9 research outputs found

    Mobile Identity Management Revisited

    Get PDF
    Identity management provides PET (privacy enhancing technology) tools for users to control privacy of their personal data. With the support of mobile location determination techniques based on GPS, WLAN, Bluetooth, etc., context-aware and location-aware mobile applications (e.g. restaurant finder, friend finder, indoor and outdoor navigation, etc.) have gained quite big interest in the business and IT world. Considering sensitive static personal information (e.g. name, address, phone number, etc.) and also dynamic personal information (e.g. current location, velocity in car, current status, etc.), mobile identity management is required to help mobile users to safeguard their personal data. In this paper, we evaluate certain required aspects and features (e.g. context-to-context dependence and relation, blurring in levels, trust management with p3p integration, extended privacy preferences, etc.) of mobile identity managemen

    Security in Context-aware Mobile Business Applications

    Full text link
    The support of location computation on mobile devices (e.g. mobile phones, PDAs) has enabled the development of context-aware and especially location-aware applications (e.g. Restaurant Finder, Friend Finder) which are becoming the new trend for future software applications. However, fears regarding security and privacy are the biggest barriers against their success. Especially, mobile users are afraid of the possible threats against their private identity and personal data. Within the M-Business research group at the University of Mannheim, various security and privacy aspects of context-aware mobile business applications are examined in this thesis. After providing a detailed introduction to context-aware applications, the security challenges of context-aware applications from the perspectives of different principals (i.e. mobile users, the broker, service providers) are analyzed. The privacy aspects, the challenges, the threats and legal directives regarding user privacy are explained and illustrated by real-life examples. The user-centric security architectures integrated within context-aware applications are introduced as anonymity and mobile identity management solutions. The M-Business security architecture providing security components for communication security, dynamic policy-based anonymity, secure storage on mobile devices, identity management for mobile users and cryptography libraries is explained in detail. The LaCoDa compiler which automatically generates final Java code from high level specifications of security protocols is introduced as a software-centric solution for preventing developer-specific security bugs in applications

    Personalised privacy in pervasive and ubiquitous systems

    Get PDF
    Our world is edging closer to the realisation of pervasive systems and their integration in our everyday life. While pervasive systems are capable of offering many benefits for everyone, the amount and quality of personal information that becomes available raise concerns about maintaining user privacy and create a real need to reform existing privacy practices and provide appropriate safeguards for the user of pervasive environments. This thesis presents the PERSOnalised Negotiation, Identity Selection and Management (PersoNISM) system; a comprehensive approach to privacy protection in pervasive environments using context aware dynamic personalisation and behaviour learning. The aim of the PersoNISM system is twofold: to provide the user with a comprehensive set of privacy protecting tools and to help them make the best use of these tools according to their privacy needs. The PersoNISM system allows users to: a) configure the terms and conditions of data disclosure through the process of privacy policy negotiation, which addresses the current “take it or leave it” approach; b) use multiple identities to interact with pervasive services to avoid the accumulation of vast amounts of personal information in a single user profile; and c) selectively disclose information based on the type of information, who requests it, under what context, for what purpose and how the information will be treated. The PersoNISM system learns user privacy preferences by monitoring the behaviour of the user and uses them to personalise and/or automate the decision making processes in order to unburden the user from manually controlling these complex mechanisms. The PersoNISM system has been designed, implemented, demonstrated and evaluated during three EU funded projects

    A secure architecture enabling end-user privacy in the context of commercial wide-area location-enhanced web services

    Get PDF
    Mobile location-based services have raised privacy concerns amongst mobile phone users who may need to supply their identity and location information to untrustworthy third parties in order to access these applications. Widespread acceptance of such services may therefore depend on how privacy sensitive information will be handled in order to restore users’ confidence in what could become the “killer app” of 3G networks. The work reported in this thesis is part of a larger project to provide a secure architecture to enable the delivery of location-based services over the Internet. The security of transactions and in particular the privacy of the information transmitted has been the focus of our research. In order to protect mobile users’ identities, we have designed and implemented a proxy-based middleware called the Orient Platform together with its Orient Protocol, capable of translating their real identity into pseudonyms. In order to protect users’ privacy in terms of location information, we have designed and implemented a Location Blurring algorithm that intentionally downgrades the quality of location information to be used by location-based services. The algorithm takes into account a blurring factor set by the mobile user at her convenience and blurs her location by preventing real-time tracking by unauthorized entities. While it penalizes continuous location tracking, it returns accurate and reliable information in response to sporadic location queries. Finally, in order to protect the transactions and provide end-to-end security between all the entities involved, we have designed and implemented a Public Key Infrastructure based on a Security Mediator (SEM) architecture. The cryptographic algorithms used are identitybased, which makes digital certificate retrieval, path validation and revocation redundant in our environment. In particular we have designed and implemented a cryptographic scheme based on Hess’ work [108], which represents, to our knowledge, the first identity-based signature scheme in the SEM setting. A special private key generation process has also been developed in order to enable entities to use a single private key in conjunction with multiple pseudonyms, which significantly simplifies key management. We believe our approach satisfies the security requirements of mobile users and can help restore their confidence in location-based services

    Privacy Management in Smart Environments

    Get PDF
    This thesis addresses the issue of managing privacy in smart environments, while emphasizing problems and solutions in context of interpersonal privacy. It elaborates different concepts of privacy and how smart environments interfere with these concepts. In this context this work develops solutions to understand patterns of interpersonal privacy management, to orchestrate different disclosure control methods to a composite disclosure control system, and to automate disclosure decisions using machine learning techniques.Diese Arbeit befasst sich mit dem Umgang von privaten Daten in intelligenten Umgebungen, speziell im Kontext von sozialen Interaktionen. Es werden verschiedene Konzepte des Begriffes "Privacy" erarbeitet und aufgezeigt, welche Konflikte in intelligenten Umgebungen daraus resultieren. Entsprechend werden Lösungen erarbeitet, um Muster der Informationsfreigabe in sozialen Interaktionen zu erkennen, verschiedene Methoden der Freigabekontrolle zu einer integrierten Freigabekontrolle zu kombinieren und um Freigabeentscheidungen mit maschinellen Lernverfahren vorherzusagen

    Privacy throughout the data cycle

    Get PDF

    Extending P3P/Appel for Friend Finder

    No full text
    FriendFinder as a location-based service collects location data from mobile users and distributes a particular user’s location upon request. Privacy of users data especially location data needs to be guaranteed according to both user and legacy perspectives. W3C’s privacy recommendation for internet platform P3P/Appel only considers the privacy relations between the users and the service providers. In this paper, we explain the shortcomings of P3P/Appel for providing privacy in FriendFinder and propose enhancements to the P3P/Appel policy languages.
    corecore