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ABSTRACT
Using Machine Learning to Improve Internet Privacy
Sebastian Zimmeck

Internet privacy lacks transparency, choice, quantifiability, andwt@bility, especially, as the
deployment of machine learning technologies becomes mainstream. Hothegertechnologies
can be both privacy-invasive as well as privacy-protective. Thisaltation advances the thesis
that machine learning can be used for purposes of improving Inteliratpr Starting with a case
study that shows how the potential of a social network to learn ethnicity endeg of its users
from geotags can be measured, various strands of machine learningltegks to further privacy
are explored. While the quantification of privacy is the subject of wellkmnprivacy metrics,
such ag:-anonymity or differential privacy, | discuss how some of those metrinsedeveraged
in tandem with machine learning algorithms for purposes of quantifying thagriinvasiveness
of data collection practices. Further, | demonstrate how the current ravid&hoice paradigm
can be realized by automated machine learning privacy policy analysisimiiemented sys-
tem notifies users efficiently and accurately on applicable data practicetheF, by analyzing
software data flows users are enabled to compare actual to purpotagataetices and regulators
can enforce those at scale. The emerging cross-device trackirtigpsaaf ad networks, analytics
companies, and others can be supplemented by machine learning techsiaogiell to notify
users of privacy practices across devices and give them the cheigeaté entitled to by law.
Ultimately, cross-device tracking is a harbinger of the emerging InterrEtiofs, in which | en-
vision intelligent personal assistants that help users navigating througictieasing complexity

of privacy notices and choices.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The current state of Internet privacy is unsatisfactory: Internetsuare often not aware of what
happens with their data when they visit websites or use mobile apps. In msey ité& not ob-
vious what types of data are collected or shared. Data practices ajeeopaurther, opting out
from targeted advertising is cumbersome, and self-regulatory eff@terdy beginning to take
shape. In addition, companies are frequently in doubt about theircgrolaligations as well, and
regulators have difficulty enforcing existing laws. Therefore, it is tleatiitheme of my research
to advance privacy law on the Internet through technological solutinose specifically, by lever-
aging machine learning (ML) technologies. In this dissertation | will sketolapy technologies
that advance transparency for Internet users, help companies ireffoeis to develop compliant
privacy standards on which they can compete in the marketplace, ardjassisimental agencies

and regulators with their privacy enforcement tasks.

1.1 ML Is the Problem. ML Is the Solution.

For the most part ML is perceived as a privacy-invading threat. Thetrel@c traces that every
Internet user leaves behind—whether Personally Identifiable InformgRith) or metadata—can
be used to predict new information about that user (and oftentimes alsib ather users, such
as friends on social networks). Many free Internet services afenadced and often frequently
make use of ML technologies to learn more about their users and increasestrenue. How-

ever, in this work | take the opposite view and discuss the use of ML apipesafor purposes
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of privacy enhancing technologies (PETs). Since many of the cypresicy concerns are based
on the exploitation of ML technologies it is only appropriate to mitigate those bydegimg the
same technologies. In combination with other security and privacy techiasIbti. technologies

provide a key element for protecting privacy in the modern Internetsgstem.

1.2 The Curious Relationship between Privacy and Technological In-

novation

Privacy rights and concepts are often developed as a reaction to kegicabinnovations. In the
19th century the right of privacy emerged against the backgrouncegirtiiferating photo tech-
nology that enabled yellow press journalism. Today it is even more cleghthhtternet and other
new technologies, which lead to a dramatically increasing availability of usartddusinesses
and governments, pose new challenges for the protection of pri2d€¢). Data business models
fueled by the dispersion of data evolved and are commonplace. Intexerstare tracked—often
across devices—and their data is mined for purposes of contextualgetddradvertisements.
However, more and more users are engaging in technological selffbelpxample, by using
ad blockers. Interestingly, Internet services are usually not eénfptbeir terms of services and
privacy policies against users, which departs from the practice in maeg tf form contracts. In

any case, law and regulations have yet to catch up to reality.

1.3 Privacy as a Right

Privacy is a fundamental right under the law in many jurisdictions. | seedtrastural right and
adopt the definition of privacy as “[t]he right of individuals to contreliofluence what infor-
mation related to them may be collected and stored and by whom and to whomfdinatation
may be disclosef234.”! There are many more dimensions to privacy, for example, the philo-
sophical[43] or economid22] perspective of privacy. However, what | am considering in this
dissertation is privacy as a right, which is, obviously, informed by the abpects as well. To

that end, the research presented here is used to advance law. [dgghoo its own would be

1with its focus on communication of information the definitioredshere stands in the tradition of Westif25g.
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an aimless endeavor to privacy. As it was argued for network resg€Bs€6], many research ef-
forts are stymied by a combination of economic and legal issues that wecemsitlered in the
research. Thus, researchers should pay attention to what is in the imibitist, to the interests
of the parties that may implement the idea, and to whether these interests coirfiddn this

sense, | am addressing Internet privacy as it is rooted in the law.

The Fourth Amendment. At the outset, information privacy law in the United States is an
amalgamate of various interrelated constitutional provisions, statutory ladsegulation$236].
Privacy as a constitutional right—per the U.S. Constitution—is generally qmijcable visa-vis

the government and does not bind private actors. While the U.S. Constitldesmnot explicitly
provide a privacy right, courts have used the Fourth Amendment’s ptiohitof unreasonable
searches and seizures to construe a protective space for an iasditvidasonable expectation of
privacy[162. In this regard, the Fourth Amendment protects an individual's privabg ior she
exhibited an actual expectation of privacy and if that expectation is réoed by society162].
Given the existence of a reasonable expectation of privacy, policaenacial other governmental
conducts generally require a warrant.

Traditionally, each governmental action is treated as a discrete event thaligted indi-
vidually for its Fourth Amendment relevance. For example, in United Stateswott${257 the
Supreme Court evaluated the privacy implications of tracking a car dursiggte trip for less
than a day as opposed to comprehensively analyzing the totality of multiple Mioe. recently,
however, in United States v. Jon@gld the Supreme Court made inroads to recognize that police
surveillance and other governmental actions can become more privasivia over time; even
when fully occurring in the public sphere. This latter point stands in carttsale Court’s earlier
opinions, e.g., in Knott$252], holding that public observations can not be reasonably thought
of as private. Under what became known as the mosaic theory intrusaonsse to the level of
violating reasonable privacy expectations on the basis of extenden/atises, each of which by

itself may not be sufficient to reach the threshold of a violation.

2There are other theories of how privacy is treated in the Gotisn; see Griswold v. Connecticut, 381 U.S. 479, 485%8)9
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Privacy as protection from identification and discrimination. Privacy can be understood to
protect from identification. If a person remains unrecognized or indisishgble from one or
more other people, his or her privacy will often be sufficiently proteckmvever, in addition to
the identification risk privacy should also protect from discrimination. Thigenstanding is a re-
sult of defining privacy as control over information collection, shararg] storage. The holder of
the privacy right can prevent the processing of potentially discriminatitogrimation. The control
over this type of information is especially important as redlining—the practicetproviding
services or maintaining an increased pricing level in ethnic or racially siveeighborhoods—is
re-appearing in a data-driven form. For example, the Federal Tragerssion (FTC) explored
in a study on consumer auto insurance premilhds] that credit-based insurance scores are dis-
tributed differently among racial and ethnic groups. The study finds thdéwhe scores seem
to derive only a relatively small amount of predictive power from theirelation with race and
ethnicity, the observed difference is likely to have an effect on the inserpremiums that these
groups pay. Different from redlining in its traditional form the discriminatagpears inadver-
tently. However, as the researchers were not able to develop an alterseoring model of the
same efficacy without accounting for the differences in scores ameraj aad ethnic groups, the
study highlights the difficulty of eliminating private facts from machine learrbaged reasoning
without incurring a performance penalty.

The FTC study deserves a closer look for another reason: automesutampanies are mak-
ing decisions based on predictive modeling. However, what is the meainpmgdictions in terms
of legal categories? They are not facts, but rather probabilities (eliffefor example, from the
decisions to offer motorists insurance at a certain price point, which aeedhfhcts). At the
outset there are various areas of law that arguably support prokiabiasoning. For example,
the Supreme Court’s interpretation of evidentiary standf2d§ are a seemingly good fit when
Justice Harlan states that “[a]lthough the phrases 'preponderanice e¥idence’ and 'proof be-
yond a reasonable doubt’ are quantitatively imprecise, they do communidhte fioder of fact
different notions concerning the degree of confidence he is expectale in the correctness of
his factual conclusions.” Thus, while the Court has eschewed to embraght lines there seem
to be quantitative conceptions that inform the interpretation of evidentianglatds. However,

it should also be noted that a purely mechanical quantification without anrsicthe plausibil-
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ity of evidence, for example, in the sense of a “plausible cal88, would shortcut the Fourth

Amendment.

Limits to privacy. The privacy right is not without limit$. In particular, the Stored Communi-
cations Act, which is part of the Electronic Communications Privacy Act,ides/the conditions
under which governmental agencies can access electronic data heléeg prganizations. In 18
U.S.C.52703(a), (b) it is stated that service providers have to disclose to tleFrguent content
of electronic communications held in an account for more than 180 days anslébpoena or
court order. Only if the communication was stored for fewer than 180 dags the law require
a warrant from the government. The distinction is important because isswdra warrant de-
mands probable cause while the government can obtain a subpoenat@mrdeuunder the lower
standard of establishing reasonable grounds for the belief that thentaifite searched item is
relevant for an investigatioii41]. However, as various governmental agencies in the past tried to
obtain access to data stored at private Internet companies, the lattarebiecaeasingly reluctant
to reveal the data of their users. Also, the increased use of encryptiomalegies in their prod-
ucts makes it harder for the government to gain access to the underlygngrypted data even if
the legal requirements are met and the companies are willing to help. Strikiniglthdalance

between individuals’ privacy rights and law enforcement is a challengimunresolved task.

Privacy protection vis-a-vis private organizations. The Fourth Amendment is generally not
applicable in the relationship between private entities. Rather, to a subsextéiat privacy law
is permeated by the goal of consumer protection and based on the noticiecécel principld 70].
Internet users are notified about how their data are processed gnchtihese opt outs and other
choice mechanisms to craft their relationship to the data processor. Indhisirénternet users’
privacy is often dependent on privacy policies (in addition there aeeabrrow federal laws, state
laws, and regulations, for example, covering childrens’ privacy rjgftgoically, the provider of
a web service posts a privacy policy on its website, which a user acogptsny the site. Thus,
privacy policies are fundamental building blocks of web privacy, aedHhC as well as other reg-

ulators aim to enforce companies’ violations of the promises contained in liceepaigorously.

3There are many more limitations not discussed here. Partiguuropean law in form of its General Data Protection Ragul

tions[101], which includes the notorious right to be forgot{@64, is exacting.
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However, many users do not read privacy policies and those who dehiemd oftentimes hard

to understand191]. The resulting information asymmetry leaves users uninformed about their
privacy choiceg191], can lead to market failurfkl88, and ultimately casts doubt on the notice
and choice principle as a whole. Thus, while in theory the notice and chadiugpse is sound,

there remain many practical challenges.

1.4 Transparency, Choice, Quantifiability, Accountability

Privacy as a right guarantees individuality and liberty. To effect tivefiges my research is or-
ganized along four privacy principles: transparency, choice, tifiednility, and accountability. In
the new data economy, as it is sometimes duljh@l users are assumed to be aware of their pri-
vacy rights through privacy policies. However, as McDonald et aletslown[191], the current
notice and choice approach is challenging. Various attempts to mitigate the laakgparency,
most notably P3IP75], remained unsuccessful. Consequently, this dissertations proposesahe
of using ML classifiers to automatically analyze privacy policy text and shesvs strongly con-
densed policy terms that can be more easily grasped (Chapter 5). Hpgieugg users’ choice
is also a field for further improvement. Current mechanisms, for examplepfong out from re-
ceiving targeted advertisement, requires substantial investment of timesargl expert privacy
knowledge.

Beyond deficiencies in privacy transparency and choice recentbdisduggest a lack of ac-
countability as well. For example, a recent study detected more than 256 g3%agolation of
Apple’s App Store privacy policy due to the disclosure of device seuailvers and other data to
third party library developerkl32. This finding suggests a deficiency in terms of accountability.
However, the detection of those non-compliant apps appears to be iy faorm achieving sys-
tematic accountability of apps’ data practices on the large scale. Furtheewerein cases where
privacy violations can be identified, it is unclear how their invasivenassbe measured. How
can their harm be quantified? When is enough enddgl? As | will show, this question can be
addressed using ML methodology (Chapter 3).

The four principles—transparency, choice, quantifiability, and adednility—bear a strong

resemblance to various sets of Fair Information Practice Principles (FIPP4. However, they
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are more abstract and leave more freedom for individual lawmakinggmeement between users
and Internet services. For example, in my opinion, there is no need for linfitengse of data to
the purpose they were originally collected for; a limitation that is included in sdiPBd: These
purpose limitations should be made part of individual laws or agreementsevdo, declaring
such a blanket statement generally applicable as part of a set ofypgviaciples appears to be

overbearing.

1.5 Practical Considerations

There are various practical considerations that should be considédrenl designing PETs for
Internet users. First, in the same way as security is a secondafd2&kprivacy appears to be a
secondary task as well. Generally, users are not interested in spémalidigpate amounts of time
fiddling with privacy settings or reading privacy policies. Thus, piyvchnologies have to be as
fast, automated, and comprehensible as possible. To some extent jgigamyestion of usability
and human-computer interaction; topics that this dissertation will, howevedjstuss in detail.

Second, the classical security threat moddl appear a poor fit for the types of Internet
privacy questions examined here. After all, users can agree to trdeypfor services and enter
into a contractual relationship with Internet services. Thus, as opgostbé assumption of an
unlawful attack, privacy is a subject matter that is often based on lawfutactual relationships
(and legal proceedings if the government is involved). Accordingluigéng unlawful breaches
of privacy by importing security threat models would oftentimes result in igegtifications of
privacy relationships.

Third, there is a substantial disconnect between the privacy idealemisby the law and the
actual privacy standards that users are experiencing. For examtyaeis written in privacy poli-
cies is often not an accurate description of the data practices occurriegity. It was showih44]
that software developers are often unaware of their obligations andtdpand sufficient time to
bring their software in conformity with the law (often unintentionally). Therefd intend to ad-
dress the disconnect between written and actually occurring privacyiges and offer a solution

for regulators as well as for software developers (Chapter 6).
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1.6 Thesis: The Use of ML Technologies Is Essential for Improving

Internet Privacy

The contributions of this dissertation provide support for the thesis thatddhnologies are an
essential element for advancing privacy on the Internet. First, in astadg | will demonstrate
how ML can be used to detect a social network’s potential to infer ethnioityggnder from its
users’ location data (Chapter 3). Under the privacy right, as unaet$tere in the sense of control
over information processing, an individual has control over whettiesre are able to determine
his or her ethnicity or gender. Beyond the online inferences the demtatstezhniques can also
be used to survey potential instances of discrimination and segregationrgathweorld. As such
they illustrate that a person’s online and offline privacy are often inteevin

I will continue to show how ML can be leveraged for purposes of quantfwhether a privacy
violation, which is understood to mean the non-compliance with a given gril@finition, exists
(Chapter 4). Specifically, | will show how ML algorithms can be operatioedlin the mosaic
theory via existing privacy metrics, suchlasanonymity[241]. As the mosaic theory recognizes
the occurrence of privacy violations on the basis of extended perfatservation, each of which
by itself may not be sufficient to reach the threshold of such violation, Miviges the basis for
the argument for why that is the case: the prolonged observation asdlwation of data can
lead to insights that go beyond the sum of the individual observations.

Further, in order to improve privacy transparency | describe a syastehits implementation to
automatically analyze privacy policies (Chapter 5). Based on ML algorithesytstem analyzes
policy text and returns a label with the most important information allowing letasgers to gain
a fast understanding of essential policy terms. In this regard, it sheutdted that the automatic
processing is not perfect, and mistakes can happen simply due to theafadhe@pproach being
based on ML techniques. Making privacy policies more accessible bynatitzally analyzing the
policy text (even it occasional mistakes) and extracting the most salientriafimn gives users the
opportunity to quickly grasp essential data practices and enhancestlalipng model of notice
and choice.

The policy analysis results can be compared to actually occurring practicegbsites, mo-

bile apps or other software. | will illustrate a system implementation and its resuleslarge-
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scale study of Android apps and their corresponding policies (Chapt&€h type of comparison
enables regulators to hold software publishers accountable for theicpnpractices. In fact, a
custom-tailored version of the system is implemented for the California Depdrtrhdnstice.
The system is in the process of being evaluated as a privacy enforctukfur the apps on the
Google Play store. However, the demonstrated techniques can be aldunyssdtware developers
to avoid potential privacy inconsistencies before deploying any sadtimaine first place.

I will finally explore a rarely investigated but increasingly common practio®ss-device
tracking, that is, the comprehensive tracking of Internet users on muitgsiees (Chapter 7.
Cross-device tracking is a person-centric tracking approach asego the traditional tracking
of individual devices or browsers. Recognizing cross-device itngcknd alerting users accord-
ingly is becoming increasingly important since there is a surge of Interngtes making use of
this practice. As a recent FTC workshop revealed a fundamental lagse#érch on the privacy
implications of cross-device trackird 15 the explorations presented here are aimed at under-
standing the phenomenon at a fundamental level. Thus, among othersexmldle the reach of
tracking companies and the methodologies they use. These inquiries aresaany first step for

developing efficient privacy protections in the cross-device space.

4As data is accumulated over time the methodology introducedhap@r 4 may be used to quantify whether someone’s privacy
right is violated.
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Chapter 2

Related Work

Different strands of related work motivate my research, most notablyque studies on the ML
analysis of privacy policies, program analysis of apps, human-comimiégaction, crowdsourc-

ing, and web tracking.

2.1 ML Privacy Policy Analysis

A core concept for notifying users of privacy practices on the Irteamd obtaining their agree-
ment to these is notice and choice. Through privacy policies and othercatitifis users are
alerted of applicable practices. However, as McDonald et al. haversfi®d], very few users
read those notifications. Thus, helping users’ understanding theftcgrohoices is a major mo-
tivation of my work. Initial work on automatic privacy policy analysis focdsen making pri-
vacy policies machine-readable. That way a browser or other uset ageld read the poli-
cies and alert the user of good and bad privacy practices. Reidp[#®23 suggested early
on that web services should represent their policies in the Platform fernkt Content Se-
lection (PICS) forma{15]. This and similar suggestions lead to the development of [F2P
75], which provided a machine-readable language for specifying prigatigies and displaying
their content to usell¥6]. To that end, the designers of P3P implemented various end users tools,
such as Privacy Birfi72], a browser extension for Microsoft’s Internet Explorer that notifiesrs
of the privacy practices of a web service whose site they visit, anddyrBad Search57], a

P3P-enabled search engine that returns privacy policy informatiogsitensearch results.
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The development of P3P was complemented by various other languagembndDf partic-
ular relevance was A P3P Preference Privacy Exchange LangA&REL)([74], which enabled
users to express their privacy preferencesavigs web services. APPEL was further extended in
the XPath project26] and inspired the User Privacy Policy (UPP) langu&®d for use in so-
cial networks. For industry use, the Platform for Enterprise Privaagtites (E-P3P)161] was
developed allowing service providers to formulate, supervise, andaenfuivacy policies. Sim-
ilar languages and frameworks are the Enterprise Privacy Authoriziatioguage (EPALJ39],
the SPARCLE Policy Workbenclb4; 59, Jeeved266], and XACML [18]. However, despite
all efforts the adoption rate of P3P policies among web services remaindd éwand the P3P
working group was closed in 2006 due to lack of industry participdff@h

| believe, instead of creating new machine-readable privacy policy tsrinia more effective
to use what is already there—privacy policies in natural language. AewafMassey et a[189
provided the most extensive evaluation of 2,061 of such policies, hawavefocusing on their
legal analysis but rather their readability and suitability for identifying mvarotections and
vulnerabilities from a requirements engineering perspective. In addiioke et al[145 studied
the compliance of 75 policies with self-regulatory requirements, and Cetrair[73] analyzed
structured privacy notice forms of financial institutions identifying multiple insé&s of opt out
practices that appear to be in violation of financial industry laws.

Different from previous studies | analyze policies automatically, on a lscgke, from a legal
perspective, and not limited to the financial industry. For analyzing pobeyent | rely on the
flexibility of ML classifiers. My work is informed by the study of Costante etaho presented
a completeness classifier to determine which data practice categories adeéhiiua privacy
policy [69] and proposed rule-based techniques to extract data collection pra68kedowever,

I am going beyond these works in terms of both breadth and depth. Thesiarizere covers a
much larger policy corpus and focuses on legal questions that hayetmten automatically an-
alyzed. Different from many existing works that focus on pre-prsicesof policies, e.g. by using
topic modeling[65; 239 and sequence alignmefit82; 219 to identify similar policy sections

and paragraphs, | am interested in analyzing policy content.
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2.2 Legal Information Extraction

Given the task of analyzing natural language policies, the question bedoome salient infor-
mation can be extracted from unordered policy texts. While most works in ileigamation
extraction relate to domains other than privacy, they still provide some grédefor example,
Westerhout et a[256; 257 had success in combining a rule-based classifier with an ML classifier
to identify legal definitions. In another line of work de Maat et[8M1; 84 aimed at distinguish-
ing statutory provisions according to types (such as procedural rukgspendices) and patterns
(such as definitions, rights, or penal provisions). They concludddtthas unnecessary to em-
ploy something more complex than a simple pattern recogh®ter84. Other tasks focused on
the extraction of information from statutory and regulatory 1462; 51, the detection of legal
argument$194], or the identification of case law sectiolds3; 24Q.

There are some works in the privacy policy domain, most notably, asfthe sable Privacy
Policy Projec{13; 23d. In particular, Ammar et al. presented a pilot std@g] with a focus on
classifying provisions for the disclosure of information to law enforcenodintials and users’
rights to terminate their accounts. They concluded the feasibility of naturgligae analysis
in the privacy policy domain in general. Wilson et al. discussed the creatidramalysis of a
privacy policy corpu$26d. In general, the discussed works confirm the suitability of rule and ML
classifiers in the privacy policy domain. However, neither provides a celngmsive concept, nor
addresses, for example, how to make use of crowdsourcing resutdafiér point is especially
important because, as shown in Section 5.3, automatic policy classification amiis imherently
limited. None of the previous works relieves the user from actually readm@rhilyzed policy.
In contrast, it is the goal of the work in this dissertation to provide users wifivacy policy
summary in lieu of the full policy. | want to extract from a policy essentialvgions, make it
more comprehensible, provide guidance on the analyzed practicesivarahgverall evaluation

of its privacy level.

2.3 Privacy Policy Crowdsourcing

There are various crowdsourcing repositories where crowd cotdribevaluate the content of

privacy policies and submit their results into a centralized collection for paiiiic on the Web.
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Sometimes policies are also graded. Among those repositories are TEBIDRivacychoicd§],
TOSBacK 11], and TOSBack®12]. Crowdsourcing has the advantage that it combines the knowl-
edge of a large number of contributors, which, in principle, can lead to & mare nuanced
interpretation of ambiguous policy provisions than current classifierisl goavide. However, all
crowdsourcing approaches suffer from a lack of participation amtseguently, do not scale well.
While the analysis results of the most popular websites may be available, trasary lesser
known sites are not. In addition, some repositories only provide the possibillyok up the
results on the web without offering convenient user access, for dralmpmeans of a browser
extension or other software.

The use of supervised ML techniques, as used suggested herieesaground-truth. To sup-
port the development of these techniques crowdsourcing has bgapsprbas a viable approach
for gathering rich annotations from unstructured privacy poli€239; 261. While crowdsourc-
ing poses challenges due to the policies’ complek@®4], assigning annotation tasks to experts
and setting stringent agreement thresholds and evaluation cfRédbcan in fact lead to reliable
policy annotations. However, as it is a recurring problem that privatigypannotations grapple
with low inter-annotator agreemel24|, | am introducing a measure for analyzing their reliabil-
ity based on the notion that high annotator disagreement does not pringialiit the use of the

annotations for ML purposes as long as the disagreement is not systematic.

2.4 Privacy Requirement Inconsistencies

Given the inquiry into privacy policy content, | believe, it is a worthwhile teskheck the extent
to which policies align with actual data practices. In this regard, | find it pdetty insightful to

explore whether mobile apps’ practices are consistent with the disclamas in their policies
and selected requirements from other laws. The legal dimension is an impongthat gives
meaning to the app analysis results. For example, for apps that do nmeloeation services the
transfer of location data may appear egregious. Yet, a transfer miglerbegsible if adequately
disclosed in a privacy policy. Only few efforts have attempted to combine aandlysis of mobile
apps with the analysis of privacy policies. | am seeking to fill this void by tifigng privacy

requirement inconsistencies connecting the analyses of apps, ppetcgs, and privacy laws.
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In terms of previous work, various studies, e[§68; 261, made inroads on creating privacy
documentation or even privacy policies from program code. OthersMmtused on comparing
program behavior with non-legal texts. For example, Huang et al. pespAsDroid to identify
contradictions between apps and user interface {&8§. Kong et al. introduced a system to
infer security and privacy related app behavior from user revigwd]. Gorla et al[139 used
unsupervised anomaly detection techniques to analyze app store dessripticutliers, and
Watanabe et a[255 used keyword-based binary classifiers to determine whether a resbatc
an app accesses (e.g., location) is mentioned in the app’s description.

Different from most previous studies | analyze app behavior for comgdiavith privacy re-
qguirements derived from their privacy policies and selected laws. A stépisrdirection was
provided by Bhoraskar et al., who found that 80% of ads displayedps tgrgeted at children
linked to pages that attempt to collect personal information in violation of thé4@lv The closest
results to the effort here were presented by Enck ¢0é].and Slavin et al[235. In an analysis
of 20 apps Enck et al. found a total of 24 potential privacy law violatianssed by transmission
of phone data, device identifiers, or location data. Slavin et al. progosgstem to help software
developers detect potential privacy policy violations. Based on mappings policy phrases to
Android API calls they discovered 341 such potential violations in 477.apps

While my approach is inspired by TaintDro[@6] and Slavin et al.'s studj235, | move
beyond their contributions. First, the privacy requirements here cowacy questions previously
not examined. Notably, different from Slavin et al., | address whethepg needs a policy and
analyze the policy’'s own compliance (i.e., whether it describes how useisfarmed of policy
changes and how they can access, edit, and delete data). | also ahalgpéiection and sharing
of contact information. Second, TaintDroid, is not intended to have app stide scale. Third,
TaintDroid and Slavin et al.'s approaches do not neatly match to legalars&geg They do not
distinguish between first and third party practi¢®@6; 239, do not account for negative policy
statements (i.e., that an app does collect certain data, as, for example, in the Snapchat policy,
and base their analysis on a dichotomy of strong and weak violdt&3% unknown to the law.
Fourth, I introduce techniques that achieve a mean accuracy of 0.94 faildre rate of 0.4%,

which improve over the closest comparable results of 0.8 and[28%, respectively.
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2.5 Mobile App Analysis

As far as the analysis on the mobile app side is concerned, differenttfreralosest related
works [96; 234, my analysis of Android apps reflects the fundamental distinction betwesgn fir
and third party data practices. Both have to be analyzed independentheasay be allowed
while the other may not. First and third parties have separate legal reldafisrista user of an
app. Among the third parties, ad and analytics libraries are of particular temma. Gibler et
al. found that ad libraries were responsible for 65% of the identified detergy with the top
four accounting for 43%129. Similarly, Demetriou et al.85] explored their potential reach and
Grace et al[14( their security and privacy risks. They find that the most popular librades h
the biggest impact on sharing of user data, and, consequently, thesiaraiysharing practices
presented here focuses on those as well. In fact, 75% of apps’ locatjaests serve the purpose
of sharing it with ad networkg180Q.

One of my contributions lies in the extension of various app analysis tectmtquechieve
a meaningful analysis of apps’ compliance with privacy requirementsetefrom their privacy
policies and selected laws. The core functionality of the app analyzer inisisisrtation is built on
Androguard 34], a static analysis tool. In order to identify the recipients of data the systeatesre
a call graph as described by Gibler et[dR9; 253 and uses PScol{#1], which is comparable to
Stowaway[121], to check whether an app has the required permissions for making a o&Ptain
call or allowing a library to make such. My work takes further ideas fromnBlmid [38], which
targeted the sharing of sensitive data, its refinement in Droid$ag, and the ded decompiler for
Android Application Packages (APK§97]. However, neither of the previous works is intended

for large-scale privacy requirement analysis.

2.6 Cross-device Tracking

ML techniques are playing a central role in cross-device tracking. Pptoexthe space Draw-
bridge[2], an ad network specializing in cross-device tracking, hosted the ICDM:2Draw-
bridge Cross-Device Connections competition asking researchers tagevemachine learning
techniques to correlate devices to us@9. Competition participants were given access to an

anonymized proprietary dataset to train and test their features and atgerithhe competition
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resulted in eight short papers by some of the most successful partxiféf; 176; 196; 33; 62;
163; 232; 254 Different from the discussion in this study, these papers took the getiep of
an ad network and focused exclusively on improving machine learningitgeds and achieving
a high F score. While these point are also part of my investigation, | am muohinterested in
the privacy of cross-device tracking.

The first place solution in the Drawbridge competition provided by Walth2%4], which
reached an F-0.5 score of 0.9, is in many ways representative for tirddaes used in the com-
petition. As other participants’ solutioi$69; 176; 62, it identified IP addresses that devices of
the same user were connected to as the most important feature. Intuitivedyjactured by Cao et
al.[62], devices with similar IP footprints are more likely to be used by the same individibas,
simply relying on IP history can already lead to an F-0.5 score of [&86 However, various stud-
ies found that not all IP addresses are equally meaningful. In partib@eause the same cellular
IP addresses occur for many devices of different users they hiasidentifying potentidl254;
163.

While the Drawbridge competition was about the correlation of different deeices, it did
not address the purpose of the correlation: the identification of demugsamterests, and other
monetizable information of the person behind the devices. Various studisoexthis topic,
however, not in the context of cross-device tracking. For exampl&)algjoye et al.[83] have
shown that to some extent personality can be predicted from standad®talirecords (CDRS),
e.g., metadata about received and placed phone calls and text megskttjesloser to the effort
here, Hu et al[148 analyzed the problem of predicting Internet users’ gender and agpel lwm
their browsing behaviors. They achieved an F-1 score of 0.8 forigiiegl gender and a score
of 0.6 for categorizing users into five different age groups. In otdlelefend against these types
of inference attacks while still allowing personalized advertisement Mot. ¢185 proposed
Bloom cookies that encode a user’s profile in a compact and priviasepring way. Recognizing
the importance of IP addresses for identifying users they aim for unlilityad all queries from
the same IP. In this regard, | will explore the effect of linking devicesugtolP addresses on the

accuracy of learning.
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2.7 Web Tracking

Much research was published on web trackingnaividual devices However, to the best of my
knowledge, none of the existing efforts discusses trackargss devicesSuch tracking is notably
different from traditional tracking that is focused on one device owser. To track web users
across devices companies’ need first to distinguish different browstmces on the Internet.
Commonly, HTTP cookies are used for this purpose. Since HTTP cookéesthaer traditional
trackers maintain state they are widely used to track individual browser&nglehardt et a[99)]
point out, if two websites are embedding the same tracker an adversalinkaisits to those
pages from the same browser instance even if the user’s IP addréss Vil their study they
find that an adversary with the ability to passively observe web traffic errternet backbone
can reconstruct up to 73% of a typical user’s browsing history. Tlxgiwed their results using
their web measurement platform OpenWR88], which they introduced in conjunction with a
large-scale measurement of web tracking based on a crawl of a milliontesbs

If a browser does not accept HTTP or other cookies, it can still b&edhgia browser fin-
gerprinting, which was pointed out by Eckersley et[8F] and extensively surveyed by Lerner
et al.[178. Web-based device fingerprinting is the process of collecting sufficiéotniation
through the browser to perform stateless device identificd®dh Such fingerprinting is also
used to re-identify a browser in case cookies have been deleted.dtstabe based on sensors as
Das et al[79] showed. With their FPDetective Acar et f1] conducted a large-scale study of
web-based device fingerprinting. Panchenko ef24l§ and Hayes and DaneZi$43 discussed
fingerprinting attacks; Cai et d58; 59 explored defenses. Juarez efH#7 showed that user's
browsing habits and other environment variables have a significant irapabe efficacy of the
web fingerprinting attack. In this regard, three advanced web trackimanésms—canvas fin-
gerprinting, evercookies, and use of cookie syncing—were exployescar et al.[20]. From a
legal perspective it would be interesting to research the extent to whigiotleenment could use
web tracking technologies—whether based on fingerprinting or traditionzth@amésms—to track
users without a warrant across government sites. Here | am now ixptbe extent to which
fingerprinting plays a role in cross-device tracking, particularly, examitiie BlueCava library,
which was a prominent part of Nikiforakis et al.’s wokR01] on investigating the practices of

three popular browser-fingerprinting companies.
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In a very interesting contribution Olejnik et 4202 reported a significant rate of stability
in browser history footprints. They posit that it is not simple to changesohewsing habit.
Their results show that for 69% of users the browsing history is uniqdeteat users for whom
they could detect at least four visited websites were uniquely identifiatiledayhistories in 97%
of cases. They ponder: if web browsing patterns were unique foremgiser, history analysis
could potentially identify the same user across multiple browsers and deVisasit to address
this question. There are also other differences among users that dogilel them out. Based
on usage traces from 255 users of two different smartphone platfoiins/v28 weeks of data
per user Falaki et a[105 found, for example, that the mean number of interactions per day for
a user varies from 10 to 200, that the mean interaction length varies frotm 280 seconds,
and that the number of applications used varies from 10 to 90. This isiabpeoteworthy as
Eubank et al[100 found that the top third-party domains across different categoriesvidete
are substantially similar. They found only few mobile-specific ad networkrigao very similar

lists of top desktop and mobile third-party trackers.

2.8 Human-Computer Interaction

While I am not aware of any web tracking study investigating how useitsarieed across devices,
there are various studies on human-computer interaction that providélettiaes how it might
work. The goal of these studies is to improve website navigation, browseliction of user
destinations, and search result relevance for search elg@#le3o that end, some of these studies
focus on website revisit patterns highlighting the identifying potential of seelsits. Tauscher
and GreenberfP42 found that 58% of visited websites of a user constitute revisits. People tend to
access only a few pages frequently and browse in small clusters ofrpages. Adar et alf23]
analysis reveals various patterns of revisit, each with unique behaworaknt, and structural
characteristics. They find that a five week period is sufficient to captuvigle variety of revisit
patterns, although, it lacks seasonal or yearly patterns.

Some studies took a closer look at website revisits across devices. Tetsae[244] were
able to detect that revisits occurred very infrequently with approximate¥y @6URLS revisited

by each user. They further find that, compared to desktops, mobile &rewse accessed less
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frequently, for shorter durations, and to visit fewer pages. Useesnsto rely on apps instead.
Different from websites, apps have a revisit rate of 97.1% driven higla number of visits to
the five most frequently accessed apps. It appears that mobile webrmsesi€oncentrated and
narrow than its desktop counterpart. Indeed, Kamvar et al.'s $tL&f§ confirms this conjecture
for the use of web search. However, interestingly enough seard@vioeton high-end phones
resembles computer-based search behavior more than mobile seardlbbeha

In their quest for improving the sharing of bookmarks, URLs, and othely imformation
between devices Kane et 8160 found that users tend to visit many of the same domains on both
their mobile device and desktop. Specifically, they found that a median d¥%76f4he domains
viewed on the phone were also viewed on the desktop, and a median of d8ih& domains
viewed on the desktop were also viewed on the phone. Despite the diffeawging habits across
devices, particularly, the higher number of web sites visited on desktaysctimclude that users’
web browsing activities are similar across devices. However, userstdesa all of their devices
in the same way but rather assign them different roles, as Dearman and[B# found. They
also point out that associating a user’s activities with a particular deviceidgmatic because
many activities span multiple devices.

Human-computer interaction also plays a role for the notifying users oaqyripractices, no-
tably, the automatic privacy policy analysis. However, whether the analfsigrivacy policy
is based on crowdsourcing or automatic classifications, in order to nogfg wé the applicable
privacy practices it is not enough to analyze policy content, but ratleeresults must also be
presented in a comprehensible, preferably, standardized f¢i®ddt In this sense, usable pri-
vacy is orthogonal to the other related areas: no matter how the policierayzed, a concise,
user-friendly notification is always desirable. In particular, privadela may help to succinctly
display privacy practicegl64; 165; 167; 221; 242 Also, privacy icons, such as those proposed
by PrimeLife[123; 148, KnowPrivacy[16], and the Privacy Icons proje€T], can provide vi-
sual clues to users. However, care must be taken that the meaning obfiseiscclear to the
userd146. As of today there is no standard set of privacy labels, and, corsélgutheir recog-

nizability remains problematic.
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2.9 Quantifying Privacy

Various efforts were undertaken to measure privacy. While most of thedimced metrics were
developed to quantify privacy in databases, they are also used foymmong users in web ser-
vices and hiding demographic characteristics or other traits of a persommevdr, different from
the approach | am taking here, all existing methods for quantifying privaost notably, differ-
ential privacy{93] andk—anonymity[241], assume an understanding of privacy that is void of ML.
Their underlying assumption is that only tdeect identification of a person or his or her char-
acteristics is privacy-relevant. In other words, the privacy of arviddal is considered violated
only based on firsthand leakage of information. However, this view gépyiis incomplete since
the ability tolearn sensitive information from apparently innocuous information is a surrepditiou
and sensitive action that can be equally privacy-invasive.

Shortly after it was introduced by Swee[841] k-anonymity became the starting point for a
whole family of privacy metrics that built upon and extended it. Simildegmonymity,l-diversity
was originally proposed to protect the identity of individuals in databEk®4. It is founded on
the observation that whileanonymity prevents the disclosure of identities, it does not prevent the
disclosure of sensitive attributes, such as height, eye color, ethnicather quasi-identifiers of a
person184]. Beyondk-anonymity,/-diversity and its progeny, one of the most influential recent
privacy metrics is differential privacy, which was introduced by Dw[®K]. Comparable td:-
anonymity and-diversity differential privacy does not take into account that undsssd sensitive
information can be learned from other information that is available. While sing & complete
solution to this problem, | will address the expansion of existing privacy nsdbgidncorporating

the ML element.
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Chapter 3

Case Study: Detecting Potential

Ethnicity and Gender Inferences

In the following case study | will show how ML can be used to identify an imé&service’s poten-
tial to infer ethnicity and gender from user-submitted data and how the calldetasets can be
used to survey real-world segregation and potential discriminati&mthe inference of ethnicity
and gender can have discriminatory impact it is important to provide usersrafitsparency on a
service’s capabilities. It is crucial that the technique works foutsidethe service and allows an
estimate of its capabilitidseforeuser sign-up. While the presented study illustrates the technique

for Instagram, it is generalizable to other services as fvell.

3.1 From Redlining to Big Data Discrimination

The disclosure or inference of someone’s ethnicity or gender as disturs this study can have

substantial negative impact. Ethnic and gender discrimination has a longyhistmany coun-

1In the following ethnicity is meant to also encompasses rasth(in the terminology of the United States Census 2@ud1). It
should be further noted that while the inference of seresiiata can impact privacy, the discriminatory use of such da¢a dot fall

under traditional notions of privacy but is rather proteldby other rights.

2|t should be noted that the results presented here are not maciamply that Instagram is in fact engaging in any discrimimgt
practice. Also, it might be the case that Instagram is alreadgre of the ethnicity and gender for many of its users becafise
respective data they submitted directly. However, thereotrer services that might not be, and the technique intratibeee is, in

principle, equally applicable to those.
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tries. The redlining of neighborhoods based on ethnicity in the U.S. in theslfa® purposes
of finding solvent mortgage debtors might be the earliest occurrencatafdiiven discrimina-
tion [237]. It took the civil rights movement three decades later to clearly enunciaferdidem
and take on the struggle to end such practices. However, there are stivienpents to be made.
Instances of discrimination continue to happen, for example, in the gentrifgighborhoods of
New York City[130. However, these types of redlining, whether gone-by or currennatrthe
only ones. Redlining can also occur online. The FTC recently exploregptt@aomenon in a
public workshop posing the question whether big data is a tool for inclusieradusion[112].

The FTC reasoned: if ML technologies are used to predict that certaguozers would not be
suitable candidates for prime credit offers, educational opportunitiesrtain lucrative jobs, such
educational opportunities, employment, and credit may never be offetedrtd119. The effect
is equally bad, whether online or offline. Consequently, the FTC vowedite awareness about
big data practices that harbor the potential for detrimental impact on werdedspopulations and
wants to promote the use of technologies to make positive impact on those hdlkenge is to
enable the use of big data by companies in a way that benefits them and,seliktyninimizing
legal and ethical risk§119. Against this background, tools and systems for identifying and
preventing online redlining and discrimination are of equal importance adliteeafounterparts,

and both are often intertwined.

3.2 Methodology and Data

This section will introduce the methodology and data used. The datasetis basiser profiles
collected from the Instagram photo sharing network. As many Instaghato® are tagged with
GPS latitude-longitude locations the accumulated location data can build up toeatmpive
mobility profiles® Based on this insight and given that many user profiles on social netwaoek
publicly accessible it is possible to generalize the used techniqgue andumrestdataset from

readily available data as follows:

1. Public user profiles of a photo sharing service are crawled and prettiata are extracted

30ur exploitation of GPS tags demonstrates an easy defenseefdype of inferences presented here. If users do not tag the

photos it would be much more difficult to track their locations.
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into a database.
2. Corresponding photos are labeled (with labels for ethnicity, gentder by crowd workers
in an online labor marketplace.
3. The dataset is further enhanced with auxiliary data, e.g., with informatatraticertain
location is close to a men’s store.
4. Thereafter, the data can be used to analyze attributes on variousrdgimodevels or train

and test classifiers for individual inferences.

Based on the described methodology publicly available data from Instagemencollected
and supplemented by Foursquare data (Instagram dataset). Specitieatipta was obtained by
crawling Instagram from a root user and following further users egibsntly through comments
and likes. This approach biases results towards more active usersraltleetrieved a total of
35,307,441 photo location points belonging to 118,374 unique users;wiserdid not have any
geotags in their first 45 photos were skipped. Crowd workers thent@edousers’ ethnicities
and genders based on the users’ photos. Those photos often shasethas studies confirmed
that 91% of teens post a photo of themselves on social netd86 and that 46.6% of photos
are either selfies or show the user posing with other fri¢hdg. However, given that an earlier
study also identified 20% of Twitter profile photos as showing personsssoicated with the
accountd212, annotators were instructed to disregard accounts for businesslwjties, and
others where they had doubt about the identity of the account ownay Whre also asked to
make use of any tagged names to identify the account owners.

To match previous studigd55; 153; 15} annotations were obtained for the Los Angeles
(LA) and New York City (NY) metropolitan areas. A user's home was spatifiy the ZIP code
where the user had the most of his or her checkins, which are definggtagram latitude-
longitude photo geotags. Each user was labeled by two annotators. el @adisagreement a
third annotator assigned an additional label to break the tie. In order touneethe quality of
agreement Krippendorff's [172 was used. Generally, values above 0.8 are considered as good
agreement, values between 0.67 and 0.8 as fair agreement, and value8.6&las dubioukl87].

The label categories are based on the categories of the United Statass @&i® (Cen-
sus)[247]. More specifically, the ethnicity labels are based on the Census’ Hispabatino and

Race categories, that is, each user is categorized either as Hisparitirar (Hispanic), White



CHAPTER 3. CASE STUDY: DETECTING POTENTIAL ETHNICITY ANDNGER

INFERENCES 24
50-
50- 50 -
40- o 40-
30- 30- 30-
20- 20- 20-
10- 10- 10-
16 51 10 23 17 48 23 12 . 47 53
0- 0- “— ‘
Hisp. Cauc. Af A. Oth. Hisp. Cauc. Af A. Oth. Fem. Male
Ethnicity LA Ethnicity NY Gender NY
Ethnicity LA | Ethnicity NY | Gender NY
Users () 427 588 241
Krippendorff'sa Multi. 0.74 0.68 -
Krippendorff’'sa Binary 0.78 0.74 0.85

Figure 3.1: Annotations for LA and NY. Top: percentages of user labels for the diffesge-

gories. Bottom: total number of labeled users and annotation agreemsuits.

alone (Caucasian), Black or African American alone (African American)Other (combining
all remaining Census categories). Just as the Census categories, gheitisategory defined
here includes Hispanics and Latinos of any race while the remaining cetegdornot include any
Hispanics or Latinos. For the binary ethnicity categorization Caucasi@nsoanpared against
all other categories taken together. Auxiliary information was added fdr elaeckin, whenever
available, in form of Foursquare’s average venue popularity andeveategory to estimate the
types of places a user would visit. Figure 3.1 shows summary statistics forbledadata. It
also shows that agreement was at least fair and, thus, reliable gratimdiair both ethnicity and

gender classifications.

3.3 Mobility Patterns

The introduced technique can be leveraged to create datasets for usedhpi@prietary CDR
datasets, for example, those analyzed by Isaacman[dsdl, 1553. As | will demonstrate, both
contain similar mobility patterns. However, in order to make an adequate comparighe

mobility patterns of the Instagram dataset to those in the CDR dataset ofniaaaat al. | only
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Spring Winter

Statistic LA NY LA NY
Total Checkins 135,503| 109,506| 118,446 98,286
(Total CDRs) (74M) | (62M) | (247M) | (161M)
Minimum Location/Day 1 1 1 1
1st Quartile Location/Day 1 1 1 1
Median Location/Day 1 1 1 1
(Median Calls/Day) (9) (20) (8) (9)
(Median Texts/Day) - - (4) 3)
Mean Location/Day 1.97 2.12 1.96 21
3rd Quartile Location/Day| 2 2 2 2
Maximum Location/Day 73 62 98 69

Table 3.1: Statistics of the LA and NY Spring and Winter subsets compared to the CD$etdata
in[154] (where available, in parentheses). Calculations for the LA and NY suthseist consider

any day where a user had no checkins.

consider checkins for the years 2011 through 2013 each for thegSponths from March 15 to
May 15 and for the Winter months from November 15 to January 31 (the ldMN\ah Spring and
Winter subsets, respectively). As it turns out, the mobility traces from theess are much more
sparse. Most notably, while the CDR dataset has at least eight locatids fsom call activity per
day for the median user in LA and NY—and even 12 if text messages aegladtie data in all of
the Instagram subsets account for only one location point for the medéerper day. Table 3.1
shows the distribution of the data in the subsets compared to those in the C3Bt[i4].
Another insightful metric for comparing mobility patterns is tii@ily range defined as the
maximum straight line distance a phone has traveled in a singld1&#). Daily ranges are
characteristic for mobility because, for example, median daily ranges okdage represent a
lower bound for a commute between home and work locafib8§. The maximum range (Max.
Mo.—Fr.) is a user’s longest distance and the median range (Med. Mo.aRrger’s median
distance, each taken on a single day for the entire Spring subset orkday€E55. The median
range at night (Med. Night) represents the median distance a user Yeledran a day for the

entire combined Spring and Fall subset from 7pm-7EtB4]. Previous result§154; 159 are
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Figure 3.2: Daily ranges in miles. Top: boxes show the 25th, 50th, and 75th percenttéskers
the 2nd and 98th percentiles. Bottom: table with the percentiles representeel limxplots.

shown in parentheses. Calculations do not consider any day wheee laagsa zero range, that is,
multiple checkins at the same location or a single checkin only. It is defired.005 miles. The
measured ranges are generally smaller than those reportgdd#y153. However, the general
trends in both datasets are similar. Most importantly, people in LA have dgngir@ater ranges
than people in NY. Also, in both areas people tend to travel longer durindah¢han at night.
However, there are also differences: according to the InstagramNgataYorkers in the 98th
percentiles travel farther than Angelinos. Figure 3.2 shows a subsesuits for the Instagram

dataset.

3.4 Demographic Patterns

The labeled Instagram data can be used to derive demographic pattetresfollowing | discuss

the adjustments that have to be made for the labels to be reliable.
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Adjusting Labels. Asthe LA and NY subsets are annotated with ethnicity and gender labels itis
possible to compare the resulting demographic distributions to the respeetigadistributions.
However, initial comparisons reveal substantial differences, whicidcoe based on selection
bias. For example, according to the Census there are more female than siddatse(53% vs.
47%) living in Kings Countyf 247 while the observed label frequencies suggest that there should
be substantially fewer (43% vs. 57%). This result is even more surprsirige gender-specific
usage rates of Internet (70% vs. 69P422 and Instagram (16% vs. 10%91] should further
increase the percentage of women beyond the Census. However, @#ilefBwomen social
network account owners set their profile to private, only 74% of meroda89. Adjusting the
Census distribution for this difference (as well as for gender-spénotficnet and Instagram usage
rates) leads to a distribution of females and males (49% vs. 51%) much cldkerdistribution
observed for the labeled data. Because the various differencesldenawn the adjustment to
the Census distribution is more likely to represent the true population witheuida skewed
view through the idiosyncrasies of Instagram.

Similarly as for gender, | make adjustments for the varying percentageseshét and In-
stagram usage rates among different ethnicities. However, even thenighstill a substantial
Hispanic underrepresentation, which was also observed for the sesitioivthe United States
by [193. This phenomenon is difficult to assess, specifically, as ethnicity is nafisapt for set-
ting a social network profile privafd 79, activity levels (posting pictures, etc.) are not lower for
Hispanicq 239, and annotation disagreements for labeling in the Instagram dataset aighrey
when the Hispanic label is involved. However, the reason for the usplesentation seems to
be the perception of Caucasian Hispanics as Caucasian alone. In asstunfyseven Caucasian
Hispanics reported that others see them as Caucasian[a®®e Therefore, it appears that most
Caucasian Hispanics were actually labeled as Caucasian (i.e., annotgsgd an an incorrect
classification). Consequently, the observed label frequencies wireted by adding to the His-
panic labels a number of labels corresponding to the Census perceh@geaasian Hispanics

and subtracting the same number from the Caucasian labels.

Results. When performing chi-square tests for goodness of fit comparing théegemd eth-

nicity distributions of labels to the corresponding Census distributions flardiit levels of gran-
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Gran. LA NY LA NY NY
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Figure 3.3: Chi-square goodness of fit test results for ethnicity and gender atuatevels of
Census-defined granularity. Top: detailed view of the multi-categoryi@tmlistributions for
the NY county level. Left bars show the Census distributions (Cen.) andbagh the label
distributions (Label) in the Instagram dataset. Bottom: complete results aftihgquare tests.

NTAs are specific to NY and not available for LA.

ularity most cases result in a value @f> 0.05, that is, do not present any evidence to reject
the null hypothesis that the observed gender and ethnicity distributions/ftiin corresponding
Census distributions. Figure 3.3 shows an example. For eight out ofultties in the NY area
the tests resulted im > 0.05 providing no evidence that the multi-category ethnicity distributions
deviate significantly from the Census distributions. However, there apedéfsrences. It is no
surprise that this is true for the state level as the Instagram dataset eehg tsers from the LA
and NY metropolitan areas. However, overall the results suggest tbiicgeata often replicates
demographic trends. Below the ZIP code and NTA levels there was nagbrdata to perform

chi-square tests. The recommendation[2g7] is followed requiring the average expected fre-
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Figure 3.4: Daily ranges

29

in miles. Top: density plot of the maximum daily ranges by ethnic

ity. Middle: density plot of the median daily ranges at night by gender. Bottable with the

percentiles of the daily ranges represented in the plots.

qguency for a chi-square test with more than one degree of freedomdblbast two and for a

test with one degree of freedom to be at least 7.5. To prevent skewagpdmall sample sizes a

Monte Carlo simulation with 2,000 replicates was used as well.

3.5 Differences in Moving Patterns by Ethnicity and Gender

Combining the previous methodologies of evaluating demographic and mobilityrsateveal

that there are differences in how ethnic groups (and men and women) ingvarticular, differ-

ences can be observed in daily ranges, home ranges, and tempoaatehstics.
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Daily Ranges. Figure 3.4 shows some of the daily range results for ethnic groups anlérgen
based on sets of labeled users for LA and NY. These are the same tyladly canges as described
earlier in Figure 3.2, however, this time for all days of the year. | rourstedll daily ranges
up to 0.005 miles. Calculations do not consider any day where a user haw aange, that
is, had multiple checkins at the same location or a single checkin only. It isedefirate <
0.005 miles. Strikingly, Caucasians generally have a higher maximum daily rangeht@anther
ethnic groups. Indeed, a two sample Kolmogorov-Smirnov test revealthéh&@aucasian range
distribution differs significantly < 0.05) from the African American and Hispanic distribution.
This result illustrates a more general finding: daily ranges of Caucasfrsdiffer significantly
from those of minorities. For 44% (8/18) of the comparisons of a Caucaksarbution to a
minority distribution (three comparisons for maximum weekday, three for medéakday, three
for median at night—each for LA and NY) the difference is significant afl®5 level. However,
for the comparisons among minority distributions only 6% (1/18) are significdiftrent from
each other.

The differences in ranges by ethnicity can be most prominently obsented tomparisons
of Caucasians to African Americans and to Hispanics. However, it shmifibted that at night
all ethnicities exhibit very similar ranges. This finding stands in contrast tdiffezence in daily
ranges between men and women. In fact, the only statistically significantediffe f < 0.05)
that is observed between male and female ranges occur for the mediaradgigsrat night. As
shown in Figure 3.4, women tend to travel smaller distances at night than rhene @re many
possible explanations for this phenomenon. One reason could be thanviawel fewer times
at night due to safety concerié2] and, consequently, also avoid longer trips. In general, for
both men and women—as well as for all ethnicities—observed daily ranties fo(skewed) log

normal distribution.

Home Ranges. In order to evaluate differences in mobility with respect to an individualaéo
location the analysis of daily ranges can be complemented with the evaluatiomefrangesA

home range is a straight line distance between someone’s home and arateetopvhich the
person travels. Figure 3.5 shows the resulting CCDFs for the home rahiy&susers. Different

from daily ranges | calculate the home range not on a daily basis, butdnstesider all home
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Figure 3.5: CCDFs of home ranges for NY. Top: CCDFs for different ethnic grougsttom:

CCDFs for males and females.

ranges—whether they were the maximum travel distance for a day or redB& a user's home
location, that is, the ZIP code where the user had the most of his or hekiobethe distance
between the home and each checkin for the different ethnic groupseaéig can be calculated.
Both graphs show a noticeable decrease around the 2,500 mile mark, withehdstance
from NY to major hubs on the West Coast of the United States (most notably2]4X% miles),
San Francisco (2,563 mi), and Seattle (2,405 miles)). Men and women hagveiméar home
ranges at the edges of the graph. However, women travel farthernnatieim home ranges. This
finding could be based on the fact that women were found to travel lalistances to work when
they are employed full-timg175 and generally take more vacations than rié®g. It should
be noted that the larger home ranges are not inconsistent with the prebiservation of shorter
ranges for women at night as that result does obviously not considges during the day. The
plot for ethnicity is in line with previous observations that Caucasians tfavitler from home

than minorities.
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Figure 3.6: Histograms of checkin times for NY. Left: Comparison of weekends aekidass
for all user groups. Right: Comparison of Caucasian and minority useus for weekends and

weekdays. Dashed lines correspond to weekends, solid lines to weekda

Temporal Checkin Characteristics. Beyond spatial differences there are differences in tem-
poral activity as well. Figure 3.6 shows histograms for checkins by hbdag. As might be
expected, periodic behaviors with low checkin levels between 4—-6amestdevels from 3—8pm
exist. On weekends the lows occur at later times than on weekdays suggéstirusers may
wake up later on weekends. There is also a dramatic increase in activitppifteon weekdays,
which could correspond to the time at which many users get off of workeM\tiroken up into
Caucasians and minorities, the curves are very similar except with a moreumced weekday
after-work increase for minorities. It could be the case that Caucasiamksmore often in flexible

environments. There is no substantial difference between gendei andLA.

3.6 Ethnic Segregation

Location data are the basis for measuring residential segregation, i tegree to which two
or more groups live separately from one another in different partseaiiban environmeni 99 .
Trends in residential segregation characterize a group’s proximity to coimnmasources (e.g.,
health clinics) and its exposure to environmental and social hazardsp@og.water quality and
crimes)[220. In the following | demonstrate how segregation can be analyzed bas#teon
Instagram dataset. In this sense online data can also provide insight dgitting occurring
offline. In addition toresidentialsegregation | also introduce and evaluaiebility segregation,

which is the degree to which two or more groupsveto and from different parts of an area.
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Mobility segregation allows for a dynamic view of segregation, for examplerder to determine

a group’s ease of access to community resources away from home.

Methodology. Various intersecting dimensions of segregation can be distingu[49€H Two
standard measures are explored here, each for a different dimettstoimteraction index mea-
sures the dimension of exposure (the extent to which minority group memieegg@osed to ma-
jority group members in an ar¢490d) and the entropy index measures the dimension of evenness
(the extent to which minority group members are over- or underrepresienae ared190d). The
interaction index3, can be understood as the probability of a minority group member interacting

with a majority group member and is defingb9 by

Bu =Y (G5, (3.1)

wheren;, is the population of ethnic minority groupin areai (e.g., in a ZIP code areajy, is
the number of persons in grodgn the total population of all areas;; is the population of ethnic
majority groupl in areai, andn; is the area population.

The entropy index has the advantage over other indices that it can éhéouse=asure segre-

gation for more than two groups. It is defing2bd, H, as

H* - H
H= TR (3.2)
whereH* is the population-wide entropy defined by
K

and H is the weighted average of the individual areas’ entropies defined by

I K

=1
whereK is the number of different ethnic grouka is the proportion of ethnicity: in the total

population,/ is the number of different areas; is the population in an ared) is the sum of the
population from all areas, anfdy, is the proportion of the population of ethniciyin areai (while

it is defined thatP,;in(P;;) = 0 for Py, = 0).



CHAPTER 3. CASE STUDY: DETECTING POTENTIAL ETHNICITY ANDNGER

INFERENCES 34
Hisp./Cauc. Af. A./Cauc. Oth./Cauc.
Gran. LA NY LA NY LA NY
County 0.29 0.34 0.27 0.3 0.3 04
(-2%) | (+2%) | (+1%) | (-2%) | (-3%) | (0%)
PUMA 0.32 0.39 0.43 0.42 0.31 0.49
(-6%) | (+3%) | (+4%) | (+7%) | (-10%) | (+5%)
NTA - 0.54 - 0.43 - 0.55
- (+6%0) - (+3%) - (+7%)
ZIP 0.36 0.56 0.33 0.55 0.58 0.5
(-19%) | (0%) | (-23%) | (+1%) | (-1%) | (-7%)
@ % Diff. 5% 6% 5%

Table 3.2: Interaction index B) for different granularities based on labeled Instagram data.
Differences to the interaction index calculated from Census data are shopardéentage points
in parenthesis. For example, the probability of a Hispanic person to intexéith a Caucasian
person on the PUMA granularity level for NY is 39%. However, as showaianthesis, this
result is an overestimation by three percentage points over the Censtisudien probability of
36%. The last row of the table shows the mean difference between thedaldelse Census for
the three different ethnicities in absolute percentage points for both LA antb@éther. Note
that NTAs are not available for LA and that | also did not analyze the statt ésvthe label and

Census distributions differ significantly (Figure 3.3).

For both interaction and entropy indices | make use of the sets of labeledfaskA and NY,
however, exclude all areas for which the label distribution deviated signifiy from the Census
distribution as indicated by < 0.05. Thus, for example, as shown in Figure 3.3, on the county
level | do not include Queens, Kings, and Bergen. These exclusiemeaessary as otherwise the
accuracy of results decreases substantially. Recall that a user'sibalefined as the ZIP code

where he or she had the most checkins and that labels are adjustedpes @istributionss3.4).

Residential Segregation. For the most part the interaction between Caucasian and minority
group members can be considered fairly hi@b1l. All three minorities in LA and NY have

similar probabilities of interacting with Caucasians. The measurement efr6# (Hisp./Cauc.
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Entropy

Metro | County | PUMA | NTA | ZIP | @ % Diff.

LA 001 | 015 | - | 015
2%) | (+8%) | - | (+9%
(-2%) | (+8%) (+9%) 3%

NY 0.08 | 0.4 | 0.08| 0.09
0%) | (+1%) | (0%) | (+4%)

Table 3.3: Entropy index ) for different granularities based on labeled Instagram data. Dif-
ferences to the entropy index calculated from Census data are showndenpege points in
parenthesis. As explained in Table 3.2, the last column shows the measurerror. As further

explained in Table 3.2, | did not consider NTA (LA) and state granularitiésgnd NY).

and Oth./Cauc.) and 6% (Af. A./Cauc.) between labeled data and the Cenggessthat the
results are overall reliable. The inaccurate results for LA on the ZIR ¢exkl appear to have
been caused by the smaller number of data points. While the level of interaetiams to increase
when areas become more fine-grained, this phenomenon seems to liblpatisedifferent area
coverage for the various granularities. For example, it is not predeeih wonsidering all NY city
areas, where the Census distributions for the interaction of African Aenexiand Caucasians are:
0.41 (County), 0.25 (PUMA), 0.2 (NTA), and 0.22 (ZIP). Tables 3.2 argishow results for the
interaction and entropy indices, respectively.

With entropy index scores ranging from 0.01 to 0.15, as shown in Tabld 8®] another
indicator for low segregatiof151]. However, it should be noted that this low level of segregation
is a characteristic of the particular areas investigated. For example, fdiyatity areas at the
NTA level | calculated an entropy of 0.31 indicating higher segregationwedder, with mean
differences of 5% (Hisp./Cauc.) and 6% (Af. A./Cauc. and Hisp./Oth.) betiee results for the
labeled data and the Census-based calculation the findings are gerediaiier As in the case of

interaction, any existing inaccuracies could be due to small numbers ofaiata.p

Mobility Segregation. | evaluate mobility segregation based on the same measures as residential
segregation—interaction and entropy indices. However, instead of nsing locations | leverage

checkin data. More specifically, for each user | calculate the percetitag he or she spent at a
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Interaction Entropy
Metro Hisp./Cauc.| Af. A./Cauc. | Oth./Cauc.| All Eth.
LA 0.55 0.57 0.58 0.06
(+1%) (0%) (-1%) (+1%)
NY 0.54 0.53 0.53 0.06
(-2%) (-1%) (-5%) (+2%)
@ % Diff. 1% 1% 3% 1%

Table 3.4: Mobility interaction and entropy indices for ZIP code granularity based orelet

Instagram data. Differences to the residential interaction and entropy ésdaalculated from
Census data are shown in percentage points in parenthesis. The lasi i table shows the
mean difference between labeled and Census data in absolute percpotatggefor both LA and

NY together.

certain area and sum the resulting values for all users of a certain ethiiisisymethod aims to
avoid overcounting of active users. Results are shown in Table 3.4 diuéie that segregation
levels in terms of where people go are similar to levels of where people lideeth it would
have been surprising to see higher segregation levels as members of minotips may work
in predominantly Caucasian areas. Furthermore, it would also have tmeprase to see lower

levels of segregation as residential segregation is already relatively low.

3.7 Inferring Ethnicity and Gender

The distinctive mobility patterns that users of different ethnicity and geafien reveal enable
prediction of those characteristics with reasonable accuracy using Mitithigs. Thus, they
allow for an estimate to which extent a web service, in this case Instagrante o afifer ethnicity
and gender from its users. All following experiments were performedgusiikit-learn’s[211]
implementations of logistic regression, decision trees, naive Bayes, ppdrswrector machines
(SVMs). The tasks are to distinguish between men and women and Cawscastminorities.
Both task are based on roughly equal class sizes.

Features falling into one of three groups were usgeheral location-based features, counts

or percent of visits to each checkifpursquare-based features such as the average popularity of
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Task Parameters | Important Features| Base| Acc | AUC | F1

Ethnicity NY | L1, C' = 0.01 | Avg. ZIP ethnicities| 0.52 | 0.72 | 0.76 | 0.74
Ethnicity LA L1, C =1 Avg. ZIP ethnicities| 0.50 | 0.63 | 0.66 | 0.64
Gender NY L2,C=0.1 Men’s Store 0.53 | 0.58 | 0.59 | 0.55

Table 3.5: Results for the binary classifications of ethnicity and gender in NY and LA Usin
gistic regression. The algorithm ran on all available features, such astsof visits to different
neighborhoods, the ethnicity of the most visited block, and the categdriesadby Foursquare

venues. The baseline was obtained by predicting the class of a userdragee label distribution.

visited venues or counts of visits to venues with certain categoriesCandusderived features
such as the average ethnic makeup of all visited locations and the ethnicpraleuser’'s most-
visited location. For each experiment five-fold cross validation was appled is, data was
broken down into five groups, four of which were used for training end for testing. After
running all algorithms with all features, the best results are reported ie Bah

The results suggest indeed that Instagram indeed can infer a ubmisity and gender from
geotags. The accuracy for predicting ethnicity falls squarely within whatkieen reported for
other types of data. On the lower bound, in their work of predicting indalidwvitter users as
African-American or not based on linguistic features of Twe¢24,2 report as best performance
an F-1 score of 0.655. On the upper bound, for predicting whetherthiméceorigin of a phone
user is inside or outside the United States based on a rich feature set icgntaternet usage,
call, text message, and location featul@®)] achieved an F-measure of 0.806 and for gender an
F-measure of 0.611. Given that the data evaluated here contains @rféatures geotags appear
surprisingly powerful in predicting ethnicity and gender.

Auxiliary information about a location derived from Foursquare or thesDe may not always
be available, such as in countries without publicly available census dataenr l@cations are
anonymized. Additionally, the granularity of location data can vary greathedéing on how it
is created. For example, the GPS in a cell phone may have accuracy upntgartls, while CDR
data may cover several square miles. The granularity of location datarsloftered in order to

increase the privacy of a dataset.
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Figure 3.7: Accuracy of ethnicity prediction vs. granularity for the NY labeled data usag
eral different inference techniques. Unsurprisingly, the Full algoritiwhich uses features from
Foursquare and the Census performs the best. Interestingly, hgweueh simpler algorithms

with limited information achieve good results as well.

In order to understand the impact of auxiliary information and granularityherability to
make inferences, it is informative to compare the highest performing algodti§3.7 with algo-
rithms that used only a subset of the Foursquare features or Ceasurefe Additionally, to see
if labeled profiles were necessary to infer ethnicity, simple decision rulésathaired no training
were added.

Specifically, the following algorithms were tested:

e Unsupervised Threshaldo test if labeled data was necessary to guess ethnicity, a simple
decision rule that used no labels was applied. Using Census data, | tadctila average
percentage of Caucasian people living in all locations that a user visftdds percentage
was over the city’s average, the algorithm predicts that the user wasa§lanoc If it was
under, it predicts that the user was part of a minority ethnicity.

e Supervised ThreshaldAs a point of comparison, the previously-mentioned decision rule
was run again but this time it learned the threshold on a set of training dagqefformance
of this relative to the unsupervised threshold algorithm shows the impadielEhdata.

e Uninformed The best performing algorithm (logistic regression) run on a redueziife
set of only the percentages of a user’s checkins at each locaticgssas\a lower bound on

the performance of an algorithm on labeled data using only location information.
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e Bayesian A simple bayesian algorithm.
e Foursquare Logistic regression using only the features derived from Fourgquar
e Full: The best performing algorithm fro8.7 which uses features derived from the U.S.

Census and Foursquare. This serves as an upper bound onzeréer.

For all applicable algorithms, again five-fold cross validation was employledview the
stability the process was repeated 30 times, using 30 different data partigdanio training and
test sets. The results of this experiment are shown in Figure 3.7. All algwrithere ran on
the dataset of NY users. To understand the impact of location granulargyealiction accuracy
location data was represented at several different granularitiegddfynthe Census ranging from
block groups to states. Additionally GPS granularity was considered as well.

It can be observed that the Full algorithm achieves the best perforrresiceght be expected.
Comparing it to the Uninformed result shows that auxiliary information prevaléarge perfor-
mance boost. However, interestingly, many of the algorithms which only usgsof visits to
areas within NY perform as well as the richer features derived froordeuare. Another inter-
esting result is that both the Bayesian algorithm and Uninformed algorithforpewell with the
Uninformed algorithm outperforming the Unsupervised Threshold ab@vadlghborhood gran-
ularity and the Bayesian algorithm outperforming the supervised thresholslmeans that given
enough labeled data of counts of visits to locations an algorithm with no auxitfoymation can
infer ethnicity with relative good accuracy.

The performance of all algorithms decreases at coarse granularitigsisTmost likely be-
cause the ethnicity distributions of larger regions are closer to the ovésaliistribution and
provide less information. Several algorithms improve in performance at megranularities
such as ZIP and Neighborhood. This phenomenon is most likely caustuk sparsity of the
dataset at the finest granularity, as many blocks are visited by only asknw..Overall, the results
demonstrate the privacy implications of predicting from seemingly innocuatasdgemographic

characteristics that might be considered sensitive.
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3.8 Conclusion

As it is the claim of this thesis that ML is an essential technology to advanuacgrion the
Internet, the presented case study illustrates that ML algorithms can bdcuskhtify a web
service’s potential to make ethnicity- and gender-specific inferendesinfroduced technique is
service-agnostic and can be leveraged for social networks begstafjfam as well as other types
of web services. In addition, the study also demonstrates that Intematyis often linked to
offline privacy. The discussed methodology allows the study of discrimimaticd segregation
both online and offline.

There are various extensions of the study. First, beyond ethnicity amtegeattributes such
as age, occupation, and other lifestyle features may be analyzed, amdllgahere are many
other mobility properties to account for in addition to, for example, daily ran§econd, better
understanding the discriminative power of location data might inform the nlegitpols for rais-
ing user awareness about the information they reveal. This insight metisatisiting mobility
modeling and the inferences it renders possible to empower users to hitkkeravailable their

locations at will.
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Chapter 4

Using Machine Learning to Quantify

Potential Fourth Amendment Violations

As the discussed case study illustrates, social networks as well as aiharzations with access
to an individual’s data can learn facts that the individual did not disclosetty. However, current
privacy metrics are not suitable to quantify this type of privacy loss amtbdtranslate into legal
categories. To help mitigating this shortcoming | will demonstrate in the following Mavecan
be used to quantify privacy-invasive ML data practices, particuladyeghmental practices based
on extensive location surveillance. In this sense, ML enables the messuiref potential Fourth

Amendment violations.

4.1 The Mosaic Theory

While traditionally each observation by law enforcement is treated as a tdigwent that is eval-
uated separately for its Fourth Amendment releval®%], ML provides a rationale to move
beyond this limited view. The holistic perspective that evaluates collected dat compre-

hensively is known as mosaic thedryML provides a justification for the mosaic theory. At

1The term “mosaic theory” appears to have been first used by dbet 6f Appeals for the District of Columbia Circuit: “As with
the 'mosaic theory’ often invoked by the Government in caseslitng national security information, "What may seem trivialthe
uninformed, may appear of great moment to one who has a broad ftee scene.”{253 It should be noted, though, that the mosaic

theory is not (yet?) recognized by the Supreme Court.
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its essence, the mosaic theory states that a set of observations abostraqan create a more
complete picture than the sum of individual observations. In other wardspserver can learn
more than a simple tally of the collected data would suggest. This phenomendiedsect in
the increase of prediction accuracy with more data common to many ML tasks, ¥bubling
Fourth Amendment concerns emerge. As Justice Sotomayor expressrcconburring opinion

in Joneqd250:

Disclosed in [GPS] data ... will be trips the indisputably private nature of wiaikés
little imagination to conjure: trips to the psychiatrist, the plastic surgeon, the afbortio
clinic, the AIDS treatment center, the strip club, the criminal defense attothey
by-the-hour motel, the union meeting, the mosque, synagogue or chueamttbar

and on and on.”

In this sense, ML helps explain why there can be “privacy in public.” Mlogements in public
spaces can be meaningful information to learn information about an individat can be pro-
tected by the privacy right. Furthermore, law enforcement is able to knaw mith considerably
less effort. Thus, in addition to the increase in learning power the mosaigythddresses the
practical concern that the relative ease of data accumulation removesotien@c check on abu-
sive governmental activity that might otherwise exist. The fact that locatimking is cheap can
be understood as eroding a vital bulwark of Fourth Amendment proteciithile the increased
efficiency in learning does not necessarily always create a Fourth é&mmemt violation, at some
point an observer can learn disproportionately more relative to the dggdexffort. As Justice Al-
ito stated in Jones, the economic aspect of automatic accumulation of data beooreasingly

troubling[251]:

In the pre-computer age, the greatest protections of privacy werenedhstitutional
nor statutory, but practical. Traditional surveillance for any extendgig of time
was difficult and costly and therefore rarely undertaken. The surmedlat issue in
this case—constant monitoring of the location of a vehicle for four weekstteav
have required a large team of agents, multiple vehicles, and perhagsasiséance.
Only an investigation of unusual importance could have justified such andipre

of law enforcement resources.



CHAPTER 4. USING MACHINE LEARNING TO QUANTIFY POTENTIAL ROH
AMENDMENT VIOLATIONS 43

ooooooooooo

08|

06 |

04|

02

a
4
2

T TS5
Y
88N

ccuracy

Figure 4.1: The change in slope of a graph can be used to identify at what pointacgimproves
substantially given a certain quantity of input. Top: Graph with synthetic dat¢toB: Close-up

of the graph with various slopes.

The mosaic theory captures the fundamental idea that privacy can bearamsed indirectly
over time. Even if a particular sensitive trait of a person (such as sexieatation) is not known
to a government, the continued observation of that person disclosedactsds visits to gay bars)
that give away that trait. Individual facets of a person can turn into &wrmare complete mosaic
of someone’s character and life. Indeed, confirming Justice Sotorsagtarition, as shown in the
previous chapter, it is possible to infer an individual’s ethnicity with reabsaccuracy solely
based on location data. Few sparse location data points from Instagranswigcient to identify
the ethnicity for nearly three out of four people. Considering that, famgde, Facebook has
much more information about its users than just location, it is likely that theirigireds of

ethnicity[200 are even more accurate.
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4.2 Determining the Formation of a Mosaic

The central question then is this: at what point does the tracking, aggrmegand processing of
data by ML techniques arise to the quality of a search in violation of the Fourtardiment?
While it is difficult to provide a formal mathematical definition, it can be definedadiptively.

Suppose we relate the amount of observations to the accuracy of atipredis shown in Fig-
ure 4.1, then the slope at a certain point visualizes that a given amouataf/glds a certain
accuracy. The change in slope, however, is what is significant fietkee slope is increasing
as more data points are considered, and especially if it is increasing rahiellghange in slope
tells us that we have a better chance of learning proportionally more fronthate from earlier

observations. Thus, a certain threshold of a changing slope can berétéet as the formation
of a mosaic. In determining the threshold, which depends on the individhalntstances that
are difficult to generalize, three aspects are particularly relevant: datalgrity, quantity, and
availability of auxiliary data. For example, as shown in the previous chamtérferring ethnicity

from the Instagram dataset, algorithmic performance decreased atitse gpanularities.

4.3 Applying Privacy Metrics

ML classifiers return probabilities for the existence of a class. Thus, itheilediate results are
not related to privacy. However, when used in combination with privadyioset becomes indeed
possible to quantify privacy. To illustrate the point | focus on two well-knquivacy metrics:
k-anonymity and-diversity. Ink-anonymity the identity of a person is protected. By definition,
k-anonymity is concerned with sizeof a group of people; wheh = 1, a person is certainly
identifiable. In contrast té-anonymity,/-diversity deals with a larger set of protected attributes:
guasi-identifiers.l-diversity generalizeg-anonymity in that any attribute can be specified as a
guasi-identifier, and for each there must be at Iepetsible values. However, how cadiversity

be mapped to the output of machine learning algorithms? In order to recoreit@ahwve either
need to transform the ML outputs or formulate a different privacy metricmgef probabilities. |
propose the former and provide a simple rule for converting probabilitiegimtaliverse answer:
Given that a machine learning algorithm returns a probabjlitfor the existence of an attribute,

it holds thatl = | ;.
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Let us illustrate the rule by an example. If investigators believe that a siespég dealer
driving in his car picked up a bag containing drugs in San Francisco, tiehinglearning al-
gorithm may return a 40% probability for a pick-up stop in San Franciscas rEsult can be
translated into 2-diversity. Now, why is that the case? In general, tHEapildties for selecting
the correct answer from two equally likely possibilities at random wouldd8é,5rom three pos-
sibilities 33.1/3%, from four 25%, and so on. Thus, if the probability retdrfinem the machine
learning algorithm is greater than 50%, there is a higher chance of beirectwhen selecting
this answer compared to any other answer. This can be interpretedieerditd However, if
the probability returned is not greater than 50%, but greater than 33.W8%ave 2-diversity.
If it is not greater than 33.1/3%, but greater than 25%, 3-diversity,sandn. Because in the
example the probability that the suspect picked up something in San Fraixi¥@®, it holds
that! = | 5] = [2.5] = 2, that s, the mapping creates 2-diversity.

The demonstrated transformation leads to another observation. Whategtiog the inves-
tigators ask, it must be checked if the probability of the answer is greatersb#. If that is
the case, the corresponding answer is more likely to be correct than elsotbonsequently, the
prediction of an attribute (in case éfdiversity) or the identification of the suspect (in case of
k-anonymity) is more likely to be successful than not and we have 1-anongmityl -diversity,
respectively. Given such result and given that the type of informatséedafor is protected as
well, a Fourth Amendment violation may exist. In other words, the mapping pge\adrationale
based ork-anonymity and-diversity for quantifying a reasonable expectation of privacy violation
at a 50% probability threshold. Thus, if eithletanonymity orl-diversity are used in the manner
described, they import (and justify) a probabilistic understanding ofapyiinto the reasonable
expectation of privacy analysis. However, in addition to the probabilitytHeroccurrence of a

fact its plausibility[53] should also be considered.

4.4 ldentifying a Privacy Violation

In order to establish a case under the mosaic theory, it is necessarywdlstdviL inferences
can indeed violate the reasonable expectation of privacy. In othesworachine learning tech-

niques must be used to deduce facts that are not otherwise ascertaitable violating clearly
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established principles, most fundamentally the privacy protections origyfatim the privacy of
the home. The reasonable expectation of privacy of today’s Fourth Ament doctrine accom-
modates this notion and is explicitly couched in terms of societal expectationsyhag. people
as a whole believe is “reasonable.” Consider Justice Harlan's cammatin Kat4162: “there
is a twofold requirement, first that a person have exhibited an actugesivie) expectation of
privacy and, second, that the expectation be one that society is pdefoarecognize as ‘reason-

able.” Saocietal expectations, though, are based on what is custoamaigustomary behavior by
law enforcement is based in part on economic factors and is limited by whatepwill put up
with. Thus, for example, visits to “the union meeting, the mosque, synagogtteicch, the gay
bar” [250 can be protected information under the Fourth Amendment if contemporeistaio
expectations consider them private. In this regard, it should be notegdhsitive information is
not always protected by the Fourth Amendment. The inquiry has to beddarsthe latter.

The ramifications of the quantification approach discussed here arsalives ML algorithms
and features are increasingly used by government agencies atatoegthe legal consequences
of applying these technologies for purposes of investigating crimes dodcery laws will be-
come more prevalent. For example, if data analysis can lead to discoveaysitfige information
that are protected under the Fourth Amendment, police would need to tigoétain a warrant
before collecting or, at least, analyzing such data. Also, if there is a higlildod that sensitive
information can be inferred, governmental agencies cannot reqoestaf company to turn over

the user data that would enable such inferences (again, except iféheieg have a warrant or

other exceptions are applicable).

45 Conclusion

As machine learning can have substantial privacy implications, it shouldalieopall efforts
to quantify privacy. | have shown how ML can be operationalized in theaimdheory—under
which the prolonged observation of a person can lead to a violation of élsemable expectation
of privacy under the Fourth Amendment—via existing privacy metrics. Inrggard, machine
learning also provides a justification for the mosaic theory. However, theaph described here

for measuring the degree of privacy loss is only a start. While | have slaomay to translate the
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output of machine learning algorithms into a legal definition of privacy viararmonly known
privacy metric, it will be an important task for the future to develop a more gpevacy metric
that is mathematically sound, technically useful, and legally relevant. It shioulekample, cover

the distinction between PIl and non-Pll, which is a fundamental legal thamp
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Chapter 5

Automating Notice and Choice

Various technologies were proposed to mitigate the challenges for usensléostand privacy
notices and make their choices under the current privacy regime. eowene of them gained
widespread acceptance—neither among users, nor in the industrypioghently, The Platform
for Privacy Preferences (P3P) projé¢d; 74 was not widely adopted, mainly, because of a lack
of incentive on part of the industry to express their policies in P3P formadddition, P3P was
also criticized for not having enough expressive power to describagyrpractices accurately and
completely[70; 14. Further, existing crowdsourcing solutions, such as Terms of Seide;t
Read (ToS;DR)10], do not scale well and are unlikely to gain more popularity at this point.
Informed by these experiences | developed Privee—a novel saftarahitecture for analyzing

web privacy policies.

5.1 The Privee Concept

Figure 5.1 shows a conceptual overview of Privee, which makes usetofatic classifiers and
complements them with privacy policy crowdsourcing. It integrates vamousponents of the
current web privacy ecosystem. Policy authors write their policies in aldamguage and do not
need to adopt any special machine-readable policy format. When a astr to analyze a privacy
policy, Privee leverages the discriminative power of crowdsourcirggw@ will see in Section 5.3
that classifiers and human interpretations are inherently limited by ambiguoustggt is espe-

cially important to resolve those ambiguities by providing a forum for discassml developing
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Figure 5.1: Privee system overview. When a user requests a privacy policy andhgsisystem
checks whether the analysis results are available at a crowdsourcpuasit®ry (to which crowd
contributors can submit analysis results of policies). If results are albglahey are returned and
displayed to the user (I. Crowdsourcing Analysis). If no results asglable, the policy text is
fetched from the policy website, analyzed by automatic classifiers on therobehine, and then

the analysis results are displayed to the user (ll. Classifier Analysis).

consensus among different crowd contributors. Further, Privemlements the crowdsourcing
analysis with the ubiquitous applicability of rule and ML classifiers for policies éine not yet an-
alyzed by the crowd. Because the computational requirements are Idwpwas B Section 5.3.3,
areal time analysis is possible.

As the P3P experience showlgd) that a large fraction of web services with P3P policies mis-
represented their privacy practices, presumably in order to pregentgents from blocking their
cookies, any privacy policy analysis software must be guarded dagaarspulation. However,
natural language approaches, such as Privee, have an advamtage3P and other machine-
readable languages. Because it is not clear whether P3P policies altg lgding [229 and
the FTC never took action to enforce thefv7], the misrepresentation of privacy practices in
those policies is a minor risk that many web services are willing to take. This igdrusher
machine-readable policy solutions as well. In contrast, natural langualgéep can be valid
contracts[1] and subject to the FTC’s enforcement actions against unfair or deeetts or
practices (15 U.S.G345(a)(1)). Thus, web services are more likely to ensure that theiralatur
language policies represent their practices accurately.

When capturing privacy policy text it is crucial to do so completely and wittzmditional

text, in particular, free from advertisements on the policy website. Funtifele it is true that
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an ill-intentioned privacy policy author might try to deliberately use ambiguausuage to trick
the classifier analysis, this strategy can only go so far as ambiguousatdatras are interpreted
against the author (Restatement (Second) of Contrg2€8) and might also cause the FTC to
challenge them as unfair or deceptive. Beyond safeguarding thdfielaagalysis, it is also im-
portant to prevent the manipulation of the crowdsourcing analysis. Ineberd, the literature
on identifying fake reviews should be brought to bear. For example, Vsl 262 showed that
fake reviews can be identified by a suspicious grade distribution and theing time following
negative reviews. In order to ensure that the crowdsourcing anadtsisis the latest results the

crowdsourcing repository should also keep track of privacy policiatgs.

5.2 The Privee Browser Extension
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Figure 5.2: Simplified Privee program flow.
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| implemented Privee as a proof of concept browser extension for I8doigrome. After
the user has started the extension, the web scraper obtains the text oivéoy policy to be
analyzed (example.com) as well as the current URL (http://example.com/). rdivelsourcing
preprocessor then extracts from the URL the ToS;DR identifier and stikekiloS;DR repository
for results. If results are available, they are retrieved and forwadte labeler, which converts
them to a label for display to the user. However, if no results are availabl®$;DR the policy
text is analyzed. First, the rule classifier attempts a rule-based classificeltovever, if that is
not possible the ML preprocessor prepares the ML classification. eltkshif the ML classifier
is already trained. If that is the case, the policy is classified by the ML classifssigned a
label according to the classifications, and the results are displayed togheQtberwise, a set
of training policies is analyzed by the trainer first and the program pdsctethe ML classifier
and labeler afterwards. The set of training policies is included in the egtepackage and only
needs to be analyzed for the first run of the ML classifier. Theredftertraining results are
kept in persistent storage until deletion by the user. | wrote the Priviemgirn in JavaScript
using the jQuery library and Ajax functions for client-server communicatghile the extension
is designed as an end user tool, it can also be used for researckafople, in order to easily
compare different privacy policies. Figure 5.2 shows a simplified owereiethe program flow.

In this section | describe the various stages of program execution.

5.2.1 Web Scraper

The user starts the Privee extension by clicking on its icon in the Chrome todlben, the web
scraper obtains the text of the privacy policy that the user wants to anahd retrieves the URL
of the user’s current website. While the rule and ML classifier analysisworks from the site
that contains the policy to be analyzed, the crowdsourcing analysis workay website whose

URL contains the policy’s ToS;DR identifier.

5.2.2 Crowdsourcing Preprocessor

The crowdsourcing preprocessor is responsible for managing thedtitar with the ToS;DR
repository. It receives the current URL from the web scraper fvdnich it extracts the ToS;Dr

identifier. It then connects to the API of ToS;DR and checks for the avitijatf analysis results,
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that is, short descriptions of privacy practices and sometimes an olegtatigrade. The results,
if any, are forwarded to the labeler and displayed to the user. Then thasin terminates.
Otherwise, the policy text, which the crowdsourcing preprocessor alsmived from the web

scraper, is forwarded to the rule classifier and ML preprocessor.

5.2.3 Rule Classifier and ML Preprocessor

Generally, classifiers can be based on rule or ML algorithms. In prelimingogrinents | found
that for some classification categories a rule classifier worked bettergrs@h ML classifier, and
in others again a combination of bd®40; 257. | will discuss classifier selection in Section 5.3.1
in more detail. This section will focus on the feature selection process foutbelassifier and
ML preprocessor. Both rule classification and ML preprocessingasedon feature selection by
means of regular expressions.

My preliminary experiments showed that classification performance derahgly on fea-
ture selection. Ammar et dl32] discuss a similar finding. Comparable to other dom&2%s],
feature selection is particularly useful here for avoiding misclassificataeso the heavily im-
balanced structure of privacy policies. For example, in many multi-pagaqgyripolicies there is
often only one phrase that determines whether the web service is allowathborne the collected
information with information from third parties to create personal profilessefrst Especially,
supervised ML classifiers do not work well in such cases, even witkengadpling (removal of
uninteresting examples) or oversampling (duplication of interesting exanipl&3) Possible so-
lutions to the problem are the separation of policies into different contar@szand applying a
classifier only to relevant content zor{@3'3 or—the approach adopted here—running a classifier
only on carefully selected features.

The extension’s feature selection process begins with the removal dfaathaters from the
policy text that are not letters or whitespace and conversion of all rengagfiaracters to lower
case. However, the positions of removed punctuations are presexgadde, as noted by Biagoli
et al.[48], a correct analysis of the meaning of legal documents often depend® qosition
of punctuation. In order to identify the features that are most charaateiis a certain class |
used the term frequency-inverse document frequency (tf-idf) stasistecproxy. With tf-idf it is

possible to measure how concentrated into relatively few documents theeromes of a given
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word are in a document corp{81§. Thus, words with high tf-idf values correlate strongly with
the documents in which they appear and can be used to identify topics in thehdot that are not
discussed in other documents. However, instead of using individuaswas features the use of
bigrams lead to better classification performance, which was also disdngsestious work$32;
194.

1 (ad]advertis. )
(compan. *| networ k. | provi der. x| servi n. x| serve. x| vendor. x) |

(behav. x| context.*| network. x| parti.*|serv.*) (ad|advertis.*)

Listing 5.1: Simplified pseudocode of the regular expression to identify whether a policy
allows advertising tracking. For example, the regular expression wouwttim“contextual

advertising”

The method by which the Privee extension selects characteristic bigrames, agually con-
sist of two words, but can also consist of a word and a punctuation rnisallgsed on regular
expressions. It applies a three-step process that encompassesldathgsification and ML pre-
processing. To give an example, for the question whether the policy alldvestising tracking
(e.g., by ad cookies) the first step consists of trying to match the regulegsskpn in Listing 5.1,
which identifies bigrams that nearly always indicate that advertising tradkiatiowed. If any
bigram in the policy matches, no further analysis happens, and the poliassfied by the rule
classifier as allowing advertising tracking. If the regular expressios doe match, the second
step attempts to extract further features that can be associated with adgerasking (which
are, however, more general than the previous ones). Listing 5.2 shewsgular expression used

for the second step.

1 (ad]advertis|market) (.+)]|(.+) (ad|advertis| narket)

Listing 5.2: Simplified pseudocode of the regular expression to extract relevaasgsh for

advertising tracking. For example, the regular expression would matchddvertising.”

The second step—the ML preprocessing—is of particular importancedarthlysis because

it prepares classification of the most difficult cases. It extracts therfmann which the ML
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classifier will run later. To that end, it first uses the Porter steni24 to reduce words to their
morphological roo{48]. Such stemming has the effect that words with common semantics are

clustered togethdd 25 . For example, “collection,” “collected,” and “collect” are all stemmed into
“collect.” As a side note, while stemming had some impact, there was no subspanf@imance
increase for running the ML classifier on stemmed features comparedtemmsd features. In
the third step, if no features were extracted in the two previous steps, libg isclassified as not

allowing advertising tracking.

5.2.4 Trainer

In the training stage the Privee extension checks whether the ML classifiFeady trained. If
that is not the case, a corpus of training policies is preprocessed alydeth The analysis of a
training policy is similar to the analysis of a user-selected policy, except thaktiension does not
check for crowdsourcing results and only applies the second and thpcdb§the rule classifier
and ML preprocessor phase. The trainer’'s purpose is to gather stdtisfmrmation about the
features in the training corpus in order to prepare the classification ofsereselected policy.
It stores the training results locally in the user’s browser memory usingsparsweb storage,

which is, in principle, similar to cookie storage.

5.2.5 Training Data

The training policies are held in a database that is included in the extensicaggadkhe database
holds a total of 100 training policies. In order to obtain a representatossaection of training
policies, | selected the majority of policies randomly from the Alexa top 500 iteb$or the

U.S.[28] across various domains (banking, car rental, social networking, ¢toyever, a few

random policies from lesser frequented U.S. sites and sites from othetries that published
privacy policies in English were also included. The trainer accesses traging policies one
by one and adds the training results successively to the client’'s web stokéigr all results are

added the ML classifier is ready for classification.

5.2.6 ML Classifier

I now describe the ML classifier design and the classification categories.
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ML Classifier Design. In order to test the suitability of different ML algorithms for analyzing
privacy policies | performed preliminary experiments using the Weka lidig]. Performance
for the different algorithms varied. | tested all algorithms available on Warkang others the Se-
guential Minimal Optimization (SMO) algorithm with different kernels (linearypomial, radial
basis function), random forest, J48 (C4.5), IBk nearest neiglbdryarious Bayesian algorithms
(Bernoulli naive Bayes, multinomial naive Bayes, Bayes Net). Surgligithe Bayesian algo-
rithms were among the best performers. Therefore, | implemented nayesBaits Bernoulli
and multinomial version. Because the multinomial version ultimately proved to heiter per-
formance, | settled on this algorithm.

As Manning et al[187] observed, naive Bayes classifiers have good accuracy for masy tas
and are very efficient, especially, for high-dimensional vectors, agylliave the advantage that
training and classification can be accomplished with one pass over the datanaive Bayes
implementation is based on their specificatiaB87]. In general, naive Bayes classifiers make use

of Bayes’ theorem. The probability?, of a documenty, being in a category;, is

P(cld) < P(c) [ P(txlo), (5.1)

1<k<ngq
where P(c) is the prior probability of a document occurring in categery., is the number of
terms ind that are used for the classification decision, &Hdy|c) is the conditional probability
of termt, occurring in a document of categoryi187. In other words,P(¢x|c) is interpreted as
a measure of how much evidengecontributes forc being the correct categof#87. The best
category to select for a document in a naive Bayes classification is thgooater which it holds

that

arg max P(c|d) = arg max P(c) P(tge), (5.2)
ceC ceC 1<k<ng

whereC is a set of categories, which, in the case here, is always of size two{@dgracking, no
ad tracking). The naive assumption is that the probabilities of individual terms within ardeat
are independent of each other given the catefb?9. However, the implementation here differs
from the standard implementation and tries to alleviate the independence assurstiead of

processing individual words of the policies the system tries to capture somext by processing
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bigrams.

Analyzing the content of a privacy policy requires multiple classificationsitets. For ex-
ample, the classifier has to decide whether personal information can beted)lelisclosed to
advertisers, retained indefinitely, and so on. This type of classificationagnk as multi-label
classification because each analyzed document can receive morenthkaibel. One commonly
used approach for multi-label classification withlabels consists of dividing the task inté|
binary classification taskk245. However, other solutions handle multi-label data directly by
extending specific learning algorithni245. It turned out to be simpler to implement the first
approach. Specifically, at execution time multiple classifier instances atedreone for each
classification category—nby running the classifier on category-speeiitifes extracted by the

ML preprocessor.

Classification Categories. For which types of information should privacy policies actually be
analyzed? In answering this question, one starting point are fair informptaxticed66]. An-
other one are the policies themselves. After all, while it is true that privacyriahe U.S. gen-
erally does not require policies to have a particular content, it can bevelisthat all policies
conventionally touch upon four different themes: information collectiortjdésire, use, and man-
agement (management refers to the handling of information, for exampétharhinformation is
encrypted). The four themes can be analyzed on different levelsstfagtion. For example, for
disclosure of information, it could simply be analyzed whether information @atied to outside
parties in general, or it could be investigated more specifically whethemiatton is disclosed to
service providers, advertisers, governmental agencies, credaumirand so on.

At this point it should be noted that not all information needs to be analymesthme instances
privacy policies simply repeat mandatory law without creating any new rightéligations. For
example, a federal statute in the U.S.—18 U.§2703(c)(1)(A) and (B)—provides that the gov-
ernment can demand the disclosure of customer information from a welbes@rovider after
obtaining a warrant or suitable court order. As this law applies indepeiyds a privacy policy
containing an explicit statement to that end, the provision that the providedigdlose informa-
tion to a governmental entity under the requirements of the law can be infesradhe law itself.

In fact, even if a privacy policy states to the contrary, it should be asduhs such informa-
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tion disclosure will occur. Furthermore, if privacy policies stay silent ertain subject matters,
default rules might apply and fill the gaps.

Another good indicator of what information should be classified is proviedser studies.
According to one studj72], knowing about sharing, use, and purpose of information collection
is very important to 79%, 75%, and 74% of users, respectively. Similargnother study16]
users showed concern for the types of personal information colldadadpersonal information is
collected, behavioral profiling, and the purposes for which the informatiay be used. While it
was only an issue of minor interest earli@g], the question how long a company keeps personal
information about its users is a topic of increasing importaii@. Based on these findings,
it appears advantageous to perform six different binary classifictibat is, whether or not a

policy

¢ allows collection of personal information from users (Collection);

provides encryption for information storage or transmission (Encryption);

allows ad tracking by means of ad cookies or other trackers (Ad Tragking

restricts archiving of personal information to a limited time period (Limited Reteption

allows the aggregation of information collected from users with informatiom fitgrd par-
ties (Profiling);

¢ allows disclosure of personal information to advertisers (Ad Disclosure)

For purposes of the analysis, where applicable, it is assumed that thbassan account
with the web service whose policy is analyzed and is participating in anyeoffsweepstakes
or the like. Thus, for example, if a policy states that the service providgramilects personal
information from registered users, the policy is analyzed from the petigp®f a registered user.
Also, if certain actions are dependent on the user’s consent, optapt out, it is assumed that the
user consented, opted in, or did not opt out, respectively. As it wasaalytg make the analysis
results intuitively comprehensible to casual users, which needs to bensedfby user studies, |
tried to avoid technical terms. In particular, the term “personal informai®identical to what is
known in the privacy community as personally identifiable information (whiledfinfation” on
its own also encompasses non-PlIl, e.g., user agent information).

It is noteworthy that some of the analyzed criteria correspond to the semaifitihe P3P
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Compact Specificatiofb]. For example, the P3P token NOI indicates that a web service does not
collect identified data while ALL means that it has access to all identified ddtas, NOI and

ALL correspond to the collection category. Also, in P3P the token IND méasatsinformation

is retained for an indeterminate period of time, and, consequently, is éenptiyeexpressed when

the classifier comes to the conclusion that no limited retention exists. Furth&r,FSD, VA,

and IVD are tokens similar to the profiling category. Generally, the cooreggnce between the
semantics of the P3P tokens and the categories here suggests that ithkegossutomatically
classify natural language privacy policies to obtain the same informatiomwtgiatervices would

include in P3P policies without actually requiring them to have such.

5.2.7 Labeler

The extension’s labeler is responsible for creating an output label. Aadtskown that users
casually familiar with privacy questions were able to understand privaligigs faster and more
accurately when those policies were presented in a standardized fagbpand that most users
had a preference for standardized labels over full policy tE8; 164, | created a short stan-
dardized label format. Generally, a label can be structured in one or muliiplensions. The
multidimensional approach has the advantage that it can succinctly disgenedifprivacy prac-
tices for different types of information. However, one-dimensionainfaiis, as used here, were
shown to be substantially more comprehensiti&7; 223.

In addition to the descriptions for the classifications, the labeler also labaispedicy with
an overall letter grade, which depends on the classifications. Mordispkly, the grade is de-
termined by the number of pointg, a policy is assigned. For collection, profiling, ad tracking,
and ad disclosure a policy receives one minus point, respectively. \iower not allowing one
of these practices a policy receives one plus point. However, a poligyvess a plus point for
featuring limited retention or encryption, respectively. As most policies in thieitrg set had

zero points, zero points is the mean and grades are assigned as follows:

e A (above average overall privacy)jf> 1;
e B (average overall privacy) if < p > —1;

e C (below average overall privacy)if < —1.
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Figure 5.3: Privee extension screenshot and detailed label view. The result ofitlaep policy

analysis is shown to the user in a pop-up.

After the points are assigned to a policy, the corresponding label is d&phamythe user
as shown in Figure 5.3. In order to avoid confusion about the meaningon$ [d46], short
descriptions were used instead. The text in the pop-up is animated. Iféhenoses the mouse
over it, further information is provided. The user can also find more detekpthnations about
the categories and the grading by clicking on the blue "Learn More” link etbibttom of the
label. It should be noted that analysis results retrieved from ToS;DRlysliféer in content from
the classification results, and are, consequently, displayed in a dtffabsh format. The scheme
introduced here should be understood as a proof of concept. There@sensus on the selection
of practices to display or the labels to use. Especially, it can be arguedll#tédr grading scheme
incorrectly implies that the described practices are comparable, which ialiactmight not be

the case.

5.3 Experimental Results

Privee was run on a test set of 50 policies. Before this test phase theddsifier was trained
(with the 100 training policies that are included in the extension packagejuaed it (with a
validation set of 50 policies). During the training, validation, and test gh#se retrieval of
crowdsourcing results was disabled. Consequently, the experimestdisrenly refer to rule
and ML classification. The policies of the test and validation sets were sglact®rding to
the same criteria as described for the training set in Section 5.2.5. In thisrskétist discuss

the classification performance (Section 5.3.1), then the gold standardubetl lto measure the
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performance (Section 5.3.2), and finally the computational performareo#i¢s 5.3.3).

5.3.1 Classification Performance

In the validation phase | experimented with different classifier configuratior each of the six
classification tasks. For the ad tracking and profiling categories the cotioircd the rule and
ML classifier lead to the best results. However, for collection, limited retengind ad disclosure
the ML classifier on its own was preferable. Conversely, for the emiorygategory the rule clas-
sifier on its own was the best. It seems that the language used for degenilgiryption practices is
often very specific making the rule classifier the first choice. Words as¢hks|” are very distinc-
tive identifiers for encryption provisions. Other categories use morergelanguage that could
be used in many contexts. For example, phrases related to time periods tmestessarily refer
to limited retention. For those instances the ML classifier seems to perform. ddteever, if
categories exhibit both specific and general language the combinatiaaroiérand ML classifier
is preferable.

The results of the extension’s privacy policy analysis are based orrdlcegsing of natural
language. However, as natural language is often subject to differtenpretations, the question
becomes how the results can be verified in a meaningful way. Commonly appeteids for veri-
fying natural language classification tasks are accuracy (Acc.)isppe¢Prec.), recall (Rec.), and
F-1 score (F-1). Accuracy is the fraction of classifications that aneeci 187]. Precision is the
fraction of retrieved documents that are relevant, and recall is the fraaticelevant documents
that are retrievedl187]. Precision and recall are often combined in their harmonic mean, known
as the F-1 scorfl47.

In order to analyze the extension’s performance | calculated the aycpracision, recall, and
F-1 score for the test policy set classifications. Table 5.1 shows thalbgerformance and the
performance for each classification category. | also calculated thérneaecuracy (Base.) for
comparison against the actual accuracy. The baseline accura@cfocategory was determined
by always selecting the classification corresponding to the annotationdbiatred the most in
the training set annotations, which | report in Figure 5.4. The baselingawncfor the overall
performance is the mean of the category baseline accuracies. Becagtastification of privacy

policies is a multi-label classification task | calculated the overall results stk method for
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Figure 5.4: Annotation of positive cases in percent for the 50 test policies (blue) antiGbe

training policies (white).

measuring multi-label classifications given by Godbole and Saraj@&dj. According to their
method, for each document; in setD, lett; be the true set of labels and be the predicted set

of labels. Then, the means is obtained by

1 DI |t; N s
Ace(D) = — 1 5.3
ce(D) |D, it [ Us)| (5.3)
D
Prec(D \D| Z‘ | \t]ﬂs]| (5.4)
ID| |t; ﬂs]|
55
ReetD) = 1 .2, g )
ID| 2 Prec(d;) Rec(d;)
F—( 5.6
|D|Z (Prec(dj) + Rec(d;)) (5-6)

From Table 5.1 it can be observed that the accuracies are at leastchagythhe corresponding
baseline accuracies. For example, in the case of limited retention the batasdsifies all policies
as not providing for limited retention because, as show in Figure 5.4, oy &he training

policies were annotated as having a limited retention period, which would leal#$s accurate
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Base. Acc. | Prec| Rec.| F-1

Overall 68% | 84%| 94% | 89% | 90%

Collection 100% 100% 100% 100% 100%
Encryption 52% | 98% | 96% | 100% 98%

Ad Tracking | 64% | 96% | 94% | 100% 97%
L. Retention | 74%| 90% | 83%| 77% | 80%

Profiling 52%| 86% | 100% 71% | 83%
Ad 66% | 76% | 69% | 53% | 60%
Disclosure

Table 5.1:Privee extension performance overall and per category. For the 3@lkassifications
(six classifications for each of the 50 test policies) | observed 27 miditasons. 154 classi-
fications were made by the rule classifier and 146 by the ML classifier.rulbeclassifier had
11 misclassifications (2 false positives and 9 false negatives) and the Mifietasad 16 mis-
classifications (7 false positives and 9 false negatives). It may be possi#erease the number
of false negatives by adding more rules and training examples. For theaeking category the
rule classifier had an F-1 score of 98% and the ML classifier had an Eetesof 94%. For the
profiling category the rule classifier had an F-1 score of 100% and thech&sifier had an F-1

score of 53%. 28% of the policies received a grade of A, 50% a B, atd2€.

classification of 74% in the test set compared to the actual accuracy af BOfthe collection
category it should be noted that there is a strong bias because neanypeliey allows the
collection of personal information. However, in the validation set includedpelwies that did
not allow this practice, but still were correctly classified by the extensioane@lly, the F-1
performance results fall squarely within the range reported in the eantigesw For identifying
law enforcement disclosures Ammar et f32] achieved an F-1 score of 76% and Costante et
al. reported a score of 83% for recognizing types of collected informd68hand 92% for
identifying topics discussed in privacy policiggg].

In order to investigate the reasons behind the extension’s performased two binary logis-

tic regression models. Binary logistic regression is a statistical method fluativey the depen-
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dence of a binary variable (the dependent variable) on one or more\attigbles (the indepen-
dent variable(s)). In the first model each of the 50 test policies wassepted by one data point
with the dependent variable identifying whether it had any misclassificatidrtremindependent
variables identifying (1) the policy’s length in words, (2) its mean Semantieity (SemD)
value[144], and (3) whether there was any disagreement among the annotatortatamythe
policy (Disag.). In the second model | represented each of 185 indiMidsiaclassifications by
one data point with the dependent variable identifying whether it was a nmsgataton and the
independent variables identifying (1) the length (in words) of the texttti@tule classifier or
ML preprocessor extracted for the classification, (2) the text's mean SeB, and (3) whether
there was annotator disagreement on the annotation corresponding kasthiéaation.

Hoffman et al.4144] SemD value is an ambiguity measure for words based on latent semantic
analysis, that is, the similarity of contexts in which words are used. It aagrerérom 0 (highly
unambiguous) to 2.5 (highly ambiguous). | represented the semanticityiveir® document
(i.e., a policy or extracted text) by the mean SemD value of its words. Howasdroffman
et al. only provide SemD values for words on which they had sufficiealytinal data (31,739
different words in total), some words could not be taken into accourtiiculating a document’s
mean SemD value. Thus, in order to avoid skewing of mean SemD values anlyndats that
had SemD values for at least 80% of their words were considered. Ifirshenodel all test
policies were above this threshold. However, in the second model some 8dthclassifications
were excluded. Particularly, all encryption classifications were exdlbdeause words, such as
“encryption” and “ssl” occurred often and had no SemD value. Also, engticond model the
mean SemD value of an extracted text was calculated after stemming its words evioitier
stemmer and obtaining the SemD values for the resulting word stems (while the SdueDo¥
each word stem was calculated from the mean SembD value of all words tleathearespective
word stem).

For the first model the analysis results are shown in Table 5.2 and for tbedenodel in
Table 5.3. Figure 5.5 shows the distribution of mean SembD values for the textri@xts in the
second model. Using the Wald test, | evaluated the relationship between gemceat vari-
able and the dependent variable through the P value relating to the caeffittbat independent

variable. If the P value is less than 0.05, the null hypothesis, i.e., that thfficeent is zero, is re-
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Per Policy Length | SemD | Disag.

Mean 28734 2.08 0.6
Significance (P)| 0.64 0.74 0.34
Odds Ratio (2) 1.15 1.11 0.54

95% 0.64- 0.61- 0.16-
Confidence 2.08 2.01 1.89
Interval (2)

Table 5.2:Results of the first logistic regression model. The Nagelkerke psetido0.03 and the

Hosmer and Lemeshow value 0.13.

Per Extr. Text Length | SemD | Disag.
Mean 37.38 1.87 0.17
Significance (P) 0.22 0.02 0.81
Odds Ratio (Z) 058 | 2.07 | 0.86
95% Confidence | 0.24- | 1.12- | 0.25-
Interval (2) 1.38 3.81 2.97

Table 5.3:Results of the second logistic regression model. The Nagelkerke pRéisi6.11 and

the Hosmer and Lemeshow value 0.051.

jected. Looking at the results, it is noteworthy that both models do notlreatatistically relevant
correlation between the annotator disagreements and misclassificatioss aldacument with a
disagreement did not have a higher likelihood of being misclassified thawitimeut. However,

it is striking that the second model has a P value of 0.02 for the SemD var&thledardizing the
data points into Z scores and calculating the odds ratios it becomes clean thatease of the
mean SemD value in an extracted text by 0.17 (one standard deviation)sedrdee likelihood
of a misclassification by 2.07 times (odds ratio). Consequently, the secorel siamvs that the
ambiguity of text in privacy policies, as measured by semantic diversitythtistical significance

for whether a classification decision is more likely to succeed or fail.
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Figure 5.5: Mean SemD value distribution for the 185 extracted texts. The standardidevie

0.17.

Besides evaluating the statistical significance of individual variables) balsessed the overall
model fit. While the goodness of fit of linear regression models is usuallyateal based on the
R? value, which measures the square of the sample correlation coefficievedrethe actual
values of the dependent variable and the predicted values (in otheswhed?? value can be
understood as the proportion of the variance in a dependent varialibetaite to the variance in
the independent variable), there is no consensus for measuring thbifieoy logistic regression
models. Various pseud®’ metrics are discussed. | used the Nagelkerke ps®id®cause it can
range from O to 1 allowing an easy comparison to the regtawhich, however, has to account
for the fact that the Nagelkerke pseuRtd is often substantially lower than the regulgt). While
the Nagelkerke pseudB? of 0.03 for the first model indicates a poor fit, the value of 0.11 for
the second model can be interpreted as moderate. Further, the Hosnienaeshow test, whose
values were over 0.05 for both of the models, demonstrates the model fiflas w

In addition to the experiments just discussed, the models were also evalu#ieinther
independent variables. Specifically, | evaluated the first model with theygmublication year, the
second model with the extracted texts’ mean tf-idf values, and both models wsthFéncaid
readability scores as independent variables. Also, using only ML cleetgifins | evaluated the
second model with the number of available training examples as indeperdiaiid®. Only for the
latter | found statistical significance at the 0.05 level. The number of trainiamples correlated
to ML classification performance, which confirms Ammar et al.’s respectivgecturd 32]. The

more training examples the ML classifier had, the less likely a misclassificatiamsec
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5.3.2 Inter-annotator Agreement

Having discussed the classification performance, | now turn to the goldasththat was used to
measure that performance. For the performance results to be reliablelthstandard must be
reliable. One way of producing a gold standard for privacy policies iskal@e providers whose
policies are analyzed to explain their meanifi§. However, this approach should not be used, at
least in the U.S., because the Restatement of Contracts provides thatectctarn is generally
given the meaning thalll parties associate with it (Restatement (Second) of Contrg2fd,).
Consequently, policies should be interpreted from the perspectivetiofthe provider and user.
The interpretation would evaluate whether their perspectives lead to idengeaings or, if that
is not the case, which one should prevail under applicable principlegaf iileterpretation. In
addition, since technical terms are generally given technical meanintga(B®ent (Second) of
Contracts§202(3)(b)), it would be advantageous if the interpretation is perfornyeghbotators
familiar with the terminology commonly used in privacy policies. The higher the munob
annotations on which the annotators agree, that is, the higher the in@atTragreement, the
more reliable the gold standard will be.

Because the annotation of a large number of documents can be very lehdris sufficient
under current best practices for producing a gold standard to neegdar-annotator agreement
only on a data sampl@10], such that it can be inferred that the annotation of the remainder doc-
uments is reliable as well. Following this practice, | only measured the intet@ionagreement
for the test set, which would then provide an indicator for the reliability of thmiimg and vali-
dation set annotation as well. To that end, | annotated all policies and addigionotations were
obtained for the test policies from two other annotators. All annotatorkegidndependently from
each other. As the author who annotated the policies studied law and leatisexm privacy law
and the two other annotators were law students with training in privacy la@nabtators were
considered equally qualified, and the annotations for the gold standaedselected according to
majority vote (i.e., at least two annotators agreed). After the annotations téshpolicies were
made, | ran the extension on these policies and compared its classificatiomsaontbtations,
which gave the results in Table 5.1.

The reliability of the gold standard depends on the degree to which the &onscgreed on

the annotations. There are various measures for inter-annotatormegreeOne basic measure
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Disag.| % K's alF'sk
Ag.

Overall 8.12 | 84% 0.77
Collection 0 100% 1

Encryption 6 88% 0.84
Ad Tracking 7 86% 0.8
L. Retention 9 82% 0.68
Profiling 11 78% 0.71
Ad Disclosure 16 68% 0.56

Table 5.4:Inter-annotator agreement for the 50 test policies. The values for Knigpef's o and

Fleiss’ k are identical.

is the count of disagreements. Another one is the percentage of agte@mnéy.), which is

the fraction of documents on which the annotators af@@e However, disagreement count and
percentage of agreement have the disadvantage that they do nobhtafmothance agreement.

In this regard, chance-corrected measures, such as Krippeado(f.'s o) [172 and Fleiss’x

(F’s k) [124] are superior. For Krippendorffa and Fleiss’s the possible values are constrained
to the interval[—1; 1], where 1 means perfect agreement, means perfect disagreement, and 0
means that agreement is equal to chdi8d& Generally, values above 0.8 are considered as good
agreement, values between 0.67 and 0.8 as fair agreement, and value8.6&las dubioukl87].
However, those ranges are only guidelif@d. Particularly, ML algorithms can tolerate data with
lower reliability as long as the disagreement looks like random rja24.

Based on the best practices and guidelines for interpreting inter-annagag@ment measure-
ments, the results in Table 5.4 confirm the general reliability of the annotatimhsansequently,
of the gold standard. For every individual category, except for thdisclosure category Krip-
pendorff’s o values indicated fair or good agreement. In addition, the overall meaeragre
across categories is 0.77, and, therefore, provides evidencarfovéaall agreement as well. For
the overall agreement it should be noted that, corresponding to the multelabsification task,

the annotation of privacy policies is a multi-label annotation task as well. Henyvévere are
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Per Policy Length | SemD | Flesch-
K.
Mean 2873.4| 2.08 14.53

Significance (P)| 0.2 0.11 0.76
Odds Ratio (2) 1.65 1.87 1.12

95% 0.78- | 0.87-4 0.55-
Confidence 3.52 2.29
Interval (2)

Table 5.5: Results of the third logistic regression model. The Nagelkerke psBd®0.19 and

the Hosmer and Lemeshow value 0.52.
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Figure 5.6: Mean SemD value distribution for the 240 policy sections. The standardtidevia
0.03.

only very few multi-label annotation metrics, such as Passonneau’s kieg#wgreement on Set-
valued Items (MASIJ209. As none of the metrics were suitable for the purposes here | selected
as overall metric the mean over the results of the individual classificatiogarés.

Inter-annotator agreement results were investigated by applying a tldrfbarth binary lo-
gistic regression model. In the third model each of the 50 test policies wassegpied by one data
point with the dependent variable identifying whether the annotators hadisegreement in an-
notating the policy and the independent variables identifying (1) the poliey&th in words, (2)
its mean SemD value, and (3) its Flesch-Kincaid score. In the fourth modebé&240 individual
annotations is represented by one data point with the dependent variahliéyidg whether the

annotators disagreed for that annotation and the independent vaigdigying (1) the length
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Per Section Length | SemD | Flesch-
K.
Mean 306.76 | 2.08 15.59

Significance (P)| 0.29 0.04 0.49
Odds Ratio (2) 1.18 151 0.86

95% 0.87- 1.02- 0.56-
Confidence 1.6 2.22 1.32
Interval (2)

Table 5.6:Results of the fourth logistic regression model. The Nagelkerke pgetico0.05 and

the Hosmer and Lemeshow value 0.83.

(in words) of the policy text section that the annotation is referring to, @¥éttion’s mean SembD
value, and (3) its Flesch-Kincaid score. For the fourth model some ofGBeaBnotations were
excluded because not every policy had a section for each categargx&mple, some policies
did not discuss advertisement or disclosure of information. The Flegutakl readability score
measures the number of school years an average reader would neetbistand a text.

For the third and fourth model analysis results are shown in Table 5.5 anceSp@ctively.
Figure 5.6 shows the distribution of mean SemD values for the policy sectiorsfioutth model.
Both models were significant, as indicated by their Nagelkerke and Hosrddreameshow val-
ues. The results confirm that the readability of policies, as measured Bietbeh-Kincaid score,
does not impact their comprehensibilit¥91]. In the third model | was unable to identify any
statistically relevant variables (although, semantic diversity and length mstatigtically signif-
icant in a larger data set). However, the fourth model proved to be moneimgdal. Remarkably,
corresponding to the finding in Section 5.3.1, according to which class#igonmance corre-
lates to semantic diversity, the statistically relevant P value of 0.04 for the merab Sariable
also indicates a correlation of inter-annotator agreement to semanticigfivétsindardizing the
data points into Z scores and calculating the odds ratios it becomes clean tinatease of the
mean SemD value of a section by 0.03 (one standard deviation) increadieliheod of a dis-

agreement by 1.51 times (odds ratio). It is astounding that even qualifrextators trained in
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privacy law had difficulties to avoid disagreements when semantic diversitgdsed to slightly
above-mean levels.

While neither the first nor the second model in Section 5.3.1 showed a d¢mmeteetween
inter-annotator agreement and classifier performance, the resultefee¢bnd and fourth model
demonstrate that performance and agreement both correlate to one comiadrev—semantic
diversity. More specifically, performance correlates to the semanticsiliyeof extracted text
phrases and agreement correlates to the semantic diversity of policynsedtios result suggests,
for example, that the relatively high number of misclassifications and disaugnats in the ad
disclosure category is inherent in the nature of the category. Indeedseés of fuzzy categories
disagreements among annotators do not necessarily reflect a qualigrmpmiithe gold standard,
but rather a structural property of the annotation task, which can ssrae important source of
empirical information about the structural properties of the investigated@atf24]. Thus, it is
no surprise that for all six categories the values of KrippendatifEerrelate to the F-1 scores. The
higher the value of Krippendorff's, the higher the F-1 score. Figure 5.7 shows the correlation.

As both classifier performance and inter-annotator agreement deevéhsan increase in se-
mantic diversity, the practicability of the notice and choice principle becomestipmable. After
all, privacy policies can only provide adequate notice (and choice) ifdneyot too ambiguous.
In order to further examine policy ambiguity | calculated the mean SembD valdlegoest policies
over time. The test set analysis exhibited a statistically significant trend oéaéng semantic
diversity with a P value of 0.049. Figure 5.8 illustrates the approach taken fidere are two
possible explanations for the decrease over time. First, it could be aquamrs= of the FTC’s
enforcement actions and its call for policies to “be clearer, shortenramd standardized110.

Second, we might be in the midst of a consolidation process leading to modastered policy

language. As de Maat et E80] observed, drafters of legal documents tend to use language that

adheres to writing conventions of earlier texts and similar statements. |ratsutesf the reason,
the result suggests that the notice and choice principle may overcome tiierpraf ambiguity

over time.
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Figure 5.7: Linear regression plot with the F-1 score as dependent variable aifgpiéndorff'sa

as independent variable. The coordinate labels identify the categories: AD Disclosure, LR
= Limited Retention, P = Profiling, AT = Ad Tracking, E = Encryption, and C sl&ction. With
an R? value of 0.83 the model has an excellent fit, which, however, shoulddsprieted in light

of the small number of data points.

5.3.3 Computational Performance

The extension’s computational performance allows a real-time analysie F&shows the mean
duration in seconds for obtaining analysis results for each of 50 randsetdgted policies from

ToS;DR (Crowdsourcing), processing each of the 50 test policiesqiéa}, and processing each
of the 50 test policies each with initial training (Training). Notably, retrievintiqy results from

ToS;DR is twice as fast as analyzing a policy with the classifiers.

5.4 Conclusion

In order to improve privacy transparency | developed Privee—&eBy$t0 automatically analyze
privacy policies. Based on ML algorithms Privee analyzes policy textranans a label with the
most important information allowing Internet users to gain a fast undeis@gotiessential policy
terms. Interestingly, experimental results reveal that the automatic classifiobprivacy policies
encounters the same constraint as human policy interpretation—the ambigutyafitfanguage,
as measured by semantic diversity. Such ambiguity seems to present amiringtation of what
automatic privacy policy analysis can accomplish. Thus, on a more fundaltexel, the viability

of the notice and choice principle might be called into question altogether. \owsased on the
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Figure 5.8: Linear regression plot for Symantec’s privacy policy (which was phthe test set)
with the mean SemD value of a policy version as dependent variable apdlityeversion number
as independent variable. The first version of Symantec’s policy datdsto August 5, 1999, and
the eleventh version was adopted on August 12, 2013. The mean SdneDof Symantec’s
privacy policy decreased from 2.1 in the first version to 2.06 in the elevengion as shown. A
similar decrease occurred for 29 out of 44 test policies (6 of the testipsheere only available in
a single version and, therefore, could not be included in the analysiselawfor the 44 included

policies there were on average 8 different versions over time.).

presented indicators for a decrease of policy ambiguity over time | woultiocato draw such
conclusion, and | remain optimistic that the current notice and choice dgeasysworkable.

| believe that over time conventional language will develop that will make thenmgaof
many privacy policy provisions much clearer. As de Maat ef&0] observed, drafters of legal
documents tend to use language that adheres to writing conventions of tsedtigeand similar
information is usually expressed in syntactically similar statements. The FTIC®Kcarivacy
policies to “be clearer, shorter, and more standardiz&did coupled with its enforcement power
will likely also lead to a decrease in ambiguity. As anecdotal evidence s&wegle’s privacy
policy whose mean SemD value decreased throughout the years fromtelyiear 1999 to 2.04
in 2013. Privacy policy crowdsourcing can supplement this developbygmtoviding a forum for
identifying, discussing, and resolving ambiguities.

While Privee is the first architecture for automatically analyzing privadicies, much more
work remains to be done: What are the types of information that policiesdshewanalyzed for?

What is the most usable design for displaying the analysis results? Whatedrest features and
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Per CrowdsourcingClassifier Training

Policy

Mean 0.39 sec 0.78 sec| 20.29
sec

Table 5.7: Computational performance of the Privee extension. The performaasevaluated
on a Windows laptop with Intel Core2 Duo CPU at 2.13 GHz with 4 GB RAM. pheesrequire-
ments for the installation on the hard disk are 2.11 MB (including 1.7 MB of traidiatg and
286 KB for the jQuery library) and additional 230 KB during the prograne@&ition for storing

training results.

algorithms to train a privacy policy classifier? How can the interaction betweeadlassifier and
crowdsourcing analysis be improved? In particular, how can a progoemect to many crowd-
sourcing repositories, and, possibly, decide which analysis is the bast2r@vdsourced policy
results be fed into the classifier as training data? How can it be assurdtigh@bwdsourcing
results are always up to date? What are other ways to exploit the semastisityli metric? And,

finally, how can the whole architecture be made workable in the mobile world?
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Chapter 6

Bridging the Gap between Notices and

Actual Practices

Snapchat does “not ask for, track, or access any location-spedificnation.” This is what
Snapchat’s privacy policy statéd-lowever, Snapchat’s Android app transmitted Wi-Fi- and cell-
based location data from users’ devices to analytics service providéesse discrepancies re-
mained undetected before they eventually surfaced when a reseaxeineined Snapchat’s data
deletion mechanism. His report was picked up by the Electronic Privaoynhattion Center and
brought to the attention of the FTC, which launched a formal investigatiasirieq Snapchat to
implement a comprehensive privacy program.

The case of Snapchat illustrates that mobile apps are often deviating feimptivacy poli-
cies. However, any inconsistencies can have dire consequencessasiiey may lead to enforce-
ment actions by the FTC and other regulators. This is especially true if deuries continue to
exist for many years, which was the case for Yelp’s collection of chillrefiormation® These
findings do not only demonstrate that regulators could benefit fromtaraythat helps them iden-
tifying privacy requirement inconsistencies, but also that it would besfutitool for companies

to assess their privacy compliance as part of the software developmoeasp. This would be

1Complaint In the Matter of Snapchat, Inc. (December 31, 2014).
2Decision and Order In the Matter of Snapchat, Inc. (Decembg?314).

3United States of America v. Yelp, Inc. (September 17, 2014).
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valuable because researchers found that privacy violations ofpeaafp be based on developers’
difficulties in understanding privacy requiremefdd] rather than on malicious intentions. Thus,
for example, tools that automatically detect and describe third-party datatamli@ractices may
be helpful for developergt4]. Consequently, it is a major motivation of my work to help compa-
nies identifying red flags before they develop into serious and contergiouasy problems.

On various occasions, the FTC, which is responsible for regulatinguoogrsprivacy on the
federal level, voiced dissatisfaction with the current state of appsagyicompliance. Three
times the FTC manually surveyed childrens’ apps for privacy law complidd®s; 109; 118
and concluded that the “results of the survey are disappoinki@@. Deviating from mandatory
provisions, many publishers of childrens’ apps did not disclose whastgpdata they collect, how
they make use of the data, and with whom the data is sHaGgll. A similar examination of 121
shopping apps revealed that many privacy policies are vague and ¢aihtey how apps actually
handle consumers’ dafd14]. Given that the FTC limited its investigations to a small sample
of apps, a presumably large number of discrepancies between appheingrivacy policies
remained undetected. However, the FTC and other regulators haveltiftic achieve scale in
their compliance checks. In this regard, | believe that the system candraded by regulators to
substantially increase the scope of their analyses.

In this chapter | present a privacy analysis system for Android thetlchdata practices of
apps against privacy requirements derived from their privacy psliaied selected laws. The
work here enables app publishers to identify potentially privacy-ineagractices in their apps
before they are published. Moreover, the work can also aid goveltairegencies, such as the
FTC, to achieve a systematic enforcement of privacy laws on a large s&pfestore owners,
researchers, and privacy advocates alike might also derive valudlfie approach presented here.
My main contribution consists of the novel combination of machine learning tatid analysis
techniques to analyze apps’ compliance with privacy requirements. Howevant to emphasize
that this dissertation does not claim to resolve challenges in the individimlitees beyond what
is necessary for the purposes here. This holds especially true faatteeasalysis of mobile apps

and its many unresolved problems, for example, in the analysis of obfdsuade.
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(1) Privacy Policy Requirement

Notices Collection
(2) NPC: Notice Policy Changes (4) CID: Collection IDentifier*
(3) NAED: Notice Access, (5) CL: Collection Location**
Edit, and Delete (6) CC: Collection Contact***
Sharing

(7) SID: Sharing IDentifier*
(8) SL: Sharing Location**
(9) SC: Sharing Contact***

l Notices l Notices

* Android/Device ID, MAC, IMEIL, l Implementation
Google Advertising and Client IDs

** GPS, Cell Tower, Wi-Fi

#** E-Mail, Phone Number

Figure 6.1: Per the defined privacy requirements, apps that process Person@htifiable In-
formation (PII) need to (1) have a privacy policy, (2-3) include notideswd policy changes and
access, edit, and deletion rights in their policy, (4-6) notify users of ddtaatmn practices, and
(7-9) disclose how data is shared with third parties. The notice requir&rfen policy changes
and access, edit, and deletion are satisfied by including the notices in théepalihile the col-

lection and sharing practices must be also implemented in the apps.

6.1 Privacy Policy Analysis

This section will discuss the automated large-scale ML analysis of privalagigs. It will first
detail the law on privacy notice and choidef.1.1), then explain the check how many apps have

a privacy policy § 6.1.2), and finally analyze the policy contefi(1.3).

6.1.1 Notice and Choice

The privacy requirements are derived from apps’ privacy policiesselected laws. Figure 6.1
provides an overview of the law on notice and choice and the nine prieggyrements that are
analyzed (Privacy Policy Requirement, NPC, NAED, CID, CL, CC, 8D, SC). If an app does
not adhere to a privacy requirement—by implementing a practice that is vextexbin its policy—

or if the app’s policy does not notify users of policy changes and aceelit, and deletion rights,

it is defined that a privacy requirement inconsistency occurs (whiclsdsraferred to to as non-
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compliance). In this regard, it should be cautioned that such inconsisties not necessarily
mean that a law is violated. First, not all privacy requirements might be apjdita all apps.
Second, the system is based on a particular interpretation of the law. Wtheleevéd that the
interpretation is sound and in line with the enforcement actions of the FTCtaed regulatory
agencies, reasonable minds may diffeFhird, the system makes is based on machine learning
and static analysis and, thus, by its very nature errors can occur.

As to the individual privacy requirements, there is no generally applidedieral statute de-
manding privacy policies for apps. However, California and Delawaaeted comprehensive on-
line privacy legislation that effectively serves as a national minimum pyitla@shold given that
app publishers usually do not provide state-specific app versionslodexCalifornia or Delaware
residents. In this regard, the California Online Privacy Protection A2068 (CalOPPA) requires
online services that collect PII to post a polftfhe same is true according to Delaware’s Online
Privacy and Protection Act (DOPPA)n addition, the FTC’s Fair Information Practice Principles
(FTC FIPPs) call for consumers to be given notice of an entity’s informaiiactices before any
Pll is collected[106]. Further, the Children’s Online Privacy Protection Act of 1998 (COPPA)
makes policies mandatory for apps directed to or known to be used by ehildfeus, the exis-
tence of a privacy policy is treated as a privacy requirement.

CalOPPA and DOPPA further demand that privacy policies describe thmess by which
users are notified of policy change€OPPA also requires description of access, edit, and deletion
rights? Under the FTC FIPPELOE as well as CalOPPA and DOPPA those rights are optithal.
| concentrate the analysis on a subset of data types that are, depending context, legally

protected: device IDs, location data, and contact information. App p@bfishre required to

4] am focusing on the U.S. legal system as | am most familiar withldwever, in principle, the techniques are applicableny a
country with a privacy notice and choice regime.

5Cal. Bus. & Prof. Cod§22575(a).

6Del. Code Tit. 651205C(a).

716 CFR§312.4(d).

8Cal. Bus. & Prof. Cod§22575(b)(3), Del. Code Tit. §1205C(b)(3).
916 CFR§312.4(d)(3).

10Cal. Bus. & Prof. Cod§22575(b)(2), Del. Code Tit. §1205C(a).
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disclose the collection of device IDs (even when hashed) and locatiort'd®avice IDs and
location data are also covered by CalOPPANd for children apps according to COPRAhe
sharing of these types of information with third parties requires consene#is* Similarly,
contact information, such as e-mail addresses, may be protécted.

It should be noted that ad identifiers are interpreted to be personamafion since they
can be used to track users over time and across devices. It is also dshaine user did not
opt out of ads (because otherwise no ad identifiers would be sent td optead networks). |
further interpret location data to refer to GPS, cell tower, or Wi-Fi locati@ssume applicability
of the discussed laws and perform the analysis based on the guidawodegrby the FTC and
the California Attorney General in enforcement actions and recommenddtioibest practices
(e.g.,[106 and[61]). Specifically, | interpret the FTC actions as disallowing the omission of data
practices in policies and assume that silence on a practice means that ibtloesur*® Finally,
| assume that all apps in the U.S. Play store are subject to CalOPPA andAJOPBelieve this
assumption is reasonable as | am not aware of any U.S. app publishediegcCalifornia or

Delaware residents from app use or providing state-specific app nsrsio

6.1.2 Privacy Policy Requirement

To assess whether apps fulfill the requirement of having a privacyydaliawled the Google Play
store (February 2016) and downloaded a sample-(17,991) of free apps (full app setf The

crawl was started with the most popular apps and followed random linksearRlay store pages
to other apps. | included all categories in the crawl, however, exclude)ie’s Designed for

Families program (as Google already requires apps in this program t@hpliey) and Android

111n the Matter of Nomi Technologies, Inc. (September 3, 2015).

12Cal. Bus. & Prof. Cod€22577(a)(6) and (7)61].

1316 CFR§312.2(7) and (9).

14Complaint In the Matter of Goldenshores Technologies, LU, Brik M. Geidl (April 9, 2014).
15Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

18Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

17Cal. Bus. & Prof. Cod§§22575-22579, Del. Code Tit. @205C.

18whenever the Google Play store is referred to it is its U.8. #iso, details on the various app and policy sets that a#d age

described in the appendix.
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17,991 - —8,696
7,676

12%

17%
48% 6,198 > Apps need Policy

Apps have Policy Link
No (PII is not d
|:|N° 9,295 - D o (PII is not processed)

No (Have Policy Elsewhere)

. Yes 71% DYes

Figure 6.2: | analyze 17,991 free apps, of which 9,295 (52%) link to their privacy pfioey the
Play store (left). Out of the remaining apps, 6,198 (71%) appear to laakiaypwhile engaging

in at least one data practice (i.e., Pll is processed) that would requinmtteehave one (right).

Wear (as the focus is on mobile apps). It is assumed that the sample isrgpt®® in terms
of app categories, which was confirmed with a two-sample Kolmogorov-Smgoodness of fit
test (two-tailed) against a sample of a million ap83. It was not possible to reject the null
hypothesis that both were drawn from the same distribution (i.e.,0005). However, while the
Play store hosts a long tail of apps that have fewer than 1K installs (B8%d), the sample focuses
on more popular apps as it only includes 3% of such fewer installed apps.

Privacy Policy Requirement InconsistenciesOut of all policies in the full app set = 9,295
apps provided a link to their policy from the Play store (full policy set) and 8, 696 apps lacked
such. As shown in Figure 6.2, the results suggest that 71% (6,198/&pp8)without a policy
link are indeed not adhering to the policy requirement. These app stoaeppolicy links can be
used as proxies for actual policies, which is reasonable since regutatprested app publishers
to post such link§111; 61 and app store owners obligated themselves to provide the necessary
functionality [60]. The apps in the full app set were offered by a total of 10,989 pubfslaed
their app store pages linked to 6,479 unique privacy policies.

71% is achieved after making two adjustments. First, if an app does not lpahewyit is not
necessarily non-compliant with the policy requirement. After all, apps tleatatrprocessing PlI
are not obligated to have a policy. Indeed, since | found that 12% (/B@3®) of apps are not
processing PII, | accounted for those apps. Second, despite thlataeg’ requests to post policy
links in the Play store, some app publishers may still decide to post their poleyredse (e.g.,
inside their app). For that purpose | randomly examined 40 apps fronulifep set that did not
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Figure 6.3: A linear regression model with the last app update year as independeiatole
and the percentage of apps without a policy link as dependent variabés giv= 0.79 (top).
In addition, a polynomial regression model using the number of instalisdependent variable

results in a multiple-? = 0.9 (bottom).

have a policy link in the Play store but processed PII. | found that 83¥4(3 do not seem to have
a policy posted anywhere (with a Clopper-Pearson confidence in{@ljalanging from 67% to
93% at the 95% level based on a two-tailed binomial t€5ffhus, accounting for an additional
17% (1,478/8,696) of apps having a policy elsewhere leaves usloith — 12% — 17% = 71%
out of n = 8,696 apps appearing to be non-compliant with the policy requirement.

Predicting Privacy Policy Requirement InconsistenciesAs it appears that apps with frequent
updates typically have a policy, this hypothesis was evaluated on the fulledpsing Pearson’s
chi-square test of independence. Specifically, it is the null hypothesisaether an app has
a policy is independent from the year when it was most recently updatedhéitest returns p
< 0.05, the null hypothesis can be rejected at the 95% confidence level. Ingestiown in the
linear regression model of Figure 6.3, apps with recent update yearsriwe often a policy than
those that were updated longer ago. In addition to an app’s update weardite other viable

predictors as well. As shown in the polynomial regression model of Figigeh@ number of

19except otherwise noted, all Cls in this paper are based omaailed binomial test and the Clopper-Pearson intervale®8s

level.
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installs is insightful (p< 0.05). Apps with high install rates have more often a policy than apps
with average install rates. Surprisingly, the same is also true for apps witm&tall rates. An
explanation could be that those are more recent apps that did not yetagmitarity. Indeed, apps
with low install rates are on average more recently updated than apps withmmeatiess. For
example, apps with 500 to 1K installs were on average updated on Mar@915,while apps
with 50K to 100K installs have an average update date as of January=, 20

Further, apps with an Editors’ Choice or Top Developer badge usually &golicy, which is
also true for apps that offer in-app purchases. It is further eaging that apps with a content
rating for younger audiences often have a policy. Most apps foriener10+ (75%), Teen (65%),
and Mature 17+ (66%) audiences have a policy while apps that haveeapdee rating (52%) or
are unrated (30%) often lack oR®Further, various app categories are particularly susceptible for
not having a policy. Apps in the Comics (20%), Libraries & Demo (10%), f&dVideo (28%),
and Personalization (28%) categories have particularly low policy pdiogtras compared to an
average of 52% of apps having a policy across categories. Combinisg finedictors enables
us to zoom in to areas of apps that are unlikely to have a policy. For instemttee Media &
Video category the percentage of apps with a policy decreases fronfid28&ted apps to 12% for

unrated apps. A similar decrease occurs in the Libraries & Demo categony1f0% to 8%.

6.1.3 Privacy Policy Content

Let us now move from examining whether an app has a policy to the analys@iof content.

As a basis for the evaluation manually created policy annotations are used.

6.1.3.1 Inter-annotator Agreement

For training and testing the classifiers the OPP-115 cofp6d is leveraged—a corpus of 115
privacy policies annotated by ten law students that includes 2,831 annetédiothe practices
discussed here. The annotations, which are described in detaBth serve as the ground-truth

for the ML classifiers{ 6.1.3.3). Each annotator annotated a mean of 34.5 policies (median 35).
The annotations are selected according to majority agreement (i.e., two threefannotators

agreed on it). As it is irrelevant from a legal perspective how oftenaatme is described in a

20The ratings are based on the categories of the EntertainroémizBe Rating Board (ESRB).



CHAPTER 6. BRIDGING THE GAP BETWEEN NOTICES AND ACTUAL PR2ES 82

Practice | |Ann| Aol % AQpor | FIeiSS,oi/Krippor
NPC 395 | 86/115 75% 0.64
NAED 414 80/115 70% 0.59

CID 449 | 92/115 80% 0.72

CL 326 | 85/115 74% 0.64

cC 830 | 86/115 75% 0.5

SID 90 | 101/115| 88% 0.76

SL 51 95/115 83% 0.48

SC 276 | 85/115 74% 0.58

Table 6.1: The table shows absolute numbers of annotatiphsr{) as well as various agreement
measures, specifically, absolute agreements fAgercentage agreements (%,449, Fleiss’
(Fleiss,y), and Krippendorff'sa: (Krip,,;). All agreement measures are computed on the full
corpus of 115 policies and on a per-policy basis (e.g., for 92 out of Hligips the annotators

agreed on whether the policy allows collection of identifiers).

policy, it is measured whether annotators agree that a policy descridesrapactice at least
once.

High inter-annotator agreement signals the reliability of the ground-truthlechvelassifiers
can be trained and tested. As agreement measures | use klaiss’Krippendorff'se, which in-
dicate that agreement is good above 0.8, fair between 0.67 and 0.8, wrttLitlbelow 0.67187].
From the results in Table 6.1 it follows that the inter-annotator agreemeabfiection and shar-
ing of device IDs with respective values of 0.72 and 0.76 is fair. Howetves below 0.67 for
the remaining classes. While results showing stronger agreement wowddhban clearer, the
annotations with the observed agreement levels can still provide reliahladstouth as long as
the classifiers are not misled by patterns of systematic disagreement, whitte eéxplored by
analyzing the disagreeing annotatid@g5.

To analyze whether disagreements contain systematic patterns | evaluateniher rof each
annotator’s disagreements with the other two annotators. If he or she is iratgnposition for
a statistically significant number of times, there might be a misunderstanding ahtiwation

task or other systematic reason for disagreement. However, if thereysteormtic disagreement,
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Figure 6.4: Analysis of disagreement among annotators for the different data pesotith bino-
mial tests. Smaller p values mean fewer disagreements. If there areagpatisnents, it is defined
p = 1. An annotator can be in the minority when omitting an annotation that the two atmer
notators made (top) or adding an extra annotation (bottom). The resubt& $&w instances of
systematic disagreement. The numbers in parentheses show theeaabsajute disagreements

for the respective practices.

annotations are reliable despite low agreement 1i22§.21 Assuming a uniform distribution
each annotator should be in the minority in 1/3 of all disagreements. | test thimpton with
the binomial test for goodness of fit. Specifically, | use the binomial distribubacalculate the
probability of an annotator being or more times in the minority by adding up the probability
of being exactlyr times in the minority, being: + 1 times in the minority, up ta + n (that is,
being always in the minority), and comparing the result to the expectedlghtypaf 1/3. | use
a one-tailed test as it is not of interest to find whether an annotator is fames in the minority
than in 1/3 of the disagreements.

As shown in Figure 6.4, there are only few cases with systematic disagreeviee specifi-
cally, for 7% (11/160) of disagreements there was statistical significgneed(05) for rejecting
the null hypothesis that the disagreements are equally distributed. We seedhg half of the

21Arguably, low agreement levels present a problem from a Ipgedpective as there is no common interpretation of a respecti

policy fragment.
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Practice | Classifier | Parameters Base | Accyor 95%Cl PreCneg | Reueg | Flneg | Frlpos Pos
(n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=9,050)
NPC SVM RBF, weight 0.7 0.9 0.76-0.97 0.79 0.92 0.85 0.93 46%
NAED SVM linear 0.58 0.75 0.59-0.87 0.71 0.71 0.71 0.78 36%
CID Log. Reg. LIBL 0.65 0.83 0.67-0.93 0.77 0.71 0.74 0.87 46%
CL SVM linear 0.53 0.88 0.73-0.96 0.83 0.95 0.89 0.86 34%
CcC Log. Reg. LIBL, L2, weight 0.8 0.88 0.73-0.96 0.71 0.63 0.67 0.92 56%
SID Log. Reg. LBFGS solver, L2 0.88 0.88 0.73-0.96 0.94 0.91 0.93 0.55 10%
SL SVM linear, weight 0.95 0.93 0.8-0.98 0.97 0.95 0.96 - 12%
SC SVM poly (4 degrees) 0.73 0.78 0.62-0.89 0.79 0.93 0.86 0.47 6%

Table 6.2: Classifiers, parameters, and classification results for the policy tesinsdt0) and

the occurrence of positive classifications (Pos) in a set of n=9,050 psl{fi# app/policy set).
The best results were obtained by always setting the regularization constéh= 1 and for
NPC, CC, and SL adjusting weights inversely proportional to class frezjeemvith scikit-learn’s

cl ass_wei ght (weight). Except for the SL practice, all classifiers’ accuracies fA¥ceached
the baseline (Base) of always selecting the most often occurring classtmaittiag set. Precy,cq,
Recyeq, and F-1,., are the scores for the negative classes (e.g., data is not collected ordghare

while F-1,,, is the F-1 score for positive classes.

systematic disagreements occur for Gil. However, excluding Gil's and affemted annotations
from the training set for the classifiers had only little noticeable effect. Borespractices the
classification accuracy slightly increased, for others it slightly decdealeus, | believe that the
annotations are sufficiently reliable to serve as ground-truth for theiftdass As other works
have already explored, low levels of agreement in policy annotationarmon and do not nec-
essarily reflect their unreliabilitf224; 269. In fact, different from the approach of analyzing
systematic annotation differences, it could be argued that an annotadditson or omission of

an annotation is not a disagreement with the others’ annotations to begin with.

1 def l|ocation_feature_extraction(policy):

3 location_keywords = ['geo’, 'gps’]

4 sharing_keywords = ['share’, ’'partner’]

[}

5 rel_sentences =

(R

¢ features =
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s for sentence in policy:

9 for keyword in | ocation_keywords:

10 if (keyword in sentence):

1 rel _sentences += sentence

12

13 tokens = word_tokeni ze(rel sentences)
14 bigrams = ngranms(tokens, 2)

15

16 for bigramin bigrans:

17 for keyword in sharing_keywords:

18 if (keyword in bigram:

19 features += bigram bigranf0], bigranfl]
20

21 return features

Listing 6.1: Pseudocode for the sharing of location (SL).

6.1.3.2 Feature Selection

One of the most important tasks for correctly classifying data practicesided in privacy poli-
cies is appropriate feature selection. Listing 6.1 shows a simplified example afgbrithm for
the location sharing practice. Using information gain and tf-idf | identified thetmeaningful
keywords for each practice and created sets of keywords. Oné lseywords refers to the data
type of the practices (e.g., for the location sharing prag®e andgps) and is used to extract
all sentences from a policy that contain at least one of the keywordsthé&»e extracted sen-
tences the algorithm is using a second set of keywords that refers totibesaof a data practice
(e.g., for the location sharing practisear e andpar t ner ) to create unigram and bigram feature
vectors[269. Those feature vectors are then used to classify the practices. ljmoids are ex-
tracted, the classifier will select the negative class. The Porter stemmeliedaio all processed
text.

For finding the most meaningful features as well as for the subsedgiassifier tuning nested
cross-validation with 75 policies separated into ten folds in the inner loop @mdrtlomly se-

lected policies as held out test set (policy test set) was performed. Téedross-validation was
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used to select the optimal parameters during the classifier tuning phaseeaneldhout policy

test set for the final measure of classification performance. | stratiféeidier cross-validation to
avoid misclassifications due to skewed classes. After evaluating the penfmerafithe classifiers
with the policy test set | added the test data to the training data for the finalfidesto be used

in the large-scale analysis.

6.1.3.3 Classification

During the tuning phase | prototyped various classifiers with scikit-I2itd], a Python library.
Support vector machines and logistic regression had the best perfmmaelected classification
parameters individually for each data practice.

Classifier Performance for Policy Test Set. The classification results for the policy test set,
shown in Table 6.2, suggest that the ML analysis of privacy policies isrgéin feasible. For
the negative classifications the classifiers achieve,., scores between 0.67 and 0.96. These
scores are the most important measures for the task here because ttiigatien of a privacy
requirement inconsistency demands that a practice occurring in an apirisvered by its policy

(§ 6.3.1). Consequently, it is less problematic that the sharing practices, argiskewed towards
the negative classes, have relatively Ibvt,,,, scores of 0.55 (SID) and 0.47 (SC) or could not be
calculated (SL) due to a lack of true positives in the policy test set.

Classification Results for Full App/Policy Set. | applied the classifiers to the policies in the
full app/policy set withn = 9,050 policies. | obtained this set by adjusting the full policy set
(n = 9,295) to account for the fact that not every policy link might actually lead to a polic
for 40 randomly selected apps from the full policy set | checked whetteepolicy link in fact
lead to a policy, which was the case for 97.5% (39/40) of links (with a CI of @8l at the 95%
level). As the other 2.5% of links lead to some other page and would not camgitata practice
descriptions, 2.5% of policies without any data practice descriptions weheded leaving: =
9,295 — 245 = 9,050 policies in the full app/policy set. This adjustment increases the occurrence
of positive data practice instances in the full app/policy set and keepepéstcies between apps
and policies at a conservative level as some apps with lacking data préesiceptions are now

excluded??

22| also checked the random sample of 40 apps for policies dyrdiynlioaded via JavaScript because for such policies theifea
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(1) Data Collection (2) Static Analysis (3) Results
Call ID Analysis
Permission -
APIs
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Figure 6.5: (1) The system first crawls the U.S. Google Play store for free apps. h@),Tit
performs for each app a static analysis. Specifically, it applies permissioaction, call graph
creation, and call ID analysis, the latter of which is based on Android sysied third party APIs.

(3) Finally, results for the collection and sharing practices are generatatistored.

It appears that many privacy policies fail to satisfy privacy requirdmelost notably, per
Table 6.2, only 46% describe the notification process for policy chaagaeandatory requirement
for apps that do not exclude California and Delaware residents. Simitarly,36% of policies
contain a statement on user access, edit, and deletion rights, which Ce@iaes for childrens’
apps, that is, apps intended for children or known to be used by chilBogrthe sharing practices
| expected more policies to engage in the SID, SL, and SC practices. 3pectzve 10%, 12%,
and 6% are rather small percentages for a presumably widely occurdntige, especially, given
that the focus is on policies of free apps that often rely on targetedtisingr
Runtime Performance and Failure Rate.The analysis of all practices for the policies in the full
app/policy set required about half an hour in total running ten threadarallel on an Amazon
Web Services (AWS) EC2 instance m4.4xlarge with 2.4 GHz Intel Xeon E®-28 (Haswell),
16 vCPU, and 64 GiB memorf1]. The feature extraction took up the majority of time and the
training and classification finished in about one minute. There was no failesdracting policy

features or analyzing policies.

extraction would fail. However, as neither of the policiegtie sample was loaded dynamically, | do not make an adjustménisin
regard. Note, though, in the system built for the CaliforDipartment of Justice; (6.4) functionality for analyzing dynamically

loaded policies was implemented as well.
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6.2 Mobile App Analysis

In order to compare the policy analysis results to what apps actually dodamgdo their code
let us now turn to the app analysis approach. Let us first discuss ttersgesign { 6.2.1) and

follow up with the analysis result§ 6.2.2).

6.2.1 System Design

The app analysis system is based on Androgl@4tl an open source static analysis tool written
in Python that provides extensible analytical functionality. Apart from thauabintervention in
the construction and testing phase the system’s analysis is fully automatede Bi§ushows a
sketch of the system architecture. A brief example for sharing of dellisavill convey the basic
program flow of the data-driven static analysis.

For each APK the system builds an APl invocation map, which is utilized agialgaall graph
(call graph creation). To illustrate the functionality with an example, for tlaetme of sharing
device IDs (SID) all calls to thandr oi d. t el ephony. Tel ephony Manager . get Devi cel d
API are included in the call graph because the caller can use it to regaestice ID. All calls
to this and other APIs that can be used to request a device ID are incluttesl ¢all graph and
passed to the identification routine (call ID analysis), which checks thkagacnames of the
callers against the package names of selected third party libraries theatayzed. In order to
make use of thget Devi cel d API a library needs thBEAD PHONE_STATE permission. Only if
the analysis detects that the library has the required permission (permisg@ction), the app is
classified as sharing device IDs with third parfiés.identified relevant Android API calls for the
types of information and the permission each call requires by using PBdut

The static analysis is informed by a manual evaluation of Android and thitgi p&is. Be-
cause sharing of data most often occurs through third party librf®ids it is appropriate to
leverage the insight that the observation of data sharing for a givemfiallaws extension of that
result to all apps using the same librdiy29. As the top libraries have the farthest reat2q |
focus on those. | used AppBraiB6] to identify the ten most popular libraries by app count that

23Android’s permission model as of Android 6.0 does not distisiybbetween permissions for an app and permissions for ayibrar

which, thus, can request all permissions of the app.
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process device ID, location, or contact data. To the extent they weessible | also analyzed
previous library versions dating back to 2011. After all, apps sometimeioento use older
library versions even after the library API has been updated. Forligaaty | opened a developer
account, created a sample app, and observed the data flows from #glepée\perspective. For
these apps as well as for a sample of Google Play store apps that implemseietted libraries
| additionally observed their behavior from the outside by capturing and/géng packets via
a man-in-the-middle attack and a fake certificg#6). | also analyzed library documentations.

These exercises enable to see which data types were sent out to whdgbethies.

6.2.2 Analysis Results

Performance Results for App Test Set.Before getting into the analysis results for the full app
set | discuss the performance of the app analysis on a set of 40 aypeé& set), which were
selected randomly from the publishers in the policy test set to obtain corréis app/policy
test pairs for the later analysis of privacy requirement inconsisterc&8.(1). To check whether
the data practices in the test apps were correctly analyzed by the sysyeranhidally observed
and decrypted the data flows from the test apps to first and third paréeermped a manual
static analysis for each test app with AndroguE8d], and studied the documentations of third
party libraries. Thus, for example, it is possible to infer from the propeta@mpntation of a
given library that data is shared as explained in the library’s documentaitidid not measure
performance based on micro-benchmarks, such as DroidH&8thas those do not fully cover
the data practices investigated here.

In the context of privacy requirement inconsistencig$.3.1) correctly identifying positive
instances of apps’ collection and sharing practices is more relevant thatifythg negative in-
stances because only practices that are occurring in an app needaeebedcin a policy. Thus,
the results for the data practices with rarely occurring positive test easespecially noteworthy:
CC, SL,and SC all reachétil,,; = 1 indicating that the static analysis is able to identify positive
practices even if they rarely occur. Further, the 5sBcores, averaging to a mean of 0.96, show
the overall reliability of the approach. For all practices the accuracy dsaleve the baseline of
always selecting the test set class that occurs the most for a givdicpra@verall, as shown in

Table 6.4, the results demonstrate the general reliability of the analysis.
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Pract Base 95% ClI Precpos ReG,0s F-lpos F-lneg Posw/ pol Posw/a pol
(n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=9,295) (n=8,696)

CID 0.8 0.76-0.97 0.89 1 0.94 0.67 95% 87%
3rd Party Library

CL 0.55 0.64-0.91 0.73 1 0.85 0.71 66% 49%
Crashlytics/Fabric

CC 0.78 0.91-1 1 1 1 1 25% 12%
Crittercism/Aptel.

—_— SID 0.68 0.83-0.99 1 0.93 0.96 0.93 71% 62%

Flurry Analytics

SL 0.93 0.91-1 1 1 1 1 20% 16%
Google Analytics

SC 0.98 0.91-1 1 1 1 1 2% 0%
Umeng
AdMob* .
InMobi* Table 6.4:App analysis results for the app test set (h=40) and the percentages
MoPub*
VilermialModia of practices’ positive classifications for the full app set (n=17,991). More
StartApp* cpr H

specifically,Pos_w/ pol and Pos_w /o pol are showing what percentage of
Table 6.3:

apps engage in a given practice for the subset of apps in the full app set with

Analytics and a policy (n=9,295) and without a policy (n=8,696), respectively. Precisio

ad* libraries. . .
recall, and F-1 score with thg,s and,,., subscripts refer to the scores for the

positive and negative classes.

Data Practice Results for Full App Set. For all six data practices there is a mean of 2.79 pos-
itive practices per app for apps with policies and 2.27 cases for appsuviplodicies. As all
practices generally need to be described in a poljd&.1.1), it is already clear that there are sub-
stantial amounts of inconsistencies between apps and policies simply due tgmisiéires. For
example, sharing of device IDs was detected in 62% of apps that did wetehpolicy, which,
consequently, appear to be in non-compliance of privacy requirentfaumntsiermore, for apps that
had a policy only 10% disclosed the SID practi§e5(1.3.2) while it occurred in 71% of apps.
Thus, 61% of those apps appear to be in non-compliance as well. Theraoticps for which it

is not possible to immediately infer the existence of inconsistencies are thedC&Gpractices
with policy disclosures of 56% and 6% and occurrences in apps of 25PR2%n respectively.
There could be two reasons for this finding.

First, there could be a higher sensitivity among app publishers to notify udgrractices
related to contact data compared to practices that involve device identiféelscation data. Sec-
ond, different from device ID and location data, contact informationtisroprovided by the user
through the app interface bypassing the APIs considered for the statisiEn(most notably, the
andr oi d. account s. Account Manager . get Accounts API). Thus, the result demonstrates

that the analysis approach has to be custom-tailored to each data type tathe tiser interface



CHAPTER 6. BRIDGING THE GAP BETWEEN NOTICES AND ACTUAL PR2ES 91

should receive heightened attention in future wd&39. It also illustrates that the results only
represent a lower bound, particularly, for the sharing practices, (@LDSC), which are limited to
data sent to the ten publishers of the libraries in Table 6.3.
Limitations. | want to point out various limitations of the approach introduced here. @&t th
outset the approach is generally subject to the same limitations that all statisiaeghniques
for Android are facing, most notably, the difficulties of analyzing natigde25], obfuscated
code[181], and indirect techniques (e.g., reflection). However, there are \sadonsiderations
that ameliorate exposure of the approach to these challenges. First,ppar a library uses
native code, it cannot hide its access to Android System AP2§]. In addition, the use of
native code in ad libraries is minimEl81]. Indeed, there was rarely native code observed in the
analysis. Similarly, the need to interact with a variety of app developerstigtily prohibits the
use of indirect technique$0]. However, code obfuscation presented in fact an obstacle. The
static analysis failed in 0.4% (64/18,055) due to obfuscation (i.e., an apg’§ilBeompletely in
bytecode). However, the failure rate improves over the closest coblparde of 2194235

Itis a further limitation of the approach suggested here that the identificdtuata practices
is limited to observations from the outside (e.g., server-side code is nateoed). While this
limitation is not a problem for companies’ analysis of their own apps, whiclelasea major
application of the system, it can become prevalent for regulators, fomgestaln many cases
decrypting HTTPS traffic via a man-in-the-middle attack and a fake certifisdteshed some
light. However, it appears that some publishers are applying encrypsateitheir app or library.
In those cases, the analysis will need to rely on inferring the data practipeestion indirectly.
For example, it remains possible to check whether a library is properly imptechéman app
according to the library’s documentation, which lends evidence to the imdfetbat the app indeed
makes use of the documented data practices.

Also, the results for the sharing practices only refer to the ten third partted lis Table 6.3.
The percentages for sharing of contacts, device IDs, or locationshabuost certainly be higher
if additional libraries are considered. In addition, the definition of sheaditg with a third party
only encompasses sharing data with ad networks and analytics librariegveipas it was shown
that ad libraries are the recipients of data in 65% of all ca$24, | believe that this definition

covers a substantial portion of sharing practices. It should be finatgdrthat the investigation
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does not include collection or sharing of data that occurs offline or abdbkend. However, as
the analysis already identifies a substantial percentage of non-comgija)tiahink that there is
value in the introduced techniques even with these limitations.

Runtime Performance. In terms of runtime performance, using ten threads in parallel on an
AWS EC2 instance m4.10xlarge with 2.4 GHz Intel Xeon E5-2676 v3 (HaswkllyCPU, and

160 GiB memony31] the analysis of all 17,991 APKs took about 31 hours. The mean runtime is

6.2 seconds per APK analysis.

6.3 Privacy Requirement Inconsistencies

In this section | marry the policyg(6.1) and app{ 6.2) analyses. | explore to which extent apps
are non-compliant with privacy requiremen§(3.1) and show how app metadata can be used to

zoom in on sets of apps that have a higher likelihood of non-compligea 2).

6.3.1 Identifying Individual Privacy Requirement Inconsistencies

Non-compliance of apps with privacy requirements is not necessarigdmasmalicious behavior

of software developers.

Privacy Requirement Inconsistencie#\pp developers were found to often lack an understanding
of privacy-best practicelgt4], and it could be that many of the privacy requirement inconsisten-
cies are a result of this lack of understanding. Many developers $¢rtmgnderstand what type
of data third parties receive, and with limited time and resources even selflgled privacy ad-
vocates and security experts grapple with implementing privacy and septoigction[44]. In

this regard, the analysis approach can provide developers with a lalodirator for instances

of non-compliance. For identifying privacy requirement inconsisternpisstive app classes and
negative policy classes are relevant. In other words, if a data pract@sertbt occur in an app, it
does not need policy coverage because there can be no privaiyeragnt inconsistency to begin
with. Similarly, if a user is notified about a data practice in a policy, it is irrelevarether the
practice is implemented in the app or not. Either way, the app is covered bylibg Based on
these insights the performance of the approach is analyzed.

Performance Results for App/Policy Test SetTo check the performance of the system for cor-
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rectly identifying privacy requirement inconsistencies a test set withrespanding app/policy
pairs (app/policy test set) is used. The set contains the 40 apps frompphesh setq 6.2.2) and
their associated policies from the policy test $e6.(1.3.3). An app and a policy are associated if
the app or its Play store page links to the policy or if the policy explicitly declarel &pplicable

to mobile apps. As only 23 policies satisfy this requirement some policies aveiassl with
multiple apps. Making 240 classifications in the app/policy test set—that isjfglagssix prac-
tices for each of the 40 app/policy pairs—the system correctly identifiedi@2cy requirement
inconsistencies (TP). It also returned five false negatives (FN)als@ positives (FP), and 193
true negatives (TN). As shown in Table 6.5, accuracy results rangeebe 0.86 and 1 with a
mean of 0.94. Although not fully comparable, AsDroid achieved an acgwt0.79 for detecting
stealthy behaviorl 50 and Slavin et al[235 report an accuracy of 0.8 for detecting discrepancies
between app behavior and policy descriptions.

The F-1,,, scores for the analysis, ranging from 0.7 to 1, indicate the overall relidéte
tification of privacy requirement inconsistencies. While | think that thesalt® are generally
promising, precision value aPrec,,s = 0.54 for the CL practice is relatively low. This result
illustrates a broader point that is applicable beyond location collection. pakitves seem to
occur because the analysis takes into account too many Android systisnthaPare only occa-
sionally used for purposes of the data practice in question. Despite theebttla it is better to
err on the side of false positives, which is especially true for an auditisgsyf129, in hind-
sight | probably would have left out some APIs. The opposite problesmseo occur in the SID
practice. | included too few relevant APIs. In this regard, it is a chaidnddentify a set of APIs
that at the same time captures the bulk of cases for a given practice witingtdyver-inclusive.
Privacy Requirement Inconsistencies for Full App/Policy Set.As indicated by the high in-
consistency percentages shown in Table 6.5, privacy requiremenntsigtencies seem to be a
widespread phenomenon. Specifically, collection of device IDs and |losasie well as sharing
of device IDs are practices that appear to be inconsistent for 50%, &1d63% of apps, respec-
tively. It is further noteworthy that for SL and SC nearly every deteatibime practice goes hand
in hand with a privacy requirement inconsistency. For the apps thag $beation information
(20%, per Table 6.4) nearly all (17%, per Table 6.5) do not properbiae such sharing. Simi-

larly, for the 2% of apps that share contact data only a handful pretitfecient disclosure. For
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Practice Ace ACCyo1 - ACCapp 95% Cl Precpos Regpos F-lpos F-lpeg MccC TP, FP, TN, FN Inconsist
(n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=40) (n=9,050)
CID 0.95 0.74 0.83-0.99 0.75 1 0.86 0.97 0.84 6,2,32,0 50%
CL 0.83 0.7 0.67-0.93 0.54 1 0.7 0.88 0.65 8,7,250 41%
CcC 1 0.88 0.91-1 - - - 1 - 0,0,40,0 9%
SID 0.85 0.84 0.7-0.94 0.93 0.74 0.82 0.87 0.71 14,1, 20,5 63%
SL 1 0.93 0.91-1 1 1 1 1 1 3,0,37,0 17%
SC 1 0.78 0.91-1 1 1 1 1 1 1,0,39,0 2%

Table 6.5: Results for identifying privacy requirement inconsistencies in the app/pobtysée
(n=40) and the percentage of privacy requirements inconsistencied| 8050 app/policy pairs
(Inconsistency). Assuming independence of policy and app adesr&g,,;- ACG,,,, thatis, the
product of policy analysis accuracy () and app analysis accuracin@icates worse results than
the directly measured accuracy. However, the Matthews correlatioificieat (MCC), a measure
that is particularly insightful for evaluating classifier performance in skewlagses, indicates a

positive correlation between the observed and predicted classes.

the majority of those cases it is not even necessary to perform a polibysei@ detect privacy
requirement inconsistencies.

From a big picture view, the average number of 1.83 inconsistencies pé&s hjgh compared
to the closest previous averages with 0.62 (113/182) cases of stedithyidrd150 and potential
privacy violations of 1.2 (24/20)96] and 0.71 (341/477)235. Figure 6.6 shows the details. It
should also be noted that for apps without a policy essentially every diégtamn or sharing
practice causes an inconsistency. For example, all 62% apps witholitwa that share device
IDs (Table 6.4) are non-compliant. Thus, overall the results suggesga kevel of inconsistency
between apps and policies. As the system is currently evaluated for its pigegicy enforcement
with the California Department of Justicg&®.4) | did not yet contact any affected app publishers

of the findings.

6.3.2 Predicting Inconsistencies from App Metadata for Grogps of Apps

Analyzing individual apps for privacy requirement compliance at stsaéetime- and resource-
intensive task. Thus, it is worthwhile to first estimate an app population’scoampliance as a
whole before digging deep into individual analyses. My suggestion isdtesyatically explore

app metadata for correlations with privacy requirement inconsistencesl loa statistical models.
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Figure 6.6: For the full app/policy set (n = 9,050) 2,455 apps have one inconsistehdg0
have two, and only 1,461 adhere completely to their policy. Each app exhilnitsan of 1.83
(16,536/9,050) inconsistencies (with the following means per data practid: @25, CL: 0.41,
CC: 0.09, SID: 0.63, SL: 0.17, SC: 0.02).

This broad macro analysis supplements the individual app analysis aalyeveas of concern on
which, for example, privacy activists can focus on. To illustrate this idealuate a binary logis-
tic regression model that determines the dependence of whether anssppiiacy requirement
inconsistency (the dependent variable) from six Play store app metaatéhbles (the indepen-
dent variables). The results, shown in Table 6.6, demonstrate corrslaiormrious statistical
significance levels with p values ranging from 0.0001 to 0.08. Particulaitly,am increase in the
number of user ratings the probability of privacy requirement inconsigeiecreases. There is
also a decreasing effect for apps with a badge and for apps whosntbas not yet been rated.
Interestingly, apps with higher overall Google Play store scores doawa lower odds for
privacy requirement inconsistencies. In fact, the opposite is true. Withcaease in the overall
score the odds of an inconsistency become higher. An increase ofdhall®core by one unit,
e.g., from 3.1 to 4.1 (on a scale of 1 through 5), increases the odds at@msistency by a factor
of 1.4. A reason could be that highly rated apps provide functionality ansbpalization based
on user data, whose processing is insufficiently described in theircgrpalicies. At least, users
do not seem to rate apps based on privacy considerations. | fourndotide“privacy” in only
1% (220/17,991) of all app reviews. Beyond an app’s score the adds privacy requirement
inconsistency also increase for apps that feature in-app purchasgsractive elements. Also,
supplementing the model with category information reveals that the odds fmcansistency

significantly (p< 0.05) surge for apps in the Finance, Health & Fitness, Photography, anélTra
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Figure 6.7: The graph shows the predicted probability of an app having a privacyireaent
inconsistency dependent on the number of user ratings and the assigoha badge. The overall
score is held at the mean and in-app purchases, interactive elemedtsnexted content are held

to be not present. The shaded areas identify the profile likelihood Cls a6dtdevel.

& Local categories while they decrease for apps in the Libraries & Deremosy.

In order to evaluate the overall model fit based on statistical significanbedked whether
the model with independent variables (omitting the category variables) haificagtly better fit
than a null model (that is, a model with the intercept only). The result ofi-aauinre value of
151.03 with six degrees of freedom and value of @.001 indicates that the model has indeed
significantly better fit than the null model. To see the impact of selected asgeabes model it
is useful to illustrate the predicted probabilities. An example is contained ind-igdr. Apps
with a Top Developer or Editor’s Choice badge have a nearly 10% lovedrgtmility of a privacy
requirement inconsistency. That probability further decreases with nseraatings for both apps

with and without badge.

6.4 Case Study: Assisting the California Department of Justice Iin

enforcing CalOPPA

Currently the system’s use in enforcement actions is evaluated with the Gilifdepartment of
Justice, specifically, the Office of the Attorney General, on evaluatingysters’s suitability for
supplementing the enforcement of CalOPPA. To that end, a custom-magilenvef the system
is implemented for the Attorney Gener§l&.4.1) and various new analysis functionality is being

added ¢ 6.4.3). The preliminary feedback received up to this point on the perfurenaf the
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Variable Pos pvalue | OR 95% ClI
|User Ratingp 100% | 0.0001 | 0.9 | 0.9999998-@.
Overall Score 100% | <0.0001| 1.4 1.24-1.57
Badge 21% | <0.0001| 0.57 0.49-0.65
In-app Purchases 27% 0.08 1.15 0.99-1.34
Interactive EIm 45% | <0.0001| 1.33 1.17-1.53
Content Unrated| 5% 0.002 | 0.68 0.53-0.87

Table 6.6: Significant variables for predicting apps’ non-compliance with at least prnivacy

requirement as evaluated on the full app-policy set (n=9,050). Togloper and Editor's Choice
badges are assigned by Google. Interactive elements and unratedhtaafar to the respective
ESRB classifications. Pos% are the percentages of positive cases@@%.apps have an overall

score), OR is the odds ratio, and the 95% ClI is the profile likelihood CI.

system is encouraging and, as | believe, an indicator for making futifigestowards the current

direction § 6.4.3).

6.4.1 System Implementation

The system implementation for the Office of the Attorney General, shown ind-@8, allows
users to input either the package name or Play Store page URL of an apipethavould like to
analyze. The system then automatically runs the analysis and displaysuthe rdaalyses can be
requested for individual apps, however, the system also suppdcts prcessing. The frontend
of the system consists of a web application, which has the advantage thasihdt require users
to install any special software on their local computers. As it is easier t@ggaphical user
interface instead of a command line interface is used.

The system has to be available at all times, so that people working in the @ffflee Attorney
General would be able to analyze an app whenever it becomes ngcefsasuch a system
is mostly resource-intensive when apps are being analyzed, hovathierwise stays idle, an
AWS EC2 t2.large instance with up to 3.0 GHz Intel Xeon, 2 vCPU, and 8 GiB mef3d}
is leveraged. Each of these instances has enough resources tceahadez apps in about ten

minutes. Should it become necessary it is possible to immediately scale the nurittstamces
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Figure 6.8: The system allows users to analyze apps for privacy policy complianappiecan be
subject to multiple privacy policies—for example, one policy linked to from itlsalapp and one

linked to from the app’s Play Store page. In these cases the app is chegdiedt both policies.

and increase the throughput quickly.

The interface applies the Flask Python web framewl@&6 running on the Apache web
server[243 with a Web Server Gateway Interface mod[8¢€]. All analysis requests are added
to a Celery task queultQ] that communicates with the Flask application using the RabbitMQ
message broké213. When users are submitting analysis requests from the web interfacdy, whic
is served by Flask, the requests are put into the task queue and execatatia time. Once an
analysis is finished the results are written to a JSON file, which is loaded byasle&pplication,

and displayed in the users’ browsers.
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In order to download APK files for requested apps from the Play storeytstem makes use
of Raccoor{204], which is also used in the original system. The system obtains the privéicy po
links for the requested apps from their Play store pages. To downloaudethsites that the links
lead to a Firefox browser with Seleniul®31] and PyVirtualDisplay[214] is automated, which
allows to run a real browser without having a graphical user interfdsig a real browser instead
of just crawling the HTML of the policy pages is advantageous as it is plessitmbtain policies

that are loaded dynamically via JavaScript.

+ Messenger
Google Play Store ID: com.facebook.orca
App version: Varies with device

Policy 1 (From Play Store): https://m.facebook.com/policy.php
Policy 2 (From App): hitps://www.facebook.com/legal/m

Collection Disclosed in rolicy1 |+

=

Occurred in App

Contact Yes Yes

Location Yes Yes

Identifier Yes Yes

Sharing Disclosed in Policy 1 Occurred in App
Contact No No

Location Yes No

Identifier No No

Figure 6.9: A screenshot from the web application’s results view for the analysis ofatebieok

Messenger app, which was not flagged for any inconsistencies.

After the website with the privacy policy is downloaded any elements thataneant of the
policy, such as advertisements or page navigation elements, are remdwedystem then runs
the feature extraction routine$ 6.1.3.2) as well as ML classifier§ 6.1.3.3) on the policy and
the static analysisg(6.2) on the downloaded APK. Finally, the results are displayed to the user
with flags raised for all privacy requirement inconsistencies. Figurslto®/s an example of the

results view.
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6.4.2 Adding Additional Functionality

Tailoring the system for use by the Office of the California Attorney Gdnexuires a strong
focus on usability. Various users come from non-technical backgi®and were easily thrown
off by some of the terminology used in the presentation of the analysis regtdtsexample,
instead of using the terms “true” and “false” for the occurrence andraigsof a practice, they
instead found the terms “yes” and “no” clearer. For these types oflitgakfinements as well
as for the other changes to the system an iterative development cycledisvheee the future
development of the system is based on weekly user feedback.

Users were also interested in receiving additional information, which lead expand the
analysis. For example, one additional piece of information is the breakdbwird parties in
the sharing practices. The initial version of the report simply showed wfatmation was being
shared without mentioning the third parties. For example, a report would et the user’s
contact and device ID were being shared without disclosing that, sataatonformation is shared
with InMobi and the device ID with Crashlytics. However, this distinction is int@ar under an
interpretation of CalOPPA according to which the sharing of contact inféomenakes a stronger
case??

Given the importance of contact information, the implementation of additionatibmality to
detect further instances of contact sharing is finalized. As | believéttbaelatively low detection
rate for the collection and sharing of contact information is due to the fatcstith information
is often supplied by the user, which the original system does not cljeER @), the system will
be enhanced in this regard. In particular, leveraging the Facebook libcary [103 that is
included in many apps and that, by default, gives the app access to s nmsere and Facebook
ID, which can be used to identify and contact a user, is instructive. $ageauof Facebook Login
functionality can be detected in an app by extracting the app’s manifesteandrce files with
Apktool [246 and then searching for signatures that would be required for Fakébgio. These
include an activity or extent filter dedicated to the login interface, a login buticthe layout, and
the invocation of an initialization, destruction, or configuration routine froenRicebook Login

library.

24Compare Cal. Bus. & Prof. Cod@2577(a)(3) and (7).
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Another added feature is the retrieval of privacy policy links from ingges. The initial
policy crawler had just downloaded policies that were linked from ansapfaly store page. As
the Attorney General provided guidance to app publishers for linkingdheyfrom both the Play
store as well as from inside the a[f], the new approach is intended to cover both possibilities.
The links in an app can be found by extracting strings from the APK file uspidool and then
extracting URLs from within these strings which contain keywords, sucipragacy.” If a link
inside an app differs from the app’s Play store policy link or if there are neltipks in the app,
the system analyzes the documents those links are leading to as well. Trecimdléws the user

to pick which policy to show results for.

6.4.3 Preliminary Feedback

The users of the system at the Office of the California Attorney Genepakted that the system
has the potential to increase their productivity. Particularly, as they havedimésources it can
give them guidance on the areas of mobile apps to focus on. Since thelimied time, they can

put less effort into analyzing practices in apps for which the systemmmesd inconsistencies.
Instead, they can spend most of their time examining the specific inconsistémeigps that are
flagged. In addition, the users expressed that the system was useshbiving them the current
overall state of CalOPPA compliance. For example, the analysis resultsialesta to the many

policies which use vague language in the descriptions of their collectionhamihg practices.

6.5 Conclusion

The law of notice and choice is intended to enable enforcement of datécpsaim mobile apps
and other online services. However, verifying whether an app actualigJues according to the
law and its privacy policy is decisively hard. To alleviate this problem | pegpthe use of an
automated analysis system based on machine learning and static analystystEme advances
app privacy in three main thrusts: it increases transparency for dgestargely opaque data
practices, offers the scalability necessary for potentially making an impaétecapp eco-system
as a whole, and provides a first step towards the automation of privaaireeent checks.

The results suggest the occurrence of privacy requirement intensiss on a large scale.
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This finding raises the question of extending the approach to other atésle | focused on the
Android platform, the approach is, in principle, adaptable to other mobile phasfdfor example,
for iOS using[86; 174. The approach can also be made workable for the analysis of websites’
data practices, e.g., leveragit@gd, for which first and third party cookies and other tracking
mechanisms can be observed to evaluate collection and sharing of datint@rnet of Things
and sensor data represent other rich use cases. Fitness trackek®isifor monitoring the heart
rate and other body sensor data could be a first step towards expleB®dtreas.

| believe that it is necessary to develop public policy and law alongside tha&cgrrequire-
ment analysis system | propose. In my opinion, regulators are moving ingiedirection by
pushing for app store standardizati@®] and early enforcement of potentially invasive privacy
practices[113. Approaches like the one proposed here can relieve regulators theaiigma-
tion and allow them to focus their limited resources to move from a purely reacyi@pproach
towards systematic oversight. As | also think that many software publisleenstintend non-
compliance with privacy requirements, but rather lose track of their obliggtio are unaware of

them, | also advocate for implementation of a privacy law check in softwarelament tools

and as part of the app vetting process in app stores.
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Chapter 7

Cross-device Tracking

As online users are increasingly accessing the Internet from multipleedesinew form of track-
ing is emerging: cross-device tracking. This practice—in most casesifpopes of advertising—
is aimed at crossing the boundary between a user’s individual deviddsrawsers. It establishes
a person-centric approach to recognize users across deviceseksds combine the input from
the various data sources into a single comprehensive user profile. Byytaature such tracking
across devices can reveal a complete picture of a person and, thas)émore privacy-invasive
than the siloed tracking via HTTP cookies or other traditional tracking méstman Cross-device
tracking is also a form of tracking in which ML techniques play a major roledfsiecting which
devices belong to the same user.

To my knowledge no rigorous privacy analysis of cross-device trgchés been conducted.
Thus, the work presented here should be understood as a foundiptisaey analysis from which
mechanisms for privacy protection can be developed. Possible privaclianisms could involve
notifying users of the cross-device trackers’ occurrences on@ppsbsites and developing and
opt-out model across devices that is convenient to use without hampegitighate industry in-
terests. However, in order to develop meaningful privacy protectiomarésms a variety of basic
guestions have to be further explored: How can cross-device trabldmiptected? What are
the methods used by cross-device tracking companies? Where and toextect does cross-
device tracking occur? Is the current self-regulatory approaamigiog or should regulators and
lawmakers step in? In the following | aim to provide some basic insight into thesmental

guestions to ultimately develop sound privacy protection mechanisms.
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Figure 7.1: Identifying Sally’s phone and desktop among the other devices on thaedhteased

on device and software metadata.

In particular, | demonstrate a method to detect the occurrence of cev8=dracking, which
can be implemented in an ML classifier. Also, based on cross-device tgad&ia that | collected
from 126 Internet users | explore the frequency of trackers dapmlerossing device boundaries.
| show that the similarity of IP addresses and Internet history of a uses@devices gives rise
to a matching rate of F-1 = 0.91 for connecting a mobile to a desktop device. fifitlisg is
particularly noteworthy in light of the increase in learning power that ad ordsvand analytics
services can achieve by leveraging Internet history from more thadexiee. Given these privacy
implications of cross-device tracking | also examine compliance with applicalilesgulation for
40 cross-device companies and find that some are not transparentlaiopractices. The work
presented here provides a foundation for use in ML technologies, yartic personal privacy
assistant$o].

In a study commissioned by Facebook the Gesellscliafkbnsumforschung revealed that
in the U.S. and the U.K. 60% of online adults use at least two devices everjidd. Also,
more than 40% of Internet users start an activity on one device and fimisranothe{12g. A
similar study by Google showed that 98% of surveyed users in the U.S. netwmedn devices
on the same day and 90% use multiple screens sequentially to accomplish agtiasine{136.
The increased Internet-connectivity of devices, particularly, of sthartps, enables ad networks,

analytics services, and other Internet companies to learn much morethbouisers than they
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previously could: | want to shed some light on the privacy implications of cross-device trgckin
practices.

Cross-device tracking (sometimes also referred to as cross-devicgetatg [206], cross-
platform optimizatior{35], or multi-platform trackind67]) is the tracing of an individual’s usage
of the Internet on multiple devices and combining all resulting information intoconarehen-
sive user profile. Ad networks and analytics services are at therdoitasf cross-device tracking
because it enables more efficient user targeting and attributing converssallustrated in Fig-
ure 7.1, ad networks could deliver ads to Sally on her desktop for a flibbse booking she
abandoned earlier on her phone. Cross-device tracking goesdthmtracking of standalone de-
vices but rather aims to identify all devices of a person. The correlationtifple devices equates
ultimately to the tracking of @ersonand, as such, is potentially much more privacy-invasive than
the tracking of unconnected devices.

Currently, many companies in the ad space add cross-device functionatitgitesystems.
At the outset two basic types of cross-device tracking can be distinghisteterministic and
probabilistic cross-device tracking. Deterministic cross-device trackiogrs in a first-party re-
lationship in which a user’s device can usually be identified with near certdtotyexample, if
a user logged into his or her social network account from one devitéater logs into the same
account from another device, the social network can assume that theetiaes belong to the
same user (save for any device sharing or account hacking). Apdivattthe user can be traced
through all websites and apps that make use of the social network’s plsgiitware development
kits (sdks), or other tracking software—even when the user is not tbiph@3)].

For the most part | focus on probabilistic cross-device tracking. [iffefrom its determin-
istic implementations, probabilistic techniques are used by services that omyahthird-party
relationship with Internet users. To that end ad networks and analytegdprs are making use
of cookies and other tracking mechanisms that are deployed on the welrgitapps of the pub-
lishers they cooperate with and that have a first-party user relationspjyiAg machine learning
they then correlate the various data streams to identify which ones belongstmntigeusers. How-

ever, as | will discussg(refbreadth) probabilistic and deterministic cross-device tracking are not

1| am using the term ad network loosely encompassing ad exeBadgmand side platforms, supply side platforms, and ad tech

companies.
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Figure 7.2: Screenshots of selected ads served to the desktop browser after vistinglikites
shown below on the mobile browser. | had not seen any of these adsgiitiddelesktop browsing

session two months earlier.

mutually exclusive but are rather complementary as companies of dififgr@veénance cooperate
with each other and exchange data.

Some of the ad networks that apply probabilistic cross-device tracking tdeamatch billions
of devices[2]. Social networks and webmail providers have cross-device funtitipnaturally
built into their service$3]. Given this depth and scope of cross-device tracking the FTC recently
hosted a cross-device workshdd 5. The event facilitated an initial public discussion about the
privacy implications of this new form of Internet tracking. Regulatorsusidy representatives,
academics, and various other stakeholders discussed privacycosksimer transparency, and the
extent to which industry self-regulation can provide appropriate pyisgéandards. As evidenced
by a recent case the FTC is determined to enforce cross-device traaiiatipns[120, however,

is hampered by insufficient insight into the used technolofdi&§].

7.1 Case Study: Detecting Cross-device Tracking

In order to discover how cross-device tracking actually occurs in the mélohducted an ex-
ploratory case study. While | would not want to claim the experiment as am@rapsive survey
of the cross-device phenomenon in the real world, | think that it prowsdéficient evidence for
its occurrence and underlines the basic workings of the ad industry iretidis r It provides a first
glimpse into the emerging cross-device landscape highlighting some of its playatheir part-

nerships. The underlying method of the experiment can be used to gdlyasst for cross-device
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Figure 7.3: The complete mobile browser history (without the visits to the Alexa-rante-h

pages in the first two months of the experiment). The list shows the doasaired| as the titles of

the webpages, and the order reflects the order of visits.

tracking without resorting to formally requesting information from cros@atecompanies or us-

ing the limited ad preference tools that a few of them provide (e.g., the Bluekjatry[205).

Particularly, the method can be implemented in an ML classifier.

Establishing an IP Link. | began the experiment by establishing an IP address connection be-

tween two devices—a desktop and a mobile device—that cross-device m@mpauld pick up.

During the time of the experiment | kept the IP address of the router to whitth ghone and

desktop were connected unchanged. Using a fresh desktop bnaitlsent any cookies or other

user data | visited the homepages of five random ad-financed newgesgeltisat is, aol.com, la-

times.com. nytimes.com, wsj.com, and washingtonpost.com (the test homepagdeshsarved

the ads that were served. | refreshed each test homepage about ®nTimeext two months |
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occasionally and randomly visited highly ranked homepages from the Ak&aankings on the
mobile browser; in total about 100 pages.

Observing Cross-device AdsAfter the two months had passed | used the same mobile browser
for visiting the websites shown in Figure 7.3. Specifically, after performiegstiown Google
searches | clicked on some ads of the Google results page. | then wait@dhadrs and switched
to the desktop browser. Then, | accessed the test homepages frotarthef $he experiment,
refreshed them about ten times, and took again note of the ads that wezd.s&ome of the
ads, neither of which were seen before on the test homepages, strilésginbled the browsing
history on the mobile. Figure 7.2 shows these ads and associated inforntlasibis, the name
of the ad (e.g., PetSmart), the domain on which it was served (e.g., nytimestberdphmain of
the tracker (e.g., adsense.com), the ad network serving the ad (e.gle@a®ense), and the
presumably involved cross-device tracking provider (e.g., Google Bidydawork).

It is noteworthy that the Kate Spade watch ad in Figure 7.2C. appeareg seary time |
refreshed the AOL homepage. | believe this ad was shown due to the €zoligie search for
“buy watch” shown in line 18 of Figure 7.3. The PetSmart ad (occurringghand the Miele/Abt
kitchen appliances ad (occurring once) also have a connection to the rbobilsing history.
These results are indicative for the occurrence of cross-devicerigacEspecially, given that
Google’s AdSense network serves ads for 261 general ad categoiiehich only three relate
to pets,[134] the probability that | randomly received the PetSmart ads seems small. Hpiteve
should also be noted that the majority of ads served still seemed generived éased on the
website context.

Observing Cross-browser Ads.To examine the effect of switching browsers | opened a different
unused browser on the desktop. As before | reloaded the five tespagesand observed the ads
shown to us. Again the Kate Spade ad was shown nearly every time lireffé@€L. However,

| also received two ads related to the mobile browsing history that | hadesot sarlier. The
BestBuy/Samsung ad seems to be due to accessing the Samsung websitgewelthad may

be served based on my click on an ad for diamonds. These results seentytthiaphe desktop
and mobile were matched independently of the browser used on the deBktogame appears to
hold for the browsers on the mobile. When | switched browsers on theeph@alized that the

jewelry ad was served many times, which still was the case when deleting sphlgtory, and
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cached files on the original phone browser. Curiously, the Zulily ad,whvis served on both of
the desktop browsers (and which does not appear to be related to the histaly) kept being
served despite clicking on a dismiss button.

Identifying Ad Networks. Based on the domains of the trackers that were observed from the ads
it is possible to connect the ads to the ad networks that served them. Orelafgbst networks
that serves ads across devices is the Google Display Network, whichdimdeeives ad inven-
tory from one of two sources: the DoubleClick Ad Exchange or—asrobge—-AdSens¢133.
Similarly, AOL has its own cross-device capabilities with its Advertising.com plat{@5]. The

ads served by Rubicon Project and Skimlinks demonstrate another commaos dfi¢he cross-
device tracking environment. Smaller ad networks often have partnensitlpsther networks
that have specialized cross-device capabilities; in case of RubicorcPgead 22d, in case of
Skimlinks, Lotamd 183. It should be cautioned, though, that the lack of insight into the ad serv-
ing backends presents an obstacle for making reliable claims on any atiopstbeyond what is
publicly known.

Direction of Ad Serving. Having checked ad serving from mobile to desktop | was also interested
in the reverse direction. However, searching Google on the desktiypoyorg flowers, boats, and
chocolate did not seem to lead to ads for these products on the mobile brbemginued to see
ads for refrigerators, jewelry, and pet food. An explanation for #ssiit could be that ad networks
attach more weight to history on the device to which an ad is served and lefetaconnected
devices. However, this explanation does not seem likely to us. The resan after deleting all
user information from the mobile browser | received generic ads andatitia for flowers, boats,

or chocolate. It seems that the ad serving was intentionally limited to one dirgftionmobile to
desktop. After all, while reasons for switching devices vary, in genpegiple tend to move from

a smaller to a larger screeli36; 128. Also, since cross-device tracking is strongly campaign-
driven it might simply a miss of campaigns at the time. Similarly, as for cross-elésacking
from desktop to mobile | was not able to notice any correlation in ad servimgwbnducting the

experiment with mobile apps.
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7.2 The CDT Dataset

One of the major reasons for the scarcity of academic research indeoE® tracking—besides
the field being in its infancy—is the lack of publicly available dat&enerally, only proprietary
industry data exists. Therefore, | decided to collect my own cross-eléxacking dataset (the
CDT dataset), which will be provided in anonymized form to interested relsees for further
exploration. | will also make available all data collection software. Here is theadata was
collected.

Data Collection Procedure. Before starting the data collection Columbia University’s Institu-
tional Review Board permitted it. The collection system was built such that stesteisers could
sign up on the project website, at which point a device fingerprint fon egyned up device was
taken. Users were asked to supply basic information on their demograplicsage, gender,
native language), interests (e.g., finance, games, shop[diBg), and personas (e.g., avid run-
ners, bookworms, pet ownerf64]. In order to capture users’ mobile and desktop history they
were asked to install browser extensions and an app for automaticallytowleach information.
Details on the types of information are contained in the appendices.

A limitation of the data collection is that only Android phones are supported sacould
only sign up if they were regularly making use of Android’s native brawS®ogle Chrome, or
the Samsung S-Browser. | did not support iOS or other operating systéme&ver, the app only
requires Android 4.0.3 and runs without root access. Every minutedkshvehether there is a new
foreground app running on the device. If it detects a new app, it tranamigsv app history data
point to the server. It also checks every minute for new entries in thedimgviistory database
of the phone’s browsers, which will be transmitted accordidgBn the desktop side | provided
users of all operating systems with data collection browser extension®éml&Chrome, Mozilla
Firefox, and Opera. At the conclusion of the study each user retaivémazon gift card for $15
to $50 depending on the length of their study participation.

Dataset Characteristics. The data collection covers a total of 126 users—125 desktop and 108

2The Drawbridge datasf89] was only accessible to participants of the Drawbridge coitipetand limited in its use for purposes

of the competition.

3For a few Google Chrome users on Android 6.0 or higher the sysid not receive the full browsing history due to browser

restrictions. | asked affected users to send us their istanually.
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Figure 7.4: IPs (top) and domains (bottom) for each user in the dataset. For exatoptee right
of Don, 28 users had fewer than ten unigue mobile domains; to the rigleigof°72 users visited

55 unique mobile domains or fewer.

mobile users with an intersection of 107 users for which both were obtéinafile the data
reflects reality accurately in the sense that not every Internet usentigiple devices, it fails to
represent users in the real world with more than two devices. Howeespitd this limitation |
believe that it faithfully reflects real multi-device usage on the Internet toge lextent because,
according to an analysis of the Drawbridge data, the vast majority of mobilesdeare associated
with only one desktop browsé¢B83]. Therefore, it seems plausible that probabilistic cross-device
tracking companies are currently focusing on correlating two devicess&Zmently, this under-
standing of the problem is adopted here as well.

118 users in the study were affiliates of Columbia University; mostly studedts d&ew em-
ployees. Based on this population | believe that the dataset is more hornogahan a similar
dataset from, say, the general population of New York City. For the medi@anabout three weeks
of data were collected of which IP addresses and domains are of partioplartance for proba-
bilistic cross-device tracking because they can be used to measure theisilndareen devices

(§ 7.3.2). As illustrated in Figure 7.4, for mobile devices IP addresses hattmmy identifying

4Desktop users also include users of laptops.
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Desktop Web| Mobile Web | Mobile Apps
Users 125 102 104
IPs 1,994 5,784
Domains 23,517 3,876 845

Table 7.1: Summary statistics for unique IPs, users, and domains in the CDT datastdlin

Desktop Web| Mobile Web | Mobile Apps
Days 19,22, 26 9,17,23 19,22, 24
IPs 6,17,24 25,63, 92
Domains| 149,251, 374 9,31, 70 19,30, 44

Table 7.2: Summary statistics for the CDT dataset per user showing the 25th, 50thp&bth

centiles.

potential while desktops are often characterized by their domains. Hoviiegee does not seem
to be a correlation between desktop and mobile devices to the effect thatisage of one would
imply more usage of the other or that both are used to an equal degree.

Tables 7.1 and 7.2 show selected summary statistics for the CDT dataset. tewortby
that the total unique mobile IP count (5,784) nearly triples the total uniguktapesP count
(1,994), which reflects mobile usage on the>gblowever, the high number of unique desktop
domains (23,517), compared to the homogeneous usage of apps (@d&)saores the diversity
of desktop browsing. While it is much more diverse in terms of domains (3,8@6bile web
usage pales compared to app usage. As shown by the 25th, 50th, apeitsthtiles, the median
user accessed the mobile web only for 17 days visiting only 31 unique dofndihile app usage
is more popular with a median of 22 days, the median usage of 30 unique ajpeparable to
that of the mobile web. However, the median number of unique mobile IPs (6@) ttman triples

desktop IPs (17) likely due to usage on the go.

5As there was not a mobile IP for every transmitted data pointthigue mobile IP count is likely even higher.

6A day counts if it had at least one desktop web, mobile web, praagoess, respectively. Also, uniqueness of a domain depends

on its top and second level, e.g., linkedin.com and blogelitin.com are the same domain.
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Desktop Devices Mobile Devices

User Agent 4.46 0.64,4.96 | 6.42 0.95, 8.43

Display Size/Colors 5.34 0.77,6.08 | 1.7,0.25, 2.07

Fonts 6.11,0.88,7.33| 1.2 0.18,1.32

Accept Headers 2.86,0.41, 3.29| 2.33,0.34, 2.99

System Language | 0.41, 0.06,0.51| 0.87,0.13,1.1

Time Zone 0.25, 0.04, 0.35| 0.45,0.07,0.73

Mobile Carrier - 2.27,0.48,2.4

Overall 6.93 0.99,11.34| 6.6, 0.98,9.44

Table 7.3: Entropy, normalized entropy, and estimated entropy for various brofesg¢ures on

desktop and mobile devices. For the overall result all features areatenated.

7.3 Methods for Cross-device Tracking

How is it possible to track Internet users across devices? First, sufingarequires that all
devices of interest can be identifiefd4.3.1). Second, they also have to be correlaged 3.2). If

both requirements are met, device tracking transcends into person tracking

7.3.1 Identifying Devices

HTTP cookies are the traditional mechanism to identify desktop devicegedhdnany cross-
device tracking companies are employing cookies for their tracking pespas well. Thus, if
users are allowing cookies, their desktop devices can be easily ideniifiedier to track mobile
devices the use of advertising identifiers, such as Apple’s IdentifieAdwertising (IDFA), is
common and often combined with cookie tracking. However, as users aeagiiogly installing

tracking protection and adblocking software, which some consider a neanstiechnology on

mobile by now[207], unconventional identification technologies are becoming more prevalent.

While it does not seem that they will generally replace cookies and admgridentifiers any
time soon, they are important supplements. Most notably, various croge de networks—for
example, BlueCavi49] and AdTruth[102—are making use of device fingerprinting.

Entropy Calculations and Estimations. To get a better understanding of the effectiveness of

fingerprinting techniques used in the context of cross-device trackaadculated the Shannon
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entropy for various browser features. It is of particular interest tduate mobile and desktop
devices separately to reveal any differences that might exist betweemthdevice types. In
total, the CDT dataset contains 108 mobile device fingerprints and 126 gdsidgerprints’ For

the mobile fingerprints there were 8 duplicates and for the desktop firgisrr As every mobile
device in the set reveals 6.61 bits of identifying information it can be condltidgt the 98th
device @%6! = 97.68) must be a duplicate. For the desktop that threshold is reached at thet 122n
device.

Table 7.3 shows details of the resultél,,(p) = — > | pilogypi/logyn is the normalized
entropy, where; = 1/n andb = 2, which will result in a value between 0 (all feature values are
the same) and 1 (all feature values are different). The estimated entroglgigated according
to Chao and Shef64], which is intended to give a prediction beyond the sample of fingerprints.
Based on this estimation the mobile devices in the CDT set have 9.44 identifyinghdiésdesk-
top devices have 11.34. Both the actual entropy as well as its estimate stigg@sobile devices
are overall less identifiable than desktop devices. However, the refadtindicate that some
features substantially differ in their impact depending on whether theysae for identifying a
mobile or desktop device.

Entropy Differences between Mobile and Desktop Particularly, mobile user agents appear to
be far more diverse than user agents on desktops (6.42 vs. 4.46 bits}has, are much more
revealing. One reason is that the phone manufacturer and type of isifmaré of the mobile’s user
agent. However, mobiles usually do not contain extensive amounts ofrsjetes, which are a
major contributor to the identifiability of desktops (1.2 vs. 6.11 bits); in additioridplalys (1.7
vs. 5.34). There are also idiosyncratic features that are only availalbee device type. Most
notably, the mobile carrier (2.27 bits) of a phone that can be obtained \@ase\P lookups of
cellular IPs is not present on desktops. For the 27 users in the datasptevided their fingerprint
on a cellular connection there were six different mobile carriers. Itlshoe noted, though, that
the mobile carrier feature can only be used within the subset of devicegsteal such. There are
also features that are generally only meaningful for desktops, fangbea plugins.

Overall, some features show more diversity in mobile devices while otheesrhaxe on the

"One user did not submit a mobile fingerprint and one submittedawdifferent devices. The latter also submitted an addition

desktop fingerprint.
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] Device Graph

Figure 7.5: A. The routine begins with identifying a mobile device. B. The similatjtlgetween
the mobile device and each desktop device is calculated. 3. The molkiegesair with the
maximum similaritymaz, that is above the similarity threshold,is determined. 4. If such pair
exists, it is added to the device graph and the next iteration starts with a néilendevice. This
routine is performed for three similarities: (1) IPs, (2) Web, (3) Apps/Mifed device can not be

matched in one stage, a match is attempted in the next.

desktop side. Device fingerprinting seems to work sufficiently on mobile devicke useful

for cross-device fingerprinting, although, likely, more as a supplemesudkie- and advertising
identifier-based techniques. However, in this regard the substantial limgakiahwe imposed on
users for participating in the study should be considered (i.e., requirimg tihallow first party

cookies and JavaScript, run Android 4.0.3 or higher, and use the iaitvweser, Chrome, or the
S-Browser) as well as the conservative approach (i.e., the orderiaglvidnts and plugins were
detected were not used, which might not be neced€aly, and only a limited set of fingerprint

features was investigated. Thus, entropy in a real-world measurematu likely be higher.

7.3.2 Correlating Devices

After identifying the observed devices, cross-device companies try tdntaise that appear sim-
ilar, which is the core problem to solve. The goal is to represent all ebdatevices in a graph

known as Device Grap[®], Connected Consumer Grap®l, Intent & Identity Graph[78], or
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similar proprietary moniker. From a graph-theoretical perspective igelgvaph is built by creat-
ing connected components (each of which represents a user) with a maxiomber of vertices
(devices) and edges (connections between dev[@&@) The graph must result in a maximum
weight matching with the weights being similarity scores between devices. Iagechere, since
the task is to only connect mobile devices to desktop devices, find the maximiggmt weatching
for a bipartite graph is the goal.

The CDT Algorithm. The cross-device tracking algorithm (the CDT algorithm) is outlined in
Figure 7.5. In order to determine the similarity between devices | exploréougadistance mea-
sures][62; 199—specifically, the Jaccard index, cosine similarity, and the Bhattachangféi-c
cient. The Jaccard index is defined for the sé®ndB as.J(A, B) = (AN B)/(AU B), cosine
similarity is defined for the feature vectorsand B ascos(9) = AB/|A|||B|, and the Bhat-
tacharyya coefficient is defined for the distributignandg as BC(p,q) = Y., x v/p(z)q().
Jaccard index and cosine similarity range between 0 (no similarity) and 1 (mexgimoilarity).
To get a comparable similarity score for the Bhattacharyya coefficientstneamalized for the
range between 0 and 1 as well.

The CDT algorithm works in a staged fashion, that is, it first tries to matclcegbased on
the similarity of mobile and desktop IPs, then it attempts a matching using the similaritgdretw
mobile and desktop web domains, and finally it tries the similarity between mobilenalgbemsk-
top web domains. Thus, if at one stage a mobile device does not resemldeskigp device,
that is, none of the similarity scores for the mobile device reached the fireedehreshold, it
remains to be matched at a later stage. Using a random subset of datalfuzers as training set
| experimented with different settings for matching thresholds and similarityfiesi(e.qg., | also
tried system language and time zone). | also tried to exclude certain domdiPs aWhen a sat-
isfying performance was achieved the best setting—based on the Blaaytgarlcoefficient—was
evaluated on a test set consisting of data from 44 users (the test da8).7T& shows the results
for the test set.

Test Set ResultsRunning the CDT algorithm on the test set results in an accuracy of 84% With 3
true positives, 0 true negatives, 5 false positives, and 2 false negafvecision, recall, and F-1
score are 0.88, 0.95, and 0.91, respectively. The F-0.5 $t68b, which emphasizes precision

over recall, reaches 0.91 as well. The results confirm that IP addrassef critical importance
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IPs Web Apps & Web
Stage 1 2 3
Measure Bhatta Bhatta’ Bhatta*
Thresholdt 0.07 0.13 0.02
Set Size 44 17 8
Match% (Sim) | 61% (0.33) | 53% (0.16) | 13% (0.03)

Table 7.4:Bhatta’ excludes the Alexa Top 50 domains and Columbia University’s idorSami-
larly, Bhatta* excludes the most used 100 apps observed in the trainin§etesize is the number
of mobile devices to match at the given stage. Match% is the percentageidé imhevices suc-

cessfully matched. Sim is the mean similarity.

for matching devices and are in line with Cao et al.’s redi$, who reached an average F-0.5
score of 0.86 in the Drawbridge competition using only IP features. Hawdifeerent from the
participants in the Drawbridge competition the results here suggest that vigtedomains are a
good indicator for device similarity as well. In fact, there are situations in wifiier can be more
revealing than IPs, for example, when users share a householdwntheaame IP. Domains lead
to the match of another 9 users in the test set. However, as it appearthiatascription of the
Drawbridge competitioli158 mobile web history was absent from the competition dataset and,
thus, not tested.

Interpreting Cross-device Tracking Results. The performance results for probabilistic cross-
device tracking must be interpreted against the background of an adrket false positive
can occur if a mobile device is similar to an unrelated desktop device. Those ttigsanight
happen for people living in the same household (in case of IP similarity) asidhuchls having the
same interests (in case of web or web/app similarity). However, in these sisiatimismatched
device might still be a meaningful ad targ@6]. Further, a false negative can be caused by setting
the similarity thresholds too high. Those cases present a tradeoff besgaknand accuracy.
Setting the thresholds lower will improve scale and setting them higher agcUiaerefore, it is

not surprising that Dawbridge claims to have a matching accuracy of YB9%n fact, changing

the similarity threshold in the third stage of the CDT algorithm froe 0.02 to ¢ = 0.2 would

lead to an accuracy of 100%. However, at the same time the number of gewisdor which a



CHAPTER 7. CROSS-DEVICE TRACKING 118

IPs Web Apps & Web
Jaccard| 60% (0.03) | 29% (0.06) | 13% (0.01)
Cosine | 66% (0.43) | 10% (0.46) | 5% (0.02)
Bhatta | 66% (0.32) | 29% (0.42)| 6% (0.18)
Bhatta” | 64% (0.3) | 58% (0.18) | 16% (0.12)

Table 7.5: The experiments on the full CDT data with an unstaged complete run for thediffe
feature types (IPs, Web, Apps & Web) confirm the test results. The Blaaiddy'sis excludes the 5
most visited IPs (IPs), the top 100 Alexa U.S. domains and Columbia Witivedomain (Web),
and the 100 most used apps (Apps & Web).

match would have been attempted would decrease from 44 to 36 since a# gavicimilarities

in the third stage were below the threshold e 0.2 (they ranged from 0 to 0.16).

Experiments on the Full CDT Data. After performing the evaluation on the test set | pro-
ceeded to experiment with the full dataset. Table 7.5 shows some of the mateintpges and
mean similarity scores. Generally, the similarity of IP addresses acroseddsars to the most
matches with 66%. However, the similarity of web domains is also a strong sigtiab@2%o
correct matches. This performance was achieved by applying the Bieatygia coefficient and
excluding popular domains. The result demonstrates that carefulligdrizfatures are of utmost
importance for the match accurak354. Different from excluding domains and apps the exclu-
sion of the most frequently occurring IP addresses actually causeéttoepance to deteriorate.
The combination of features was also not successful leading us to bilavihe staged evalua-
tion is a good choice. App usage also did not correlate to desktop web asaguch as expected.
App usage seems to be less diverse than mobile web usage, which psivisheer features.
Generalizability of Results. To make the experiments as realistic as possible they always in-
cluded one user who only had mobile data and no desktop data. In thettestkmtion (Ta-
ble 7.4) that user's mobile device was incorrectly matched in the third stageotbesruser’s
desktop. Further, in all experiments, particularly, in each stage of thedestaluation, desktop
data from 18 users for whom we did not have any mobile data were includediever, it is
obvious that the dataset is orders smaller than the real data that criss4tiacking companies

are ordinarily working with. This difference in size begs the question to kvbitent the findings
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are applicable to larger datasets. For the similarity of IPs this question waslalreliably an-
swered. The Drawbridge competition results, for instance, by Landxy k76|, are based on a
set of 61,156 mobile devices and confirm the meaningfulness of IP feattweweb history fea-
tures the situation is different as the Drawbridge data did not contain tboggobiles. However,
another argument can be made.

Whether web data can be correlated across devices depends on msgxefirst, users vis-
iting a subset of domains both on their mobile and desktop devices anddsemmmains being
sufficiently diverse to allow meaningful distinction between users. To exathia first premise
I randomly selected 50 U.S. domains out of the top 5,000 sites that were qeéutyfiQuant-
cast[217] and observed a mean of 17.1% users visiting a website both on a mobile &topdes
device during a 30-day period. At the 95% confidence level using tbéstvap technique this
finding translates to lower and upper bounds of 14.4% and 19.5%, tegheaneaning that in
95% of the cases the true estimate of a user visiting a site on both mobile and deskiogs
is between 14.4% and 19.5%. Thus, it appears that visiting websites isdybozaurring phe-
nomenon. As to the second premise, all 102 users in the dataset who vidg@adtaone mobile
website had a unique web history. The resulting entropy is 6.67 bits andtthetesl entropy
according to Chao and Sh&] comes out at 13.41 bits. Given this information gain there is also
a reasonable claim to be made that web data is extent distinctive enough tgudsdtithousands
of devices, especially, as not even full URLs were considered.

Practical Considerations and Limitations. Finally, there are various considerations of identi-
fying and correlating devices in practice. Extreme sparse and larige-data make user cross-
device matching a challenging problef232. In this regard, the CDT algorithm has a runtime of
O(n(n — 1)/2). Also, as discussed in more detail beldw7(5), despite the broad coverage that
some cross-device trackers have, by no means do they have acck$B, taeb, and app data of
users. In this sense, the task here was easier. However, | did reatal IP history either as the
IP address was not collected with every data point that was submitted.tiMsagh the confined
space and users being mostly students from one University the data &jpyrofiore homogenous
than real data would be. Another consideration concerns the time peratdtatia covers. In this

regard, it remains unknown for which duration cross-device compaare$srack users.
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Figure 7.6: About half of all users with an Interest in finance access respectin@iis only on

their desktop while the other half is using both mobile (app or web) and dedktaces. However,
no user is accessing those domains exclusively from a mobile device aldudiolds for personal
finance geeks. For singles and value shoppers the picture looks diffdreugh. Most are using

either a mobile or desktop device, however, not both.

7.4 Learning from Cross-device Data

Cross-device tracking can be more privacy-invasive than traditiceneititrg of individual devices.
After all, cross-device companies are potentially able to obtain a fuller picfuseperson and
learn much more than they could by only observing unconnected devicgsliséussed in the
previous section, the average user accesses about a sixth of atesemsboth mobile and desktop
devices. However, it is also true that people are using different dediredifferent purposes.
This phenomenon is illustrated in Figure 7.6 for users in the dataset thatssepran interest in
finance, value shopping, and dating. In terms of methodology, | use@akegory rankingi29]

and Google Play store categor[@87] to identify 25 domains for each of these interests that have
both a website and an app. Then, | checked for the users in the dabasefthn, if at all, they
access these domains from their different devices. The result sadbashaving data available
from both mobile and desktop devices could indeed increase the predictiver in machine
learning experiments (assuming that the respective domains are usetLasde

Increase in Predictive Accuracy. Indeed, the results in Figure 7.7, which are based on 10-fold
cross validation, indicate that predicting an interest in finance for usetfseinlataset is more
accurate if both desktop and mobile data is available. The results are baseing the 25

financial domains as starting point for feature creation on the Weka mdehiméng toolkit{142].
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Features| Acc | Prec| Rec | F-1 | ROC
Mob 90 64.5% | 0.26 | 0.22| 0.24| 0.5
Desk 106 748% | 0.5 | 0.52| 0.51| 0.68
Mob&Desk 107 83.2% | 0.68 | 0.63 | 0.65| 0.79

Figure 7.7: Logistic regression for predicting an interest in finance from app and webains.

As before, mobile data (Mob) includes both mobile web and apps and detstim (Desk) covers
desktop web domains. The F-1 score for predictions based on bothdfydata is substantially
higher than predictions from each source individually. The three ROGesurisualize this finding
(left: Mob, middle: Desk, right: Mob&Desk). True positives are displayedh® y-axis and false
positives on the x-axis. The results for the positive cases, that is, predibihgsers have an
interest in finance, are shown in orange while the negative predictionsofoinawving an interest
in finance are displayed in blue. As can be observed from the ROC cesfcially, the former

benefits from having both mobile and desktop data available.

| tried various feature engineering techniques and all standard algorigmmsng which were
logistic regression, stochastic gradient descent, support vector reactarious versions of naive
Bayes, and various tree-based algorithms, such as random foregstit. eegression turned out
to be the classifier with the best performance. Due to the class imbalancdyd23% users
expressing an interest in finance | ran logistic regression as a casthseglassifier increasing
the cost for a false positive of 1.5 times over the cost for a false negaiiggainly, the results
can be improved. However, what | want to show here is that it is an talyario have data from
various sources. The advantage is quantitative as there are simply mongoddtaavailable.
However, it is also qualitative because it allows the creation of more deaistic features as
evidenced by the nearly equal number of desk and mob&desk feat@@s£1107).
Compensating for the Lack of Cross-device Data.While the results indicate that predictive

performance increases with the availability of both desktop and mobile webitapgpears that



CHAPTER 7. CROSS-DEVICE TRACKING 122

;—‘—rr’—li -

— | e N

Features| Acc | Prec| Rec | F-1 | ROC
Desk 3,395 | 75.7%| 0.79 | 0.76 | 0.76 | 0.87
Mob&Desk | 3,006 | 76.6% | 0.81 | 0.77 | 0.77 | 0.87
Desk 5929 | 84.1%| 0.84 | 0.84| 0.84 | 0.89

Figure 7.8: Accuracy, precision, recall, and F-1 score are based on the aesfaigthe men and
women classes as weighted by the number of instances in those clabgeROT curves are
visualizing the ROC areas for women (top) and men (bottom). From left tothiglturves are for
desktop web domains with 3,395 features, mobile and desktop domains \ighf@abures, and

desktop domains with 5,929 features.

the use of higher-dimensional feature vectors on desktop data can sogedimeensate and even
outperform these results. Using logistic regression it is possible to ptbdicjender of users.
Since there are about one third women and two thirds men the algorithm is ddjustiee gender
skew by penalizing the misclassification of a woman as a man 1.5 times of the miscidissifi
of a man as a woman. The results in Figure 7.8, which are based on 10-éskl validation,
show that doubling the number of features in the desktop web domains ediatite number of
domains used in the mobile and desktop domain combination data increases Huoie-from
0.77 to 0.84. However, holding the number of features constant at &t®same level (3,395
vs. 3,006) demonstrates the higher value in the combined desktop and malileeée From
the perspective of an ad network or analytics provider it is certainly oféatéo work with low-
dimensional data to avoid performance bottlenecks.

Learning Sensitive Information. From the results it appears that sensitive traits of a person,

such as ethnicity or religion, can be much better inferred with web domain atativo types
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Accuracy | Precision | Recall | F-1 | ROC
Chinese 87.5% 1 0.88 | 0.93 | 0.96
English 91.3% 0.91 091 | 091 0.78
Indian 44.4% 0.4 0.44 | 0.42| 0.65
Weight Avg 86% 0.87 0.86 | 0.86| 0.79

Table 7.6:Logistic regression results for predicting a user’s native language froitedisiomains
based on data from both mobile devices (web and app) and desktopsievets). | used 10-fold

cross validation.

of devices than from one. Table 7.6 shows results for predicting theenatiguages spoken by
users in the dataset, which can be used to infer ethnicity. Using 25 popmutains for each of
the U.S., China, and India that have an app and a website to create mebigatftes (116), the
results for using mobile and desktop features were better than for mobike @eighted average
F-1 0.78) and desktop alone (weighted average F-1 0.83). Howeeereshilts are based on a
small sample of 86 native speakers (8 Chinese language origin, 9 Indigunalge origin, and 69
English). Interestingly, the prediction of Indian users did not perfasrwell as the identification
of Chinese users. | believe that the reason is that Chinese users baweren core of domains
they use (e.g., Baidu and Tencent), which is not the case for Indias osaing it harder to
identify the latter.

Accessing religious web domains and apps can be an obvious predictadterence to a
particular faith. However, such predictions are also possible basedhilersuser behaviors.
Most notably, as the data collection for the study covered the last two ddys dewish Passover
holiday a few users in the study did not use both of their signed up devicdsalewish faith
prescribes abstinence from using electronics. Among all users in thg whalwere signed up
at the time the pattern of holiday observation became very clear. This signakésclear given
the insight into multiple devices because during the two days of Passoverusensedid not use
one of their devices, however, used the other. Only those usersrabsef Passover did not use
both devices. In this sense, cross-device tracking can be moreypmuasive than the tracking
of unconnected individual devices and can also lead to a privacy vio)atibich is also true for

cross-device tracking companies’ observation of users ethnicities.
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7.5 A Small Glimpse into the Scope of Cross-device Tracking on the

Internet

The degree to which cross-device tracking is permeating the Internekiown. While | leave
a comprehensive inquiry for another day, some initial inroads will beigealv | crawled the
websites and apps in the dataset for their inclusion of third party track&t$.(l) and analyzed
potential cross-device usage, particularly, accounting for indushtighzations and consolidation
(§7.5.2).

7.5.1 Obtaining Third Party Tracking Data

In order to examine the extent to which cross-device tracking is happkeexagnined the trackers
on the domains and apps that the users in the study visited. Automating a Firefeser with
Selenium[231] as well as a Lightbeard197] and user agent switch€t98 browser extension |
recorded the trackers on each domain. Third party connections founslibdomain were added
to the domain, however, not vice versa. Thus, for example, the domaimimkem contains all
trackers on blog.linkedin.com but not the other way around. Both desktdpmobile sessions
were started with a fresh browser that did not contain any user datath&atesktop crawl a
Windows 10 user agent simulated and for the mobile crawl an Android Nexssr agent.
Limitations. One limitation of the approach is that some websites were not accessibleifesy., s
that required a user login). In some cases the crawl was also redicthd requested page
was not found. However, these limitations only affected few URLs. Alsshduld be noted
that the crawl of the sites was conducted about a month after finishing toojjetata from the
study participants. Thus, in the meantime, some websites might have differekers than at the
time they were actually visited. Ideally, it would have been possible to captareabkers live
from the devices of the users. However, such recording is an expgm®position in terms of
mobile device performance, and, especially, the constraints of the Anelmgicbnment (e.qg., the
sandboxing of browser apps) make it difficult to capture trackersttiiren the device.

Data Collection Procedure. For detecting trackers inside of apps | selected a total of 153 third
party sdks listed on AppBraif86] encompassing sdks of ad networks (e.g., LiveRail), social

networks (e.g., Twitter), analytics services (e.g., comScore), crasheep(e.g., Crashlytics), and
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Figure 7.9: Total unique third party trackers in the dataset. 2,571 trackers occuardoth

desktop and mobile websites. Out of the 153 sdks from AppBrain 8l@aukmed in the dataset.
26 intersected with the desktop websites, and 22 were present on desitambile websites as
well as in apps. For the most part, system apps, banking apps, asdgphe phone manufacturer

did not contain trackers.

payment processors (e.g., Amazon In-App Purchasing). Thenyledtdahe AppBrain statistics to
determine which of the libraries are included in the apps of the users in the $huelapproach for
detecting trackers should be understood as a lower bound for vagasens. First, trackers not
identified in Lightbeam and sdks not included in the set of 153 will remaintetlEd. Second,
apps are limited to tracking via sdks and does not account for WebVieshegoiinternal browsers
that could also contain tracking cookig&7]. Third, the reach of companies’ tracking activity is
not always clear due to unknown industry collaborations or backetaded@hanges. Finally, |
rely on companies’ representation that they track users across danideto not make any own

independent determination beyond detecting the presence of their sacker

7.5.2 The Converging Cross-Device Ecosystem

As shown in Figure 7.9, the mobile websites in the dataset (3,876 per Tableontd)ned 3,243
unique third party trackers. 2,571 of those were also present on gesidosites. Thus, there
appears to be a large number of cross-device trackers across mabillesktop websites. The

number of trackers inside the apps in the dataset is substantially smalldy, @ear consequence
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Desk Web| Mob Web | Mob Apps

BlueCava 0.2% 0.5% -
comScore 11.3% 15.1% 1.7%
Flurry Analytics - 0.3% 4.3%
comsScore & Flurry 11.3% 15.1% 6.1%
Google Analytics 58% 43.6% 5.1%
Facebook 21.4% 17.1% 20.3%
LiveRail 1% 1.6% 0.3%
Facebook & LiveRail| 21.6% 17.7% 20.3%
PayPal 1.1% 0.6% 0.9%
Tapad 1.1% 1.9% -
Apsalar - - 0.3%
Tapad & Apsalar 1.1% 1.9% 0.3%
Twitter 11.5% 6% 0.7%

Table 7.7: Companies’ percentage for covering websites and apps for the aversgen the

dataset (out of the 107 users for which both mobile and desktop domaieswllected.)

of the limited set started out with.While many unique trackers across device boundaries were
detected this finding does not allow a claim on how broadly cross-devinpamies disseminated
their trackers.

Tracking of the Average User in the Dataset.For an illustrative cross-section of cross-device
tracking companies—some smaller, some bigger, some deterministic, someilstbak cal-
culated the percentage that each user in the dataset is tracked acraskdriglifferent devices.
Table 7.7 shows the results. We see the phenomenon of a few genevatparies having a broad
scope of trackers while specialized cross-device tracking companiesatsanaller market share.
The former is clearly represented by Google and Facebook on the ddatitrspectrum of cross-
device tracking and comScore on the probabilistic end. An example for theitafi@pad. Also,
the detection of BlueCava fingerprinting scripts on both mobile and desktopites confirms

Acar et. al's clain{21] that one of the use cases for fingerprinting consists of reaching custome

8The app tracker count includes affiliated company’s sdks. sTFor example, the Facebook sdk inside the Instagram app is

counted as a tracker.
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across devices.

Industry Collaborations and Consolidation. Evaluating the results in light of known industry
collaborations demonstrates something else: partnerships are often complgmieor example,

while comScore’s cookies are a mainstay on both the desktop and mobile @iebe#th into mo-

bile apps is much more limited. As the opposite is true for Flurry Analytics it makesoh $ense

that both are collaborating in their cross-device efforts as part of theyFRulse platforni263.

A similar observation, albeit on a smaller scale, can be made for the coopesativseen Tapad

and Appsalaf56]. Sometimes, such strategic partnerships also come into existence through one
company acquiring another, for example, in the case of Facebookisséam of LiveRail.

This acquisition also shows that the line between probabilistic and determinss$is-device
tracking is not as clear-cut as the dichotomic usage of the terms suggesRallireceives some
user data from Facebook to track users probabilisti¢adgl. However, Facebook’s deterministic
tracking might profit from LiveRail as well. After all, some Internet usgosot have a Facebook
account, in which case they still can be tracked probabilistically. In geneheether through
collaboration or acquisition the ad industry is experiencing a consolidati@rcentration that
broadens companies’ access to cross-device data. This developnied pnvacy protection

more challenging.

7.6 Does Self-Regulation Work?

In the U.S. there are no statutes or regulations for cross-device tradkibgather the field is
subject to self-regulation, most notably by the Digital Advertising Alliance ApAnd the Net-
work Advertising Initiative (NAI). A hallmark of the U.S. privacy regime is thetion of data
transparency vis-vis web consumers. In fact, according to a recent guidance, therBguires
cross-device companies to disclose “the fact that data collected fromieupsr browser or de-
vice may be used with another computer or device that is linked to the browskvite on
which such data was collected88] | examined compliance with this transparency requirement
for 40 randomly selected ad networks with DAA membership that advertisé@dctioss-device
capabilities.

Specifically, | manually checked if they disclose their cross-device trgckativity in their
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privacy policies or opt-out statements. While 23 did so, 17 omitted to mentios-desce track-
ing at all. After contacting these 17 companies, | received feedbaok finbar. One ad network
simply claimed that they are “not violating anything.” Another amended its pokcyequired

per the DAA without explicitly getting back to us. A third company explained to as their

cross-device functionality is not yet rolled out to clients. Finally, a foudmatwork notified

us that they will update their policy once the NAI's cross-device codepntiuct would become
available.

Based on the interpretation of the DAA guidance, | find indications that ikeseme lack of
transparency when it comes to the disclosure of cross-device tradkihges not seem to be the
case that the DAA guidance is rigorously enforced. To be clear, thanasrity of consumers
will likely not take the time to understand the tracking practices on a per-conigeal either way.
Using tracking and ad blockers is a much more efficient approach framnsumer perspective.
However, for audit and enforcement purposes as well as to gainitrtis¢ marketplace | think

that it is certainly a worthwhile endeavor for companies to properly dis¢tesepractices.

7.7 Conclusion

Real World

Figure 7.10: This thesis discusses how ad networks are crossing device boundattas the

online space. However, there are also early attempts to cross the orfflmedoundary.

This chapter can be considered as groundwork for developingcprimatections for cross-
device tracking. Among others, | have demonstrated how to identify dedgse tracking. This

identification can be implemented in an ML classifier. Overall, cross-devickitigachallenges

9Thus, if one wants to think of cross-device tracking in terrhs threat model, the most effective defense would be to block
tracking. In this sense, the defenses against cross-devicking are the same as the defenses against the trackimglividiual

devices.
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current notions of Internet privacy. The various angles disculssezlare all deserving of a more
detailed and comprehensive examination than could be done here. Hgpasishown—whether

it is the correlation of devices or the learning from data—the machine leatedhgiques applied

for purposes of cross-device tracking have notable privacy implicatidhus, | understand the
work here as a tour d’horizon of the cross-device tracking landsddpghlighted some aspects
that | believe to be particularly important; others are left open. For exargee are various ad
preference managers that allow consumers insights into how they aredragkndividual com-
panies (e.g. the BlueKai Registf209]). It would be interesting to see whether these preference
managers can be leveraged to understand data flows between companies.

Proprietary research in cross-device tracking is way ahead of aéadé/hile a few big points
are known (for example, that IP addresses are the most crucialddatucorrelating devices),
many details on how ad networks operate in this space remain opaque.dlimstelight on the
subject | will publicize the dataset (in anonymized fashion) together withekieldped software
for further exploration. As cross-device tracking matures and becamegegral part of tracking
on the Internet | advocate for a comprehensive view of the phenomeabmlto includes the
legal environment. Establishing an enforceable self-regulatory frankefwo companies to be
transparent about their practices will help to protect consumer pramdyallow ad networks to
earn their advertising dollars responsibly. Thus, | believe the FTCigotiapproach is the right

one.
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Chapter 8

Conclusions

It is the thesis of this dissertation that Internet privacy can be improvsedban the use of ML
technologies (in many cases in tandem with other technologies, such as stiiartalysis, as
illustrated in Chapter 6). First, in a case study | have demonstrated how Mkiftdas can be
used to identify ethnicity- and gender-specific location patterns (Chapteérabso showed how
ML can be leveraged for purposes of quantifying privacy-invasees (Chapter 4), particularly,
as part of the mosaic theory and in combination with privacy metrics, sukckaa®nymity[241].
Further, in order to improve privacy transparency | described amsy&ieautomatically analyze
privacy policies using ML classifiers (Chapter 5). The policy analysslte can be compared to
actually occurring practices on websites, mobile apps or other softwaep(€r 6). This type of
comparison enables regulators to hold software publishers accourgatiieif privacy practices.
Finally, | explored the foundations for developing PETSs for a rarelystigated but increasingly
common practice: cross-device tracking (Chapter 7).

Internet privacy is a multi-dimensional concept. It transcends the lawigsdof various aca-
demic disciplines and is characterized by sociological, legal, and engigesspects—to name
a few. In addition, there are also many different technologies affectingeh tracking, crypto-
graphic protocols, and social networks are some examples. In thistdi8s®il am interpreting
privacy as a legal right. It is my thesis that privacy can be advanceeidban ML technologies.
It is the central theme of this work to explore the uses of ML to advancagyrivThus, while it
is true that privacy is threatened by machine learning technologies, taosetechnologies can

also be used to improve privacy.
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Ultimately, the inter-connectedness of devices and the penetration of m&eg whlife by
data collection and sharing mechanisms raises privacy challenges ofcuaéty. In this regard,
cross-device tracking can be seen as an early harbinger of thedntérfhings (1oT). Ensuring
transparency and practicable control mechanisms for information thavéssnag device bound-
aries and permeates in and out of the offline world, as depicted in Figueig.ih its infancy.
The massive volume of granular data allows those with access to it to peMaranalyses that
would not have been possible befgtd 7. However, in this environment the FTC will continue to
place emphasis on the notice and choice prindipl&]. Lacking interfaces of many IoT devices
would require companies to give notice in different Wagt7]. Given the understanding of the
0T as “a world-wide network of interconnected objects uniquely adatae, based on standard
communication protocolE152," privacy notices and choice should evolve into comprehensive
personal privacy assistants: they will perform ML privacy policylgsia, check whether devices
adhere to what is claimed in the policies, or establish or deny connectiondreteeices.

What is needed is an intelligent and scalable mechanism that empowertwefécsently and
accurately obtain data processing information and control. Such mechemigdwarn users if it
detects, for example, as discussed in Chapter 3, that sensitive inforroatitthbe inferred from
certain collected data. A hallmark of this new paradigm is the application of Méliee the user
from being constantly involved in privacy decisidd$]. A device could learn a user’s preferences
on one device (e.g., data should not be shared with third party adverasersse those as default
preferences on all devicé$17]. Another example could be a central appliance hub that stores
data locally and learns preferences based on prior behavior andtdtgdre privacy preferences
as new appliances are added to the [Liy]. Along these lines | envision an intelligent personal
privacy assistant that is deployable in the current and future loT @mvient.

The privacy assistant could be comprised of a central control unit, @gapp on a phone)
connected to all other devices (e.g., cars, smartwatches, Wi-Fi robtmusehold appliances,
cars) that resolves privacy settings and new privacy queries b@asedser input and learned
privacy preferences. For difficult questions the user will be alertatithe control unit con-
tinues to learn based on user input. It obtains the data, analyzes themc¢tarmhahem ac-
cording to the user preferences. Such privacy assistant muststenagmatural language pri-

vacy policies as well as interface with APIs of other domains (e.g., capiaapes). Thus,
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developing such assistant is partly a question of operating systemadlesmadt standard set-
ting. Opening APIs and their standardization is necessary, which is a gwltyem and very
likely not completely solvable. However, various standards are currémttievelopment4;
14] and open for privacy considerations. The capability of devices irttagawith each other—in
many cases without human input—should be developed in tandem with intelligesdtypassis-

tants that can act on the same premises.
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Appendix A

Datasets used irt 6

Al

Policy and App Datasets

Full App Set - Total Apps Collected (n=17,991)
Full Policy Set - Policies Obtained via the Play Store Policy Link for the Appke Full

App Set (n=9,295)

. Full App/Policy Set - App/Policy Pairs from the Full App and Policy Sejasted for Links

not leading to a Policy (n=9,050)

. App Test Set - Random Apps from the Publishers in the Policy TegnS40)
. Policy Test Set - Random Policies from the OPP-115 Corpus (n=40)
. App/Policy Test Set - Apps from the App Test Set and Associatedi€sliom the Policy

Test Set (n=40)
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Appendix B

Cross-device Tracking Dataset Detalils

§7)

B.1 Device Fingerprint

User Agent

Browser Engine

Installed Browser Plugins

Installed Adobe Flash Plugin/\Version
Installed Microsoft Silverlight Plugin/Version
Flash Cookies Enabled

Time Zone

Screen (Color Depth, Screen Dimensions)

© 0o N o g bk~ 0w NP

System Language
. First Party HTTP Cookies Enabled
. Third Party HTTP Cookies Enabled

L =
N B O

. JavaScript Enabled

[EEN
w

. Java Enabled
. Do Not Track Enabled
. Touch Enabled

T T
o o1 b

. Latency (Request Duration, Roundtrip Duration)
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17.
18.
19.
20.
21.
22.
23.

o0
R

N
= O

o0
w

© ©o N o 00 s~ 0w NP

N o g bk~ w NP

Installed Fonts

IP Address

HTML5 Web Storage Enabled (Local, Session)
HTML5 Geolocation Enabled (Latitude, Longitude)
HTTP Accept Headers

Internet Connection Type (Wi-Fi, Cellular)

Internet Service Provider

App and Browsing History

IP Address

Browser Vendor

Date

Time

Time Zone

Browser Tab ID

Full HTTP Referrer URL

Full URL/App Package Name
URL Title

. Third Party Trackers/SDKs
. App/URL Mapping

Google Interest Categoriesi{ = 126 users)

Arts and Entertainment (68%)
Food and Drink (64%)
Computers and Electronics (63%)
Science (62%)

News (60%)

Books and Literature (55%)

Jobs and Education (52%)
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%)
N

© 0 N o gk~ w NP

. Games (43%)
. Travel (40%)

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Law and Government (37%)
Shopping (36%)

Hobbies and Leisure (34%)
People and Society (34%)
Beauty and Fitness (33%)
Internet and Telecom (33%)
Sports (29%)

Online Communities (24%)
Finance (23%)

Pets and Animals (23%)
Business and Industrial (21%)
World Localities (15%)
Reference (13%)

Autos and Vehicles (11%)
Home and Garden (11%)
Real Estate (4%)

Flurry Analytics Personas (. = 126 users)

Music Lovers (47%)

Movie Lovers (46%)

Food and Dining Lovers (40%)
Singles (39%)

Bookworms (33%)

Entertainment Enthusiasts (31%)
Tech and Gadget Enthusiasts (31%)
Casual and Social Gamers (30%)

News and Magazine Readers (23%)
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Leisure Travelers (21%)

Sports Fans (21%)

Health and Fitness Enthusiasts (20%)
Mobile Payment Makers (19%)
Value Shoppers (18%)
Parenting and Education (15%)
Pet Owners (14%)

Business Professionals (13%)
American Football Fans (11%)
Hardcore Gamers (11%)

Photo and Video Enthusiasts (11%)
Fashionistas (10%)

Personal Finance Geeks (10%)
Avid Runners (7%)

Flight Intenders (6%)

Social Influencers (6%)
Catalog Shoppers (5%)

Auto Enthusiasts (3%)
Business Travelers (3%)

Small Business Owners (3%)
Home Design Enthusiasts (2%)
Real Estate Followers (2%)
High Net Individuals (1%)
Mothers (1%)

Home and Garden Pros (0%)
New Mothers (0%)

Slots Players (0%)
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B.5 Native Language { = 126 users)

English (64%)
Chinese Origin (8%)
Indian Origin (8%)
Greek (3%)

Spanish (3%)
French (2%)

Korean (2%)
Portuguese (2%)
Turkish (2%)

© 0o N o g bk~ 0w NP

=
o

. Vietnamese (2%)

. Others (5%)

[EEN
[N

0
o

Age Groups ( = 126 users)

18-20 (18%)
21-25 (51%)
26-30 (21%)
31-35 (6%)

Over 35 (3%)

a kr w0 Dd Pk

B.7 Gender (» = 126 users)

1. Female (34%)
2. Male (66%)



