522 research outputs found

    Apartness, sharp elements, and the Scott topology of domains

    Get PDF
    Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges-Vüƣǎ apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness, and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals, the lower reals and, finally, an embedding of Cantor space into an exponential of lifted sets

    04351 Abstracts Collection -- Spatial Representation: Discrete vs. Continuous Computational Models

    Get PDF
    From 22.08.04 to 27.08.04, the Dagstuhl Seminar 04351 ``Spatial Representation: Discrete vs. Continuous Computational Models\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Constructive topology of bishop spaces

    Get PDF
    The theory of Bishop spaces (TBS) is so far the least developed approach to constructive topology with points. Bishop introduced function spaces, here called Bishop spaces, in 1967, without really exploring them, and in 2012 Bridges revived the subject. In this Thesis we develop TBS. Instead of having a common space-structure on a set X and R, where R denotes the set of constructive reals, that determines a posteriori which functions of type X -> R are continuous with respect to it, within TBS we start from a given class of "continuous" functions of type X -> R that determines a posteriori a space-structure on X. A Bishop space is a pair (X, F), where X is an inhabited set and F, a Bishop topology, or simply a topology, is a subset of all functions of type X -> R that includes the constant maps and it is closed under addition, uniform limits and composition with the Bishop continuous functions of type R -> R. The main motivation behind the introduction of Bishop spaces is that function-based concepts are more suitable to constructive study than set-based ones. Although a Bishop topology of functions F on X is a set of functions, the set-theoretic character of TBS is not that central as it seems. The reason for this is Bishop's inductive concept of the least topology generated by a given subbase. The definitional clauses of a Bishop space, seen as inductive rules, induce the corresponding induction principle. Hence, starting with a constructively acceptable subbase the generated topology is a constructively graspable set of functions exactly because of the corresponding principle. The function-theoretic character of TBS is also evident in the characterization of morphisms between Bishop spaces. The development of constructive point-function topology in this Thesis takes two directions. The first is a purely topological one. We introduce and study, among other notions, the quotient, the pointwise exponential, the dual, the Hausdorff, the completely regular, the 2-compact, the pair-compact and the 2-connected Bishop spaces. We prove, among other results, a Stone-Cech theorem, the Embedding lemma, a generalized version of the Tychonoff embedding theorem for completely regular Bishop spaces, the Gelfand-Kolmogoroff theorem for fixed and completely regular Bishop spaces, a Stone-Weierstrass theorem for pseudo-compact Bishop spaces and a Stone-Weierstrass theorem for pair-compact Bishop spaces. Of special importance is the notion of 2-compactness, a constructive function-theoretic notion of compactness for which we show that it generalizes the notion of a compact metric space. In the last chapter we initiate the basic homotopy theory of Bishop spaces. The other direction in the development of TBS is related to the analogy between a Bishop topology F, which is a ring and a lattice, and the ring of real-valued continuous functions C(X) on a topological space X. This analogy permits a direct "communication" between TBS and the theory of rings of continuous functions, although due to the classical set-theoretic character of C(X) this does not mean a direct translation of the latter to the former. We study the zero sets of a Bishop space and we prove the Urysohn lemma for them. We also develop the basic theory of embeddings of Bishop spaces in parallel to the basic classical theory of embeddings of rings of continuous functions and we show constructively the Urysohn extension theorem for Bishop spaces. The constructive development of topology in this Thesis is within Bishop's informal system of constructive mathematics BISH, inductive definitions with rules of countably many premises included

    Mathematical Logic: Proof Theory, Constructive Mathematics (hybrid meeting)

    Get PDF
    The Workshop "Mathematical Logic: Proof Theory, Constructive Mathematics" focused on proofs both as formal derivations in deductive systems as well as on the extraction of explicit computational content from given proofs in core areas of ordinary mathematics using proof-theoretic methods. The workshop contributed to the following research strands: interactions between foundations and applications; proof mining; constructivity in classical logic; modal logic and provability logic; proof theory and theoretical computer science; structural proof theory

    Bibliography on Realizability

    Get PDF
    AbstractThis document is a bibliography on realizability and related matters. It has been collected by Lars Birkedal based on submissions from the participants in “A Workshop on Realizability Semantics and Its Applications”, Trento, Italy, June 30–July 1, 1999. It is available in BibTEX format at the following URL: http://www.cs.cmu.edu./~birkedal/realizability-bib.html

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    ‘Here and There, Then and Now’: Envisioning a Palimpsest Methodology

    Get PDF
    Black feminisms challenge Western conceptions of linearity as an optic for understanding the experiences of Black folx in the United States social imaginary. As such, this article centers the understanding that for Black and minoritized folx, historical legacies carry the lingering effects of what may seem over and done with. These tensions converge on what M. Jacqui Alexander (2005) called the palimpsest, or “a parchment that has been inscribed two or three times, the previous text having been imperfectly erased” (Alexander, 2005, p. 190). A framing of time and realities as palimpsestic, or imperfect erasure, suggests that the past is visible and acting upon the present. The potential of a palimpsest methodology rests on the ethical entanglements of the body, memory, and space-time and afterlives with respect to existing tendencies and reliable possibilities. Methodologically, we propose that the palimpsest necessarily reads data and researcher positionalities as woven together, written over, and grappling with one another. In turn, this article intends to pursue embodied research by envisioning the notion of the palimpsest as a methodological tool. To accomplish this, we begin with a brief review of the literature and disciplinary grounds that root the notion of the palimpsest. From there, we discuss the guiding principles for this approach before offering methodological considerations. Against the violence of complicity, temporality, and objectivity, for researchers, a palimpsest approach argues for an assumed responsibility to the work they engage in, the lives they work with, and sites that ground their work

    Mathematical Logic: Proof theory, Constructive Mathematics

    Get PDF
    The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” was centered around proof-theoretic aspects of current mathematics, constructive mathematics and logical aspects of computational complexit
    • 

    corecore