utilizes our regression function. We prove the soundness and completeness of our planning algorithm and present experimental results with respect to several well known planning problems in the literature.Comment: 38 page

    Efficient Open World Reasoning for Planning

    Full text link
    We consider the problem of reasoning and planning with incomplete knowledge and deterministic actions. We introduce a knowledge representation scheme called PSIPLAN that can effectively represent incompleteness of an agent's knowledge while allowing for sound, complete and tractable entailment in domains where the set of all objects is either unknown or infinite. We present a procedure for state update resulting from taking an action in PSIPLAN that is correct, complete and has only polynomial complexity. State update is performed without considering the set of all possible worlds corresponding to the knowledge state. As a result, planning with PSIPLAN is done without direct manipulation of possible worlds. PSIPLAN representation underlies the PSIPOP planning algorithm that handles quantified goals with or without exceptions that no other domain independent planner has been shown to achieve. PSIPLAN has been implemented in Common Lisp and used in an application on planning in a collaborative interface.Comment: 39 pages, 13 figures. to appear in Logical Methods in Computer Scienc
    corecore