8 research outputs found

    On subadditive duality for conic mixed-integer programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    On Subadditive Duality for Conic Mixed-Integer Programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    On subadditive duality for conic mixed-integer programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    CPU Energy-Aware Parallel Real-Time Scheduling

    Get PDF
    Both energy-efficiency and real-time performance are critical requirements in many embedded systems applications such as self-driving car, robotic system, disaster response, and security/safety control. These systems entail a myriad of real-time tasks, where each task itself is a parallel task that can utilize multiple computing units at the same time. Driven by the increasing demand for parallel tasks, multi-core embedded processors are inevitably evolving to many-core. Existing work on real-time parallel tasks mostly focused on real-time scheduling without addressing energy consumption. In this paper, we address hard real-time scheduling of parallel tasks while minimizing their CPU energy consumption on multicore embedded systems. Each task is represented as a directed acyclic graph (DAG) with nodes indicating different threads of execution and edges indicating their dependencies. Our technique is to determine the execution speeds of the nodes of the DAGs to minimize the overall energy consumption while meeting all task deadlines. It incorporates a frequency optimization engine and the dynamic voltage and frequency scaling (DVFS) scheme into the classical real-time scheduling policies (both federated and global) and makes them energy-aware. The contributions of this paper thus include the first energy-aware online federated scheduling and also the first energy-aware global scheduling of DAGs. Evaluation using synthetic workload through simulation shows that our energy-aware real-time scheduling policies can achieve up to 68% energy-saving compared to classical (energy-unaware) policies. We have also performed a proof of concept system evaluation using physical hardware demonstrating the energy efficiency through our proposed approach

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS

    Nonparametric least squares estimation in integer-valued GARCH models

    Get PDF
    In this thesis we consider Poisson regression models for count data. Suppose we observe a time series of count variables. Given the information about the past, each count variable has a Poisson distribution with a random intensity. The time series of intensities is unobservable, but we impose a functional relationship between the current intensity and the preceding pair of intensity and count observation. In the literature some consideration has been given to parametric models of the linear INGARCH(1,1) type or more involved ones like the log linear model. In these cases √n-consistency of the partial maximum likelihood estimator has been proven. Suppose that the relationship between a count variable and the respectively preceding pair of count and intensity variables is given by a link function that cannot be characterized by a finite-dimensional parameter. We call this model a nonparametric integer valued GARCH model. In order to obtain a suitable estimation equation in this nonparametric model, a contractive condition has to be imposed on the true link function. We analyze the rate of convergence of a least squares estimator that is inspired by the work of Meister and Kreiß (2016). We prove uniform mixing of the univariate count process and use the derived properties to apply some classical tools from empirical process theory. The size of the class of admissible functions determines the rate of convergence, which is a common property of nonparametric models. Since this estimator is computationally rather impractical, we also analyze the behavior of an approximate least squares estimator. In contrast to the analysis of the first estimator, the examination of the estimators asymptotic quality is based on the exploitation of martingale properties instead of mixing. The approximate least squares estimator is indeed computable, and we take the opportunity to conduct experiments to illustrate the proposed statistical procedure. An exposition of the experimental results will conclude this thesis

    Extended duality for nonlinear programming

    No full text
    Nonlinear programming, Global optimization, Duality gap, Extended duality,
    corecore