11 research outputs found

    Extending Nearly Complete 1-Planar Drawings in Polynomial Time

    Get PDF
    The problem of extending partial geometric graph representations such as plane graphs has received considerable attention in recent years. In particular, given a graph G, a connected subgraph H of G and a drawing H of H, the extension problem asks whether H can be extended into a drawing of G while maintaining some desired property of the drawing (e.g., planarity). In their breakthrough result, Angelini et al. [ACM TALG 2015] showed that the extension problem is polynomial-time solvable when the aim is to preserve planarity. Very recently we considered this problem for partial 1-planar drawings [ICALP 2020], which are drawings in the plane that allow each edge to have at most one crossing. The most important question identified and left open in that work is whether the problem can be solved in polynomial time when H can be obtained from G by deleting a bounded number of vertices and edges. In this work, we answer this question positively by providing a constructive polynomial-time decision algorithm

    Extending Partial 1-Planar Drawings

    Get PDF
    Algorithmic extension problems of partial graph representations such as planar graph drawings or geometric intersection representations are of growing interest in topological graph theory and graph drawing. In such an extension problem, we are given a tuple (G,H,?) consisting of a graph G, a connected subgraph H of G and a drawing ? of H, and the task is to extend ? into a drawing of G while maintaining some desired property of the drawing, such as planarity. In this paper we study the problem of extending partial 1-planar drawings, which are drawings in the plane that allow each edge to have at most one crossing. In addition we consider the subclass of IC-planar drawings, which are 1-planar drawings with independent crossings. Recognizing 1-planar graphs as well as IC-planar graphs is NP-complete and the NP-completeness easily carries over to the extension problem. Therefore, our focus lies on establishing the tractability of such extension problems in a weaker sense than polynomial-time tractability. Here, we show that both problems are fixed-parameter tractable when parameterized by the number of edges missing from H, i.e., the edge deletion distance between H and G. The second part of the paper then turns to a more powerful parameterization which is based on measuring the vertex+edge deletion distance between the partial and complete drawing, i.e., the minimum number of vertices and edges that need to be deleted to obtain H from G

    Extending Partial Representations of Circle Graphs in Near-Linear Time

    Get PDF
    The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of H. The question is whether G admits a representation G whose restriction to H is H. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n+m)α(n+m)) time, where α is the inverse Ackermann function. This improves over an O(n3^{3})-time algorithm by Chaplick, Fulek and Klavík [2019]. The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest

    Disjoint Faces in Drawings of the Complete Graph and Topological Heilbronn Problems

    Get PDF

    Crossing-Optimal Extension of Simple Drawings

    Get PDF
    In extension problems of partial graph drawings one is given an incomplete drawing of an input graph G and is asked to complete the drawing while maintaining certain properties. A prominent area where such problems arise is that of crossing minimization. For plane drawings and various relaxations of these, there is a number of tractability as well as lower-bound results exploring the computational complexity of crossing-sensitive drawing extension problems. In contrast, comparatively few results are known on extension problems for the fundamental and broad class of simple drawings, that is, drawings in which each pair of edges intersects in at most one point. In fact, the extension problem of simple drawings has only recently been shown to be NP-hard even for inserting a single edge. In this paper we present tractability results for the crossing-sensitive extension problem of simple drawings. In particular, we show that the problem of inserting edges into a simple drawing is fixed-parameter tractable when parameterized by the number of edges to insert and an upper bound on newly created crossings. Using the same proof techniques, we are also able to answer several closely related variants of this problem, among others the extension problem for k-plane drawings. Moreover, using a different approach, we provide a single-exponential fixed-parameter algorithm for the case in which we are only trying to insert a single edge into the drawing

    Inserting one edge into a simple drawing is hard

    Get PDF
    A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G + e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment s, it can be decided in polynomial time whether there exists a pseudocircle Fs extending s for which A ¿ {Fs} is again an arrangement of pseudocircles.Peer ReviewedPostprint (published version

    Extending Partial Representations of Circle Graphs in Near-Linear Time

    Get PDF
    The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H⊆GH ⊆ G and a representation R′\mathcal{R}′ of H . The question is whether G admits a representation R\mathcal{R} whose restriction to H is R′\mathcal{R}′. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n+m)α(n+m))O((n + m)α(n + m)) time, thereby improving over an O(n3)O(n^3)-time algorithm by Chaplick et al. (J Graph Theory 91(4), 365–394, 2019). The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore