
Crossing-Optimal Extension of Simple Drawings
Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Thekla Hamm #

Algorithms and Complexity Group, TU Wien, Austria

Fabian Klute #

Deptartment of Information and Computing Sciences, Utrecht University, The Netherlands

Irene Parada #

TU Eindhoven, The Netherlands

Birgit Vogtenhuber #

Graz University of Technology, Austria

Abstract
In extension problems of partial graph drawings one is given an incomplete drawing of an input graph
G and is asked to complete the drawing while maintaining certain properties. A prominent area where
such problems arise is that of crossing minimization. For plane drawings and various relaxations of
these, there is a number of tractability as well as lower-bound results exploring the computational
complexity of crossing-sensitive drawing extension problems. In contrast, comparatively few results
are known on extension problems for the fundamental and broad class of simple drawings, that is,
drawings in which each pair of edges intersects in at most one point. In fact, the extension problem
of simple drawings has only recently been shown to be NP-hard even for inserting a single edge.

In this paper we present tractability results for the crossing-sensitive extension problem of simple
drawings. In particular, we show that the problem of inserting edges into a simple drawing is
fixed-parameter tractable when parameterized by the number of edges to insert and an upper bound
on newly created crossings. Using the same proof techniques, we are also able to answer several
closely related variants of this problem, among others the extension problem for k-plane drawings.
Moreover, using a different approach, we provide a single-exponential fixed-parameter algorithm for
the case in which we are only trying to insert a single edge into the drawing.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Computational geometry

Keywords and phrases Simple drawings, Extension problems, Crossing minimization, FPT-
algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.72

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2012.07457 [24]

Funding Robert Ganian: Supported by the Austrian Science Fund (FWF) via projects Y1329
(Parameterized Analysis in Artificial Intelligence) and P31336 (New Frontiers for Parameterized
Complexity).
Thekla Hamm: Supported by the Austrian Science Fund (FWF) via projects Y1329 (Parameterized
Analysis in Artificial Intelligence), P31336 (New Frontiers for Parameterized Complexity) and
W1255-N23.
Fabian Klute: Supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 612.001.651.
Birgit Vogtenhuber : Partially supported by Austrian Science Fund (FWF) within the collaborative
DACH project Arrangements and Drawings as FWF project I 3340-N35.

EA
T
C
S

© Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 72; pp. 72:1–72:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rganian@ac.tuwien.ac.at
https://orcid.org/0000-0002-7762-8045
mailto:thamm@ac.tuwien.ac.at
mailto:f.m.klute@uu.nl
https://orcid.org/0000-0002-7791-3604
mailto:i.m.de.parada.munoz@tue.nl
https://orcid.org/0000-0003-3147-0083
mailto:bvogt@ist.tugraz.at
https://orcid.org/0000-0002-7166-4467
https://doi.org/10.4230/LIPIcs.ICALP.2021.72
https://arxiv.org/abs/2012.07457
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Crossing-Optimal Extension of Simple Drawings

Acknowledgements This work was started during the Austrian Computational Geometry Reunion
Meeting in Strobl (Austria), August 10 to 14, 2020. We thank all the participants for the nice
working atmosphere as well as fruitful discussions on this as well as other topics. The authors would
also like to thank Eduard Eiben for his insightful comments.

1 Introduction

The study of the crossing number of graphs, that is, the minimum number of edge crossings
necessary to draw a given graph, is a major research direction in the field of computational
geometry [10, 33, 36]. More recently, there have been a number of works focusing on
minimizing or restricting edge crossings when the task is not to draw a graph from scratch,
but rather to extend a partial drawing that is provided on the input. Prominently, Chimani
et al. [14] showed that extending a plane drawing with a star in a way that minimizes the
number of crossings of the resulting drawing is polynomial-time tractable. Later, Angelini
et al. [1] obtained a polynomial-time algorithm for extending plane drawings so that the
crossing number remains 0 (i.e., the resulting drawing is plane).

While the two results mentioned above give rise to polynomial-time variants of crossing-
minimization extension problems, a number of important cases are known to be NP-hard; a
prototypical example is the Rigid Multiple Edge Insertion (RMEI) problem, which asks
for a crossing-minimal insertion of k edges into a plane drawing of an n-vertex graph [15, 37].
To deal with this, in recent years the focus has broadened to also consider a weaker notion of
tractability, namely, fixed-parameter tractability (FPT) [17, 19]. Chimani and Hliněný [15]
have shown that RMEI is FPT, i.e., there is an algorithm which solves that problem in time
f(k) · nO(1). Other works have considered various relaxations of crossing minimization; for
instance, recently Eiben et al. [20] established the fixed-parameter tractability of extending
drawings by k edges in a way which does not minimize the total number of crossings, but
rather bounds the number of crossings per edge to at most 1.

For many problems in the intersection of crossing minimization and graph extension, an
important goal is that the desired extension should maintain certain properties of the given
partial representation. In the problems studied in [1] and [20], the input is a plane or 1-plane1

drawing, respectively, and the desired extension must maintain the property of being (1-)plane.
There have been a plethora of results exploring such extension problems, especially on plane
drawings, for a range of other, often more restrictive properties [3, 9, 12, 13, 31, 32, 34].

Beyond planarity, the perhaps most prominent class of drawings with respect to crossing
minimization are simple drawings (also called good drawings [8, 21], simple topological
graphs [29], or simply drawings [26]). A drawing is simple if every pair of edges intersects in
at most one point that is either a common endpoint or a proper crossing. Simplicity is an
extremely natural restriction that is taken as a basic assumption in a range of settings, e.g., [2,
5, 11, 30], and that constitutes a necessary requirement for crossing-minimal drawings [36].

Contribution. In this work we study the extension problem for simple drawings in the
context of crossing minimization. In other words, our aim is to extend a given simple drawing
with k new edges while maintaining simplicity and restricting newly created crossings.
Naturally, the most obvious way of restricting such crossings is by bounding their number,
leading us to our first problem of interest:2

1 A drawing of a graph is ℓ-plane if every edge is involved in at most ℓ crossings.
2 Decision versions of problems are provided purely for complexity-theoretic reasons; every algorithm

provided in this article is constructive and can also output a solution as a witness.

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:3

Simple Crossing-Minimal Edge Insertion (SCEI)
Input: A graph G = (V, E) along with a connected simple drawing G, an integer ℓ,

and a set F of k edges of the complement of G.
Question: Can G be extended to a simple drawing G′ of the graph G′ = (V, E ∪ F) such

that the number of crossings in G′ that involve an edge of F is at most ℓ?

Note that we require the initial drawing G to be connected. While this is a natural assumption
that is well-justified in many situations, it would certainly also make sense to consider the
more general setting in which this is not the case. A short discussion of how the connectivity
of G is used in our proof is provided in Section 4.

SCEI was recently shown to be NP-complete already when |F | = 1 and ℓ ≥ |E| (meaning
that the aim is merely to obtain a simple drawing) [7]. On the other hand, dropping the
simplicity requirement of the resulting drawing, the problem reduces to RMEI which is FPT.

The main contribution of this article is an FPT algorithm for SCEI parameterized by
k + ℓ. The result is obtained via a combination of techniques recently introduced in [20] and
completely new machinery. A high-level overview of challenges posed by the problem and
our strategies for overcoming them is provided in the next part of this introduction. Before
that, let us mention other natural crossing-sensitive restrictions of simple drawing extension.

Instead of restricting the total number of newly created crossings, one may aim to extend G
in a way which bounds the number of crossings involving each of the newly added edges
– akin to the restrictions imposed by ℓ-planarity. We call this problem Simple Locally
Crossing-Minimal Edge Insertion (SLCEI), where the role of ℓ is that it bounds the
maximum number of crossings involving any one particular edge of F . Alternatively, one
may simply require that every edge in the resulting drawing is involved in at most ℓ crossings,
i.e., that the whole G′ is ℓ-plane. This results in the Simple ℓ-Plane Edge Insertion
(Sℓ-PEI) problem. Both of these problems are known to be NP-hard when either ℓ = 1 or
k = 1, meaning that we can drop neither of our parameters if we wish to achieve tractability.

One key strength of the framework we develop for solving SCEI is its universality. Notably,
we obtain the fixed-parameter tractability of SLCEI as an immediate corollary of the proof
of our main theorem, while the fixed-parameter tractability of Sℓ-PEI follows by a minor
adjustment of the final part of our proof. Moreover, it is trivial to use the framework to solve
the considered problems when one drops the requirement that the final drawing is simple
– allowing us to, e.g., generalize the previously established fixed-parameter tractability of
1-Planar Edge Insertion [20] to ℓ-Planar Edge Insertion (ℓ-PEI).

Finally, we note that a core ingredient in our approach is the use of Courcelle’s the-
orem [16], and hence the algorithms underlying our tractability results will have an impractical
dependency on k. However, for the special case of |F | = 1 (i.e., when inserting a single edge),
we use so-called representative sets to provide a single-exponential fixed-parameter algorithm
which is tight under the Exponential Time Hypothesis [27].

Proof Overview. On a high level, our approach follows the general strategy co-developed
by a subset of the authors in [20] for solving the problem of inserting k edges into a drawing
while maintaining 1-planarity. This general strategy can be summarized as follows:
1. We preprocess G and the planarization of G to remove parts of G which are too far away

to interact with our solution. This drawing is then translated into a graph representation
of bounded treewidth [35].

2. We identify a combinatorial characterization that captures how the solution curves will
be embedded into G. Crucially, the characterization has size bounded by our parameters.

3. We perform brute-force branching over all characterizations to pre-determine the behavior
of a solution in G, and for each such characterization we employ Courcelle’s theorem [16]
to determine whether there exists a solution with such a characterization.

ICALP 2021

72:4 Crossing-Optimal Extension of Simple Drawings

The specific implementation of this strategy differs substantially from the previous work [20]
– for instance, the combinatorial characterization of solutions in Step 2 and the use of
Courcelle’s theorem in Step 3 are both different. But the by far greatest challenge in
implementing this strategy occurs in Step 1. Notably, removing the parts of G required to
obtain a bounded-treewidth graph representation creates holes in the drawing, and these
could disconnect edges intersecting these holes. The graph representation can then lose track
of “which edge parts belong to each other”, which means we can no longer use it to determine
whether the extended drawing is simple. We remark that specifically for Sℓ-PEI and ℓ-PEI,
it would be possible to directly adapt Step 1 to ensure that no edge is disconnected in this
manner, thus circumventing this difficulty. To handle this problem, we employ an in-depth
geometric analysis combined with a careful use of the sunflower lemma and subroutines
which invoke Courcelle’s theorem to construct a representation which (a) still has bounded
treewidth, and (b) contains partial information about which edge parts belong to the same
edge in G. A detailed overview of how this is achieved is presented at the beginning of
Section 3.

Related Work. There have been two distinct lines of work that recently considered simple
drawings in the context of drawing extension problems. The first studied a closely related
notion of saturated simple drawings [25, 28], while the second studied the computational
complexity of the extension problem for simple drawings [6, 7].
Statements where proofs or more details are provided in the full version are marked with (⋆).

2 Preliminaries

We use standard terminology for undirected and simple graphs [18]. The length of a walk
or a path is the number of edges it visits. For r ∈ N, we write [r] as shorthand for the set
{1, . . . , r}.

A simple drawing of a graph G is a drawing G of G in the plane such that every pair of
edges shares at most one point that is either a unique crossing point or a common endpoint.
In particular, no tangencies between edges are allowed, edges must not contain any vertices
in their relative interior, and no three edges intersect in the same point. Given a simple
drawing G of a graph G and a set of edges F of the complement of G we say that the edges
in F can be inserted into G if there exists a simple drawing G+ of G+ = (V (G), E(G) ∪ F)
that contains G as a subdrawing. The planarization of a simple drawing G of G is the plane
graph G× obtained from G by subdividing the edges of G at the crossing points of G. We
call each part of the subdivision of e ∈ E(G) in G× an edge segment (of e). Furthermore, we
consider the faces of G× as the cells of G and call G connected if G× is a connected graph.

Sunflower Lemma. One tool we use to obtain our results is the classical sunflower lemma
of Erdős and Rado. A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of
elements in F ′ have the same intersection.

▶ Lemma 1 ([22, 23]). Let F be a family of subsets of a universe U , each of cardinality at
most b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′ of cardinality at
least a. Moreover, F ′ can be computed in time polynomial in |F|.

Parameterized Complexity. In parameterized complexity [17, 19, 23], the complexity of
a problem is studied not only with respect to the input size, but also with respect to
some problem parameter(s). The core idea behind parameterized complexity is that the

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:5

combinatorial explosion resulting from the NP-hardness of a problem can sometimes be
confined to certain structural parameters that are small in practical settings. We now proceed
to the formal definitions.

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet. Each
instance of Q is a pair (I, κ), where κ ∈ N is called the parameter. A parameterized problem
Q is fixed-parameter tractable (FPT) [23, 19, 17], if there is an algorithm, called an FPT-
algorithm, that decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1), where
f is a computable function and |I| is the input instance size. The class FPT denotes the
class of all fixed-parameter tractable parameterized problems. A parameterized problem Q is
FPT-reducible to a parameterized problem Q′ if there is an algorithm, called an FPT-reduction,
that transforms each instance (I, κ) of Q into an instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1),
such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′, where f and g are computable
functions.

Monadic Second Order Logic. We consider Monadic Second Order (MSO) logic on (edge-
)labeled directed graphs in terms of their incidence structure, whose universe contains
vertices and edges; the incidence between vertices and edges is represented by a binary
relation. We assume an infinite supply of individual variables x, x1, x2, . . . and of set
variables X, X1, X2, The atomic formulas are V x (“x is a vertex”), Ey (“y is an edge”),
Ixy (“vertex x is incident with edge y”), x = y (equality), Pax (“vertex or edge x has label
a”), and Xx (“vertex or edge x is an element of set X”). MSO formulas are built up from
atomic formulas using the usual Boolean connectives (¬, ∧, ∨, →, ↔), quantification over
individual variables (∀x, ∃x), and quantification over set variables (∀X, ∃X).

Free and bound variables of a formula are defined in the usual way. To indicate that the
set of free individual variables of formula Φ is {x1, . . . , xℓ} and the set of free set variables of
formula Φ is {X1, . . . , Xq} we write Φ(x1, . . . , xℓ, X1, . . . , Xq). If G is a graph, v1, . . . , vℓ ∈
V (G)∪E(G) and S1, . . . , Sq ⊆ V (G)∪E(G) we write G |= Φ(v1, . . . , vℓ, S1, . . . , Sq) to denote
that Φ holds in G if the variables xi are interpreted by the vertices or edges vi, for i ∈ [ℓ],
and the variables Xi are interpreted by the sets Si, for i ∈ [q].

The following result (the well-known Courcelle’s theorem [16]) shows that if G has
bounded treewidth [35] then we can find an assignment φ to the set of free variables F with
G |= Φ(φ(F)) (if one exists) in linear time.

▶ Theorem 2 (Courcelle’s theorem [4, 16]). Let Φ(x1, . . . , xℓ, X1, . . . , Xq) be a fixed MSO
formula with free individual variables x1, . . . , xℓ and free set variables X1, . . . , Xℓ, and let w

a constant. Then there is a linear-time algorithm that, given a labeled directed graph G of
treewidth at most w, either outputs v1, . . . , vℓ ∈ V (G) ∪ E(G) and S1, . . . , Sq ⊆ V (G) ∪ E(G)
such that G |= Φ(v1, . . . , vℓ, S1, . . . , Sq) or correctly identifies that no such vertices v1, . . . , vℓ

and sets S1, . . . , Sq exist.

We remark that since an understanding of the definition of treewidth is not required for
our presentation, we merely refer to the literature for a discussion of the notion [17, 19, 35].
We denote the treewidth of a graph G as tw(G).

Problem Definition and Terminology. We formulate the following generalization of SLCEI
in which we allow the numbers of crossings allowed for each newly added edge to differ. Note
that this formulation also fixes a parameterization.

ICALP 2021

72:6 Crossing-Optimal Extension of Simple Drawings

Simple Crossing-Restricted Edge Insertion (SCREI) Parameter: k + maxi∈[k] ℓi

Input: A graph G = (V, E) along with a connected simple drawing G, a set F =
{e1, . . . , ek} of k edges of the complement of G, and ℓ1, . . . , ℓk ∈ N.

Question: Can G be extended to a simple drawing G′ of the graph G′ = (V, E ∪ F) such
that the drawing of each edge ei ∈ F has at most ℓi crossings in G′?

For an instance of SCREI we refer to elements in F as added edges and denote the endpoints
of ei as si and ti (where s1, t1 . . . , sk, tk are not necessarily distinct). For brevity we denote
ℓ = maxi∈[k] ℓi. Although SCREI is stated as a decision problem, we will want to speak
about hypothetical solutions of SCREI, which will naturally correspond to the drawings of
added edges in G′ (if one exists) as the rest of G′ is predetermined by G. This means that a
solution is a set of drawings of added edges in G′ where G′ witnesses the fact that the given
instance is a yes-instance. If no such G′ exists, then we say that the SCREI-instance has no
solution.

The reason we focus our presentation on SCREI is that the fixed-parameter tractability of
SCREI immediately implies the fixed-parameter tractability of both SLCEI parameterized
by the number of added edges and crossings per added edge, and SCEI parameterized by
the number of added edges and crossings of all added edges. The former is just a subcase
of SCREI. The latter admits a straightforward FPT-reduction to SCREI by branching
over the number ℓi of crossings each edge ei ∈ F is at most involved in. Hence obtaining
a fixed-parameter algorithm for SCREI provides a unified reason for the fixed-parameter
tractability of both SCEI and SLCEI. Furthermore, we will later show that the result for
SCREI can be straightforwardly adapted to solve the other problems mentioned in the
introduction.

3 Stitches

Let
(
G, G, F, (ℓi)i∈[|F |]

)
be an instance of SCREI. Recalling the Proof Overview provided in

Section 1, we want to identify parts of G that may be considered “unimportant” because
they can never be intersected by the drawing of any of the edges siti ∈ F with at most ℓi

crossings. Formally, consider the dual G∗ of the planarization G× of G, and for each vertex
v ∈ V (G) let Uv ⊆ G∗ be the set of vertices that correspond to cells c of G such that v lies on
the boundary of c. We say a cell c of G is siti-far if it corresponds to a vertex vc ∈ V (G∗) at
distance more than ℓi from Usi or Uti , and c is far if it is siti-far for all i ∈ [k]. Observe that
in any solution of SCREI for

(
G, G, F, (ℓi)i∈[|F |]

)
no drawing of an edge in F can intersect

far cells of G. We refer to maximal unions of far cells in G which form subsets of R2 whose
interior is connected as holes. The interiors of holes are a natural choice for information
that is not immediately relevant for the insertion of drawings for F , in the sense that no
intersections with these drawings can occur in far cells. However, as mentioned in the Proof
Overview, omitting the interior of holes destroys the information about which parts of edges
belong to the same edge whenever an edge is disconnected by the removal of a hole.

To transfer this information between different parts of one edge – parts which could
be crossed by a hypothetical solution but which are disconnected by holes – we introduce
stitches into the respective holes. More formally, for a hole H in G we call an edge e in E(G)
H-torn if e is split into at least two curves by the removal of the interior of H from G. We
call maximal subcurves of an H-torn edge after removing H (edge) parts of e and refer to
the endpoints of these subcurves as endpoints of the corresponding edge part. Stitches will
correspond to paths between the endpoints of edge parts of H-torn edges. To construct these
paths we introduce so-called threads which are edges that we insert into a hole H to connect
parts of H-torn edges and derive the stitches from them by considering their planarization.

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:7

. . .

si ti

H

Figure 1 Assuming ℓi = 3, then the poten-
tial drawings of siti, depicted as dashed curves,
can cross an arbitrary number of H-torn edges.

si ti

tj

sj

c

Figure 2 Assuming ℓi = ℓj = 3, then the
drawing of sjtj has to go through c and the
drawing of siti has to revisit cell c.

To ensure that the obtained combinatorialization of G has bounded treewidth, the main
goal of this section will be to bound the number of stitches for each edge siti ∈ F and hole
H by some function of k + ℓi. We do this by considering which and how many edge parts
of H-torn edges any simple siti-curve in a hypothetical solution can cross. Here we face an
apparent difficulty: it is possible that there is an unbounded number of edge parts which
are crossed by drawings of an added edge siti in hypothetical solutions and each edge part
belongs to a different H-torn edge (see Figure 1). However, such situations can be safely
avoided by restricting our attention to “reasonable” solutions, as we will see in Subsection 3.1.
In particular, to specify “reasonable” solutions, we turn our attention to the behavior of
drawings of added edges in a hypothetical solution when they revisit a cell of G. Then,
bounding the number of stitches we introduce for an added edge siti and hole H is equivalent
to showing that we can identify all but a bounded number of edges in E(G) which are H-torn
and cannot be crossed by a drawing of siti in a “reasonable” hypothetical solution. This is
what we focus on in Subsection 3.2.

After adding stitches, we are finally able to define an appropriate combinatorialization of
G in Section 4 which we can use for the final application of Courcelle’s theorem in Section 5.

3.1 Detours and Reasonable Solutions
Fix an added edge siti, a hole H, and a cell c of the original drawing of G. Note that a
drawing of siti in a hypothetical solution might revisit the cell c to avoid crossing the drawing
of a different added edge sjtj . Figure 2 exemplifies such a situation. Understanding how and
why a solution might need to revisit a cell is a major component in establishing an upper
bound on the number of stitches per hole. In fact, as we will see in this section, avoiding
such crossings is the only reason why a cell might have to be revisited.

Let γi be a drawing of siti in a hypothetical solution which revisits c. A c-detour (of γi)
is a maximal subcurve of γi whose interior is disjoint from int(c) and has neither si nor ti as
an endpoint. Note that a c-detour might also consist of a singular point. This case occurs
when γi crosses an edge segment on the boundary of c which does not lie on the boundary of
another cell. See Figure 3 for an illustration.

▶ Definition 3. Let δ be a c-detour, and let the embedding E consist only of δ and the
restriction of G to the boundary of c. Then δ partitions the boundary of c into two connected
parts: the part incident to the unbounded (i.e. outer) cell in E, and the δ-avoided part which
is not incident to the outer cell in E.

Additionally, we call the subset of R2 which is enclosed by δ and the δ-avoided part of the
boundary of c together with the δ-avoided part of the boundary of c itself the δ-avoided region.

ICALP 2021

72:8 Crossing-Optimal Extension of Simple Drawings

γi

c

si

ti

Figure 3 Drawing γi of siti in a hypothet-
ical solution with two c-detours: one is a curve
(highlighted in purple) and the other is a point
(highlighted in green).

c

Figure 4 For the single point detour
(green), the avoided part of the boundary of c
and the plane coincide and are dashed green.
For the curve detour (purple), the avoided
part of the boundary of c is dashed purple
and the avoided region is shaded purple.

See Figure 4 for an illustration. A c-detour δ is unremovable if there exists an added edge
sjtj with j ̸= i such that exactly one of sj and tj lies in the δ-avoided region of G. In that
case we say that the endpoint (sj or tj) in the δ-avoided region is avoided by δ, or that δ is
around the endpoint. We call a c-detour removable if it is not unremovable.

▶ Lemma 4 (⋆). If there is a solution, then there exists a solution in which no drawing of
any added edge contains a removable c′-detour for any cell c′ of G.

Lemma 4 allows us to restrict our attention to solutions which do not contain any
removable detours (these are the solutions we intuitively referred to as “reasonable”).

3.2 Defining and Finding Stitches
Let siti ∈ F and H be a hole. Our goal is to compute a, by our parameters, bounded
number of edge parts in E(G) which could be crossed by a drawing of siti in some reasonable
hypothetical solution. As we obviously do not know any hypothetical solution we cannot
compute this set directly. Consequently, we identify and compute a slightly larger set: the
set of all edge parts that can be crossed by some so-called solution curve for si and ti that
is superficially like an siti-curve in a “reasonable” hypothetical solution (but which might
induce double-crossings).

▶ Definition 5. A solution curve for siti is a simple curve γi that (i) starts in si and ends
in ti; (ii) produces at most ℓi crossings with G; and (iii) whenever γi intersects a cell c′

in more than one maximal connected subcurve there is an added edge sjtj with j ̸= i such
that exactly one of sj and tj lies in the ζ-avoided part of G, where ζ is a maximal connected
subcurve of γi outside of c′ between two intersections of γi with c′. A part of an H-torn edge
e ∈ E(G) is crossable for siti if it is crossed by a solution curve for siti.

▶ Lemma 6 (⋆). For every hole H and every added edge siti ∈ F there are less than
ℓi(2ℓi + 1)! ·

(
4k(ℓi + 2)(ℓi + 1)ℓi+1)2ℓi+1 parts of H-torn edges that are crossable for siti.

Proof Sketch. We show that there is a set K of less than (2ℓi+1)!
(

4k(ℓi+2)(ℓi+1)ℓi+1
)2ℓi+1

solution curves for siti such that each crossable edge part for siti is crossed by at least one
of the curves in K. Then the claim follows as each solution curve crosses at most ℓi edges.

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:9

si

H
c1 = c6

c4c5

c2 = c3

c7
ti

Figure 5 The cells c1, . . . , c7 are in the core of the sunflower. The red dashed siti curve cannot
be part of the minimal set of curves K. The extremal subcurves are highlighted in green.

Assume for contradiction that the minimum set K that witnesses crossability of parts
of H-torn crossable edges for siti consists of at least (2ℓi + 1)!

(
4k(ℓi + 2)(ℓi + 1)ℓi+1)2ℓi+1

solution curves for siti. Consider the restricted drawing GH which is given by G restricted to
the boundary of H, all H-torn edges in E(G), as well as si and ti.

We associate each siti curve in K with the set of cells of GH which it intersects and the
set of edge segments in G×

H which it crosses. In this way, each curve in K is associated to a
set of size at most 2ℓi + 1. By the minimality of K, no two curves in K are associated to the
same set of cells and edge segments. Using the sunflower lemma [22, 23] for the set system
given by the sets of cells and edge segments associated to the siti curves in K we obtain a
set of at least 4k(ℓi + 2)(ℓi + 1)ℓi+1 solution curves K☼ ⊆ K which all intersect pairwise
different cells of GH and edge segments of G×

H , apart from the cells and edge segments in the
core of a sunflower, which they all intersect. Moreover, as curves in K intersect at most ℓi

edges we find at most ℓi + 1 cells in the core.
By the pigeonhole principle there is a set of at least 4k(ℓi + 2) curves in K☼ which

all intersect the cells in the core of the sunflower in the same order (taking into account
repetitions of cells). Let K☼

σ ⊆ K☼ be such a set of curves and let σ = c1, . . . , cl with
l ≤ ℓi + 1 be the order in which these curves traverse the cells in the core of the sunflower.

As each cj with j ∈ [l] is a cell in a restriction of G containing all H-torn edges, no part
of an H-torn edge intersects the interior of cj . In particular parts of H-torn edges are not
crossed by any curve in K☼

σ within int(cj).
When considering subcurves of curves between each cj and cj+1, we can find at most

4(k − 1) “extremal” such subcurves which separate all other subcurves from H together with
cj and cj+1. These extremal subcurves together cross any crossable edge part of an H-torn
edge intersected by any other considered subcurve. See Figure 5 for an illustration.

In this way we find at least one curve after the removal of which from K the same crossable
edge parts of H-torn edges are intersected, contradicting our minimality assumption. ◀

While the fact that the number of crossable edge parts we want to introduce stitches for
is bounded by a function in our parameters is reassuring, we need to be able to actually
introduce these stitches before being able to give our final MSO encoding of hypothetical
solutions. For this we invoke Courcelle’s theorem in Lemma 7 independently of its final
application. This then allows us to insert the corresponding stitches.

▶ Lemma 7 (⋆). There is a fixed-parameter algorithm parameterized by k + ℓ which identifies,
for an added edge siti and a hole H, all parts of H-torn edges which are crossable for siti.

ICALP 2021

72:10 Crossing-Optimal Extension of Simple Drawings

▶ Definition 8. For a hole H in G and an added edge siti ∈ F , a thread is a pair of two
endpoints of two distinct edge parts of the same H-torn edge in e ∈ E(G) satisfying the
following properties: (i) both edge parts are crossable for siti, (ii) there is no other crossable
edge part between these edge parts along a traversal of e, and (iii) there is no other endpoint
of one of the two edge parts along a traversal of e. We denote the set of all threads for H

and siti as TH,siti , and define the set of all threads for H as TH =
⋃

i∈[k] TH,siti .

An embedding of TH is a set of curves, contained completely in H, which connect each
pair of two endpoints of edge parts in TH .

▶ Lemma 9 (⋆). There is a fixed-parameter algorithm parameterized by k + ℓ that computes,
for a hole H in G, a simple embedding of TH .

For the simple embedding of TH into H computed in Lemma 9, define the set of stitches
SH of H as the planarization of the threads in this embedding.

4 The Patchwork Graph

After identifying a bounded number of stitches in each hole, we are finally able to define the
patchwork graph and prove desirable properties which we will use in our final application of
Courcelle’s theorem. An illustration of the patchwork graph is provided in Figure 6. The
following definition also doubles as a description of how to construct the patchwork graph
from a given drawing. We remark that, unlike G, the patchwork graph might be disconnected.

▶ Definition 10. The patchwork graph P and its embedding P are given by the labeled graph
derived from G in the following steps:
1. Planarize G and label the vertices which are newly introduced by this as crossing vertices.

Label vertices which correspond to vertices of G as real vertices. Additionally label each
si and ti with label i ∈ [k].

2. Subdivide each edge e in the planarization G× of G by k vertices3 ve
1, . . . , ve

k which are
labeled as segment vertices – each segment vertex of e will represent a possible crossing
point of the drawing of one of the k edges in F and e.

3. Inside each face f of G×, introduce a new vertex vf and label it as cell vertex.
4. Inside each face f of G×, trace the boundary of f creating a curve at ε-distance and

create a vertex labeled as shadow vertex on this curve every time an endpoint of an edge
in F or a segment vertex is encountered. Insert two edges for each shadow vertex; one
connecting the shadow vertex to the corresponding endpoint of an edge in F or segment
vertex; and one connecting the shadow vertex to vf . Note that multiple shadow vertices
can be introduced for the same vertex in G (e.g. the orange vertex in Figure 6). Shadow
vertices allow to distinguish different ways, more formally positions in the rotation around
an endpoint, of accessing that endpoint via the inserted drawing of an edge in F (see
Figure 7); this is where the connectivity of G is used. In this way each shadow vertex of
an endpoint corresponds to an access direction.

5. Delete every vertex that is in the interior of a hole H.
6. For each hole H insert all stitches SH for H into the interior of H and label the inserted

vertices as crossing vertices.4

3 If k = 1 we subdivide by 2 vertices for reasons that will become clear when we introduce tracking labels.
4 This means they receive the same label as vertices introduced by planarizing G.

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:11

Figure 6 Illustration of a patchwork graph P . The remainder of P is hinted in beige. Black disks
are original vertices. Colored disks are endpoints of edges in F . Crossing vertices are crosses. Green
and white disks represent the edge segment/shadow vertices. Cell vertices are white squares. Holes
are shaded in gray and stitches drawn with thick, dashed curves.

Figure 7 Illustration for different access directions. Each hypothetical drawing (indicated as
thick dashes, normal, dotted, and dash-dotted lines) of the added edge between the orange vertices
crosses the same edge segment of G× but separates the black vertices differently. In connected
initial drawings, ways of separating vertices of the same cell by the drawing of an added edge are
completely determined by potential crossing points of that drawing and its positions in the rotations
around each of its endpoints. This is not the case for disconnected initial drawings.

7. For technical reasons which will become apparent later (when we introduce tracking labels),
we replace each edge in SH by a path consisting of two vertices and three edges and label
the inserted vertices as segment vertices.5

We introduce additional crossability labels for segment vertices in the following way. For
every segment vertex v corresponding to an edge segment σ of edge e ∈ E(G), we label v as
crossable for some edge siti ∈ F if one of the following two conditions holds:

e is not H-torn for any hole H, or
for each hole H in G for which e is H-torn, σ lies on a part (when considering parts
arising from the removal of the interior of H) of e that is crossable for siti.

5 This means they receive the same label as vertices introduced by subdividing edge segments of the
planarization of G.

ICALP 2021

72:12 Crossing-Optimal Extension of Simple Drawings

▶ Lemma 11 (⋆). If there exists a solution for the considered SCREI instance, then there
is a solution such that all segment vertices which correspond to edge segments of an edge that
is crossed by the drawing of siti ∈ F in the solution are labeled as crossable for siti.

Note that Lemmas 7 and 9 and Definition 10 allow us to compute the patchwork graph in
FPT time. Two important properties of the patchwork graph are encapsuled in Lemmas 12
and 13. The proof of Lemma 12 relies on obtaining a bound on the diameter of each connected
component of the patchwork graph – a task which is intuitively clear, but requires to overcome
technical challenges due to the addition of stitches. Lemma 13 later allows us to encode
whether two edge segments in P belong to the same edge in G via an MSO formulation.

▶ Lemma 12 (⋆). The patchwork graph P has treewidth bounded by 3(2 + 4(k − 1))(4ℓ +
8(kf(k, ℓ) − 1)), where f(k, ℓ) is the bound on the number of crossable edge parts for a single
added edge and hole obtained in Lemma 6.

▶ Lemma 13 (⋆). Segment vertices which correspond to edge segments of the same edge in
e ∈ E(G) and are labeled as crossable for siti are connected via paths in P consisting only of
segment and crossing vertices which correspond to segments and crossings of e and segments
and crossings for threads that connect parts of e.

Ideally, we would like Lemma 13 to lead to an MSO subformula that can check whether
two segment vertices in P belong to the same edge – an important component of our algorithm
for SCREI. The lemma provides us with a characterization that seems suitable for this task
since it is easy to define a path in MSO, but there is an issue if we use P as it is currently
defined: a crossing vertex is adjacent to 4 segment vertices, and P (viewed as a graph without
an embedding) does not specify which of these segment vertices belong to the same edge.
We resolve this by introducing tracking labels: for each crossing vertex v in P created by a
crossing between edges e and e′ in G, we assign the label 1 to the two unique neighbors of v

corresponding to e and the label 2 to the remaining two neighbors of v.

▶ Corollary 14. Segment vertices which correspond to edge segments of the same edge in
e ∈ E(G) and are labeled as crossable for siti are connected via paths in P consisting only of
segment and crossing vertices with the following property: the two neighbors of each crossing
vertex on the path are segment vertices with the same tracking label.

5 Using the Patchwork Graph

Now that we have constructed the patchwork graph P and established that it has the
properties we need, we can proceed to the final stage of our proof. Here, our aim will be to
identify a combinatorial characterization which projects the behavior of a solution from G
to P , establish a procedure that allows us to identify (and construct) solutions based on a
characterization in P , and finally show how to find such characterizations. To streamline
our presentation, at this stage we perform a brute-force branching procedure which will
determine, for each siti ∈ F , the number ℓ′

i of crossings between the curve connecting si to
ti and edges of G in the sought-after solution.

Consider a hypothetical solution S, and let f be a curve in S connecting vertex a to b.
The trace rf of f is a walk in P starting at a such that:
1. From a, rf proceeds to the shadow vertex that corresponds to the access direction through

which f connects to a, and then to the cell vertex of the first cell c1 in G intersecting f .
2. For each intersection along f with an edge segment q between cells ci and ci+1, rf proceeds

to the shadow vertex of a segment vertex v in ci on q, then to v, then to its shadow vertex
in ci+1, and then to the cell vertex of ci+1, where v has the property that the number of

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:13

segment vertices of q on either side of v is at least as large as the number of drawings of
added edges in F which intersect q on the respective side of its intersection with f . Such
a segment vertex v exists, since there are k = |F | segment vertices on q.

3. Finally, rf continues to the shadow vertex that corresponds to the direction through
which f enters b, and finally ends in b.

Observe that rf visits precisely 4ℓ′
i + 5 vertices. Moreover, for two curves f, f ′ in S, their

traces rf , rf ′ may only intersect in cell vertices, the real vertices that form the endpoints of
the curves, and the associated shadow vertices.

Now, let the solution trace (rS ,ηS) of S be a pair where rS = {rf |f ∈ S} and ηS describes
cyclic orders which will intuitively capture how edges cross into and out of each cell vertex
in the solution. Let RS = {v | ∃f ∈ S : v ∈ rf } be the set of all vertices occurring in the
traces of S. ηS then is a mapping from each cell vertex c ∈ RS to a cyclic order ≺c over the
shadow vertices in RS that are incident to c. Specifically, ≺c is defined as the cyclic order
given by the cycle on the neighborhood of c in P restricted to RS .

Solution traces describe the way in which a solution can be related to a set of walks and
cyclic orders in P . Of course we can abstract away from the explicit reference to a solution
and define the more general notion of preimages whose combinatorial structure is the same
as that of a solution trace but which does not arise and in particular does not even need to
correspond to a solution. (Preimages and solution traces relate in a similar way as solution
curves and solutions in Section 3.2.)

Formally, a preimage (α′, β′) is a tuple with the following properties. α′ is a set of k walks
in H which are labeled α′

1, . . . , α′
k, where each α′

i has length 4(ℓi + 1) and visits vertices with
the same orders of labels as traces. Similarly, β′ is a mapping from each cell vertex c visited
by the walks in α′ to the cyclic order over its neighbors that occur in α′, along the cycle on
NP (c) in P .

Obviously every solution trace is a preimage. Conversely, one can derive a drawing of all
edges of F into G from a preimage (α′, β′) by the assembly procedure A introduced below.
For each α′

i ∈ α′, A will draw a curve ui that starts and ends at the two vertices labeled i

(i.e., the endpoints of siti ∈ F) as described in the following steps.
1. ui exits its starting vertex via the access direction given by the first shadow vertex in α′

i.
2. For each cell vertex c such that (e1, v1, c, v2, e2) forms a subsequence of visited vertices in

α′
i, expand ui by drawing a curve ι in c connecting the edge segment (or the real vertex)

e1 to the edge segment (or the real vertex) e2 in the following way.
Consider an arbitrary other curve drawn in c by A up to now, say ζ, that was obtained
from some subsequence (eζ

1, vζ
1 , c, vζ

2 , eζ
2). ι will intersect ζ if and only if the shadow

vertices of ι interleave with the shadow vertices of ζ in β(c) (i.e., for instance, if
v1 ≺c vζ

1 ≺c v2 ≺c vζ
2 ≺c v1).

Such a drawing can be achieved by, e.g., having the curve ι follow the inside boundary
of c in a clockwise manner while avoiding all curves it is not supposed to cross (as
these will be either completely enveloped by or completely enveloping ι).
We remark that v1 and v2 may either be shadows of segment vertices or the actual
endpoints si or ti.

3. ui ends by entering the final real vertex in α′
i from the direction specified by the last

shadow vertex in α′
i.

The intuition here is that A interprets a preimage of a template trace as a specification
of precisely which parts of G should be crossed by the drawings of each added edge (this
information is provided in α′), while controlling when and how individual curves in the newly
constructed solutions should cross each other (this information is provided in β′). Note that
the output of A for an arbitrary preimage will in general not be a solution for our edge
insertion problem, but – crucially – one can check whether it is in polynomial time.

ICALP 2021

72:14 Crossing-Optimal Extension of Simple Drawings

Observe that, although preimages imply curves in G for all added edges in F , and we can
check for each of them if they are a solution, we cannot iterate over them in FPT time as
the number of preimages in P is generally not FPT. We will however be able to distill the
structure of preimages, independently of their exact specification in P . For this we define
template traces. A template trace is a tuple τ = (T, α, β) where:

T is a graph whose vertices are equipped with a labeling that matches the vertex-labeling
used in P (i.e., some may be labeled as segment vertices, some as cell vertices, etc., and
in addition some of them may be labeled as the endpoints of added edges in F);
α = {α1, . . . , αk} is a set of walks in T , where each walk αi has length 4(ℓ′

i + 1) and the
types of vertices visited by αi match the types of vertices visited by a trace (i.e., αi starts
with a real vertex labeled i, then proceeds with a shadow vertex, a cell vertex, followed
by a sequence of ℓ′

i-many subsequences of shadow-, segment-, shadow-, cell vertices, and
ends with a shadow vertex followed by a different real vertex labeled i); and
β is a mapping from each cell vertex in T to a cyclic order over its adjacent shadow
vertices.
For simplicity, we require that each vertex and edge in T occurs in at least one walk in α.

▶ Proposition 15 (⋆). There are at most (kℓ)O(kℓ) distinct template traces. Moreover, the
set of all template traces can be enumerated in time (kℓ)O(kℓ).

We say that a template trace (T, α, β) matches a preimage (α′, β′) if there is a label-
preserving bijective mapping γ (called the preimaging) from the vertices on walks in α′ to
V (T) such that (1) for each α′

i ∈ α′, γ(α′
i) = αi and (2) γ(β′) maps each c to β(γ(c)). For a

template trace τ that matches a preimage (α′, β′), we say that (α′, β′) is a preimage of τ .
Intuitively, a preimage of a template trace is its firmly embedded counterpart in P . As every
solution trace is a preimage, these definitions carry over to solution traces.

The following lemma shows that a template trace τ matching the solution trace of a
hypothetical solution contains a sufficient amount of information to almost reconstruct a
solution using A on a preimage of τ .

▶ Lemma 16 (⋆). Let S be a solution which matches a template trace τ = (T, α, β), and let
(α′, β′) be a preimage of τ . Let S′ be the output of A applied to (α′, β′). Then S′ is either a
solution, or there exists an edge e of G that intersects some curve in S′ more than once.

Next, we show that the problem of finding a preimage of a template trace (or determining
that there is none) can be encoded in Monadic Second Order (MSO) logic. Which is the last
ingredient needed to prove our main result.

▶ Lemma 17 (⋆). Let τ = (T, α, β) be a template trace. There exists an MSO formula
ϕτ (V (T)) of size independent of G and G which is satisfiable in P if and only if there exists
a preimage for τ in P . Moreover, if the formula is true, then the interpretation of V (T)
defines a preimaging between a preimage of τ and τ .

▶ Theorem 18 (⋆). SCREI is fixed-parameter tractable.

Theorem 18 implies the fixed-parameter tractability of SCEI and SLCEI parameterized
by k + ℓ. Moreover, the approach can also be used to obtain fixed-parameter tractability of
the other problems defined in the introduction, with only minor adaptations required.

▶ Theorem 19 (⋆). Sℓ-PEI, ℓ-PEI and Locally Crossing-Minimal Edge Insertion
are fixed-parameter tractable when parameterized by ℓ + k.

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:15

6 Inserting a Single Edge

In this section we present a single-exponential fixed-parameter algorithm for SCEI para-
meterized by ℓ in the case where |F | = 1; we hereinafter denote this problem SC1EI. We
remark that the parameter dependency of this algorithm is tight under the Exponential Time
Hypothesis [27], since Arroyo et al. [7] gave a reduction from 3-SAT to the simple drawing
extension problem with one extra edge, and the number of edges in the obtained graphs is
linear in the size of the 3-SAT instance. We note that in the same work [7], the authors also
presented a single-exponential parameterized algorithm for SCEI when |F | = 1, however the
parameter used there is the total number of crossings in the original drawing.

As a first step we transform SC1EI to the problem of finding a colorful st-path (i.e., a
path where no color is repeated) of length at most κ in a vertex-colored graph with coloring
χ obtained from G×. Using so-called representative sets, see e.g. [17, Chapter 12], we can
show how to efficiently find a colorful path. Theorem 22 is then an immediate consequence.

▶ Proposition 20 (⋆). There is a linear-time reduction that converts an instance (G, G, {st}, ℓ)
of SC1EI to an equivalent instance (G∗, χ, s, t, 2ℓ + 3) of Colorful Short Path.

▶ Theorem 21 (⋆). Colorful Short Path can be solved in time O(2O(κ) ·
|E(G)| log |V (G)|).

▶ Theorem 22. SC1EI can be solved in time O(2O(ℓ) · |G| log |E(G)|).

7 Conclusion

In this paper we established the fixed-parameter tractability of inserting a given set of edges
into a given drawing while maintaining simplicity and adhering to various restrictions on
the number of crossings in the solution. While the presented results make the reasonable
assumption that the initial drawing is connected, the problem is of course also interesting
in the general case. We believe that our framework and methodology can also be used to
handle the extension problem for disconnected drawings, albeit only after overcoming a few
additional technical challenges; moreover, the algorithm presented in Section 6 does not
require connectivity at all. Other than connectivity, the most glaring question left open
concerns the complexity of SCEI parameterized by ℓ alone. Recall that, in contrast to this
open question, SLCEI is known to be NP-hard already for ℓ = 1. Last but not least, while
here we focused on the edge insertion problem, it would also be interesting to extend the
scope to also allow for the addition of vertices into the drawing.

References
1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maur-

izio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM
Transactions on Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

2 Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di
Battista, Walter Didimo, Michael Hoffmann, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz
Rutter, and Csaba D. Tóth. Simple k-planar graphs are simple (k + 1)-quasiplanar. Journal
of Combinatorial Theory, Series B, 142:1–35, 2020. doi:10.1016/j.jctb.2019.08.006.

3 Patrizio Angelini, Ignaz Rutter, and Sandhya T. P. Extending Partial Orthogonal Draw-
ings. In Proceedings of the 28th International Symposium on Graph Drawing and Net-
work Visualization (GD’20), volume 12590 of LNCS, pages 265–278. Springer, 2020. doi:
10.1007/978-3-030-68766-3_21.

ICALP 2021

https://doi.org/10.1145/2629341
https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1007/978-3-030-68766-3_21
https://doi.org/10.1007/978-3-030-68766-3_21

72:16 Crossing-Optimal Extension of Simple Drawings

4 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

5 Alan Arroyo, Julien Bensmail, and R. Bruce Richter. Extending drawings of graphs to
arrangements of pseudolines. In Proceedings of the 36th International Symposium on Com-
putational Geometry (SoCG’20), volume 164 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.9.

6 Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Proceedings
of the 27th International Symposium on Graph Drawing and Network Visualization (GD’19),
volume 11904 of LNCS, pages 230–243. Springer, 2019. doi:10.1007/978-3-030-35802-0_18.

7 Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and Tilo
Wiedera. Inserting one edge into a simple drawing is hard. In Proceedings of the 46th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG’20), volume
12301 of LNCS, pages 325–338. Springer, 2020. doi:10.1007/978-3-030-60440-0_26.

8 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseudo-
linear drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018.
doi:10.1002/jgt.22167.

9 Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 2000–2011.
SIAM, 2017. doi:10.1137/1.9781611974782.130.

10 Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra Mutzel.
Crossings and planarization. In Roberto Tamassia, editor, Handbook on Graph Drawing and
Visualization, pages 43–85. Chapman and Hall/CRC, 2013.

11 Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. Journal
of Computational Geometry, 9(1):213–246, 2018. doi:10.20382/jocg.v9i1a7.

12 Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing
graphs in the plane with a prescribed outer face and polynomial area. Journal of Graph
Algorithms and Applications, 16(2):243–259, 2012. doi:10.7155/jgaa.00257.

13 Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel, and Marcus
Schaefer. Drawing partially embedded and simultaneously planar graphs. Journal of Graph
Algorithms and Applications, 19(2):681–706, 2015. doi:10.7155/jgaa.00375.

14 Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a vertex
into a planar graph. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA’09), pages 375–383. SIAM, 2009.

15 Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In Proceedings
of the 32nd International Symposium on Computational Geometry (SoCG’16), volume 51
of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.SoCG.2016.30.

16 Bruno Courcelle. The monadic second-order logic of graphs I: recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

18 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1145/2744447.2744454.

20 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
partial 1-planar drawings. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming (ICALP’20), volume 168 of LIPIcs, pages 43:1–43:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.43.

21 Paul Erdős and Richard K. Guy. Crossing number problems. The American Mathematical
Monthly, 80(1):52–58, 1973. doi:10.1080/00029890.1973.11993230.

https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.4230/LIPIcs.SoCG.2020.9
https://doi.org/10.1007/978-3-030-35802-0_18
https://doi.org/10.1007/978-3-030-60440-0_26
https://doi.org/10.1002/jgt.22167
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.20382/jocg.v9i1a7
https://doi.org/10.7155/jgaa.00257
https://doi.org/10.7155/jgaa.00375
https://doi.org/10.4230/LIPIcs.SoCG.2016.30
https://doi.org/10.4230/LIPIcs.SoCG.2016.30
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2744447.2744454
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.1080/00029890.1973.11993230

R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:17

22 Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

23 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006. doi:10.1007/
3-540-29953-X.

24 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-
optimal extension of simple drawings. CoRR, abs/2012.07457, 2020. arXiv:2012.07457.

25 Péter Hajnal, Alexander Igamberdiev, Günter Rote, and André Schulz. Saturated simple and
2-simple topological graphs with few edges. Journal of Graph Algorithms and Applications,
22(1):117–138, 2018. doi:10.7155/jgaa.00460.

26 Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics,
191(1-3):109–111, 1998. doi:10.1016/S0012-365X(98)00098-3.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

28 Jan Kynčl, János Pach, Radoš Radoičić, and Géza Tóth. Saturated simple and k-simple
topological graphs. Computational Geometry: Theory and Application, 48(4):295–310, 2015.
doi:10.1016/j.comgeo.2014.10.008.

29 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combin-
atorics, 30(7):1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

30 Jan Kynčl. Simple realizability of complete abstract topological graphs simplified. Discrete
and Computational Geometry, 64(1):1–27, 2020. doi:10.1007/s00454-020-00204-0.

31 Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar
graph drawings. Computational Geometry: Theory and Applications, 91:101668, 2020. doi:
10.1016/j.comgeo.2020.101668.

32 Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings
of graphs. Algorithmica, 76(1):47–67, 2016. doi:10.1007/s00453-015-0018-6.

33 János Pach. Geometric graph theory. In Csaba D. Tóth, Joseph O’Rourke, and Jacob E.
Goodman, editors, Handbook of Discrete and Computational Geometry, Third Edition, pages
257–279. CRC press, 2017. doi:10.1201/9781315119601.

34 Maurizio Patrignani. On extending a partial straight-line drawing. International Journal of
Foundations of Computer Science, 17(5):1061–1070, 2006. doi:10.1142/S0129054106004261.

35 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

36 Marcus Schaefer. Crossing numbers of graphs. CRC Press, 2018. doi:10.1201/9781315152394.
37 Thomas Ziegler. Crossing minimization in automatic graph drawing. PhD thesis, Saarland

University, Saarbrücken, Germany, 2001.

ICALP 2021

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
http://arxiv.org/abs/2012.07457
https://doi.org/10.7155/jgaa.00460
https://doi.org/10.1016/S0012-365X(98)00098-3
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.1016/j.ejc.2009.03.005
https://doi.org/10.1007/s00454-020-00204-0
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1007/s00453-015-0018-6
https://doi.org/10.1201/9781315119601
https://doi.org/10.1142/S0129054106004261
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1201/9781315152394

	1 Introduction
	2 Preliminaries
	3 Stitches
	3.1 Detours and Reasonable Solutions
	3.2 Defining and Finding Stitches

	4 The Patchwork Graph
	5 Using the Patchwork Graph
	6 Inserting a Single Edge
	7 Conclusion

