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Zusammenfassung

In dieser Arbeit betrachten wir ein Poisson-Regressionsmodell für Zähldaten.

Angenommen, wir beobachten eine Reihe von Zähldaten, die jeweils bedingt auf

die Information über ihre Vergangenheit einer Poissonverteilung folgen. Die

Intensitäten dieser Verteilungen werden als nicht beobachtbar angenommen,

jedoch unterstellen wir einen funktionalen Zusammenhang zwischen der Inten-

sität zu einem Zeitpunkt und dem vorangegangenen Paar von Intensität und

Zählbeobachtung. In der Fachliteratur wurden bisher parametrische Modelle

dieser Art behandelt, beispielsweise das lineare INGARCH(1,1)-Modell oder das

etwas komplizeritere log-lineare Modell. In diesen Fällen wurde für den Par-

tiellen Maximum Likelihood Schätzer (partial maximum likelihood estimator) die

Konvergenzrate n−1/2 bewiesen.

Unser Ziel ist es, ein Modell für den bivariaten Prozess aus Zähldaten und

Intensitäten zu betrachten, in dem die Regressionsfunktion nicht durch einen

endlichdimensionalen Parameter identifiziert werden kann. Um in diesem nicht-

parametrischen Modell einen Ansatz zur Schätzung der Regressionsfunktion zu

finden, müssen wir an diese eine Kontraktionsbedingung stellen. Davon ausge-

hend analysieren wir einen Kleinste-Quadrate-Ansatz, der in ähnlicher Form

schon von Meister und Kreiß (2016) in einem verwandten Modell untersucht

wurde. In unserer Analyse werden wir beweisen, dass der univariate Zählprozess

gleichmäßig mischend ist. Diese Eigenschaft nutzen wir, um anschließend bekan-

nte Resultate aus der klassischen Theorie der empirischen Prozesse anzuwenden.

Typischerweise ist in dieser Art von Schätzproblemen die Größe der Klasse aller

möglichen Regressionsfunktionen entscheidend für die Konvergenzrate eines

Schätzers. Dieser Effekt ist auch im vorliegenden Modell zu beobachten.

Da der zunächst untersuchte Schätzer numerisch nicht besonders gut zugäng-

lich ist, werden wir im zweiten Teil der Arbeit einen modifizierten sogenannten

Näherungsweise Kleinste-Quadrate-Schätzer betrachten. Dieser wird auf seine

asymptotische Güte hin theoretisch untersucht, wobei wir im Gegensatz zum

ersten Teil Techniken aus der Theorie der Martingale verwenden werden. Der

modifizierte Schätzer ist in der Tat numerisch gut zu approximieren. Zum ab-

schluss der Arbeit illustrieren wir dieses Verfahren in einer Simulationsstudie.
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Abstract

In this thesis we consider Poisson regression models for count data. Suppose we

observe a time series of count variables. Given the information about the past, each

count variable has a Poisson distribution with a random intensity. The time series

of intensities is unobservable, but we impose a functional relationship between

the current intensity and the preceding pair of intensity and count observation.

In the literature some consideration has been given to parametric models of the

linear INGARCH(1,1) type or more involved ones like the log linear model. In

these cases n−1/2-consistency of the partial maximum likelihood estimator has

been proven.

Suppose that the relationship between a count variable and the respectively

preceding pair of count and intensity variables is given by a link function that

cannot be characterized by a finite-dimensional parameter. We call this model

a nonparametric integer valued GARCH model. In order to obtain a suitable

estimation equation in this nonparametric model, a contractive condition has to

be imposed on the true link function. We analyze the rate of convergence of a

least squares estimator that is inspired by the work of Meister and Kreiß (2016).

We prove uniform mixing of the univariate count process and use the derived

properties to apply some classical tools from empirical process theory. The size of

the class of admissible functions determines the rate of convergence, which is a

common property of nonparametric models.

Since this estimator is computationally rather impractical, we also analyze the

behavior of an approximate least squares estimator. In contrast to the analysis of

the first estimator, the examination of the approximate least squares estimator’s

asymptotic quality is based on the exploitation of martingale properties instead of

mixing. The approximate least squares estimator is indeed computable, and we

take the opportunity to conduct experiments to illustrate the proposed statistical

procedure. An exposition of the experimental results will conclude this thesis.
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Chapter 1

Introduction

The general theme of this thesis is the statistical analysis of time dependent count

data. This kind of time series arises in many branches of empirical research.

Typically invoked examples are epidemiological data, e.g. when the number of

reported cases of a certain disease in a series of successive time intervals is

counted. Further instances include data from meteorology (e.g. counting weather

events) or social science (e.g. number of applicants for social security), to name but

a few. We depict two examples of epidemiological time series of counts in Figure

1.0.1 at the and of this chapter.

The aim of the statistical analysis of such a data set is to find a description

that captures its phenomenological main features. This includes observable effects

of some explanatory variables as well as the inherent dynamics of the observed

process of responses. We adopt the established perspective of seeking the best

prediction for the next response variable given the complete information about

the past (Kedem and Fokianos, 2002, page 5). This information includes past

realizations of all explanatory variables, all response variables, and possible un-

observable innovation processes. Let the symbol Ft denote this information at

a given time t. The response variable at time t is called Yt. The best prediction

of Yt given the information Ft−1 is written E[Yt|Ft−1]. The aim is to express

E[Yt|Ft−1] as a function of all involved variables (explanatory, response, innova-

tion). This can be achieved using a generalized linear regression model. In this

context the usual approach is to assume that the marginal conditional distribu-

tions of the responses given the past information, Yt|Ft−1, are some exponential

family distributions with natural parameters θt (Kedem and Fokianos, 2002, page

6). The natural parameter is a function of E[Yt|Ft−1] (ibid., page 8).

Having made the assumption regarding the marginal distribution, we consider

two possibilities to introduce an evolutionary dynamic. Cox (1981) distinguished
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two different approaches. In a parameter driven model, the parameter evolves

independently of the past responses, θt = m̃(θt−1, ε̃t−1). Here, {ε̃t} is an unobserv-

able stationary innovation process that is assumed to be independent of past

explanatory and response variables. The time dependence is entirely carried by

the innovation process. In contrast, observation driven models impose a rela-

tion of the form θt = m(Zt−1,εt−1), where Zt is the sequence of past explanatory

and response variables up to time t, and εt is some random innovation variable.

The case εt = θt := (θt,θt−1, . . .), which leads to θt = m(Zt−1,θt−1), resembles the

definition of observation driven models given by Sim et al. (2016) and captures

many contributions in the literature on time series of counts, e.g. Rydberg and

Shephard (2000); Davis et al. (2003); Heinen (2003); Ferland et al. (2006); Jung

and Tremayne (2011). We adopt this notion of observation driven models.

It has been acknowledged that parameter driven models have some disad-

vantages. Among others, Shephard (1996) and Davis et al. (2003) pointed out

that estimation and forecasting in parameter driven models require substantially

more effort than in observation driven models. This problem has received some

attention, for example by Durbin and Koopman (1997, 2000). In contrast, ob-

servation driven models offer elegant solutions to capture the series’ inherent

dynamics. They are in line with established principles in the statistical modelling

and analysis of time series (Shephard, 1996), and they are often expected to be

more parsimonous (Neumann, 2011; Fokianos et al., 2009). For example, the

classes of ARCH and GARCH models introduced by Engle (1982) and Bollerslev

(1986), respectively, have become a popular tool in modeling econometric time

series with changing volatility (Enders, 1995). Moreover, count data are often

overdispersed, which is illustrated by our examples in Figure 1.0.1. Observation

driven models can be used to properly account for this phenomenon while uphold-

ing the popular assumption of a Poisson distribution (Heinen, 2003). In this thesis

we turn our focus to observation driven models for time series of counts.

A common model for the marginal conditional distributions of a time series

of counts is the Poisson distribution (Kedem and Fokianos, 2002, page 140). In

this case we suppose that Yt|Ft−1 follows a Poisson distribution with intensity λt.

This distribution belongs to the exponential family, and the natural parameter

is θt = logλt (ibid., page 142). As we seek an observation driven model, we set

λt = m(Zt−1,λt−1), where λt−1 denotes the series (λt−1,λt−2, . . .) and m is some

measurable function which we call link function. In order to focus on the inherent

dynamics of the process, we disregard any potential explanatory variables and

suppose that m(Zt−1,λt−1)= m(Yt−1, . . . ,Yt−p;λt−1, . . . ,λt−q) for some p, q ∈N+. As

we assume a Poisson distribution for Yt|Ft−1, the marginal conditional variance

at time t equals the conditional mean. Hence, the last model equation bears

a striking similarity to the GARCH(p, q) model which is constituted by a pro-
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cess {X t} with X t|Ft−1 ∼ N(0,σ2
t ) and σ2

t =α0+α1X2
t−1+ . . .αp X2

t−p+β1σ
2
t−1+ . . .+

βqσ
2
t−q. Therefore, our Poisson model could be called integer-valued GARCH(p, q)

(INGARCH(p, q)) model. This term has been introduced by Ferland et al. (2006).

They showed existence and stationarity of an INGARCH(p, q) process with linear

link function. Without proof they postulated asymptotic normality of the condi-

tional maximum likelihood estimator for the parameters. They illustrated their

model with a data set of reported campylobacteriosis cases in Quebec. Rydberg

and Shephard (2000) used the linear INGARCH(1,1) model in a financial market

context to model the number of trades in a short time interval. They referred

to it as BIN(1,1) model. A log-linear specification for m in the same model was

analyzed by Davis et al. (2003). For the case p = q = 1 and a linear link function

m(y,λ) = α0 +α1 y+β1 λ, Fokianos et al. (2009) proved consistency and asymp-

totic normality of the conditional maximum likelihood estimator for (α0,α1,β1)′.
Later, Fokianos and Tjøstheim (2012) extended this result to functions of the form

m(y,λ) = f (λ)+ g(y) for rather general functions f and g that are supposed to

belong to some finite-dimensional class.

All of the mentioned contributions have in common that they assume a function

m that can be identified by a finite-dimensional parameter. To our knowledge,

the first one who considered a purely nonparametric INGARCH(1,1) model was

Neumann (2011). He proved absolute regularity of the count process {Yt} in this

model with the assumption that m satisfies a contraction property. This result

was generalized by Doukhan and Neumann (2018). However, neither of the two

contributions considered estimation of m. The aim of this thesis is to propose and

analyze an estimation procedure for INGARCH(1,1) models with link functions m
that cannot be described by a finite dimensional parameter. Meister and Kreiß

(2016) already accomplished this goal for a nonparametric GARCH(1,1) model.

The similarity between GARCH(1,1) and INGARCH(1,1) models allow us to adapt

their underlying idea for an estimator. However, we pursue a slightly different

strategy in the asymptotic analysis on the basis of the results of Neumann (2011).

His contractive assumption will be essential to our approach.

In Chapter 1 we will formally introduce the stochastic process that constitutes

our statistical model. We will state and partially prove the processes’ main

features that are essential for our statistical analysis. Chapter 2 is concerned

with a formal definition of a nonparametric least squares estimator of m and its

asymptotic analysis. In Chapter 3 we propose a modified estimation approach

that requires less severe model assumptions and is more suitable for computation.

This will be demonstrated in a simulation study concluding the thesis.
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Figure 1.0.1: Two examples of epidemiological time series of count data. Both data
sets show indications of overdispersion. Figure (a) shows the number of reported
influenca infections in Berlin-Mitte on a weekly basis in the period ranging from the
first week in 2009 to week 53 in 2018. The sample mean value is µ̂= 15.79 and the
sample variance is σ̂2 = 809.06 . Figure (b) shows the number of reported cases of
campylobacteriosis in Berlin-Mitte on a weekly basis. In this case the measurements
range from 2001 (week one) to 2018 (week 53). Sample mean: µ̂ = 4.91 , sample
variance: σ̂2 = 6.56 . Source: Robert Koch-Institut (2019)
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Chapter 2

The model: definition and fundamental
properties

2.1 Nonparametric INGARCH(1,1) processes: existence
and first properties.

We start the formal examination of our statistical problem by defining the actual

object of interest. As has become clear from the introduction, we consider a time

series of counts and corresponding intensity parameters. Such an object can be

formally defined as a bivariate stochastic process. The first component contains

the parameter value, and the second one contains the counts.

DEFINITION 2.1.1. For T ∈ {N,Z}, let {(λt,Yt)}t∈T be a stochastic process that is

defined on a probability space (Ω,F ,P) and takes values in R×N=R× {0,1,2, . . .}.

We define Ft := σ{λs,Ys : s ≤ t} to be the σ-field generated by the process up to

time t. The bivariate process {(λt,Yt)}t∈T is called a nonparametric INGARCH(1,1)
process if there exists a (B⊗2N−B)-measurable function m : [0,∞)×N→ [0,∞)

such that

PYt|Ft−1 =Poiss(λt)

λt = m(λt−1,Yt−1) .
(IG)

The processes {Yt} and {λt} are called count process and intensity process respec-

tively. The function m is called link function.

REMARK 2.1.2. In the case of T=N, the non-parametric INGARCH(1,1) process

is well defined. It can be constructed in the following way. Let π be a probability

distribution on B⊗2N. Suppose that for Bk ∈B, k ∈N, and (λ, y) ∈ [0,∞)×N the
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function P0
(
(λ, y);B× {k})

)
is given by

P0
(
(λ, y);B× {k}

)
:=1{m(λ,y)∈B}

(
m(λ, y)

)k

k!
e−m(λ,y) ,

where m is some measurable function. This function is measurable for fixed

B×{k}. For every pair (y,λ), the function P0
(
(λ, y); ·) can be extended to a measure

P
(
(λ, y); ·) on the field of finite unions of disjoint rectangles,

C :=
{ n∑

k=0
(Bk × Ak) : n ∈N, Bk ∈B, Ak ∈ 2N

}
,

such that for fixed Ak and Bk the function P
(
(λ, y);

∑n
k=0(Bk × Ak)

)
is measur-

able. For any (λ, y), the measure can be further extended uniquely to a measure

P
(
(λ, y); ·) on the σ-field σ(C ) = B⊗2N (Shorack, 2017, page 89). By Halmos’

approximation theorem (Shorack, 2017, page 15), the function P
(
(λ, y); A

)
is mea-

surable for fixed A ∈ B⊗2N. It follows from general Markov chain theory that

there exists a Markov chain with initial distribution π and transition kernel

P = {
P

(
(λ, y); A

)
: (λ, y) ∈ [0,∞)×N, A ∈B⊗2N

}
(Meyn and Tweedie, 2009, Theo-

rem 3.4.1). This Markov chain is an example of a nonparametric INGARCH(1,1)

process with index set T=N.

DEFINITION 2.1.3. For a subset D ⊂ R, a function m : D ×N→ D is called semi-
contractive if there exists a number 0≤ `< 1 such that for all λ1,λ2 ∈ D

sup
y∈N

|m(λ1, y)−m(λ2, y)| ≤ ` |λ1 −λ2| . (C∗)

The function m is called contractive if there exist numbers L1,L2 ≥ 0 such that

L1 +L2 < 1 and

|m(λ1, y1)−m(λ2, y2)| ≤ L1|λ1 −λ2|+L2|y1 − y2| , (C∗)

for all λ1,λ2 ∈ D and all y1, y2 ∈N.

Let the function m : [0, M]×N 7→ [0, M] be contractice or semi-contractive.

Either property implies continuity of λ 7→ m(λ, y) for every y ∈N. Since the second

variable is discrete, we conclude that the bivariate function (λ, y) 7→ m(λ, y) is

(B⊗2N−B)-measurable and therefore eligible to serve as a link function of a

nonparametric INGARCH(1,1)-process.

Throughout the thesis, we assume to observe realizations Y0, . . . ,Yn of the

count process of a nonparametric INGARCH(1,1) process with link function m.

The link function is assumed to satisfy at least the semi-contractive condition (C∗)

and to have bounded range. It is our goal to find an estimator m̂n for m on the basis
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of Y0, . . . ,Yn. This means that we treat the intensities as hidden variables. The

first question we have to answer before we proceed is whether there is a chance of

success in this endeavor: is there a substantial loss of information arising from

the fact that the intensities are hidden variables? From a probabilistic point of

view, this comes down to examining the relation between the σ-fields σ{Ys : s ≤ t}
and Ft . A first step towards the answer of that fundamental question is the

observation that the information delivered by λt is determined entirely by the

previous values of the bivariate process via the equation

λt+1 = m(λt,Yt) .

This argument can be applied repeatedly, yielding in the second step

λt+1 = m
(
m(λt−1,Yt−1) , Yt

)
.

In the current notation, displaying a k-fold application of this substitution argu-

ment would result in a rather clumsy expression. To circumvent these difficulties,

we adopt the notation of Meister and Kreiß (2016). For a function g : R×N→ R

and an arbitrary natural number k, we define the function g[k] : R×Nk+1 →R by

setting

g[0](x, y0) := g(x, y0)

g[1](x, y0, y1) := g(g[0](x, y0), y1)= g(g(x, y0), y1)

g[2](x, y0, y1, y2) := g(g[1](x, y0, y1), y2)= g(g(g(x, y0), y1), y2)
...

g[k](x, y0, . . . , yk) := g(g[k−1](x, y0, . . . , yk−1), yk) .

Using this notation to display a k fold repetition of the above stated substitution

argument, we see that

λt+1 = m[k](λt−k,Yt−k, . . . ,Yt) .

Hence, the complete information that is delivered by the current intensity λt could

be recovered by an observation of an intensity variable λt−k at an arbitrary time in

the past, together with all count variables Yt−k, . . . ,Yt observed between that very

time point and the present. Moreover, the more steps k we go back into the past,

the less information is contributed by the intensity variable λt−k compared to the

information of Yt−k, . . . ,Yt. This fact is owed to the semi-contractive property of

the link function m. It can be technically demonstrated by a comparison between

the value of λt+1 and m[k](0,Yt−k, . . . ,Yt). The absolute difference of these two

7



values indicates how far off the true value of the current intensity we are if we

entirely disregard the intensity variable λt−k. By a repeated application of the

semi-contractive property (C∗) of m, we obtain∣∣∣λt+1 −m[k] (0,Yt−k, . . . ,Yt)
∣∣∣

=
∣∣∣m[k] (λt−k,Yt−k, . . . ,Yt)−m[k] (0,Yt−k, . . . ,Yt)

∣∣∣
= m

(
m[k−1](λt−k,Yt−k, . . . ,Yt−1),Yt

)−m
(
m[k−1](0,Yt−k, . . . ,Yt−1),Yt

)
≤ `

∣∣∣m[k−1] (λt−k,Yt−k, . . . ,Yt−1)−m[k−1] (0,Yt−k, . . . ,Yt−1)
∣∣∣

...

≤ `k
∣∣∣m[0](λt−k,Yt−k)−m[0](0,Yt−k)

∣∣∣
≤ `k+1|λt−k −0| .

Looking k+1 steps back into the past, the share of information about λt+1 that

is exclusively carried by λt−k, and hence cannot be recovered by observing the

counts from t− k up to t, decreases geometrically in k+1. Heuristically, taking

into account the entire past of the count process should allow us to ignore the

intensity variables completely. In order to formulate this idea in a rigorous

fashion, we need to operate with a process {(λt,Yt)}t∈Z that allows us to consider

limits t →−∞. We have not yet addressed the question of existence of such a

two-sided INGARCH(1,1) process. The first part of the next lemma will resolve

this matter by establishing the existence of a stationary distribution. This is

a result by Doukhan and Neumann (2018, Corollary 2.1). The second part is

adopted from Theorem 3.1 in Neumann (2011). It states formally that the entire

past of the count process carries the same amount of statistical information as the

bivariate process. The proof of this claim relies on the just introduced successive

substitution argument.

LEMMA 2.1.4. (i) Suppose that the one-sided nonparametric INGARCH(1,1) pro-
cess {(λt,Yt)}t∈N has a semi-contractive link function with range [0, M] and domain
[0, M]×N . Then the bivariate process is a time homogeneous Markov chain with a
unique stationary distribution π. Moreover, let x ∈ [0, M] be arbitrary and let the
process start with λ0 = x. Then the marginal distributions of the bivariate process
converge weakly to the stationary distribution, P(λt,Yt) |λ0=x π, as t →∞.

(ii) Let m : [0, M]×N→ [0, M] be a semi-contractive function. There exists a two-
sided nonparametric INGARCH(1,1) process {(λt,Yt)}t∈Z with link function m. As
in Definition 2.1.1, let Ft be the σ-field generated by the bivariate process up to
time t. Then, Ft =σ{Ys : s ≤ t} .
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Proof. (i) The time homogeneous Markov property follows directly from the model

assumption λt = m(λt−1,Yt−1). The transition functions have been established in

Remark 2.1.2. They do not depend on the time index. The existence of a unique

stationary distribution π is stated as Corollary 2.1 in Doukhan and Neumann

(2018). The corollary is valid under some conditions (Doukhan and Neumann,

2018, page 5), which for the most part the authors explicitly verified for our model.

The only unchecked condition is their so called “geometric drift condition” which

requires that there exist positive constants a < ∞ and κ < 1 such that almost

surely

E[λt |λt−1]≤ κλt−1 +a .

This condition is satisfied if we choose κ= ` and a = M since

E[λt |λt−1]=E[m(λt−1,Yt−1) |λt−1]

≤E
[
|m(λt−1,Yt−1)−m(0,Yt−1)| ∣∣λt−1

]+E[m(0,Yt−1) |λt−1]

≤E[`λt−1|λt−1]+M

= `λt−1 +M a.s. .

Thus, the just cited corollary can be applied. The weak convergence of marginal

distributions P(λt,Yt) |λ0=x π is a subsidiary result in the proof of Corollary 2.1

in Doukhan and Neumann (2018, page 19).

(ii) The existence of a two-sided nonparametric INGARCH(1,1) process follows

from the existence of a stationary distribution (Doukhan and Neumann, 2018,

page 5). The formal argument consists of an application of Kolmogorov’s existence

theorem (Shorack, 2017, page 104) to the family of distributions

Pn,...,n+k−1(B) :=Ï
. . .

∫
1B

(
(λn, yn), . . . , (λn+k−1, yn+k−1)

)
P

(
(λn+k−2, yn+k−2);d(λn+k−1, yn+k−1)

)
. . . P

(
(λn, yn);d(λn+1, yn+1)

)
π
(
d(λn, yn)

)
on Bk, where n ∈Z and k ∈N+. The transition functions P

(
(λ, y); A

)
are defined

as in Remark 2.1.2, and π is the stationary distribution from part (i).

Of course, σ{Ys : s ≤ t} is contained in Ft since all Ys with s ≤ t are measurable

with respect to Ft. For the opposite inclusion it is left to show that all λs up

to time t are measurable with respect to σ{Ys : s ≤ t}. For the proof of that fact

we find for every λs a function φs that is (σ{Yt : s ≤ t}−B)-measurable such

that λs = φs. Let s ≤ t be given, and consider the sequence of random variables{
m[k](0,Ys−k, . . . ,Ys)

}
k∈N. We will show that for every ω ∈Ω this sequence has a

9



limit that equals λs(ω). We recall that the previously introduced substitution

argument yielded

∣∣λs+1(ω)−m[k](0,Ys−k, . . . ,Ys)(ω)
∣∣≤ `k+1 |λs−k(ω)| ≤ `k+1 M .

Since by assumption ` < 1, we conclude that for any ε > 0 and all ω ∈Ω there

exists a K(ε,ω) such that for all k ≥ K

∣∣λs+1(ω)−m[k](0,Ys−k, . . . ,Ys)(ω)
∣∣< ε .

Hence, for every ω ∈ Ω, the limit φs(ω) := limk→∞ m[k](0,Ys−k, . . . ,Ys)(ω) exists

and equals λs+1(ω). For every k ∈ N, the values
{
m[k](0,Ys−k, . . . ,Ys)(ω) : ω ∈Ω

}
define a function that is a composition of σ{Ys : s ≤ t}-measurable functions and as

such measurable. Hence, the limiting function λs+1 is a σ{Ys : s ≤ t}-measurable

random variable. �

The first part of the preceding lemma tells us that, regardless of the start-

ing point, the process eventually approaches the stationary regime. We take

this as a justification to suppose later that our observations are generated by a

strictly stationary process. When we call a process stationary, we refer to strict

stationarity.

We learn from the second part of Lemma 2.1.4 that it is indeed possible to

neglect the intensity process in the estimation procedure without suffering any

loss of information, at least in theory. In practice, however, it is never possible to

reach infinitely far into the past of the count process. Any estimation procedure

relying solely on the count data will therefore sustain a structural error from

the resulting loss of information. Asymptotically, in the sense of the sample size

growing to infinity, we have a chance to lose this error if the number of steps we

look back grows to infinity as well.

2.2 Uniform mixing of the count process

To carry out a profound asymptotic analysis of any estimator whatsoever in the

above introduced model, we need some understanding concerning the long time

behavior of the underlying data generating process. The statistical problem of

estimating a parameter, finite or infinite dimensional, is best understood for the

case of independent and identically distributed (i.i.d.) data. Thus, it is in our

vital interest to quantify how far away our time series is from being an i.i.d.

sequence. As we already established stationarity of the data generating process,

we are now concerned with a quantification of the degree of interdependence of the
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process. Taking to indexes n+k > n, we want to establish how much the variable

(λn+k,Yn+k) depends on (λn,Yn). We can immediately mitigate the question by

recalling our goal to find an estimator that exclusively uses the count data {Yt}.

Hence, for the analysis of our estimator we will only need information about the

dependence structure of the count process. Therefore, our question is: how much

does the variable Yn+k depend on Yn? Or even more general, how do the count

variables {Yn+k,Yn+k+1, . . .} depend on the past counts up to time n, {. . . ,Yn−1,Yn} ?

A classical approach to quantify stochastic dependence is the notion of mixing

coefficients between σ-fields. There are several distinct definitions of mixing coef-

ficients, the first of which was suggested by Rosenblatt (1956). Later, Volkonskii

and Rozanov (1959) and Ibragimov (1962) contributed further definitions. For a

survey of the literature and an in-depth treatment of the field of mixing conditions,

we refer to the treatises by Bradley (2007) and Doukhan (1994). For our purposes,

the notion of uniform or φ-mixing is well suited. It was introduced by Ibragimov

(1962) (Bradley, 2007, page 69). For this thesis uniform mixing shall be defined

according to a characterization that was proved by Bradley (2007, page 89). In

this context, a sub σ-field E ⊂F is called separable if it is countably generated,

i.e. there exists a finite or countable sequence of sets A1, A2, A3, . . . ∈ E such that

E =σ{A1, A2, . . .} (Bradley, 2007, page 9).

DEFINITION 2.2.1. Let A and E be sub σ-fields of F . Assume that E is separable

and that there exists a regular conditional distribution P( · |A ) on E . The uniform

mixing coefficient of A and E is defined as

φ(A ,E ) := esssup
{

sup
{ |P(B|A )−P(B)| : B ∈ E

}}
.

In the sequel the σ-field E will be generated by a B∞-measurable random

sequence on (Ω,F ,P), i.e. there exists a random element Y : (Ω,F )→ (R∞,B∞)

such that E =σ(Y ). We show that B∞ is separable and conclude thence that the

same is true for E . Recall that B∞ =σ(C ) with C := {
Bk ×R∞ : Bk ∈Bk, k ∈N+

}
.

We show that also B∞ =σ(IQ) with

IQ := {
(a1,b1)× . . .× (ak,bk)×R∞ : ai,bi ∈Q ; k ∈N+

}
.

Similarly to the idea presented by Shiryayev (1984, page 144), we define for any

k ∈N+

Ck,Q := {
A ⊂Rk : {x ∈R∞ : (x1, . . . , xk) ∈ A} ∈σ(IQ)

}
.

Note that the system Ck,Q is a σ-field over Rk. For any k ∈ N+, the rectangles

of the form (a1,b1)× . . .× (ak,bk) with rational endpoints are contained in Ck,Q .
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But the system of those rectangles generates Bk. Hence, Bk ⊂ σ(Ck,Q) = Ck,Q ,

which means that any set of the form Bk×R∞ with Bk ∈Bk is contained in σ(IQ).

In other words, C ⊂σ(IQ), and therefore B∞ ⊂σ(IQ) ⊂B∞. Since the system

IQ is countable, we have shown that B∞ is countably generated. Furthermore,

σ(Y ) = Y−1(σ(IQ)) = σ
(
Y−1(IQ)

)
(Shorack, 2017, page 24). Accordingly, the σ-

field E is separable as well.

On the basis of the notion of mixing coefficients for σ-fields, we define mixing

coefficients for the count process. The preceding paragraph ensures that all

involved σ-algebras are separable.

DEFINITION 2.2.2. Suppose that {(λt,Yt)}t∈Z is a two-sided nonparametric IN-

GARCH(1,1) process. For the corresponding count process {Yt}t∈Z and an integer

n, let σ{Yt : t ≤ n}=: F Y−∞,n denote the σ-field that is generated by the stochastic

process {Yt : t ∈Z, t ≤ n}. Furthermore, for an integer n and a natural number k,

we refer with F Y
n+k,∞ := σ{Yt : t ≥ n+ k} to the σ-field generated by the process

{Yt : t ∈Z, t ≥ n+k}. Then the kth uniform mixing coefficient of the count process

at time n ∈Z is defined as

φ(k,n) :=φ(F Y
−∞,n , F Y

n+k,∞).

Furthermore, we set φ(k) := supn∈Zφ(k,n). The count process is called uniformly

mixing if limk→∞φ(k)= 0.

LEMMA 2.2.3. Suppose that {(λt,Yt)}t∈Z is a nonparametric INGARCH(1,1) pro-
cess. For any n ∈Z and k ∈N , let Qk,n denote the regular conditional distribution
Qk,n(ω, ·) =P(Yn+k ,Yn+k+1,...) |λn(ω),Yn(ω), and let Pk,n =P(Yn+k ,Yn+k+1,...). For two mea-
sures µ and ν on A let their total variation distance be given by dTV (µ,ν) :=
supA∈A |µ(A)− ν(A)| . The kth uniform mixing coefficient φ(k,n) of the count
process {Yt} at time n ∈Z is given by

φ(k,n)= esssup dTV (Qk,n(ω, ·),Pk,n).

Proof. Recall the result of Lemma 2.1.4 (ii) which yielded that F Y−∞,n =Fn. Com-

bining this result with the strong Markov property, we can conclude that

φ(k,n)= esssup
{

sup
B∈F Y

n+k,∞

∣∣P(B|F Y
−∞,n)−P(B)

∣∣}
= esssup

{
sup

C∈B∞

∣∣P{
(Yn+k,Yn+k+1, . . .) ∈ C|F Y

−∞,n

}
−P {(Yn+k,Yn+k+1, . . .) ∈ C}

∣∣}
= esssup

{
sup

C∈B∞

∣∣P {(Yn+k,Yn+k+1, . . .) ∈ C|Fn}

−P {(Yn+k,Yn+k+1, . . .) ∈ C}
∣∣}
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= esssup
{

sup
C∈B∞

∣∣P {(Yn+k,Yn+k+1, . . .) ∈ C|λn,Yn}

−P {(Yn+k,Yn+k+1, . . .) ∈ C}
∣∣}

= esssup dTV (Qk,n(ω, · ),Pk,n) . (2.1)

This concludes the proof. �

REMARK 2.2.4. If {(λt,Yt)}t∈Z is a stationary version of the process, we obtain for

any k ∈N and n ∈Z that

Qk,n =P{Yt}t≥n+k |λn,Yn = dP{Yt}t≥n+k ,Yn,λn

dPλn,Yn
= dP{Yt}t≥k ,Y0,λ0

dPλ0,Y0
=Qk,0 (a.s.) .

Consequently, the mixing coefficients do not depend on the time index n, and we

obtain

sup
n∈Z

φ(k,n)= esssupdTV (Qk,0(ω, ·),Pk,0) .

The remaining part of this section is devoted to proving uniform mixing of the

count process and a geometric decay of the mixing coefficients. The assumption

of stationarity is not necessary. We will use the techniques of Neumann (2011)

and Doukhan and Neumann (2018), who used a coupling to obtain estimates for

the total variation distance between Qk,n and Pk,n. We introduce the coupling

technique as defined by Lindvall (1992).

DEFINITION 2.2.5. Let µ and ν be two probability measures on a measurable

space (X ,E ). A coupling of µ and ν is a pair of random elements (Z, Ž) that is

defined on a common probability space (S,Σ,P) and takes values in (X × X ,E ⊗E )

with marginal distributions PZ =µ and P Ž = ν.

Given two measures µ and ν on a measurable space, we can construct a

coupling to bound the total variation distance between µ and ν. This fact is known

as the fundamental coupling inequality (Lindvall, 1992, page 11).

LEMMA 2.2.6. Let (S,Σ,P, (Z, Ž)) be a coupling of two distributions µ and ν on a
measurable space (X ,E ). Then the following inequality holds:

dTV (µ,ν)≤ P{Z 6= Ž} .

Proof. The proof is taken from Lindvall (1992, page 11). For an arbitrary measur-

able set B ∈ E , we find

|µ(B)−ν(B)| = |P{Z ∈ B}−P{Ž ∈ B}|
= |P{Z ∈ B , Ž ∈ B}+P{Z ∈ B , Ž ∉ B}

13



−P{Ž ∈ B , Z ∉ B}−P{Ž ∈ B , Z ∈ B}|
= |P{Z ∈ B , Ž ∉ B}−P{Ž ∈ B , Z ∉ B}|
≤ P{Z 6= Ž , Z ∈ B}+P{Z 6= Ž , Z ∉ B}

= P{Z 6= Ž} .

The assertion follows by taking the supremum over all sets B ∈ E . �

The coupling inequality offers a way to bound the total variation distance

between the measures Pk,n and Qk,n(ω, ·). For every n ∈Z, k ∈N, and ω ∈Ω, we

try to construct a coupling
(
S(k,n),Σ(k,n),P(k,n), (Z(k,n), Ž(k,n))

)
(ω) , where Z(k,n) has

distribution Pk,n and Ž(k,n) has distribution Qk,n(ω, ·). The two random elements

have to be constructed in a way that ensures that

lim
k→∞

sup
n∈Z

esssup
ω∈Ω

(
P(k,n){Ž(k,n) 6= Z(k,n)})(ω)= 0.

By the coupling inequality and Lemma 2.2.3, we could then conclude that the

count process is uniformly mixing.

This goal will be achieved in the following way. Suppose that (S,Σ,P) is a

sufficiently rich probability space. For every ω ∈ Ω, we define two families of

processes,
{
{Z(n)

t }t∈N : n ∈ Z
}
(ω) and

{
{Ž(n)

t }t∈N : n ∈ Z
}
(ω), on (S,Σ,P) such that

{Z(n)
t }t≥k(ω)∼ Pk,n and {Ž(n)

t }t≥k(ω)∼Qk,n(ω, ·). Inevitably, {Ž(n)
t } depends on ω ∈Ω

due to the conditioning on (λn,Yn). Since the constructions of the processes {Ž(n)
t }

and {Z(n)
t } will be heavily intertwined, the latter will inherit the dependence on ω

from the first. Then we set

(
S(k,n),Σ(k,n),P(k,n), (Z(k,n), Ž(k,n))

)
(ω) := (

S,Σ,P, ({Z(n)
t }t≥k(ω), {Ž(n)

t }t≥k(ω)
)
.

If the processes are constructed such that

P
{∃ t ∈N such that Ž(n)

k+t 6= Z(n)
k+t

} k→∞−→ 0

uniformly in n ∈ Z and ω ∈Ω, we have found a sequence of couplings with the

desired properties.

THEOREM 2.2.7. Let {(λt,Yt)}t∈Z be a nonparametric INGARCH(1,1) process with
link function m. Assume that m has range [0, M] and satisfies the strong contractive
condition (C∗) . Then the count process {Yt} is uniformly mixing, and the mixing
coefficients decrease with a geometric rate:

φ(k)= sup
n∈Z

φ(k,n). (L1 +L2)k .
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Proof. Let (S,Σ,P) be a probability space, and let s denote a generic element of

S. On S ×Ω we will construct two families of real valued mappings,
{
(s,ω) 7→

Z(n)
t (s,ω) : t ∈N, n ∈Z

}
and

{
(s,ω) 7→ Ž(n)

t (s,ω) : t ∈N, n ∈Z
}
, such that for fixed ω ∈

Ω the mappings s 7→ {Z(n)
t (s,ω)}t∈N and s 7→ {Ž(n)

t (s,ω)}t∈N are stochastic processes

on (S,Σ,P) with distributions {Z(n)
t (·,ω)}t≥k ∼ Pk,n and {Ž(n)

t (·,ω)}t≥k ∼Qk,n(ω, ·) for

any k ∈N. The dependence on ω is inherited from the regular conditional distribu-

tion Qk,n(ω, ·)=P(Yn+k ,Yn+k+1,...)|λn(ω),Yn(ω). Technically, all following constructions

depend on this ω. However, for the core argument ω will always stay fixed. For

example, we are interested in the ω-section s 7→ Ž(n)
t (s,ω) of (s,ω) 7→ Ž(n)

t (s,ω) as a

random variable on (S,Σ,P). In order to ease the notation, we stipulate for the rest

of the proof that whenever a function (s,ω) 7→ X (s,ω) on S×Ω is written without

arguments, we refer to its ω-section s 7→ X (s,ω). When we want to emphasize

dependence on ω, we write X ( · ,ω). Let us now pursue with the construction of

the coupling.

Let ω ∈Ω be fixed, and suppose that (S,Σ,P) is sufficiently rich. Let (λ̃, Ỹ )

be a bivariate random variable on (S,Σ,P) that assumes values in R×N and is

distributed according to π, the stationary distribution established in Lemma 2.1.4.

Additionally, we assume that on the same space there are three independent

sequences of independent, uniformly over [0,1] distributed random variables,

{Ut}, {Vt}, and {Wt}. Using these sequences, we will construct two mappings,

(s,ω) 7→ {λ̃π
t , Ỹ π

t }t∈N(s,ω) and (s,ω) 7→ {λ̃xn
t , Ỹ xn

t }t∈N(s,ω), such that their ω-sections,

{λ̃π
t , Ỹ π

t }t∈N and {λ̃xn
t , Ỹ xn

t }t∈N, are nonparametric INGARCH(1,1) processes on

(S,Σ,P) with link function m. The notation is intended to symbolize that the first

process is initiated according to the stationary distribution π and the second one

according to a singular point measure δxn . The corresponding point is taken to

be xn := (λn(ω),Yn(ω)), where λn and Yn are the very same variables appearing in

the definition of the regular conditional distribution Qk,n(ω, ·). More specifically,

we define (λ̃xn
0 , Ỹ xn

0 ) := xn, (λ̃π
0 , Ỹ π

0 ) := (λ̃, Ỹ ), and

λ̃π
1 := m(λ̃, Ỹ ) ,

λ̃
xn
1 := m(λn(ω),Yn(ω)) .

It is worth noting that at this stage λ̃π
1 does not depend on ω, whilst λ̃

xn
1 does

exclusively depend on ω. The construction of the first count variables, Ỹ π
1 and Ỹ xn

1 ,

is a bit more involved. Let us fix the notation Fλ for the cumulative distribution

function of a Poisson distribution with intensity λ. It is common knowledge

that for any random variable U ∼ Unif [0,1] the element F−1
λ

(U) has a Poisson

distribution with parameter λ. Here, F−1 denotes the generalized inverse of a
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right continuous non-decreasing function,

F−1(u) := inf
{
x ∈R : F(x)≥ u

}
.

Using this fact, we define a Poisson random variable with random intensity

|λ̃π
1 − λ̃

xn
1 | by

s 7→∆(n)
1 (s,ω) := F−1

|λ̃xn
1 (ω)−λ̃π

1 (s)|(U1(s))∼Poiss(|λ̃xn
1 (ω)− λ̃π

1 (s)|) .

It is our goal to construct Ỹ xn
1 (s,ω) and Ỹ π

1 (s,ω) on S×Ω in such a way that their

ω-sections satisfy our model assumption, PỸ xn
1 =Poiss(λ̃xn

1 ) and PỸ π
1 |λπ

1 =Poiss(λ̃π
1 ).

Additionally, we seek for all s ∈ S the relation |Ỹ xn
1 (s,ω)− Ỹ π

1 (s,ω)| = ∆(n)
1 (s,ω).

This specific construction ensures that the absolute difference of their ω-sections,

|Ỹ xn
1 − Ỹ π

1 |, has a Poisson distribution with intensity |λ̃π
1 − λ̃

xn
1 |. This fact turns out

to be essential in our argument, but it does not hold for general Poisson variables.

We reach this goal in the following way by using the auxiliary Poisson variables

η
xn
1 and ηπ

1. These are defined by

ηπ
1 := F−1

λ̃π
1

(W1) , η
xn
1 := F−1

λ̃
xn
1

(V1) .

Now we set,

Ỹ xn
1 ( · ,ω) :=

η
xn
1 , if λ̃

xn
1 < λ̃π

1

∆(n)
1 +ηπ

1 , if λ̃
xn
1 ≥ λ̃π

1

Ỹ π
1 ( · ,ω) :=

∆(n)
1 +η

xn
1 , if λ̃

xn
1 < λ̃π

1

ηπ
1 , if λ̃

xn
1 ≥ λ̃π

1 ,

which gives us the desired property. All following elements of the process are now

constructed by applying the link function to the current pairs of intensities and

counts in order to obtain the next generation of intensities,

λ̃
xn
t+1( · ,ω) := m(λ̃xn

t , λ̃xn
t ) , λ̃π

t+1( · ,ω) := m(λ̃π
t , Ỹ π

t ) .

Thereafter we generate the count variables using the same procedure that was

used to generate Ỹ xn
1 and Ỹ π

1 . For any t ∈N, assume that the intensities λ̃
xn
t and

λ̃π
t are given. Then

∆(n)
t ( · ,ω) := F−1

|λ̃xn
t −λ̃π

t |
(Ut) , η

xn
t := F−1

λ̃
xn
t

(Vt) , ηπ
t := F−1

λ̃π
t

(Wt) ,
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Ỹ xn
t ( · ,ω) :=

η
xn
t , if λ̃

xn
t < λ̃π

t

∆(n)
t +ηπ

t , if λ̃
xn
t ≥ λ̃π

t ,

Ỹ π
t ( · ,ω) :=

∆(n)
t +η

xn
t , if λ̃

xn
t < λ̃π

t

ηπ
t , if λ̃

xn
t ≥ λ̃π

t .

Let us verify that the ω-sections {(λ̃π
t , Ỹ π

t )}t∈N and {(λ̃xn
t , Ỹ xn

t )}t∈N obey the

characteristic relation (IG) of nonparametric INGARCH(1,1) processes stipulated

in Definition 2.1.1. The second equation of (IG) is obviously satisfied by both

processes. Concerning the marginal distributions, we observe that

P
{
Ỹ π

t = k
∣∣ λ̃π

t = r, λ̃xn
t = s

}=1{r>s}P
{
∆t +η

xn
t = k

∣∣ λ̃π
t = r, λ̃xn

t = s
}

+1{r≤s}P
{
ηπ

t = k
∣∣ λ̃π

t = r, λ̃xn
t = s

}
=1{r>s}P

{
F−1

r−s(Ut)+F−1
s (Vt)= k

}
+1{r≤s}P

{
F−1

r (Wt)= k
}

= rk

k!
e−r a.s. (P) ,

where we used that E[h(X ,Y ) |Y = y] = Eh(X , y) (a.s. in P) for independent

random variables X and Y and measurable functions h, and furthermore that

F−1
r−s(Ut)+F−1

s (Vt) ∼ Poiss(r) by the independence of Ut and Vt and the general

properties of the Poisson distribution. For any k ∈N and B ∈B, we conclude that

P
{
Ỹ π

t = k , λ̃π
t ∈ B

}= P
{
Ỹ π

t = k , λ̃π
t ∈ B , λ̃xn

t ∈R
}

=
∫

B×R
P

{
Ỹ π

t = k | λ̃π
t = r, λ̃xn

t = s
}

P(λ̃π
t ,λ̃xn

t )(d(r, s))

=
∫

B

∫
R
P

{
Ỹ π

t = k | λ̃π
t = r, λ̃xn

t = s
}

P λ̃
xn
t |λ̃π

t =r(ds)P λ̃π
t (dr)

=
∫

B

rk

k!
e−r

∫
R

P λ̃
xn
t |λ̃π

t =r(ds) P λ̃π
t (dr)

=
∫

B

rk

k!
e−r P λ̃π

t (dr) ,

which means that the relation PỸ π
t |λ̃π

t =Poiss(λ̃π
n) holds almost surely in P. Analo-

gously we obtain that PỸ xn
t |λ̃xn

t =Poiss( ˜λ
xn
t ) almost surely in P.

The processes {(λ̃π
t , Ỹ π

t )}t∈N and {(λ̃xn
t , Ỹ xn

t )}t∈N are indeed nonparametric IN-

GARCH(1,1) processes on (S,Σ,P) with link function m. The first process started

randomly according to the stationary bivariate distribution π. Given the real-

ization xn = (λn(ω),Yn(ω)) from the original process on (Ω,A ,P), the process

{(λ̃xn
t , Ỹ xn

t )}t∈N started at the fixed point xn = (λn(ω),Yn(ω)). If we define

Z(n)
t (s,ω) := Ỹ π

t (s,ω), Ž(n)
t (s,ω) := Ỹ xn

t (s,ω) ,

17



for any n ∈ Z and t ∈ N, we can conclude that {Z(n)
t }t≥k ∼ Pk,n and {Ž(n)

t }t≥k ∼
Qk,n(ω, ·). This means that we have successfully constructed a coupling of the

distributions Pk,n and Qk,n(ω, ·).
Recall that ∆(n)

t = |Ỹ π
t −Ỹ xn

t | = |Z(n)
t − Ž(n)

t |. We turn to the task of bounding the

probabilities

P
{
s : {Z(n)

t (s,ω)}t≥k 6= {Ž(n)
t (s,ω)}t≥k

}= P
{
s : ∃t ∈N such that ∆(n)

k+t(s,ω)> 0
}

= 1−P
{
s : ∆(n)

k+t(s,ω)= 0, for all t ∈N
}
,

uniformly in n ∈ Z and in ω over a set with P-measure one. We will do this for

k ≥ 2. Any information about the distribution of ∆(n)
t is obtained conditionally on

the past. Let us therefore introduce the σ-fields

Σ(n)
t :=Σ(n)

t (ω) :=σ
{
Ỹ π

r , λ̃π
r , Ỹ xn

r , λ̃xn
r : r ≤ t

}
.

The fact that λ̃(·)
t+1 = m(λ̃(·)

t , Ỹ (·)
t ) and the Markov property imply that

P∆(n)
t+1|Σ(n)

t = P∆(n)
t+1| Ỹ π

t ,λ̃π
t ,Ỹ xn

t ,λ̃xn
t ∼Poiss

(|λ̃xn
t+1 − λ̃π

t+1|
)
, a.s. (P) .

This relation and the contractive property of m let us conclude that

1{∆(n)
k =0} P

{
∆(n)

k+1 = 0
∣∣Σ(n)

k

}=1{∆(n)
k =0} exp

(− ∣∣λ̃π
k+1 − λ̃

xn
k+1

∣∣)
≥1{∆(n)

k =0} exp
(− [

L1|λ̃π
k − λ̃

xn
k |+L2∆

(n)
k

])
(2.2)

=1{∆(n)
k =0} exp

(−L1|λ̃π
k − λ̃

xn
k |)

almost surely in P. Consequently,

E
[
1{∆(n)

k =0}1{∆(n)
k+1=0}

∣∣Σ(n)
k

]
≥1{∆(n)

k =0} exp
(−L1|λ̃π

k − λ̃
xn
k |) a.s. (P) (2.3)

for any k ∈N. Furthermore, using the observation that Σ(n)
k ⊂Σ(n)

k+1 ⊂ . . .⊂Σ(n)
k+t−1

(t ≥ 2) and the fact that 1{∆(n)
k+i=0} is measurable with respect to all Σ(n)

k+ j with j ≥ i,
a repeated application of inequality (2.3) yields

E
[ t∏

i=0
1{∆(n)

k+i=0}

∣∣Σ(n)
0

]
= E

[
E

[
1{∆(n)

k+t=0}1{∆(n)
k+t−1=0}

∣∣Σ(n)
k+t−1

] t−2∏
i=0

1{∆(n)
k+i=0}

∣∣∣Σ(n)
0

]
≥ E

[
exp

(−L1|λ̃π
k+t−1 − λ̃

xn
k+t−1|

)
1{∆(n)

k+t−1=0}

t−2∏
i=0

1{∆(n)
k+i=0}

∣∣∣Σ(n)
0

]
= E

[
exp

(−L1|λ̃π
k+t−1 − λ̃

xn
k+t−1|

)
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E
[
1{∆(n)

k+t−1=0}1{∆(n)
k+t−2=0}

∣∣Σ(n)
k+t−2

] t−3∏
i=0

1{∆(n)
k+i=0}

∣∣∣Σ(n)
0

]
≥ E

[
exp

(− (L2
1 +L1) |λ̃π

k+t−2 − λ̃
xn
k+t−2|

)
1{∆(n)

k+t−2=0}

t−3∏
i=0

1{∆(n)
k+i=0}

∣∣∣Σ(n)
0

]
a.s. (P).

To obtain the last inequality, we used additionally to (2.3) the fact that for any

s ∈ {s : ∆(n)
k+t−2(s)= 0} the contraction property yields

exp
(−L1 |λ̃π

k+t−1 − λ̃
xn
k+t−1|

)≥ exp
(−L2

1 |λ̃π
k+t−2 − λ̃

xn
k+t−2|

)
,

as in (2.2). Repeating this argument and making use of Jensen’s inequality, we

see that

E

[
t∏

i=0
1{∆(n)

k+i=0}

∣∣∣Σ(n)
0

]
≥ E

[
exp

(
−

t∑
i=1

Li
1 |λ̃π

k − λ̃
xn
k |

)
1{∆(n)

k =0}

∣∣∣Σ(n)
0

]

= E

[
exp

(
−|λ̃π

k − λ̃
xn
k |

t∑
i=1

Li
1

)
E

[
1{∆(n)

k =0} |Σ(n)
k−1

]∣∣∣Σ(n)
0

]
(2.4)

= E
[

exp
(
−|λ̃π

k − λ̃
xn
k |

t∑
i=0

Li
1

)∣∣∣Σ(n)
0

]
≥ exp

(
−E

[|λ̃π
k − λ̃

xn
k | ∣∣Σ(n)

0
] t∑

i=0
Li

1

)
a.s. (P) (2.5)

if k ≥ 1. In equation (2.4) we used that λ̃(·)
k = m(λ̃(·)

k−1, Ỹ (·)
k−1) is Σ(n)

k−1-measurable.

There is an intuitive illustration for the preceding estimate. Suppose the two

count processes {Ỹ π
t } and {Ỹ xn

t } have coincided at time k. The probability that they

perpetually stay together is large if the corresponding intensities λ̃π
k and λ̃

xn
k at

the time of coincidence of the counts are close together.

As it turns out, the intensity processes attract each other as time pasts,

irrespectively of their initial values. This is a consequence of the full contraction

property of m. From Σ(n)
0 ⊂Σ(n)

1 ⊂ . . .⊂Σ(n)
k−2 , we obtain for any n ∈Z that

E
[|λ̃π

k − λ̃
xn
k | ∣∣Σ(n)

0
]

≤ E
[
E

[
L1 |λ̃π

k−1 − λ̃
xn
k−1|+L2∆

(n)
k−1

∣∣Σ(n)
k−2

]∣∣∣Σ(n)
0

]
= E

[
L1 |λ̃π

k−1 − λ̃
xn
k−1|+L2 E

[
∆(n)

k−1

∣∣Σ(n)
k−2

]∣∣∣Σ(n)
0

]
= E

[
(L1 +L2)|λ̃π

k−1 − λ̃
xn
k−1|

∣∣Σ(n)
0

]
...

≤ (L1 +L2)k esssup |λ̃π
0 − λ̃

xn
0 |

≤ (L1 +L2)k M a.s. (P)

since supn,ω λ̃
xn
0 = supn,ωλn(ω)= supn,ω m(λn−1(ω),Yn−1(ω))≤ M and λ̃π

0 = m(λ̃, Ỹ )≤
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M. Hence, (2.5) yields that

inf
n∈Z

E

[
t∏

i=0
1{∆(n)

k+i=0}

∣∣∣Σ(n)
0

]
≥ exp

(
− (L1 +L2)k M

1−Lt+1
1

1−L1

)
a.s. (P),

and this bound does not depend on ω. Putting everything together, we arrive at

the following estimate that holds uniformly in n ∈Z and ω ∈Ω:

P
{
s : ∆(n)

k+t(s,ω)= 0, for all t ∈N
}
= E

[
lim
t→∞

t∏
i=0

1{s : ∆(n)
k+i(s,ω)=0}

]
= lim

t→∞E
[ t∏

i=0
1{s : ∆(n)

k+i(s,ω)=0}

]
(2.6)

≥ lim
t→∞exp

(
− (L1 +L2)k M

1−Lt+1
1

1−L1

)
≥ 1− (L1 +L2)k M

1−L1
.

In equation (2.6) we used the fact that
{∏t

i=01{∆k+i=0}
}

t≥1 is a monotonically

decreasing sequence with an integrable first element to apply the dominated

convergence theorem in order to interchange limit and expectation. After passing

to the limit t →∞, we exploited the relation e−x ≥ 1− x for x ≥ 0.

Now we use the characterization φ(k) = supn∈Z esssupdTV (Qk,n,Pk,n) from

Lemma 2.2.3 and subsequently apply the coupling inequality with respect to the

constructed coupling
(
S,P,Σ, ({Z(n)

t }t≥k, {Ž(n)
t }t≥k)

)
. This yields,

φ(k)= sup
n∈Z

esssup
ω∈Ω

dTV (Qk,n,Pk,n)

≤ sup
n∈Z

esssup
ω∈Ω

P
{
s : {Z(n)

t (s,ω)}t≥k 6= {Ž(n)
t (s,ω)}t≥k

}
= sup

n∈Z
esssup

ω∈Ω

(
1−P

{
s : ∆(n)

k+t(s,ω)= 0, for all t ∈N
})

≤ M
1−L1

(L1 +L2)k .

The proof is complete. �

For a technical reason that will reveal itself later in this thesis, we are also

interested in the mixing properties of a slightly different process.

DEFINITION 2.2.8. For a natural number t, we define the sequence of Rt+3-valued

random vectors
{
Y n+1

n−t : n ∈Z
}

by the assignment Y n+1
n−t := (0,Yn−t, . . . ,Yn+1), and de-

note with φt(k,n) :=φ
(
σ

{
Y i+1

i−t : i ≤ n
}
, σ

{
Y i+1

i−t : i ≥ n+k
})

and φt(k)= supn φt(k,n)

the corresponding kth mixing coefficients. As in Definition 2.2.2, all involved

σ-fields are separable.
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LEMMA 2.2.9. Under the assumptions of Theorem 2.2.7, the process {Y n+1
n−t }n∈Z

with lag t is uniformly mixing, and the mixing coefficients φt(k) are geometrically
decreasing:

φt(k). (L1 +L2)k−t .

Proof. The proof works with the same methodology as the proof of the preceding

theorem. Just observe that
(
Ỹ π

r−t, . . . , Ỹ
π
r+1

) = (
Ỹ xn

r−t, . . . , Ỹ
xn
r+1

)
for all r ≥ k if and

only if Ỹ π
r = Ỹ xn

r for all r ≥ k− t, and conclude that

P
{
(Žr−t, . . . , Žr+1)= (Zr−t, . . . , Zr+1) , for all r ≥ k

}= P
{
Žr = Zr , for all r ≥ k− t

}
.

The proof then proceeds along the lines of the previous one. �
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Chapter 3

Nonparametric inference on contractive link
functions

3.1 Definition of the estimator

Before we suggest a particular choice for an estimator, we submit a slight yet

significant simplification of the model in terms of additional shape restrictions that

we impose on the true link function m. We introduce the new model parameter

B ∈N+ and assume that for any λ ∈ [0, M] the function y 7→ m(λ, y) is constant for

all y≥ B−1. Formally, the domain of estimation will be [0, M]×N, but apparently

no additional effort at all is needed for the area beyond B−1. We introduce

this alleviation of the theoretical investigation at the peril of the statistician

who eventually wishes to apply our model, as we increase the risk of model

misspecification. Assume B is chosen too small, i.e. the true function is constant

only from a value B(m) > B onward. In this case our model lacks explanatory

power in the area [0, M]× {B, . . . ,B(m)}. If a fraction of observations falls into this

area, we are confronted with a structural estimation error. At the end of this

chapter, we will give some additional remarks on this issue.

DEFINITION 3.1.1. For fixed constants M > 0, B ∈ N+ and 0 < L1,L2 < 1 , let

G =G (M,B,L1,L2) be the class of all functions g : [0, M]×N→ [0, M] that satisfy

the strong contraction condition (C∗) and furthermore g(λ, y) = g(λ,B−1) for

all y ≥ B−1 and all λ. Let {(λn,Yn)}n∈Z be a stationary version of a two-sided

nonparametric INGARCH(1,1) process with link function m ∈ G . We call this

process the data generating process and use the notation Fn :=σ{(λk,Yk) : k ≤ n}.

The main benefit of the model restriction is that the estimation procedure in

the new model is only with respect to the first component purely nonparametric,
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because any function m ∈G can now be viewed as a function

m : [0, M]× {0, . . . ,B−1}→ [0, M] .

This offers the even simpler interpretation of m as a vector valued function,

m = (m0, . . . ,mB−1)′ : [0, M]B → [0, M] .

As a result of keeping B fixed, each component mi of m can be estimated on the

basis of a number of observations that is asymptotically bounded from below

by n. In nonparametric regression models with first-degree smoothness and d-

dimensional explanatory variables, the typical mini-max rate of convergence is

n−1/(2+d). For the estimation of a function m ∈ G , we hope to obtain a typical

one-dimensional nonparametric rate of convergence n−1/3 as opposed to the two-

dimensional rate n−1/4 that we expect for B =∞.

Let us now come to the central part of this section. In order to estimate the

link function m, we use an idea that was proposed by Meister and Kreiß (2016)

in the context of a nonparametric GARCH(1,1) model. A reasonable approach

would be to search for a function g ∈ G that minimizes the L2 prediction error

with respect to the distribution of the process,

E
(
Yt+1 − g(λt,Yt)

)2 →min
g∈G

.

The unique minimizer of that functional is the conditional expectation, for which

we have the relation

E
[
Yt+1

∣∣λt,Yt
]=E

[
E

[
Yt+1

∣∣Ft
]∣∣λt,Yt

]
=E

[
λt+1

∣∣λt,Yt
]

= m(λt,Yt) , a.s. .

From this equation we see that the procedure of minimizing the prediction error

returns exactly the true link function. The problem with calculating the con-

ditional expectation of Yt+1 given λt and Yt is that we are by assumption not

able to observe the intensity λt. Let us therefore try to project this conditional

expectation onto the information that is available. Suppose we observe the count

variables Y0, . . . ,Yt. Since

λt+1 = m(λt,Yt)= m[t](λ0,Y0, . . . ,Yt) ,
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we see that

E
[
Yt+1

∣∣λt,Yt
]= m[t](λ0,Y0, . . . ,Yt) , a.s.

and conclude that the loss of information due the projection onto the information

given by Y0, . . . ,Yt is small: with probability one∣∣∣E[
Yt+1

∣∣λt,Yt
]−E

[
E

[
Yt+1

∣∣λt,Yt
]∣∣Y0, . . . ,Yt

]
=

∣∣∣m[t](λ0,Y0, . . . ,Yt)−E
[
m[t](λ0,Y0, . . . ,Yt)

∣∣Y0, . . . ,Yt
]∣∣∣

=
∣∣∣m[t](λ0,Y0, . . . ,Yt)−m[t](0,Y0, . . . ,Yt)

+E[
m[t](0,Y0, . . . ,Yt)−m[t](λ0,Y0, . . . ,Yt)

∣∣Y0, . . . ,Yt
]∣∣∣

≤ Lt
1|λ0|+E

[|m[t](0,Y0, . . . ,Yt)−m[t](λ0,Y0, . . . ,Yt)|
∣∣Y0, . . . ,Yt

]
≤ 2M Lt

1 .

Together with the fact that

E
[
Yt+1

∣∣Y0, . . . ,Yt
]=E

[
E[Yt+1|Ft]

∣∣Y0, . . . ,Yt
]

=E
[
λt+1

∣∣Y0, . . . ,Yt
]

=E
[
m(λt,Yt)

∣∣Y0, . . . ,Yt
]

=E
[
E

[
Yt+1

∣∣λt,Yt
]∣∣Y0, . . . ,Yt

]
, a.s.,

this means that if we approximate E[Yt+1 |Y0, . . . ,Yt] instead of E[Yt+1|λt,Yt] , we

are still close to the true function m, and the structural error due to the loss

of information converges to zero with the rate Lt
1 as t →∞ . As the conditional

expectation E[Yt+1|Y0, . . . ,Yt] minimizes

E
(
Yt+1 −h(Y0, . . . ,Yt)

)2 (3.1)

over the class of all measurable functions h : Nt+1 → R , we approximate this

minimizer by choosing ĥ that minimizes an empirical approximation of (3.1). To

construct this approximation, we need a further sample Yt+1, . . . ,Yn; n ∈N+. Re-

calling the uniform mixing property of the lagged process {(Yn−t, . . . ,Yn+1)}n∈Z ,

which implies ergodicity (Bradley, 2007, Remark 2.6 and Proposition 2.8 in combi-

nation with Proposition 3.11), a reasonable approximation of (3.1) might be

1
n− t

n−1∑
i=t

(
Yi+1 −h(Yi−t, . . . ,Yi)

)2 .
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Since

∣∣E[
Yt+1

∣∣Y0, . . . ,Yt
]−m[t](0,Y0, . . . ,Yt)

∣∣
≤E

[|m[t](λ0,Y0, . . . ,Yt)−m[t](0,Y0, . . . ,Yt)|
∣∣Y0, . . . ,Yt

]
=O(Lt

1),

we know that the function h that we intend to approximate is very close to

(0, y0, . . . , yt) 7→ m[t](0, y0, . . . , yt) at the points of measurement. Hence, we may

as well restrict the class of candidate functions to functions of that shape, i.e.{
g[t] : g ∈G

}
. This leads to the idea to choose m̂ ∈G such that it minimizes

1
n− t

n−1∑
i=t

(
Yi+1 − g[t](0,Yi−t, . . . ,Yi)

)2

among all functions g ∈G . This is almost the final version of the estimator. Two

disturbing facts remain about the last idea. First, for indexes i > t we could

achieve higher accuracy choosing the iteration parameter i instead of t. This

would also eliminate the second disturbance, namely the existence of a hyper-

parameter t, which would demand a tuning procedure. We therefore propose the

the estimator m̂n that minimizes

Qn(g) := 1
n

n−1∑
i=0

(
Yi+1 − g[i](0,Y0, . . . ,Yi)

)2. (3.2)

This estimator will be called the (theoretical) least squares estimator of m.

Before we proceed with a formal definition of the least squares estimator, we

need to assure that there is a formally correct way to define it. Two conditions

have to be checked. First, does the functional Qn attain its infimum over the set G ?

In other words, is there a function m̂ ∈G such that for all g ∈G , Qn(m̂n)≤Qn(g)?

Second, is the resulting estimator m̂n a random variable, i.e. is it a measurable

function Ω→ G ? Answering these questions will be the subject of the next two

propositions. The preliminary definition will be used in the course of the next

proof.

DEFINITION 3.1.2. A subset A of a metric space (X ,d) is called totally bounded if

for any ε> 0 there exists a covering of A by finitely many balls Bd(xi,ε) around

centers xi ∈ A with radius ε measured in the metric d.

PROPOSITION 3.1.3. For n ∈N+, let Y0, . . . ,Yn be n+1 successive count variables of
the data generating process. Let the functional Qn be defined as in equation (3.2).
Then the infimum of Qn over the function class G is attained.
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Proof. We know that a continuous functional attains its infimum over a compact

metric space (Rudin, 1976, Theorem 4.16). Thus, we show that Q is a continuous

function and G is a compact metric space. Both assertions are to be understood

with respect to the norm ‖g‖∞ := supx |g(x)| on G . The continuity is easily verified.

We observe that,

n
∣∣Qn(g)−Qn(h)

∣∣= ∣∣∣n−1∑
i=0

[(
Yi+1 − g[i](0,Y0, . . . ,Yi)

)2 − (
Yi+1 −h[i](0,Y0, . . . ,Yi)

)2
]∣∣∣

≤
n−1∑
i=0

[
2Yi+1

∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)
∣∣

+ ∣∣(g[i](0,Y0, . . . ,Yi)
)2 − (

h[i](0,Y0, . . . ,Yi)
)2∣∣]

≤
n−1∑
i=0

[
2Yi+1

∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)
∣∣

+∣∣g[i](0,Y0, . . . ,Yi)+h[i](0,Y0, . . . ,Yi)
∣∣∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)

∣∣]
≤

n−1∑
i=0

2(M+Yi+1)
∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)

∣∣ ,

and additionally, by the contractive property applied to the first component,

∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)
∣∣

= ∣∣g(
g[i−1](0,Y0, . . . ,Yi−1),Yi

)−h
(
h[i−1](0,Y0, . . . ,Yi−1),Yi

)∣∣
≤ ∣∣g(

g[i−1](0,Y0, . . . ,Yi−1),Yi
)− g

(
h[i−1](0,Y0, . . . ,Yi−1),Yi

)∣∣
+∣∣g(

h[i−1](0,Y0, . . . ,Yi−1),Yi
)−h

(
h[i−1](0,Y0, . . . ,Yi−1),Yi

)∣∣
≤ L1

∣∣g[i−1](0,Y0, . . . ,Yi−1)−h[i−1](0,Y0, . . . ,Yi−1)
∣∣+‖g−h‖∞ .

This gives us by an induction argument that

∣∣g[i](0,Y0, . . . ,Yi)−h[i](0,Y0, . . . ,Yi)
∣∣≤ ‖g−h‖∞

i∑
k=0

Lk
1 , (3.3)

and therefore

|Qn(g)−Qn(h)| ≤ 2
∑n−1

i=0 (M+Yi+1)

n (1−L1)
‖g−h‖∞ .

This proves continuity of Q.

Metric spaces are compact if and only if they are complete and totally bounded

(Bass, 2013, Theorem 20.23). We proceed by showing completeness. To that end

consider a fundamental sequence {gm}m∈N ⊂ (G ,‖ · ‖∞) . We have to show that

this sequence has a limit in (G ,‖ · ‖∞). Select a sequence of natural numbers
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{m( j)} j∈N ⊂N such that ‖gm( j) − gm( j+1)‖∞ < 2− j , which is possible since {gm} is

a fundamental sequence. We show that there exists a bounded function Fg =∑∞
j=1

(
gm( j+1) − gm( j)

)
in (G ,‖ · ‖∞). This follows from the next consideration.

Let { fn}n∈N be a sequence of functions in G with the property that
∑∞

n=1 ‖ f ‖∞ <
∞ . We show that there exists a bounded function F such that ‖F−∑N

n=1 fn‖∞ → 0,

as N → ∞ . The function F is defined explicitly by the pointwise assignment

F(x, y) := limsupN→∞
∑N

n=1 fn(x, y) . Then

sup
x,y

|F(x, y)| = sup
x,y

∣∣ limsup
N→∞

N∑
n=1

fn(x, y)
∣∣≤ limsup

N→∞
sup
x,y

N∑
n=1

| fn(x, y)| ≤
∞∑

n=1
‖ fn‖∞ <∞ ,

and moreover

‖F −
N∑

n=1
fn‖∞ = sup

x,y

∣∣∣∣∣limsup
m→∞

m∑
n=1

fn(x, y)−
N∑

n=1
fn(x, y)

∣∣∣∣∣
≤ limsup

m→∞

m∑
n=N

sup
x,y

| fn(x, y)|

=
∞∑

n=N
‖ fn‖∞ → 0, (N →∞) .

Hence, F =∑∞
n=1 fn in uniform norm.

Apply this result to the sequence
{
gm( j+1) − gm( j)

}
j∈N to conclude that there

exists a function Fg ∈ (G ,‖ ·‖∞) with the property

‖Fg − (gm(N+1) − gm(0))‖∞ = ‖Fg −
N∑

j=0
(gm( j+1) − gm( j))‖∞ → 0 (N →∞) .

The function g∞ := Fg + gm(0) is therefore the uniform limit of the sub sequence

{gm( j)} j∈N . This function satisfies the contractive property since for any ε> 0 there

exists jε ∈N such that for all x,u ∈ [0, M] and all y,v ∈ {0, . . . ,B−1}

|g∞(x, y)− g∞(u,v)| ≤|gm( jε)(x, y)− g∞(x, y)|+ |gm( jε)(x, y)− gm( jε)(u,v)|
+ |gm( jε)(u,v)− g∞(u,v)|

<2ε+L1|x−u|+L2|y−v| .

This shows that g∞ ∈ G . Then g∞ is also the limit of the whole sequence: let

kε := inf{n > m( jε) : ‖gr − gs‖ < ε for all r, s > n} and j∗ := inf{ j ∈ N : m( j) > kε}.

Then for all n ≥ kε,

‖g∞− gn‖∞ ≤ ‖g∞− gm( j)‖∞+‖gm( j) − gn‖ < 2ε

for some suitable j > j∗ depending on ε. Therefore, every fundamental sequence

in (G ,‖ ·‖∞) has a limit, and the space is complete.
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It follows from the next lemma that (G ,‖ · ‖∞) is totally bounded. Together

with the just established completeness, this implies that G is compact, which

concludes the proof. �

The following paragraph has the purpose to examine the size of the function

class G in terms of covering numbers.

DEFINITION 3.1.4. Suppose that (X ,d) is a metric space and ε> 0 a real number.

Let Bd(x, r) denote the Ball around x ∈ X having radius r with respect to the

metric d. The number

N(ε,d, X ) :=min
{

N ∈N : ∃x1, . . . , xN ∈ X such that X ⊂
N⋃

i=1
Bd(xi,ε)

}
is called covering number of (X ,d) for the resolution level ε.

Recall that a metric space (X ,d) is called totally bounded if for any ε > 0

there exists a finite set of points {x1, . . . , xkε
}⊂ X such that the union of the balls

Bd(xi,ε) covers X . If we find a real valued function N : [0,∞)→ [0,∞) such that

N(ε) = N(ε,d, X ), we can immediately conclude that X is totally bounded. The

underlying result to the next lemma is an old one by Kolmogorov and Tikhomirov

(1993, page 93).

LEMMA 3.1.5. For B ∈ N+ and L > 0, suppose that G̃ is the class of functions
defined by

G̃ :=
{

g = (g0, . . . , gB−1)′ : [0, M]B → [0, M] ;

|g i(x)− g i(y)| ≤ L |x− y| for all x, y ∈ [0, M]
}

.

For the covering numbers of G̃ endowed with the uniform norm ‖ ·‖∞ we have the
bound

log N(ε,‖ ·‖∞, G̃ )≤ 2MB(L∨1)/ε .

In particular, since G ⊂ G̃ , the same bound holds for G , and (G ,‖ · ‖∞) is totally
bounded.

Proof. In a first step we approximate the one-dimensional functions g i : [0, M]→
[0, M] . For a real number r let the symbol dre denote the smallest integer n
such that n ≥ r. We define N := dM L/εe and suppose that πN := {x0, . . . , xN } with

0= x0 < . . .< xN = M is a partition of the interval [0, M] such that

xi − xi−1 =


ε
L if i ∈ {1, . . . , N −1},

M− (N −1) ε
L if i = N .
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Note that xN − xN−1 ≤ ε/L with equality occurring if and only if N = ML/ε. There-

fore, L |xi − xi−1| ≤ ε for all i = 1, . . . , N.

We define a set Sε of functions s : [0, M] → [0, M] that have the following

properties:

(1) s(xi) ∈
{
kε : k = 0,1, . . . ,

⌊ M
ε

⌋}
, for all i = 0, . . . , N −1;

(2) |s(xi)− s(xi−1)| = L |xi − xi−1| if s(xi) 6= s(xi−1) ;

(3) if s(xi)= s(xi−1), then s(xi)= s(xi−1) ∈ {⌊ M
ε

⌋
ε , 0

}
;

(4) s interpolates the points (xi, s(xi)) linearly.

The selection of the partition πN implies that, apart from the boundaries, |s(xi)−
s(xi−1)| = ε if i ∈ {1, . . . , N −1}, and |s(xN )− s(xN−1)| ≤ ε. It may be surprising that

we mainly exclude functions with constant segments from the set Sε. However,

the non-constant functions suffice to find reasonably good approximations as we

shall see shortly.

The functions s ∈ Sε can be identified with vectors (b0,b1, . . . ,bN ), where

b0 ∈ {0,ε, . . . ,bM/εcε} and b1, . . . ,bN ∈ {−1,1}. Then the function s is given by

s(x0)= b0 ,

s(xi)=
((

s(xi−1)+bi L |xi − xi−1|
)∨0

)
∧

⌊ M
ε

⌋
ε ,

for i = 1, . . . , N. The total number of such configurations is

#
{
(b0,b1, . . . ,bN ) : b0 ∈ {0,ε,2ε, . . . ,bM/εcε} , b1, . . . ,bN ∈ {−1,1}

}
≤ 2N (1+M/ε)

= exp
(
log(1+ M

ε
)+N log 2

)
≤ exp

( M
ε

+N log2
)

≤ exp
(
2M(L∨1)/ε

)
.

We define S B
ε := {s = (s0, . . . , sB−1) : si ∈Sε for all j = 0, . . . ,B−1}. Repeating the

previous procedure for every component si, i ∈ {0, . . . ,B−1}, we obtain at most

e2MB(L∨1)/ε functions in S B
ε .

We show that the set S B
ε is an appropriate approximating set for G̃ . Let

g = (g0, . . . , gB−1) ∈ G̃ be arbitrary but fixed. The following argument holds for

any j ∈ {0, . . . ,B−1}. Certainly, there are points yj,0 ∈ {0,ε, . . . ,bM/εcε} such that

|yj,0 − g j(x0)| < ε. For some i ∈ {1, . . . , N}, suppose that there exists a point yj,i−1

such that |yj,i−1 − g j(xi−1)| ≤ ε. Due to the Lipschitz property of g j, the value

g j(xi) is contained in the interval
[
g j(xi−1)−L|xi − xi−1| , g j(xi−1)+L|xi − xi−1|

]
.
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W e d e fi n e

y j,i :=






y j,i− 1 − L |x i − x i− 1 | ∨ 0 if g j (x i ) ≤ y j,i− 1

y j,i− 1 + L |x i − x i− 1 | ∧ M
ε

ε if g j (x i ) > y j,i− 1

a n d c o n cl u d e t h at |y j,i − g j (x i )| ≤ m a x {|y j,i− 1 − g j (x i− 1 )|, |y j,i− 1 − y j,i |} ≤ ε .

T h e p r e vi o u s a r g u m e nt r et u r n s a s et of p oi nt s { y j, 0,..., y j,N : j = 0 ,..., B − 1 }

t h at s ati sf y y j,i ∈ {0 ,ε ,..., M /ε ε } a n d |y j,i− 1 − y j,i | ∈ {L |x i − x i− 1 |, 0 }, t a ki n g 0 o nl y

at t h e b o u n d a ri e s, a s w ell a s |y j,i − g j (x i )| ≤ ε , f o r all i = 1 ,..., N a n d j = 0 ,..., B − 1.

T h u s, t h e r e e xi st s a f u n cti o n s ( g ) = (s
( g )
0 ,..., s

( g )
B − 1

) ∈ S B
ε wit h s

( g )
j

(x i ) = y j,i a n d t h e

p r o p e rt y |s
( g )
j

(x i ) − g j (x i )| ≤ ε f o r all i = 0,..., N a n d j = 0,..., B − 1. F u rt h e r m o r e,

m a x
j

s u p
x

g j (x ) − s
( g )
j

(x ) ≤ ε ,

w hi c h f oll o w s f r o m t h e Li p s c hit z p r o p e rt y of g a n d t h e c o n st r u cti o n of s ( g ). A n

x 0 x 1 x 2 x 3 x 4

0
ε

2
ε

3
ε

4
ε

ill u st r ati o n of t h e a p p r o xi m ati o n p r o c e d u r e i s gi v e n i n Fi g u r e 3. 1. 1.

Fi g u r e 3. 1. 1: A n ill u st r ati o n of a f u n cti o n g j ( bl a c k li n e) a n d t h e c o r r e s p o n di n g

a p p r o xi m ati n g f u n cti o n s
( g )
j

( r e d li n e).
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Since g was arbitrary, we conclude that the balls
{
B∞(s,ε) : s ∈S B

ε

}
form an

ε-cover of the class G̃ , with respect to the uniform norm. Therefore,

N(ε,‖ ·‖∞, G̃ )≤ #S B
ε ≤ e2M(L∨1)B/ε . �

So far we have shown that the expression argming∈G Q(g) is meaningful in

the sense that the set of functions at which the functional Q attains its minimum

over G is not empty. Yet it is not clear whether this set contains more than one

function. This leads to the second difficulty on the way towards a definition of

an estimator: we have to find a way of selecting one function from the set of

minimizers argminQ based on the information given by the data.

Formally speaking, given realizations y0, . . . , yn of the count process, we seek

a measurable function T(y0, . . . , yn) : Rn+1 → argminQ. This is not a trivial task

since the functional Q also depends on the realizations of the data; a fact that is

apparent from the definition of Q but was suppressed in the notation so far. Let

us therefore change the notation in order to account for this fact, and write

Qn(g) :=Qn(y0, . . . , yn; g) := 1
n

n−1∑
i=0

(
yi+1 − g[i](0, y0, . . . , yi)

)2 . (3.4)

Fortunately, we can recourse to established technical results from the field of set

valued functions in order to resolve the matter.

LEMMA 3.1.6. For n ∈N+, let Qn be defined as in equation (3.4). There exists a
B(Rn+1)−B(G ) measurable function T : Rn+1 →G such that

T(y0, . . . , yn) ∈ argmin
g∈G

Qn(y0, . . . , yn; g) .

Proof. In a first step we prove that there exists a (Bn+1−Bn)-measurable function

θ̂(y0, . . . , yn) : Rn+1 →Θ⊂Rn that minimizes

(y0, . . . , yn;θ) 7→
n−1∑
i=0

(yi+1 −θ(i))2

over θ ∈Θ. The set Θ is for our purposes best defined as

Θ :=
{
θ = (

θ(0), . . . ,θ(n−1)
)′ : there exists g ∈G

such that g[i](0, y0, . . . , yi)= θ(i) for all i = 0, . . . ,n−1
}

.

The existence of such a function θ̂ can be proven using the methodology of Jennrich

(1969). The idea is quickly explained.
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Assume that { fθ} is a family of real valued measurable functions on a mea-

surable space (S,Σ). Furthermore, suppose that for every ω ∈ S the mapping

θ 7→ fθ(ω) is continuous. For ω ∈ S the infimum a(ω) of the set { fθ(ω) : θ ∈Θ} can

be realized by an approximating sequence, { fθk(ω) : θk(ω) ∈Θ ,k ∈ N} , such that

a(ω)= limk→∞ fθk(ω)(ω) . We need the θk to be Σ-measurable. A simple way to find

such a sequence is to construct an approximation of Θ by a sequence of finite

subsets {Θk}k∈N, Θk ⊂ Θk+1 ⊂ Θ for all k ∈ N, such that
⋃∞

k=0Θk = Θ. Then we

choose θk(ω) to minimize θ 7→ fθ(ω) over the finite set Θk. The function θk is

measurable. To see this, let Θk = {ϑi : i = 1, . . . , Nk} and observe

{ω : θk(ω)=ϑi}=
Nk⋂
j=1

{
ω : fϑi (ω)≤ fϑ j (ω)

} ∈Σ .

Then we can show that fθk(ω)(ω) → a(ω) as k →∞. Let ε> 0, ω ∈ S, and θ ∈Θ be

arbitrary but fixed. The function f is continuous in θ. Thus, there exists a δ(θ,ε,ω)

such that for all θ∗ ∈Θ with ‖θ∗−θ‖ < δ we can conclude that | fθ∗ (ω)− fθ(ω)| < ε.

Furthermore, since Θk ↑Θ, there exists an index K(δ,θ,ε,ω) such that for all k ≥ K
there exists a ϑ(θ,k,ε,ω) ∈Θk such that ‖θ−ϑ‖ < δ. Recall that θk(ω) ∈Θk was

chosen such that fθk(ω)(ω)≤ fϑ(ω) for all ϑ ∈Θk. Therefore, we finally obtain

fθ(ω)> fϑ(θ,ε,ω)(ω)−ε≥ fθk(θ,ε,ω)(ω)(ω)−ε≥ inf
k∈N

fθk(ω)(ω)−ε .

Since θ ∈ Θ was arbitrary, we conclude that a(ω) = infθ fθ(ω) > infk fθk(ω)(ω)− ε.

Since Θk ⊂Θk+1 for any k ∈N, the sequence { fθk(ω)(ω)} is non-increasing for any

ω ∈ S, whence it follows that

lim
k→∞

fθk(ω)(ω)= inf
k∈N

fθk(ω)(ω)= a(ω) .

Therefore, {θk(ω)}k∈N is an appropriate sequence. If it had a convergent sub-

sequence {θk(r)(ω)}r∈N, the corresponding limit θ∞(ω) := limr→∞θk(r)(ω) would

serve our purpose since the limiting function ω 7→ θ∞(ω) would be measurable and

by continuity of f we could conclude that

a(ω)= lim
r→∞ fθk(r)(ω)(ω)= fθ∞(ω)(ω) .

However, we have to be aware that the existence of the convergence sub-sequence

{θk(r)} is in general not certain.

Let us apply this line of argument to our setting. Since Rn is separable, there

exists a monotonically increasing sequence of finite subsets {Θq}q∈N such that

Θ=⋃∞
q=1Θq . Since Θq is finite, there exists a measurable function θ̂q(y0, . . . , yn)
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with values in Rn that satisfies

n−1∑
i=0

(
yi+1 − θ̂q(y0, . . . , yn)[i]

)2 = min
θ∈Θq

n−1∑
i=0

(
yi+1 −θ(i)

)2 .

We obtain a sequence {θ̂q}q∈N of n dimensional vectors θ̂q = (
θ̂q(0), . . . , θ̂q(n−1)

)′ .
Now we have to find a sub-sequence that converges to an element in Θ . This leads

to the notion of compactness. We show that Θ is compact.

Since G contains only functions that are bounded by M, the set Θ is a bounded

subset of Rn. In order to show compactness of Θ, we show that it is a closed set.

Let {θm}m∈N be a sequence in Θ with limm→∞θm = θ∞ . By definition there exists

a sequence of functions {gm}m∈N ⊂G such that

g[i]
m (0, y0, . . . , yi)= θm(i) .

We have already shown that (G ,‖·‖)∞ is compact, which implies the existence of a

convergent sub sequence, {gr( j)} j∈N ⊂ {gm}m∈N. Denote by g∞ the limit of this sub

sequence, i.e. ‖g∞− gr( j)‖∞ → 0 as j →∞. We conclude by inequality (3.3) that

g[i]
∞(0, y0, . . . , yi)= lim

j→∞
g[i]

r( j)(0, y0, . . . , yi)

= lim
j→∞

θr( j)(i)

= θ∞(i) ,

which implies that θ∞ ∈ Θ. Therefore, Θ is also a closed sub set. Closed and

bounded subsets of Rn are compact. Hence, Θ is compact.

Since Θ is compact, there exists a sub sequence {q(r)}r∈N ⊂ N such that the

sequence of vectors
{(

θ̂q(r)(0), . . . , θ̂q(r)(n−1)
)′}

r∈N converges in any norm on Rd to

a limit
(
θ̂∞(0), . . . , θ̂∞(n−1)

)′ ∈Θ:

lim
r→∞

∥∥∥∥∥∥∥∥∥


θ̂qn(r)(0)

...

θ̂qn(r)(n−1)

−


θ̂∞(0)

...

θ̂∞(n−1)


∥∥∥∥∥∥∥∥∥= 0.

For y := (y1, . . . , yn), we observe that the function θ 7→∑n−1
i=0 (yi+1 −θ(i))2 = ‖y−θ‖2

2

is continuous. The general argument at the beginning of the proof lets us conclude

that

n−1∑
i=0

(
yi+1 − θ̂∞(i)

)2 = lim
r→∞

n−1∑
i=0

(
yi+1 − θ̂q(r)(i)

)2

= lim
r→∞ min

θ∈Θq(r)

n−1∑
i=0

(
yi+1 −θ(i)

)2
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= inf
θ∈Θ

n−1∑
i=0

(
yi+1 −θ(i)

)2 .

This proves the existence of the measurable function θ̂(y0, . . . , yn) that we were

looking for.

It remains to be proven that we can select a function g ∈G such that
θ̂∞(0)

...

θ̂∞(n−1)

=


g[0](0, y0)

...

g[n−1](0, y0, . . . , yn−1)

 .

We prove the existence of a selection function T(y0, . . . , yn) with values in the set

Ĝ ⊂G defined by

Ĝ (y0, . . . , yn) := {
g ∈G : g[i](0, y0, . . . , yi)= θ̂∞(i) for all i = 0, . . . ,n−1

}
.

Our tool will be the Kuratowski-Ryll-Nardzewski selection theorem. We use the

version that is stated in Aliprantis and Border (1994). For the readers conve-

nience, we quote a formulation of the theorem. In the next definition, the term

correspondence describes a set valued function.

DEFINITION 3.1.7. Let (S,Σ) be a measurable space and (X ,d) a metric space.

A correspondence φ : S → 2X is called weakly measurable if for any open subset

O ⊂ X the set

φl(O) := {
x ∈ X : φ(x)∩O 6= ;}

is a Σ-measurable set.

THEOREM 3.1.8 (cf. Aliprantis and Border, 1994, pages 504–505). Assume that the
correspondence (y0, . . . , yn) 7→ Ĝ (y0, . . . , yn)⊂G satisfies the following conditions:

(1) Ĝ is weakly measurable;

(2) for all y ∈Rn+1, the set Ĝ (y) is nonempty and closed.

Then there exists a measurable function T : Rn+1 →G such that for all y ∈Rn+1 the
relation T(y) ∈ Ĝ (y) holds.

In order to apply this theorem, we make use of a characterization of weak

measurability that we also quote from Aliprantis and Border (1994).

DEFINITION 3.1.9 (Ibid., page 499). Let (S,Σ) be a measurable space, and let X
and Y be topological spaces. A Carathéodory function is a function f : S× X →Y
satisfying the following conditions:
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(1) for each x ∈ X , the function f (·, x) : S →Y is (Σ−B(Y ))-measurable;

(2) for each s ∈ S, the function f (s, ·) : X →Y is continuous.

THEOREM 3.1.10 (Ibid., Theorem 14.78). Let (S,Σ) be a measurable space and
(X ,d) a separable metric space, and let the correspondence φ : S → 2X be nonempty-
valued. Define δ : S× X →R by

δ(s, x)= d
(
x,φ(s)

)
:= inf

{
d(x, y) : y ∈φ(s)

}
.

Then the correspondence φ is weakly measurable if and only if δ is a Carathéodory
function.

Recall that in our case S =Rn+1 and (X ,d)= (G ,‖ · ‖∞). Employing Theorem

3.1.10 to verify the weak measurability of the correspondence Ĝ , we have to show

that the function δ : Rn+1 ×G →R given by

δ
(
(y0, . . . , yn)′, f

)= inf
{‖ f − g‖∞ : g ∈ Ĝ (y0, . . . , yn)

}
is a Carathéodory function. Regarding the matter of continuity, let f1, f2 ∈ G .

For i ∈ {1,2}, we can find functions g i ∈ Ĝ (y0, . . . , yn) such that ‖ f i − g i‖∞− ε <
δ
(
(y0, . . . , yn)′, f i

)
. For y := (y0, . . . , yn)′, it follows that

δ(y, f1)−δ(y, f2)< ‖ f1 − g2‖∞− (‖ f2 − g2‖∞−ε
)

≤ ‖ f1 − f2‖∞+‖ f2 − g2‖∞−‖ f2 − g2‖∞+ε

= ‖ f1 − f2‖∞+ε .

Similarly, one shows that δ(y, f2)−δ(y, f1)< ‖ f1 − f2‖∞+ε, and we obtain for any

(y0, . . . , yn)′ ∈Rn+1 and ε> 0 that

∣∣δ(
(y0, . . . , yn)′, f1

)−δ
(
(y0, . . . , yn)′, f2

)∣∣< ‖ f1 − f2‖∞+ε .

Hence, the function f 7→ δ(y, f ) is continuous.

It remains to be proven that (y0, . . . , yn) 7→ δ
(
(y0, . . . , yn)′, f

)
is a (Bn+1 −B)-

measurable function for every f ∈G . To that end, let Gn ⊂G be a countable dense

subset. Such a set exists due to the Weierstrass approximation theorem (Bass,

2013, Theorem 20.41). Then we obtain{
y ∈Rn+1 : inf

g∈Ĝ (y)
‖ f − g‖∞ < u

}
=

{
y ∈Rn+1 : ∃ g ∈ Ĝ (y) such that ‖ f − g‖∞ < u

}
=

{
y ∈Rn+1 : ∃ g ∈ Ĝ (y)∩Gn such that ‖ f − g‖∞ < u

}
36



= ⋃
g∈Gn

{
y ∈Rn+1 : g ∈ Ĝ (y)

}
∩

{
y ∈Rn+1 : ‖ f − g‖∞ < u

}
= ⋃

g∈Gn

n−1⋂
i=0

{
y ∈Rn+1 : g[i](0, y0, . . . , yi)= θ̂∞(i)

}
∩

{
y ∈Rn+1 : ‖ f − g‖∞ < u

}
.

The functions g[i] are measurable, which implies that the preimage of any sin-

gleton {θ∞(i)} is measurable. On the other hand, the set {y : ‖ f − g‖ < u} is either

empty or equals Rn+1. We conclude that for any f ∈G the preimages of intervals

(−∞,u) under the function (y0, . . . , yn) 7→ δ
(
(y0, . . . , yn)′, f

)
are Borel sets. Hence, δ

is a Caratéodory function. According to Theorem 3.1.10, the correspondence Ĝ is

weakly measurable.

It is left to check the second condition of Theorem 3.1.8. Let the sequence

{gm}m∈N ⊂ Ĝ (y0, . . . , yn) converge to a limit, ‖gm − g∞‖∞ → 0 for some g∞ ∈ G .

Using θ̂∞(i)= g[i]
m (0, y0, . . . , yi), we observe that∣∣∣g[i]

∞(0, y0, . . . , yi)− θ̂∞(i)
∣∣∣

=
∣∣∣g[i]

∞(0, y0, . . . , yi)− g[i]
m (0, y0, . . . , yi)

∣∣∣
=

∣∣∣g∞
(
g[i−1]
∞ (0, y0, . . . , yi−1), yi

)
−gm

(
g[i−1]

m (0, y0, . . . , yi−1), yi

)∣∣∣
≤

∣∣∣g∞
(
g[i−1]
∞ (0, y0, . . . , yi−1), yi

)
−gm

(
g[i−1]
∞ (0, y0, . . . , yi−1), yi

)∣∣∣
+

∣∣∣gm

(
g[i−1]
∞ (0, y0, . . . , yi−1), yi

)
−gm

(
g[i−1]

m (0, y0, . . . , yi−1), yi

)∣∣∣
≤ ‖g∞− gm‖∞+L

∣∣∣g[i−1]
∞ (0, y0, . . . , yi−1)− g[i−1]

m (0, y0, . . . , yi−1)
∣∣∣

...

≤ ‖g∞− gm‖∞
i∑

k=0
Lk

≤ ‖g∞− gm‖∞
1−L

→ 0 (m →∞) ,

which implies that for any i ∈ {0, . . . ,n−1}

g[i]
∞(0, y0, . . . , yi)= θ̂∞(i) .

We conclude that g∞ ∈ Ĝ (y0, . . . , yn) and thence that for all (y0, . . . , yn) the set

Ĝ (y0, . . . , yn) is closed. The set is furthermore nonempty by the definition of Θ.

We are thus in a position to apply the Kuratowski-Ryll-Narzewski selection

theorem, which concludes the proof. �
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We have collected evidence that a minimizer of the functional Qn can be well

defined on the basis of our observations. The heuristic meaning of the selection

function is merely that it takes the data driven information about the values of

the estimator at a certain finite number of points and augments it to a whole

function. Since the selection function is not unique, there are several possibilities

to draw an estimation curve from our observations. This is quite similar to the

classical isotonic least squares estimator (Barlow et al., 1972).

The object resulting from the following definition will be the subject of the

subsequent asymptotic considerations.

DEFINITION 3.1.11. Let n ∈N+, and suppose that (y0, . . . , yn) 7→ T(y0, . . . , yn) is a

measurable selection function with values in the set of minimizers of the functional

Qn,

T(y0, . . . , yn) ∈ argmin
g∈G

n−1∑
i=0

(
yi+1 − g[i](0, y0, . . . , yi)

)2 .

The least squares estimator m̂n of m that is based on observations Y0(ω), . . . ,Yn(ω)

of n+1 consecutive count variables of the data generating process from Definition

2.1.1 is defined as

m̂n[Y0, . . . ,Yn] := T(Y0, . . . ,Yn) .

By the prior results, the mapping m̂n : Ω→G is well defined and measurable.

3.2 Asymptotic error analysis of the estimator

3.2.1 Preliminary considerations and statement of the main theo-
rem

Having defined an estimator for our problem, we need to evaluate its performance.

We shall do this in terms of an asymptotic error analysis. To that end, we have

to settle on the question which measure of error we lay as a foundation of our

evaluation. It is sensible to put more weight on areas in the domain of m and m̂n

where more observation are made. Therefore, we decide to measure the estimation

error in terms of the L2(π) loss function. Here, as above, π denotes the stationary

distribution of the bivariate data generating process {(λt,Yt)}t∈Z . We set

L(m̂n,m) :=
∫(

m̂n[Y0, . . . ,Yn](x, y)−m(x, y)
)2

π(dx,d y) .
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Suppose that {(λ′
t,Y

′
t )}t∈Z is an independent copy of the data generating process

in the stationary regime. We use this ghost process to derive an alternative

expression of the loss L(m̂n,m) in terms of conditional expectation:

L(m̂n,m)= E
[(

g(λ′
0,Y ′

0)−m(λ′
0,Y ′

0)
)2 ∣∣ m̂n[Y0, . . . ,Yn]= g

]
, a.s.

=:E|m̂n=g
[
g(λ′

0,Y ′
0)−m(λ′

0,Y ′
0)

]2 .

Henceforth we will suppress the dependence m̂n = m̂n[Y0, . . . ,Yn] in the no-

tation at most occasions. However, we should be aware of this dependence as it

implies that L(m̂n,m) is a random variable. We want to analyze the rate of con-

vergence L(m̂n,m)→ 0 as the number of observations tends to infinity. Before we

proceed, we have to decide which of the probabilistic modes of convergence we want

to work with. For our purposes, an examination of the sequence {L(m̂n,m)}n∈N in

terms of convergence in probability seems well suited.

DEFINITION 3.2.1. Let (E,E ,P) be a probability space and {Xn}n∈N a sequence of

random variables Xn : (E,E )→ (R,B). Let {rn}n∈N be a sequence of positive real

numbers, rn ↓ 0. The sequence {Xn} is of order OP (rn) if the sequence {Xn/rn} is

bounded in P, i.e. for any ε> 0, there exists a positive real number K(ε) and an

index n0(ε) such that

sup
n≥n0

P
{∣∣∣ Xn

rn

∣∣∣> K
}
< ε .

We use the notation Xn =OP (rn).

Certainly, Xn = OP (rn) for a positive sequence rn ↓ 0 means that Xn → 0 in

P-measure, since for any ε> 0 and any δ> 0 there are K(ε) and n0(δ,ε) such that

supn≥n0 K rn ≤ δ, and for all n ≥ n0

P
{|Xn| > δ

}≤ P
{|Xn| > rn K

}< ε .

Hence, on our probability space (Ω,A ,P) the relation L(m̂n,m)=OP(rn) implies

that L(m̂n,m) → 0 in P-measure. We will call such a sequence of estimators

{m̂n}n∈N+ consistent with rate
p

rn. We emphasize that in order to prove consis-

tency with a certain rate
p

rn, we need to find a bound for exceedance probabilities

of the form P{L(m̂n,m)> δ2
n}, where {δn} is a sequence in O(

p
rn).

THEOREM 3.2.2. Let {(Yi,λi)}i∈Z be the bivariate data generating process from
Definition 3.1.1. Assume that the parameters M,B,L1,L2 in the definition of the
class G are fixed. For n ∈N+, let m̂n be the least squares estimator for m on the
basis of observations Y0, . . . ,Yn of the count process (cf. Definition 3.1.11). The
sequence {δn}n∈N shall be given by δ(n) = n−1/3 log(n) . Then, for an independent
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copy λ′
0,Y ′

0 of λ0,Y0 it holds that

limsup
n→∞

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
n

}
= 0.

In other words, the sequence of least squares estimators is consistent with rate
n−1/3 logn.

The proof of this claim will be the subject of the remaining section. The

argument is long and technical. At this point we give an outline of the envisioned

strategy. To get a glimpse on the basic thoughts guiding our procedure, we briefly

retreat to the field of regular least squares estimation: let us for a moment assume

that λt is an observable variable. Clearly, in this case the estimator would be

defined as a measurable selection of

m̂n ∈ argmin
g∈G

1
n

n−1∑
i=0

(
Yi+1 − g(λi,Yi)

)2 .

Hence, the fundamental principle of this estimator is that the empirical prediction

error of the estimation m̂n is lower than that of the true function m:

1
n

n−1∑
i=0

(
Yi+1 −m(λi,Yi)

)2 − 1
n

n−1∑
i=0

(
Yi+1 − m̂n(λi,Yi)

)2 ≥ 0. (3.5)

The second important fact is a consequence of the model assumption

E|Fi Yi+1 =λi+1 = m(λi,Yi) , a.s. .

From this assumption we derive for any g ∈G that

E
[(

Yi+1 − g(λi,Yi)
)2 − (

Yi+1 −m(λi,Yi)
)2

]
=E

[(
Yi+1 −m(λi,Yi)+m(λi,Yi)− g(λi,Yi)

)2 − (
Yi+1 −m(λi,Yi)

)2
]

=E
(
g(λi,Yi)−m(λi,Yi)

)2 +2E
[(

m(λi,Yi)− g(λi,Yi)
)
E|Fi

(
Yi+1 −m(λi,Yi)

)]
=E

(
m(λi,Yi)− g(λi,Yi)

)2 . (3.6)

Taken together, equations (3.5) and (3.6) give the following estimate of probabili-

ties:

P
{
L(m̂n,m)> δn

}
≤P

{
E|m̂n[Y0,...,Yn]=g

[(
Y ′

i+1 − g(λ′
i,Y

′
i )

)2 − (
Y ′

i+1 −m(λ′
i,Y

′
i )

)2
]
> δn

}
≤P

{
1
n

n∑
i=1

((
Yi+1 −m(λi,Yi)

)2 − (
Yi+1 − m̂n(λi,Yi)

)2

−E|m̂n[Y0,...,Yn]=g

[(
Y ′

i+1 −m(λ′
i,Y

′
i )

)2 − (
Y ′

i+1 − g(λ′
i,Y

′
i )

)2
])

> δn

}
.
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Since we do not have any anterior knowledge about the value of m̂n[Y0, . . . ,Yn],

the usual strategy consists of finding a probabilistic bound for the sum

1
n

n∑
i=1

((
Yi+1 −m(λi,Yi)

)2 − (
Yi+1 − g(λi,Yi)

)2

−E
[(

Y ′
i+1 −m(λ′

i,Y
′
i )

)2 − (
Y ′

i+1 − g(λ′
i,Y

′
i )

)2
])

uniformly for all g ∈ G . Note that the expectation is not conditioned on the

realization of m̂n[Y0, . . . ,Yn] any more, and technically the ghost sample is not

necessary in this expression. Finding such uniform bounds is the established

strategy in the asymptotic examination of M-estimators, a good expositions of

which can be found in the book of Van der Vaart (2000). Let us try to carry these

ideas over to the case of unobserved intensities λi.

In our model the characteristic feature of the least squares estimator is the

fact that it minimizes the empirical prediction error

g 7→ 1
n

n−1∑
i=0

(
Yi+1 − g[i](0,Y0, . . . ,Yi)

)2

over the class G . In fact, we are equipped with an analogue of inequality (3.5):

1
n

n−1∑
i=0

(
Yi+1 −m[i](0,Y0, . . . ,Yi)

)2 − 1
n

n−1∑
i=0

(
Yi+1 − m̂[i]

n (0,Y0, . . . ,Yi)
)2 ≥ 0. (3.7)

This is the reason why the random functional

f i(g;0,Y0, . . . ,Yi+1) := (
Yi+1 −m[i](0,Y0, . . . ,Yi)

)2 − (
Yi+1 − g[i](0,Y0, . . . ,Yi)

)2

plays a very prominent role in the upcoming argumentation. We will establish in

Lemma 3.2.4 an analogue of equation (3.6):

E|m̂n=g
(− f i(g;0,Y ′

0, . . . ,Y ′
i+1)

)≥ CE|m̂n=g
[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 − o(1) a.s.

for some constant C > 0. What is the meaning of this relation? Suppose that g
was selected as an estimation of m and that the L2(π)-difference between m and g
is large in some sense. Then the above relation says that the expected prediction

error of g[i](0,Y0, . . . ,Yi) is considerably larger than that of m[i](0,Y0, . . . ,Yi), and

the difference between the two prediction errors,

E|m̂n=g
(− f i(g;0,Y ′

0, . . . ,Y ′
0)

)
=E|m̂n=g

[(
Yi+1 − g[i](0,Y0, . . . ,Yi)

)2 − (
Yi+1 −m[i](0,Y0, . . . ,Yi)

)2
]

a.s. ,

is asymptotically at least as large as the distance between m and g. In total this
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means that there exists a function g ∈G such that the difference

1
n

n−1∑
i=t

(
f i(g;0,Y0, . . . ,Yi+1)−E f i(g;0,Y0, . . . ,Yi+1)

)
is large. If we were able to prove that the probability of this event is very small,

we could conclude that the event of m̂n being far away from m has even lower

probability. This will be our line of argument.

3.2.2 Proof of Theorem 3.2.2

Recall that {(λ′
t,Y

′
t )}t∈Z is an independent copy of the data generating process. We

start with two lemmas to establish the relation between the L2(π) risk and the

expectation of the functional f t(g;0,Y0, . . . ,Yt+1) that we mentioned above. In the

following, all equations or inequalities for conditional expectations are understood

to be almost surely with respect to the underlying probability measure.

LEMMA 3.2.3. For a candidate function g ∈G and a natural number t, the follow-
ing inequality holds almost surely:

E|m̂n=g

[(
Y ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2 −

(
Y ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2

]
≥E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2 −3M2Lt
1 . (3.8)

Proof. The following calculations hold with probability one. Define F ′
t canonically

to Ft , and recall the facts E(Y ′
t+1 |F ′

t )=λ′
t+1 = var(Y ′

t+1 |F ′
t ) and λ′

t+1 = m(λ′
t,Y

′
t ).

Hence, for any g ∈G

E
(
(Y ′

t+1 −λ′
t+1) (λ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t ))
)

=E
[
E|F ′

t

(
(Y ′

t+1 −λ′
t+1) (m(λ′

t,Y
′
t )− g[t](0,Y ′

0, . . . ,Y ′
t ))

)]
=E

[
(m(λ′

t,Y
′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )E|F ′

t

(
(Y ′

t+1 −λ′
t+1)

)]
= 0.

This implies that

E|m̂n=g

[(
Y ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2

]
=E|m̂n=g

[(
Y ′

t+1 −λ′
t+1

)+ (
λ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)]2

=E
(
Y ′

t+1 −λ′
t+1

)2 +E|m̂n=g

(
λ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2

.
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In particular,

E

((
Y ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2

)
=E

(
Y ′

t+1 −λ′
t+1

)2 +E
(
λ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2

.

In the following computation, we first plug in the previous two statements and

subsequently use the established relation λ′
t+1 = m[t](λ′

0,Y ′
0, . . . ,Y ′

t ) and the con-

traction property of m. We conclude

E|m̂n=g

[(
Y ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2

−
(
Y ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2 ]

=E|m̂n=g

(
λ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2 +E

(
Y ′

t+1 −λ′
t+1

)2

−E(
Y ′

t+1 −λ′
t+1

)2 −E
(
λ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2

=E|m̂n=g

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )
)2

−E
(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )︸ ︷︷ ︸
| · |≤Lt

1|λ′
0−0|

)2

≥E|m̂n=g

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )
)2 −L2t

1 ‖λ′
0 −0‖2

∞

≥E|m̂n=g

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )
)2 −M2L2t

1 .

This is almost the assertion. We proceed by showing

E|m̂n=g

[
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )
]2

≥E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2 −2 M2Lt
1 . (3.9)

This is an immediate consequence of the contraction property of m. We observe

E|m̂n=g

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )
)2

=E|m̂n=g

[(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )
)

+(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)]2

=E|m̂n=g

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )
)2

︸ ︷︷ ︸
≥0

+E|m̂n=g

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2

+E|m̂n=g

[
2

(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )
)

︸ ︷︷ ︸
| · |≤M Lt

1

43



·
(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)]
≥E|m̂n=g

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2

−2 MLt
1 sup

(y0,...,yt)∈Rt+1

∣∣m[t](0, y0, . . . , yt)− g[t](0, y0, . . . , yt)
∣∣

≥E|m̂n=g

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2 −2 M2Lt
1 .

This proves inequality (3.9). Since Lt
1 > L2t

1 , we obtain in summary

E|m̂n=g

[(
Y ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2 −

(
Y ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2

]
≥E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2 − (
M2L2t

1 +2M2Lt
1
)︸ ︷︷ ︸

≤3M2Lt
1

. �

LEMMA 3.2.4. Suppose that Ω0 ∈ F is the set of all ω ∈ Ω such that for g ∈ G ,
ε ∈ (0,1) and some natural number t

ε
(
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2
)1/2 > M Lt

1 . (3.10)

Then for almost all ω ∈Ω0 the following inequality holds:

E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2

> (1−ε)2

12
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 −2 M2Lt
1 (3.11)

Proof. The following arguments hold almost surely. First of all, note that

E|m̂n=g
[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 =E|m̂n=g
[
m(λ′

t+1,Y ′
t+1)− g(λ′

t+1,Y ′
t+1)

]2

by stationarity. With two successive applications of the triangle inequality, we

insert ∓g[t+1](λ′
0,Y ′

0, . . . ,Y ′
t+1) and ∓g[t](λ′

1,Y ′
1, . . . ,Y ′

t+1) respectively:

[
E|m̂n=g

(
m(λ′

t+1,Y ′
t+1)− g(λ′

t+1,Y ′
t+1)

)2
]1/2

≤
[
E|m̂n=g

(
m(λ′

t+1,Y ′
t+1)− g[t+1](λ′

0,Y ′
0, . . . ,Y ′

t+1)
)2

]1/2

+
[
E|m̂n=g

(
g[t+1](λ′

0,Y ′
0, . . . ,Y ′

t+1)− g(λ′
t+1,Y ′

t+1)
)2

]1/2

≤
[
E|m̂n=g

(
m(λ′

t+1,Y ′
t+1)− g[t](λ′

1,Y ′
1, . . . ,Y ′

t+1)
)2

]1/2
(3.12)

+
[
E|m̂n=g

(
g[t](λ′

1,Y ′
1, . . . ,Y ′

t+1)

−g[t+1](λ′
0,Y ′

0, . . . ,Y ′
t+1)

)2
]1/2

(3.13)
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+
[
E|m̂n=g

(
g[t+1](λ′

0,Y ′
0, . . . ,Y ′

t+1)− g(λ′
t+1,Y ′

t+1)
)2

]1/2
, (3.14)

all three addends of which are treated separately. Regarding (3.13), note that

m̂n ∈G for any ω. Hence, the estimation has the contraction property, and for any

ω ∈Ω ∣∣∣m̂[t]
n (λ′

1,Y ′
1, . . . ,Y ′

t+1)− m̂[t+1]
n (λ′

0,Y ′
0, . . . ,Y ′

t+1)
∣∣∣

≤ L1

∣∣∣m̂[t−1]
n (λ′

1,Y ′
1, . . . ,Y ′

t )− m̂[t]
n (λ′

0,Y ′
0, . . . ,Y ′

t )
∣∣∣

≤ L2
1

∣∣∣m̂[t−2]
n (λ′

1,Y ′
1, . . . ,Y ′

t−1)− m̂[t−1]
n (λ′

0,Y ′
0, . . . ,Y ′

t−1)
∣∣∣

...

≤ Lt
1

∣∣∣m̂n(λ′
1,Y ′

1)− m̂[1]
n (λ′

0,Y ′
0,Y ′

1)
∣∣∣

≤ M Lt
1 .

To treat the term (3.14), we apply the contraction property of m̂n once to conclude∣∣∣m̂[t+1]
n (λ′

0,Y ′
0, . . . ,Y ′

t+1)− m̂n(λ′
t+1,Y ′

t+1)
∣∣∣

=
∣∣∣m̂n

(
m̂[t]

n (λ′
0,Y ′

0, . . . ,Y ′
t ),Y ′

t+1

)
− m̂n(λ′

t+1,Y ′
t+1)

∣∣∣
≤ L1

∣∣∣m̂[t]
n (λ′

0,Y ′
0, . . . ,Y ′

t )−λ′
t+1

∣∣∣
= L1

∣∣∣m̂[t]
n (λ′

0,Y ′
0, . . . ,Y ′

t )−m(λ′
t,Y

′
t )

∣∣∣ .

Plugging the previous two estimates into the lines (3.13) and (3.14), we obtain[
E|m̂n=g

(
m(λ′

t+1,Y ′
t+1)− g(λ′

t+1,Y ′
t+1)

)2
]1/2

≤
[
E|m̂n=g

(
m(λ′

t+1,Y ′
t+1)− g[t](λ′

1,Y ′
1, . . . ,Y ′

t+1)
)2

]1/2

+M Lt
1

+L1

[
E|m̂n=g

(
g[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m(λ′
t,Y

′
t )

)2
]1/2

.

Now we want to use the stationarity of the process {(λ′
t,Y

′
t )}. Since the data

generating process is in the stationary regime, we conclude that[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g(λ′

t,Y
′
t )

)2
]1/2

≤
[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g[t](λ′

0,Y ′
0, . . . ,Y ′

t )
)2

]1/2

+M Lt
1

+L1

[
E|m̂n=g

(
g[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m(λ′
t,Y

′
t )

)2
]1/2
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=M Lt
1 + (1+L1)

[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g[t](λ′

0,Y ′
0, . . . ,Y ′

t )
)2

]1/2
.

Using the condition

M Lt
1 < ε

[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g(λ′

t,Y
′
t )

)2
]1/2

as well as the model assumption L1 < 1, yields

(1−ε)
[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g(λ′

t,Y
′
t )

)2
]1/2

< 2
[
E|m̂n=g

(
m(λ′

t,Y
′
t )− g[t](λ′

0,Y ′
0, . . . ,Y ′

t )
)2

]1/2
. (3.15)

Rewriting

m(λ′
t,Y

′
t )= m[t](λ′

0,Y ′
0, . . . ,Y ′

t )

and inserting ∓m[t](0,Y ′
0, . . . ,Y ′

t ) and ∓g[t](0,Y ′
0, . . . ,Y ′

t ) respectively yields

(
m(λ′

t,Y
′
t )− g[t](λ′

0,Y ′
0, . . . ,Y ′

t )
)2

=
(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )− g[t](λ′
0,Y ′

0, . . . ,Y ′
t )

)2

=
(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )

+ m[t](0,Y ′
0, . . . ,Y ′

t )− g[t](0,Y ′
0, . . . ,Y ′

t )

+ g[t](0,Y ′
0, . . . ,Y ′

t )− g[t](λ′
0,Y ′

0, . . . ,Y ′
t )

)2

≤3
(
m[t](λ′

0,Y ′
0, . . . ,Y ′

t )−m[t](0,Y ′
0, . . . ,Y ′

t )︸ ︷︷ ︸
| · |≤Lt

1 M

)2

+3
(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2

+3
(

g[t](0,Y ′
0, . . . ,Y ′

t )− g[t](λ′
0,Y ′

0, . . . ,Y ′
t )︸ ︷︷ ︸

| · |≤Lt
1 M

)2

=6M2 L2 t
1 +3

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2
.

Therefore, inequality (3.15) changes to

(1−ε)2

4
E|m̂n=g

(
m(λ′

t,Y
′
t )− g(λ′

t,Y
′
t )

)2

< 6M2L2t
1 +3E|m̂n=g

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2
.
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Finally, we obtain inequality (3.11) using the fact that L2t
1 < Lt

1:

(1−ε)2

12
E|m̂n=g

(
m(λ′

t,Y
′
t )− g(λ′

t,Y
′
t )

)2 −2 M2Lt
1

<E|m̂n=g

(
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

)2
. �

The last computations required some lengthy displays. The responsible quan-

tities will appear frequently during the course of this chapter. We introduce an

abbreviating notation to facilitate the further proceedings.

DEFINITION 3.2.5. For integers k ≤ l, we define the vectors Y l
k as

Y l
k := (0,Yk, . . . ,Yl) .

For an element g ∈G , the functional f t(g;Y i+1
i−t ) is defined as

f t(g;Y i+1
i−t ) := (

Yi+1 −m[t](Y i
i−t)

)2 − (
Yi+1 − g[t](Y i

i−t)
)2

= (
Yi+1 −m[t](0,Yi−t, . . . ,Yi)

)2

−(
Yi+1 − g[t](0,Yi−t, . . . ,Yi)

)2 .

With respect to the ghost process {Y ′
t }t∈Z, we stipulate the canonical notation

Y ′′′ l
k := (0,Y ′

k, . . . ,Y ′
l ).

To get acquainted with the new notation, we use it to summarize our current

state of knowledge that we acquired after Lemma 3.2.3 and Lemma 3.2.4. Recall

that L1 < 1. This implies that limt→∞ Lt
1 = 0. The combination of Lemma 3.2.3

and Lemma 3.2.4 enables us to draw the following conclusion. For t →∞ and

almost all ω ∈Ω such that the condition (3.10) in Lemma 3.2.4 is satisfied, the

expression

E|m̂n=g

[(
Y ′

t+1 − g[t](0,Y ′
0, . . . ,Y ′

t )
)2 − (

Y ′
t+1 −m[t](0,Y ′

0, . . . ,Y ′
t )

)2
]

is an upper bound for the loss L(m̂n,m), up to a negligible term. In the new

notation, we have shown that

E|m̂n=g
[− f t(g;Y ′′′ i+1

i−t )
]≥ (1−ε)2

12
L(m̂n,m)− o(1) . (3.16)

Furthermore, inequality (3.7) can now be written as

n−1∑
i=0

f i(m̂n;Y i+1
0 )≥ 0. (3.17)

The next proposition gives an estimate of the difference between the normal-
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ized sum 1
n

∑n−1
i=0 f i(g;Y i+1

0 ), where the number of iterations applied to g and m
change with the index i, and the sum 1

n−t
∑n−1

i=t f t(g;Y i+1
i−t ), where the number of

iterations stays fixed for each addend. For our purposes, we need this estimate

to hold uniformly over the class G . This will be the first of many instances in

this proof where we deal with expressions of the form supg∈G0 f t(g;Y i+1
i−t ) for some

subset G0 ⊂G and some iteration index 0≤ t ≤ i. Due diligence requires that we

ensure measurability of these expressions before we proceed. At first glance, this

is not obvious since the class G0 may in general be uncountable. However, the

class G is separable and the functional f t( · ,Y i+1
i−t ) continuous, which allows to

take the supremum over a countable subset.

LEMMA 3.2.6. Let T : R→ R be a continuous function. For any natural number
0≤ t ≤ i and any sub-class G0 ⊂G , the expression supg∈G0 T( f t(g;Y i+1

i−t )) is (F −B)

measurable.

Proof. We show that the functional g 7→ f t(g,Y i+1
i−t ) is continuous in g ∈ (G ,‖ ·‖∞).

Let g,h ∈G . We observe

∣∣ f t(g;Y i+1
i−t )− f t(h;Y i+1

i−t )
∣∣

=
∣∣∣(Yi+1 −m[t](Y i

i−t)
)2 − (

Yi+1 − g[t](Y i
i−t)

)2

−(
Yi+1 −m[t](Y i

i−t)
)2 + (

Yi+1 −h[t](Y i
i−t)

)2
∣∣∣

=
∣∣∣2Yi+1

(
g[t](Y i

i−t)−h[t](Y i
i−t)

)+ [
h[t](Y i

i−t)
]2 − [

g[t](Y i
i−t)

]2
∣∣∣

≤ (2Yi+1 +2M)
∣∣g[t](Y i

i−t)−h[t](Y i
i−t)

∣∣ .

We refer to the calculations preceding (3.3) to conclude that

∣∣g[t](Y i
i−t)−h[t](Y i

i−t)
∣∣≤ ‖g−h‖∞

∞∑
i=0

Li
1 =

‖g−h‖∞
1−L1

.

This proves continuity. Furthermore, (G ,‖ ·‖∞) is separable because it is totally

bounded (Aliprantis and Border, 1994, Lemma 3.19). Therefore, there exists

a countable dense subset G̃ ⊂ G . We show that the set G̃ can be chosen such

that G̃ ∩G0 is dense in G0. Let k ∈ N be arbitrary. Since G is totally bounded,

there exists a set Xk = {x(1,k), . . . , x(nk ,k)} ⊂ G such that the union of the balls⋃nk
i=1 B∞(x(i,k),2−k) covers G . For any i ∈ {1, . . . ,nk}, choose a representative g(i,k)

0

from the set B∞(x(i,k),2−k)∩G0. If this set is empty, simply take g(i,k)
0 := x(i,k). The

set

G̃ :=
∞⋃

k=1

{
x(1,k), g(1,k)

0 , . . . , x(nk ,k), g(nk ,k)
0

}
is a countable dense subset of G , and G̃ ∩G0 is dense in G0.
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Assume now that supg∈G0 T( f t(g;Y i+1
i−t )) ≥ x for some x ∈ R. Let ε > 0 be ar-

bitrary. There exists g∗ ∈ G0 such that T( f t(g∗;Y i+1
i−t )) > x− ε

2 . By continuity of

T ◦ f t( · ,Y i−1
i−t ) and the fact that G̃ ∩G0 is dense in G0, there exists g̃ ∈ G̃ ∩G0 such

that |T( f t(g∗;Y i+1
i−t ))−T( f t( g̃;Y i+1

i−t ))| < ε
2 . It follows that

sup
g∈G0∩G̃

T( f t(g;Y i+1
i−t ))≥ T( f t( g̃;Y i+1

i−t ))

≥ T( f t(g∗;Y i+1
i−t ))−|T( f t(g∗;Y i+1

i−t ))−T( f t( g̃;Y i+1
i−t ))|

> x−ε.

Therefore, we conclude that supg∈G0∩G̃ T( f t(g;Y i+1
i−t ))≥ x. The reverse implication

follows from G̃ ∩G0 ⊂G0. We conclude that{
sup
g∈G0

T( f t(g;Y i+1
i−t ))≥ x

}
=

{
sup

g∈G0∩G̃

T( f t(g;Y i+1
i−t ))≥ x

}
=

∞⋂
k=1

⋃
g∈G̃∩G0

{
T( f t(g;Y i+1

i−t ))> x−2−k
}
∈F . �

PROPOSITION 3.2.7. With the notation from Definition 3.2.5, we have the following
estimate:

E sup
g∈G

∣∣∣ 1
n

n−1∑
i=0

f i(g;Y i+1
0 )− 1

n− t

n−1∑
i=t

f t(g;Y i+1
i−t )

∣∣∣. t
n
+Lt

1

Proof. First of all,

sup
g∈G

∣∣∣ 1
n

n−1∑
i=0

f i(g;Y i+1
0 )− 1

n− t

n−1∑
i=t

f t(g;Y i+1
i−t )

∣∣∣
≤ 1

n

t−1∑
i=0

sup
g∈G

∣∣ f i(g;Y i+1
0 )

∣∣+ 1
n− t

n−1∑
i=t

sup
g∈G

∣∣ n− t
n

f i(g;Y i+1
0 )− f t(g;Y i+1

i−t )
∣∣ . (3.18)

We bound the expectation of the first sum on the right hand side of (3.18):

E
1
n

t−1∑
i=0

sup
g∈G

∣∣ f i(g;Y i+1
0 )

∣∣
=E

1
n

t−1∑
i=0

sup
g∈G

∣∣∣ (
Yi+1 −m[i](Y i

0 )
)2 − (

Yi+1 − g[i](Y i
0 )

)2
∣∣∣

≤E
1
n

t−1∑
i=0

sup
g∈G

2
(
Yi+1 − g[i](Y i

0 )
)2

= 2
n

t−1∑
i=0

E

[
E|Fi

[
sup
g∈G

(
Yi+1 −E|Fi Yi+1 +E|Fi Yi+1 − g[i](Y i

0
)2

]]

= 2
n

t−1∑
i=0

E

[
E|Fi

[
sup
g∈G

((
Yi+1 −E|Fi Yi+1

)2 + (
E|Fi Yi+1 − g[i](Y i

0 )
)2
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+2
(
Yi+1 −E|Fi Yi+1

)(
E|Fi Yi+1 − g[i](Y i

0 )
))]]

≤ 2
n

t−1∑
i=0

E

[
E|Fi

[(
Yi+1 −E|Fi Yi+1

)2 +sup
g∈G

(
E|Fi Yi+1 − g[i](Y i

0 )
)2

+2sup
g∈G

{(
Yi+1 −E|Fi Yi+1

)(
E|Fi Yi+1 − g[i](Y i

0 )
)}]]

= 2
n

t−1∑
i=0

E

[
var|Fi (Yi+1)︸ ︷︷ ︸

=λi≤M

+E|Fi sup
g∈G

(
λi+1 − g[i](Y i

0 )
)2︸ ︷︷ ︸

≤M2

+2sup
g∈G

[(
Yi+1 −λi+1

)(
λi+1 − g[i](Y i

0 )
)]]

.

Furthermore,

E|Fi

(
sup
g∈G

[(
Yi+1 −λi+1

)(
λi+1 − g[i](Y i

0 )
)])

=E|Fi

((
Yi+1 −λi+1

)[
1{Yi+1−λi+1≥0} sup

g∈G

(
λi+1 − g[i](Y i

0 )
)︸ ︷︷ ︸

≤M

+1{Yi+1−λi+1<0} inf
g∈G

(
λi+1 − g[i](Y i

0 )
)︸ ︷︷ ︸

≥−M

])
≤ ME|Fi

[(
Yi+1 −λi+1

)(
1{Yi+1−λi+1≥0} −1{Yi+1−λi+1<0}

)]
= ME|Fi

∣∣Yi+1 −λi+1
∣∣

≤ M
[
E|Fi

(
Yi+1 −λi+1

)2
]1/2

= M
√

var|Fi (Yi+1)

≤ M3/2 .

Thus, we can bound the expectation of the first sum on the right hand side of

(3.18) by a multiple of t/n:

E
1
n

t−1∑
i=0

sup
g∈G

∣∣ f i(g;Y i+1
0 )

∣∣≤ 2(M+M2 +2 M3/2)
t
n

.

In order to bound the second sum, we use that for any g and i > t∣∣∣(g[i](Y i
0 )

)2 − (
g[t](Y i

i−t)
)2

∣∣∣≤ 2M
∣∣g[i](Y i

0 )− g[t](Y i
i−t)

∣∣
= 2M

∣∣∣g[t](g[i−t](Y i−t−1
0 ),Yi−t, . . . ,Yi

)
−g[t](0,Yi−t, . . . ,Yi

)∣∣∣
≤ 2M Lt

1
∣∣g[i−t](Y i−t−1

0 )
∣∣

≤ 2M2Lt
1 .
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We can conclude,

E sup
g∈G

∣∣∣ n− t
n

(
Yi+1 − g[i](Y i

0 )
)2 − (

Yi+1 − g[t](Y i
i−t)

)2
∣∣∣

=E sup
g∈G

∣∣∣∣( n− t
n

−1
)
Y 2

i+1 +
n− t

n

((
g[i](Y i

0 )
)2 − (

g[t](Y i
i−t)

)2
)

︸ ︷︷ ︸
| · |≤2M2Lt

1

+( n− t
n

−1
)(

g[t](Y i
i−t)

)2

−2Yi+1

( n− t
n

(
g[i](Y i

0 )− g[t](Y i
i−t)

)︸ ︷︷ ︸
| · |≤M Lt

1

+( n− t
n

−1
)

g[t](Y i
i−t)

)∣∣∣∣
≤E

[
t
n

Y 2
i+1 +

n− t
n

2M2Lt
1 +

t
n

M2 +2Yi+1

( n− t
n

MLt
1 +

t
n

M
)]

.

By E(Y 2
i+1 |Fi) = var(Yi+1 |Fi)+

(
E(Yi+1 |Fi)

)2 ≤ M + M2 (a.s.), the last line is

bounded by

t
n

[
M+4 M2 +2 M3]+Lt

1
[(

4 M2 +2 M3) n− t
n

]
.

t
n
+Lt

1 .

Since m ∈G , we can use the estimate∣∣∣ n− t
n

(
Yi+1 −m[i](Y i

0 )
)2 − (

Yi+1 −m[t](Y i
i−t)

)2
∣∣∣

≤ sup
g∈G

∣∣∣ n− t
n

(
Yi+1 − g[i](Y i

0 )
)2 − (

Yi+1 − g[t](Y i
i−t)

)2
∣∣∣ .

Thus, we obtain the desired estimate in virtue of

E sup
g∈G

∣∣∣ n− t
n

f i(g;Y i+1
0 )− f t(g;Y i+1

i−t )
∣∣∣

= E sup
g∈G

∣∣∣ n− t
n

(
Yi+1 −m[i](Y i

0 )
)2 − n− t

n
(
Yi+1 − g[i](Y i

0 )
)2

−(
Yi+1 −m[t](Y i

i−t)
)2 + (

Yi+1 − g[t](Y i
i−t)

)2
∣∣∣

≤ E sup
g∈G

[∣∣∣ n− t
n

(
Yi+1 − g[i](Y i

0 )
)2 − (

Yi+1 − g[t](Y i
i−t)

)2
∣∣∣

+
∣∣∣ n− t

n
(
Yi+1 −m[i](Y i

0 )
)2 − (

Yi+1 −m[t](Y i
i−t)

)2
∣∣∣]

≤ 2E sup
g∈G

∣∣∣ n− t
n

(
Yi+1 − g[i](Y i

0 )
)2 − (

Yi+1 − g[t](Y i
i−t)

)2
∣∣∣

.
t
n
+Lt

1 . �

We are prepared to formulate the first essential lemma in the asymptotic

analysis of the least squares estimator. It combines inequalities (3.16) and (3.17)

to derive a first estimate on the exceedance probability of the risk L(m̂n,m).
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LEMMA 3.2.8. Let δ = δ(n) = n−1/3 logn be as in Theorem 3.2.2 and t = t(n) =
− 2

3logL1
logn. Then there exists a positive constant γ> 0 such that for almost all

n ∈N

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}

≤P
∞⋃

k=0

{
sup
g∈G :

E[m[t](Y t
0 )−g[t](Y t

0 )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;Y i+1

i−t )−E f t(g;Y i+1
i−t )

)> 22k−2γδ2
}

+P
{
∆n > γδ2

4

}
,

where E∆n. t
n +Lt

1 .

Proof. We see that Lt
1 = e− log(L1) 2

3log(L1) log(n) = n−2/3 and conclude that for some

ε ∈ (0,1) the relation εδ> MLt
1 holds for almost all n ∈N. Hence, there exists a

number n0 such that on the set

Ω0 :=
{
ω ∈Ω : E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}

the condition of Lemma 3.2.4 is satisfied for all n ∈ N with n > n0. As a conse-

quence, there exists a number n1 ≥ n0 such that for almost all ω ∈Ω0 we obtain

the following two relations for all n ∈N with n > n1. As a consequence of Lemma

3.2.4,

E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2

≥ (1−ε)2

12
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 −2 M2Lt
1

> (1−ε)2

12
δ2 −2 M2Lt

1︸ ︷︷ ︸
=o(δ2)

≥ (1−ε)2

24︸ ︷︷ ︸
:=γ

δ2 , (3.19)

since limsupn→∞2M2Lt
1/δ2 = limsupn→∞2M (logn)−2 = 0, and therefore 2M2Lt

1 <
γδ2 for almost all n ∈N. By Lemma 3.2.3 and the fact that limsupn→∞3M2Lt

1/δ2 <
γ/2, we obtain the second important relation:

E|m̂n=g

[ =− f t(g;Y ′′′ t+1
0 )︷ ︸︸ ︷(

Y ′
t+1 − g[t](0,Y ′

0, . . . ,Y ′
t )

)2 −
(
Y ′

t+1 −m[t](0,Y ′
0, . . . ,Y ′

t )
)2 ]

≥E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2 −3M2Lt
1

>E|m̂n=g

[
m[t](0,Y ′

0, . . . ,Y ′
t )− g[t](0,Y ′

0, . . . ,Y ′
t )

]2 − γ

2
δ2 (3.20)
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for almost all n ∈N. By the preceding two ω-wise relations, we obtain for n > n1

that Ω0 is, up to a null set, contained in the set of all ω such that the relations

(3.19) and (3.20) hold. Using the abbreviating notation
(
0,Y ′

0, . . . ,Y ′
t
)=: Y ′′′ t

0 from

Definition 3.2.5, the monotonicity of the probability measure P lets us conclude

that

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}

≤P

{
E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 > γδ2 ; by (3.19)

E|m̂n=g
[− f t(g;Y ′′′ t+1

0 )
]>E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 − γ

2
δ2

}
, by (3.20)

for n ∈N with n > n1. By the definition of the least squares estimator, we have the

relation

n−1∑
i=0

f i(m̂n;Y i+1
0 )=

n−1∑
i=0

(
Yi+1 −m[i](Y i

0)
)2 −

n−1∑
i=0

(
Yi+1 − m̂[i]

n (Y i
0)

)2 ≥ 0. (3.21)

Note that in this relation we have to use the original sample Y0, . . . ,Yn as op-

posed to the ghost sample Y ′
0, . . . ,Y ′

n since the least squares estimator is based on

observations of the original count process. As a consequence of relation (3.21),

P

{
E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 > γδ2 ;

E|m̂n=g
[− f t(g;Y ′′′ t+1

0 )
]>E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 − γ

2
δ2

}
≤P

{
E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 > γδ2 ;

1
n

n−1∑
i=0

f i(m̂n;Y i+1
0 )︸ ︷︷ ︸

≥0, by (3.21)

−E|m̂n=g f t(g;Y ′′′ t+1
0 )>E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 − γ

2
δ2

}
.

So far, the event inside the probability concerns the behavior of the specific

function m̂n ∈ G . Of course, any event describing that a specific g0 ∈ G has a

certain property is contained in the event that there exists a function g ∈G that

has the described property. The argument becomes clearer if we use the fact that

by independence of {Yi} and {Y ′
i }

E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 =
∫[

m[t](y)− m̂[t]
n (y)

]2
PY ′′′ t

0 (d y) a.s.

and

E|m̂n=g f t(g;Y ′′′ t+1
0 )=

∫
f t(m̂n; y) PY ′′′ t+1

0 (d y) a.s. .
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Call Ω1 ⊂Ω the set of ω for which the two relations∫[
m[t](y)− m̂[t]

n (y)
]2

PY ′′′ t
0 (d y)> γδ2

and

1
n

n−1∑
i=0

f i(m̂n;Y i+1
0 )−

∫
f t(m̂n; y) PY ′′′ t+1

0 (d y)

>
∫[

m[t](y)− m̂[t]
n (y)

]2
PY ′′′ t

0 (d y)− γ

2
δ2

hold. Because m̂n is always in G , the set Ω1 is contained in the set of all ω for

which there exists some function g ∈G such that∫[
m[t](y)− g[t](y)

]2
PY ′′′ t

0 (d y)> γδ2

and

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−

∫
f t(g; y) PY ′′′ t+1

0 (d y)

>
∫[

m[t](y)− g[t](y)
]2

PY ′′′ t
0 (d y)− γ

2
δ2 .

Note that the integrals
∫[

m[t](y)− g[t](y)
]2

PY ′′′ t
0 (d y) and

∫
f t(g; y) PY ′′′ t+1

0 (d y) do

not dependent any more on the original sample Y0, . . . ,Yn. This allows us to write

them almost surely as unconditional expectations. Moreover, we can use that {Yi}

and {Y ′
i } have the same distribution to take these unconditional expectations with

respect to {Yi} as opposed to {Y ′
i }:∫[

m[t](y)− g[t](y)
]2

PY ′′′ t
0 (d y)=E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2

∫
f t(g; y) PY ′′′ t+1

0 (d y)=E f t(g;Y t+1
0 ) .

We obtain the bound

P

{
E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 > γδ2 ;

1
n

n−1∑
i=0

f i(m̂n;Y i+1
0 )−E|m̂n=g f t(g;Y ′′′ t+1

0 )>E|m̂n=g

[
m[t](Y ′′′ t

0)− g[t](Y ′′′ t
0)

]2 − γ

2
δ2

}
≤P

{
∃ g ∈G : E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2 > γδ2 ; (3.22)

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−E f t(g;Y t+1

0 )>E
[
m[t](Y t

0 )− g[t](Y t
0 )

]2 − γ

2
δ2

}
.
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Now we use the fact{
E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2 > δ2γ

}
=

∞⋃
k=0

{
22k+2δ2γ≥E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2 > 22kδ2γ

}

to write (3.22) further as

P
∞⋃

k=0

{
∃ g ∈G : 22k+2γδ2 ≥E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2 > 22kγδ2 ;

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−E f t(g;Y t+1

0 )>E
[
m[t](Y t

0 )− g[t](Y t
0 )

]2

︸ ︷︷ ︸
>22kγδ2 in this event

−γ

2
δ2

}

≤P
∞⋃

k=0

{
∃ g ∈G : 22k+2γδ2 ≥E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2
;

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−E f t(g;Y t+1

0 )> 22k−1γδ2
}

≤P
∞⋃

k=0

{
sup
g∈G :

E[m[t](Y t
0 )−g[t](Y t

0 )]2≤22k+2γδ2

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−E f t(g;Y t+1

0 )> 22k−1γδ2
}

.

This is almost the statement of the lemma. We just have to substitute the term
1
n

∑n−1
i=0 f i(g;Y i+1

0 ) by 1
n−t

∑n−1
i=t f t(g;Y i+1

i−t ), which we do with the help of Proposition

3.2.7. We invoke the triangle inequality for probabilities and the fact that by

stationarity E f t(g;Y t+1
0 )=E f t(g;Y i+1

i−t ) for i ≥ t to conclude

P
∞⋃

k=0

{
sup
g∈G :

E[m[t](Y t
0 )−g[t](Y t

0 )]2≤22k+2γδ2

1
n

n−1∑
i=0

f i(g;Y i+1
0 )−E f t(g;Y t+1

0 )> 22k−1γδ2
}

≤P
∞⋃

k=0

{
sup
g∈G :

E[m[t](Y t
0 )−g[t](Y t

0 )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;Y i+1

i−t )−E f t(g;Y i+1
i−t )

)> 22k−2γδ2
}

+P
{

sup
g∈G

∣∣∣ 1
n

n−1∑
i=0

f i(g;Y i+1
0 )− 1

n− t

n−t∑
i=t

f t(g;Y i+1
i−t )

∣∣∣︸ ︷︷ ︸
=:∆n

> γδ2

4

}

This yields the assertion in view of Proposition 3.2.7. �

The last lemma provides the insight that the crucial step in proving closeness

of m̂n to m consists of finding a uniform bound for the trajectories of the stochastic

process

{ 1
n− t

n−1∑
i=t

(
f t(g;Y i+1

i−t )−E f t(g;Y i+1
i−t )

)}
g∈G
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in the balls

Gk :=
{

g ∈G : E
[
m[t](Y t

0 )− g[t](Y t
0 )

]2 ≤ 22k+2γδ2
}

.

This fact reflects the underlying idea outlined at the beginning of the section.

Suppose that the trajectories of the process are smooth in the balls Gk in such

a way that their fluctuations around zero are reasonably small at the periphery

of the balls Gk, and decrease further as we move from the periphery towards

the center. Then the approximation of E f (g;Y t+1
0 ) by its empirical analogue is

sufficiently accurate to distinguish an element g ∈ G from the true function m,

even if g is close to m. In this case it is a justified belief that m̂n is close to m.

The rest of the section is devoted to bound the oscillations of the above process

in probability. This is a classical object of interest in the theory of empirical

processes. The available tools from the standard theory work well for processes

based on i.i.d. samples of random variables. In order to use these tools, we once

more employ the coupling method. The aim is to find a coupling (S,Σ,P, (V ′,V∗))

such that V ′ has the same distribution as
{
Y i+1

i−t
}

i∈Z, and the process V∗ is a

sequence of q-dependent random variables. Once we have established such a

coupling, we can in a first step replace P{Y i+1
i−t }i∈N by P{V ′

i }i∈N , and further bound

P{V ′
i }i∈N by PV∗ +dTV (P{V ′

i }i∈N ,P{V∗
i }i∈N ). The merit of this procedure is that we end

up dealing with independent blocks of random variables allowing us to apply the

tools from classical empirical process theory. The total variation error term will

be negligible due to the mixing property of the process
{
Y i+1

i−t
}

i∈Z.

The described procedure is an established strategy in the asymptotic analysis

of absolutely regular processes (Doukhan, 1994; Doukhan et al., 1995). Doukhan

(1994, page 36) employed it to prove an exponential tail inequality for sums

of absolutely regular random sequences. As uniform mixing implies absolute

regularity (Doukhan, 1994, page 4), we may adapt the idea to our setting.

LEMMA 3.2.9. Let
{
Y i+1

i−t : i ∈Z
}

be the sequence of random variables on (Ω,F ,P)

that is defined by Y i+1
i−t = (0,Yi−t, . . . ,Yi+1). For q ∈N+, there exists a probability

space (S,Σ,P), and on this space two processes V ′ = {
V ′

i
}

i∈Z and V∗ = {
V∗

t+i
}

i∈N
with values in Rt+3,

V ′
i =

(
0,Y ′

i−t, . . . ,Y
′
i+1

)
V∗

i = (
0,Y ∗

i−t, . . . ,Y
∗
i+1

)
,

such that the following statements hold.

(i) The process V ′ has the same distribution as
{
Y i+1

i−t
}

, i.e. PV ′ =P

{
Y i+1

i−t

}
.
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(ii) The process V∗ is q-dependent, i.e. the block sequences,{
V∗

2 j =
(
V∗

t+2 jq,V∗
t+2 jq+1, . . . ,V∗

t+2 jq+q−1
)
; j ∈N

}
{
V∗

2 j+1 =
(
V∗

t+(2 j+1)q,V∗
t+(2 j+1)q+1, . . . ,V∗

t+(2 j+1)q+q−1
)
; j ∈N

}
are i.i.d., respectively.

(iii) P
(
V ′

jq+1,...,V ′
jq+q

)
= P

(
V∗

jq+1,...,V∗
jq+q

)
for any j.

Furthermore, let φt(n) be the nth coefficient of uniform mixing corresponding to
the process

{
Y i+1

i−t
}
. Then

P
{∃ i ∈ {t, . . . ,n−1} : V ′

i 6=V∗
i

}≤ n− t
q

φt(q) .

Proof. Apply Lemma A.1.2. �

Note that we applied the coupling to
{
Y i+1

i−t
}

and not to the original count

process {Yi}, which means that the Y ∗
j only formally describe the coordinates

of the V∗
i . In order to operate with analogues of Y i

i−t on the coupling space

(S,Σ,P), we need to introduce the variables Z∗
i = (0,Y ∗

i−t, . . . ,Y
∗
i ) that are to be

understood canonically to Y i
i−t = (0,Yi−t, . . . ,Yi). Both Y ∗

i and Z∗
i are formally

defined as projections of V∗
t . By measurability of theses projections, we conclude

that PY ∗
i =PYi as well as PZ∗

i =PY i
i−t .

In the following proceedings, we have to distinguish strictly between the two

probability spaces (Ω,F ,P) and (S,Σ,P). On the first space, the original data

generating process is defined. The second one is a mere technical construction to

facilitate the dependence structure in virtue of the previous coupling lemma and

thereby enabling further probabilistic bounds. Whenever a line is concerned with

the original process {Yi}, we have to use the measure P and the corresponding

expectation operator E. On the other hand, when we deal with the auxiliary

process {V∗
i }, we must use P and the corresponding expectation E.

The next corollary shows how we use Lemma 3.2.9 to translate the bound from

Lemma 3.2.8 in a bound involving P and {V∗
i }.

COROLLARY 3.2.10. Let E denote the expectation with respect to P. Then,

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}

≤
∞∑

k=0
P

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)> 22k−2γδ2
}

+n− t
q

φt(q)+P
{
∆n > γδ

4

}
.
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Proof. First of all, apply Lemma 3.2.8. As Z∗
t and Y t

0 are equal in law, it is justified

to substitute E[m[t](Y t
0 )− g[t](Y t

0 )]2 by E[m[t](Z∗
t )− g[t](Z∗

t )]2. Since P{Y i+1
i−t } =

P{V ′
i }, we can change P to P if we change Y i+1

i−t to V ′
i . The rest follows by the

ω wise substitution of V ′
i by V∗

i on the Σ-measurable set An := {ω ∈ S : V ′
i (ω) =

V∗
i (ω) for all i = t, . . . ,n}.

P
∞⋃

k=0

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V ′

i )−E f t(g;V ′
i )

)> 22k−2γδ2
}

≤ P
(
An ∩

∞⋃
k=0

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)

> 22k−2γδ2
})

+P(Ac
n)

A bound for P(Ac
n) is given by the Coupling Lemma 3.2.9. The claim follows by an

application of Bonferroni’s union bound. �

Henceforth, we want to make heavy use of the fact that the block sequences{
V∗

2 j+1
}

j∈N and
{
V∗

2 j
}

j∈N are independent and identically distributed. We introduce

the variables X∗
j to describe the partial sums

X∗
2 j(g) := 1

q

q−1∑
i=0

(
f t(g;V∗

t+2 jq+i)−E f t(g;V∗
t+2 jq+i)

)
X∗

2 j+1(g) := 1
q

q−1∑
i=0

(
f t(g;V∗

t+(2 j+1)q+i)−E f t(g;V∗
t+(2 j+1)q+i)

)
,

and make the following rearrangements. We want to write the total sum

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)
(3.23)

as a sum of N blocks X∗
2 j with even indexes and N blocks X∗

2 j+1 with uneven

indexes. Since we want the numbers of “even” and “uneven” blocks to be equal, and

the total number of addends, n− t, is not necessarily a multiple of the supposed

block length, we are faced with a remainder term of asymptotically negligible size.

We formally define the number N = N(n, t, q) as follows. The crucial parameter

for the definition is the total number of summands, n− t, divided by the supposed

block length q. Set

N :=


1
2

⌊
n−t

q

⌋
if

⌊
n−t

q

⌋
is even,

1
2

(⌊
n−t

q

⌋
−1

)
if

⌊
n−t

q

⌋
is odd.
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Now, we can find the following expression for the sum (3.23) as a sum of even and

uneven blocks:

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)
= 1

n− t

n−1−t∑
i=0

(
f t(g;V∗

t+i)−E f t(g;V∗
t+i)

)
= 1

n− t

2Nq−1∑
i=0

(
f t(g;V∗

t+i)−E f t(g;V∗
t+i)

)+Rn(g)

= q
n− t

2N−1∑
j=0

1
q

q−1∑
i=0

(
f t(g;V∗

t+ jq+i)−E f t(g;V∗
t+ jq+i)

)+Rn(g)

= q
n− t

N−1∑
j=0

X∗
2 j(g)+ q

n− t

N−1∑
j=0

X∗
2 j+1(g)+Rn(g) . (3.24)

In the above display, the remainder term Rn is the partial sum of the addends

f t(g;V∗
i )−E f t(g;V∗

i ) with indexes in the range of i = t+2Nq, . . . ,n−1:

Rn(g)= 1
n− t

n−1−t∑
i=2Nq

(
f t(g;V∗

t+i)−E f t(g;V∗
t+i)

)
. (3.25)

The number of addends in the remainder term does not exceed 2q.

We remark that now all terms but the remainder are sums of centered i.i.d.

random variables. Using the property of the process {V∗
i } to be q-dependent, we

can establish a variance bound for the sums of independent blocks. This will be

necessary later.

LEMMA 3.2.11. Assume that the quantities δ and t are given by δ(n)= n−1/3 logn
and t(n)=− 2

3logL1
logn > 0. Let the length of the blocks X∗

2 j(g) also depend on the
sample size in such a way that q(n)³ t(n). Recall the constant γ introduced in the
proof of Lemma 3.2.8. Then the following statements hold:

sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

var

(
q

n− t

N−1∑
j=0

X∗
2 j(g)

)
≤ (M2 +2 M3/2 +M)22k+4γδ2 q

n− t
.

And as a consequence, there exists a number n0 such that

sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

var

(
q

n− t

N−1∑
j=0

X∗
2 j(g)

)
≤

(
22k−4γδ2

)2
/8

for all k ∈N and all n > n0.
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Proof. By N < n−t
q , the fact that E X∗

2 j(g) = 0 for all j, and independence and

identical distribution of the blocks
{
X∗

2 j(g)
}
, we obtain

E
[

q
n− t

N−1∑
j=0

X∗
2 j(g)

]2 = q2

(n− t)2
N−1∑

j1, j2=0
E X∗

2 j1
(g)X∗

2 j2
(g)

= q2

(n− t)2
N E

[
X∗

0 (g)
]2

≤ q
n− t

E
[
X∗

0 (g)
]2

= q
n− t

1
q2

q−1∑
i1,i2=0

cov( f t(g;V∗
i1+t), f t(g;V∗

i2+t)) .

We use the stationarity of the process V∗ and the Cauchy Schwartz Inequality to

derive for i1, i2 = 0,1, . . . , q−1 the general bound

cov( f t(g;V∗
i1+t), f t(g;V∗

i2+t))

= E
(
f t(g;V∗

i1+t) f t(g;V∗
i2+t)

)−E
(
f t(g;V∗

t+i1
)
)
E

(
f t(g;V∗

t+i2
)
)

≤
√

E
(
f t(g;V∗

i1+t)
)2

√
E

(
f t(g;V∗

i2+t)
)2 −

(
E

(
f t(g;V∗

t )
))2

≤ E
(
f t(g;V∗

t )
)2 .

This means

E
[

q
n− t

N−1∑
j=0

X∗
2 j(g)

]2 ≤ q
n− t

E
(
f t(g;V∗

t )
)2 . (3.26)

Let us recall that Z∗
t = (

0,Y ∗
0 , . . . ,Y ∗

t
)

is measurable with respect to the σ-field

F ∗
t :=σ{Y ∗

s : s ≤ t}. Therefore,

E|F ∗
t

sup
α∈[0,M]

[(
Y ∗

t+1 −α
)(

m[t](Z∗
t )− g[t](Z∗

t )
)]2

= E|F ∗
t

[(
m[t](Z∗

t )− g[t](Z∗
t )

)2 sup
α∈[0,M]

(
Y ∗

t+1 −α
)2

]
= (

m[t](Z∗
t )− g[t](Z∗

t )
)2 E|F ∗

t

[
sup

α∈[0,M]

(
Y ∗

t+1 −E|F ∗
t

Y ∗
t+1 +E|F ∗

t
Y ∗

t+1 −α
)2

]
≤ (

m[t](Z∗
t )− g[t](Z∗

t )
)2

[
E|F ∗

t

(
Y ∗

t+1 −E|F ∗
t

Y ∗
t+1

)2 + sup
α∈[0,M]

(
E|F ∗

t
Y ∗

t+1 −α︸ ︷︷ ︸
| · |≤M

)2

+2 sup
α∈[0,M]

(∣∣E|F ∗
t

Y ∗
t+1 −α

∣∣)(E|F ∗
t

∣∣Y ∗
t+1 −E|F ∗

t
Y ∗

t+1
∣∣)]

≤ (
m[t](Z∗

t )− g[t](Z∗
t )

)2
[
var|F ∗

t

(
Y ∗

t+1
)+M2 +2 M

√
var|F ∗

t

(
Y ∗

t+1
)]

≤ (M2 +2 M3/2 +M)
(
m[t](Z∗

t )− g[t](Z∗
t )

)2 a.s. .
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Taking expectations yields

E sup
α∈[0,M]

[(
Y ∗

t+1 −α
)(

m[t](Z∗
t )− g[t](Z∗

t )
)]2

≤ (
M2 +2 M3/2 +M

)
E

(
m[t](Z∗

t )− g[t](Z∗
t )

)2. (3.27)

Therefore,

E
(
f t(g;V∗

t )
)2 = E

[(
Y ∗

t+1 −m[t](Z∗
t )

)2 − (
Y ∗

t+1 − g[t](Z∗
t )

)2
]2

= E
[(

m[t](Z∗
t )

)2 − (
g[t](Z∗

t )
)2 −2Y ∗

t+1
(
m[t](Z∗

t )− g[t](Z∗
t )

)]2

≤ E
[(

m[t](Z∗
t )+ g[t](Z∗

t )
)(

m[t](Z∗
t )− g[t](Z∗

t )
)

−2Y ∗
t+1

(
m[t](Z∗

t )− g[t](Z∗
t )

)]2

= 4 E
[(

Y ∗
t+1 −

m[t](Z∗
t )+ g[t](Z∗

t )
2

)(
m[t](Z∗

t )− g[t](Z∗
t )

)]2

≤ 4 E sup
α∈[0,M]

[(
Y ∗

t+1 −α
)(

m[t](Z∗
t )− g[t](Z∗

t )
)]2

(3.28)

≤ 4
(
M2 +2 M3/2 +M

)
E

(
m[t](Z∗

t )− g[t](Z∗
t )

)2 .

In line (3.28) we used the fact that 1
2 (m[t](Z∗

t )+ g[t](Z∗
t )) ∈ [0, M], followed by an

application of inequality (3.27). In conclusion, we find the bound

sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

var

(
q

n− t

N∑
i=0

X∗
2 j(g)

)

= sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

E
( q

n− t

N∑
i=0

X∗
2 j(g)

)2

≤ sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

q
n− t

E
(
f t(g;V∗

t )
)2

≤ q
n− t

4(M2 +2 M3/2 +M)22k+2γδ2 . (3.29)

We have proven the first statement of the lemma. The second one is a simple

consequence. Since q(n)³ logn, it is evident that

limsup
n→∞

q
(n− t)δ2 = 0.

We conclude that

sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

var

(
q

n− t

N∑
i=0

X∗
2 j(g)

)
≤ 22k−8γ2δ4/8 (3.30)

for all k and almost all n if the conditions in the formulation of the lemma are

satisfied. This is an even tighter result than we need. Multiplying the bound

61



(3.30) by 22k ≥ 1 gives the formulated result. �

The technical step incorporated by the next lemma is often called symmetriza-

tion. It is an established tool in the asymptotic analysis of empirical processes

(Van der Vaart and Wellner, 1996; Giné and Nickl, 2016) and has been successfully

applied in the analysis of least squares estimators for nonparametric regression

(Györfi et al., 2002). Roughly speaking, we add some randomness to the sum of

blocks in order to facilitate further computations. The lemma is an immediate con-

sequence of the symmetrization Lemma A.3.1, which is the source of the technical

main condition.

LEMMA 3.2.12. Let {εi}i∈N be an i.i.d. sequence of Rademacher random variables
on (S,Σ,P), i.e. P{εi = 1} = P{εi = −1} = 1

2 . Assume that the sequence {εi} is
independent of the process {V∗

i } and that the quantities δ and t are defined as in
Lemma 3.2.11. Then there exists a number n0 such that for any k ∈N and n > n0

P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)> 22k−2γδ2
}

≤ 8P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}

+P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

Rn(g)> 22k−3γδ2
}

Proof. First, we use the introduced variables X∗
j (g) and equation (3.24). Since

P
∑N−1

j=0 X∗
2 j(g) = P

∑N−1
j=0 X∗

2 j+1(g) ,

we obtain after two applications of the triangle inequality for probabilities the

relation

P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)> 22k−2γδ2
}

≤ 2P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

q
n− t

N−1∑
j=0

X∗
2 j(g)> 22k−4γδ2

}

+P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

Rn(g)> 22k−3γδ2
}

.

In order to apply the Symmetrization Lemma A.3.1 on the first probability, we
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have to check the variance condition (A.2), which reads in our case

sup
E[m[t](Z∗

t )−g[t](Z∗
t )]2≤22k+2γδ2

var

(
q

n− t

N−1∑
j=0

X∗
2 j(g)

)
≤

(
22k−4γδ2

)2
/8 .

But this is exactly the second statement of Lemma 3.2.11. Thus, the variance

condition is satisfied for all n > n0, for some n0 ∈N, and all k ∈N. Applying the

Symmetrization Lemma, we learn that there exists an independent copy {X∗∗
2 j (g)}

of {X∗
2 j(g)} on (S,Σ,P) such that

P
{

sup
g∈G :

E
[
m[t](Z∗

t )−g[t](Z∗
t )

]2≤22k+2γδ2

q
n− t

N−1∑
j=0

X∗
2 j(g)> 22k−4γδ2

}

≤ 2P
{

sup
g∈G :

E
[
m[t](Z∗

t )−g[t](Z∗
t )

]2≤22k+2γδ2

q
n− t

N−1∑
j=0

[
X∗

2 j(g)− X∗∗
2 j (g)

]
> 22k−5γδ2

}
.

Now we come to the point where we add some extra randomness in form of

the sequence of Rademacher variables. To that end, we recall the following

fact. Let {ξi}i∈N be a sequence of independent random variables on (S,Σ,P) such

that for all i and for all A ∈ B we have P{ξi ∈ A} = P{−ξi ∈ A} . Then for any

θ = (θ1, . . . ,θm)′ ∈ {−1,1}m and A1, . . . , Am ∈B, we have

P
m⋂

i=1
{θiξi ∈ A i}=

m∏
i=1

P {θiξi ∈ A i}=
m∏

i=1
P {ξi ∈ A i}= P

m⋂
i=1

{ξi ∈ A i} .

Now, for the given i.i.d. sequence of Rademacher random variables {εi}, which is

assumed to be independent of {ξi}, we observe

P {(ε1ξ1, . . . ,εmξm) ∈ A1 × . . .× Am}

= ∑
θ∈{−1,1}m

P {(θ1ξ1, . . . ,θmξm) ∈ A1 × . . .× Am ; (ε1, . . . ,εm)= (θ1, . . . ,θm)}

= ∑
θ∈{−1,1}m

P {(θ1ξ1, . . . ,θmξm) ∈ A1 × . . .× Am}P {(ε1, . . . ,εm)= (θ1, . . . ,θm)}

= P {(ξ1, . . . ,ξm) ∈ A1 × . . .× Am} .

Since
{
X∗

2i(g)−X∗∗
2i (g)

}
is a sequence of independent symmetric random variables,

the above argument shows that an independent random sign change in each

addend does not change the distribution of the whole sum. Taken into account the

fact that

P
∑N−1

j=0 ε j X∗
2 j = P−∑N−1

j=0 ε j X∗∗
2 j ,
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we conclude once again with the triangle inequality

P
{

sup
g∈G :

E
[
m[t](Z∗

t )−g[t](Z∗
t )

]2≤22k+2γδ2

q
n− t

N−1∑
j=0

(
X∗

2 j(g)− X∗∗
2 j (g)

)> 22k−5γδ2
}

= P
{

sup
g∈G :

E
[
m[t](Z∗

t )−g[t](Z∗
t )

]2≤22k+2γδ2

q
n− t

N−1∑
j=0

ε j
(
X∗

2 j(g)− X∗∗
2 j (g)

)> 22k−5γδ2
}

≤ 2P
{

sup
g∈G :

E
[
m[t](Z∗

t )−g[t](Z∗
t )

]2≤22k+2γδ2

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}
. �

We will see in a short while that the remainder term Rn is of small order. As

a result, we are endowed with a considerably easier modification of the original

problem. This is the case since the object of interest is now a sum of independent

and identically distributed random variables. In other words, the object

{ q
n− t

N−1∑
j=0

ε j X∗
2 j(g)

}
g∈G

is a classical empirical process, save for the standardizing factor. In order to bound

its supremum over subsets of G , we employ the so called chaining technique. It is

a well established tool in empirical process literature, and standard references

include Van der Vaart and Wellner (1996), Van de Geer (2000), and Giné and Nickl

(2016). For a good exposition in the context of nonparametric regression see also

Györfi et al. (2002).

We do not describe this method in full generality. Instead, we immediately

adapt the abstract idea as presented in the just mentioned references to our

specific problem at hand. Before we proceed to the chaining argument, we shall

prove three auxiliary propositions. The first one gives a bound of the maximum of

observed count variables.

PROPOSITION 3.2.13. The maximum of n observations of the count process is of
stochastic order OP(logn). In fact, for almost all n

P
{

max
1≤i≤n

Yi > 2(k+1) logn
}
≤ eM n−(k+1)

Proof. We use Lemma A.4.5 and the bound |λi(ω)| ≤ M to obtain the following

chain of inequalities for almost all n:

P
{

max
1≤i≤n

Yi > 2(k+2) logn
}

≤
n∑

i=1
E

[
P

{
Yi −λi > 2(k+2) log(n)−λi

∣∣ λi
}]
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≤
n∑

i=1
E

[
exp

(
−

(
2(k+2)log(n)−λi

)2

2λi + 2
3 (2(k+2)log(n)−λi)

)]

≤
n∑

i=1
E

[
exp

(
−

(
2(k+2)log(n)

)2 +λ2
i −4(k+2)log(n)λi

4(k+2)log(n)

)]
≤

n∑
i=1

E
[

exp
(
− (k+2)log(n)+λi

)]
≤ exp

(
log(n)− (k+2)log(n)+M

)
= eM n−(k+1) . �

PROPOSITION 3.2.14. Let Gε be an ε-cover of G with respect to the uniform norm,
i.e. for all g ∈ G there exists a gε ∈ Gε such that ‖g− gε‖∞ ≤ ε . Then, for V∗

i =
(0,Y ∗

i−t, . . . ,Y
∗
i+1) we have the following bound:

∣∣ f t(g;V∗
i )− f t(gε;V∗

i )
∣∣≤ 2(Y ∗

i+1 +M)

1−L1
ε .

Proof. The proof is essentially the same as for the continuity of the functional Qn,

which we verified in the proof of Proposition 3.1.3. We observe that

∣∣ f t(g;V∗
i )− f t(gε;V∗

i )
∣∣

=
∣∣∣(Y ∗

i+1 −m[t](Z∗
i )

)2 − (
Y ∗

i+1 − g[t](Z∗
i )

)2 − (
Y ∗

i+1 −m[t](Z∗
i )

)2 + (
Y ∗

i+1 − (gε)[t](Z∗
i )

)2
∣∣∣

=
∣∣∣2Y ∗

i+1
(
g[t](Z∗

i )− (gε)[t](Z∗
i )

)+ [
(gε)[t](Z∗

i )
]2 − [

g[t](Z∗
i )

]2
∣∣∣

=
∣∣∣2Y ∗

i+1
(
g[t](Z∗

i )− (gε)[t](Z∗
i )

)+ [
(gε)[t](Z∗

i )+ g[t](Z∗
i )

][
(gε)[t](Z∗

i )− g[t](Z∗
i )

]∣∣∣
≤ [

2Y ∗
i+1 +

(
g[t](Z∗

i )+ (gε)[t](Z∗
i )

)]∣∣g[t](Z∗
i )− (gε)[t](Z∗

i )
∣∣

≤ (2Y ∗
i+1 +2M)

∣∣g[t](Z∗
i )− (gε)[t](Z∗

i )
∣∣ .

We refer to the calculations preceding (3.3) to conclude that

∣∣g[t](Z∗
i )− (gε)[t](Z∗

i )
∣∣≤ ε

∞∑
i=0

Li
1 =

ε

1−L1
. �

COROLLARY 3.2.15. Let q = q(n) depend on the sample size n. The expectation of
the remainder term from Lemma 3.2.12, E supg∈G Rn(g), is of order O(q/(n− t)).

Proof. We already mentioned just below equation (3.25) that the number of ad-

dends in the remainder term does not exceed 2q. Moreover, since f t(m;V∗
i ) = 0,

we can conclude with the help of Proposition 3.2.14 that

∣∣ f t(g;V∗
i )

∣∣= ∣∣ f t(g;V∗
i )− f t(m;V∗

i )
∣∣

≤ 2‖m− g‖∞
1−L1

(Y ∗
i+1 +M)
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≤ 2M
1−L1

(Y ∗
i+1 +M) .

We can therefore conclude,

E
[
sup
g∈G

|Rn(g)|]= E
[

sup
g∈G

1
n− t

∣∣∣ n−1∑
i=2Nq

(
f t(g;V∗

t+i)−E f t(g;V∗
t+i)

)∣∣∣]
≤ E

[
sup
g∈G

1
n− t

n−1∑
i=2Nq

∣∣ f t(g;V∗
t+i)

∣∣+E
∣∣ f t(g;V∗

t+i)
∣∣]

≤ 1
n− t

n−1∑
i=2Nq

2M
1−L1

2E
(
Y ∗

t+i+1 +M
)

≤ q
n− t

16 M2

1−L1
. �

Note that in Proposition 3.2.14 the bound on the difference between g[t] and

(gε)[t] only depends on the distance ‖g− gε‖∞, and it is independent of the sample

size n. This will be essential for the development of the chaining argument. In

order to estimate the supremum of the empirical process over the set

Gk =
{

g ∈G : E
[
m[t](Z∗

t )− g[t](Z∗
t )

]2 ≤ 22k+2γδ2
}

, (3.31)

we seek a sequence of finite sets {G (s)
k }s∈N that constitute ‖ · ‖∞-ball coverings{

B(gs,k; rs) : gs,k ∈G (s)
k

}
of Gk, with radii {rs} decreasing in s. Specifically, for s ∈N,

let G (s)
k ⊂Gk be a set such that for any g ∈Gk there exists gs,k ∈G (s)

k such that

‖g− gs,k‖∞ ≤ 2−s2k+1pγδ .

The next proposition states that these sets G (s)
k are well defined. Moreover, we

have a bound on the number of elements of these sets.

PROPOSITION 3.2.16. For any k ∈N, let the subset Gk ⊂G be defined as in (3.31).
Then, for any s ∈N, there exists a set G (s)

k ⊂Gk with at most e2MB2s−k /(pγδ) elements
and a selection function πs,k : Gk →G (s)

k such that for any g ∈Gk

‖g−πs,k g‖∞ ≤ 2−s2k+1pγδ .

For g ∈Gk we fix the notation πs,k g =: gs,k .

Proof. Let ε> 0 be arbitrary. We have seen in Lemma 3.1.5 that it takes at most

N := N
(
ε , G , ‖ ·‖∞

)≤ e2MB/ε

balls to cover the whole class G with ‖ · ‖∞-balls of radius ε. Now let G ′ ⊂ G be

an arbitrary subset and assume that the elements {h1, . . . ,hN } ⊂ G constitute a

66



covering of G with such balls. We want to find a set {h′
1, . . . ,h′

N }⊂G ′ that consti-

tutes a covering of G ′ with balls of radius 2ε. Since {h1, . . . ,hN }⊂G constitutes an

ε-ball covering of G , we can select a minimal subset {hi1 , . . . ,hiN′ } ⊂ {h1, . . . ,hN }

with 1≤ i1 < . . .< iN ′ ≤ N that constitutes an ε-ball covering of G ′. If all hi j ∈G ′,
everything is proven. In this case, the set {hi1 , . . . ,hiN′ } ⊂ G ′ constitutes also

a 2ε-ball covering of G ′. Otherwise, assume that hi j ∈ G \ G ′. Since the sub-

set {hi1 , . . . ,hiN′ } is without loss of generality assumed to be minimal, the set

B(hi j ,ε)∩G ′ is non-empty. Now pick an arbitrary h′
i j
∈ B(hi j ,ε)∩G ′, and observe

that B(hi j ,ε)∩G ′ ⊂ B(h′
i j

,2ε) . We can carry out this procedure for every hi j ∉G ′

and replace this element with the obtained h′
i j

. All hi j that are elements of G ′ in

the first place are simply relabeled h′
i j

. Hence, there exists a set {h′
i1

, . . . ,h′
iN′ }⊂G ′

that constitutes a cover of G ′ with balls of radius 2ε. This means that

N(2ε,G ′,‖ ·‖∞)≤ N ′ ≤ N = N(ε,G ,‖ ·‖∞)≤ e2MB/ε = e4MB/(2ε)

for any k ∈N. Since this consideration was independent of the specification of G ′,
we conclude that for all k

N(ε,Gk,‖ ·‖∞)≤ e4MB/ε .

Plugging in ε= 21+k−spγδ gives

N
(
2−s2k+1pγδ,Gk,‖ ·‖∞

)≤ e4MB/(21+k−spγδ) = e2MB2s−k /(pγδ) .

This means that there exists a set G (s)
k ⊂ Gk with at most e2MB2s−k /(pγδ) ele-

ments such that for any g ∈ G there exists an element h ∈ G (s)
k with ‖g−h‖∞ <

2−s2k+1pγδ .

Let g ∈Gk be arbitrary. Since G (s)
k is finite, the set

Πs,k(g) := arg min
h∈G (s)

k

‖g−h‖∞

= {
h′ ∈G (s)

k : ‖g−h′‖∞ ≤ ‖g−h‖ for all h ∈G (s)
k

}
is not empty. Choose a representative from the finite set Πs,k(g) and call it gs,k. �

An immediate consequence of the last proposition is that any f t(g; · ) can be

displayed as a (point-wise) telescope sum:

f t(g; · )= f t(g; · )− f t(gŠ,k; · )+ f t(g0,k; · )+
Š−1∑
s=0

(
f t(gs+1,k; · )− f t(gs,k; · )) .

Recalling the definition of the variables X∗
2 j(g), we can translate the previous
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telescope sum to

X∗
2 j(g)= 1

q

q−1∑
i=0

(
f t(g;V∗

t+2 jq+i)−E f t(g;V∗
t+2 jq+i)

)
= 1

q

q−1∑
i=0

([
f t(g;V∗

t+2 jq+i)− f t(gŠ,k;V∗
t+2 jq+i)+ f t(g0,k;V∗

t+2 jq+i)

+
Š−1∑
s=0

(
f t(gs+1,k;V∗

t+2 jq+i)− f t(gs,k;V∗
t+2 jq+i)

)]
−E

[
f t(g;V∗

t+2 jq+i)− f t(gŠ,k; (V∗
t+2 jq+i)+ f t(g0,k; (V∗

t+2 jq+i)

+
Š−1∑
s=0

(
f t(gs+1,k;V∗

t+2 jq+i)− f t(gs,k;V∗
t+2 jq+i)

)])

= X∗
2 j(g)− X∗

2 j(gŠ,k)+ X∗
2 j(g0,k)+

Š−1∑
s=0

(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)
(3.32)

The following lemma contains the actual chaining argument which essentially

consists of an application of equation (3.32). The addends in the telescope sum

are considered links in a chain of random variables approximating X∗
2 j(g), hence

the name of the chaining argument. It is the last big step in the proof of Theorem

3.2.2.

LEMMA 3.2.17. Suppose that the quantities δ and t are defined as in Lemma
3.2.11. Moreover, assume that the quantity q fulfills q(n) ³ t(n). In accordance
with Proposition 3.2.16, for g ∈G and

Š(n) :=min
{
s ∈N :

4
1−L1

2−spγδ≤ 2−6γδ2/(15 M)
}

,

the functions g0,k, . . . , gŠ,k shall be given such that

‖g− gs,k‖∞ ≤ 2−s2k+1pγδ .

Recall that the symbol Gk refers to the set

Gk =
{

g ∈G : E
[
m[t](Z∗

t )− g[t](Z∗
t )

]2 ≤ 22k+2γδ2
}

.

Then there exists a positive constant C and a natural number n0 such that for all
n ≥ n0 and all k ∈N

P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}
. 2−2k logn

n
+n−(k+1) +exp

(
−C n1/3 2k

)
+2−k(logn)−1 .
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Proof. We observe that for every n ∈N the maximal index Š = Š(n) is given by

Š =min
{
s ∈N :

2
1−L1

2−s2k+1pγδ≤ 2k−6γδ2/(15 M)
}

.

Using the telescope representation of X∗
2 j(g) and the triangle inequality for proba-

bilities, we obtain

P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}

= P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j

[
X∗

2 j(g)− X∗
2 j(gŠ,k)+ X∗

2 j(g0,k)

+
Š−1∑
s=0

(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)]> 22k−6γδ2
}

≤ P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j
[
X∗

2 j(g)− X∗
2 j(gŠ,k)

]> 22k−6γδ2/3
}

+P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j X∗
2 j(g0,k)> 22k−6γδ2/3

}

+P
{

sup
g∈Gk

Š−1∑
s=0

q
n− t

N−1∑
j=0

ε j
(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)> 22k−6γδ2/3
}

=: P1 +P2 +P3 .

We treat each of the three terms respectively. The first term vanishes due to the

definition of Š. The index was chosen such that the approximation of g by gŠ,k is

very accurate. Using the definition of X∗
2 j(g), Proposition 3.2.14, and the definition

of the sequence {gs,k}s=0,...,Š , we observe

∣∣X∗
2 j(g)− X∗

2 j(gŠ,k)
∣∣= 1

q

∣∣∣ q−1∑
i=0

(
f t(g;V∗

t+2 jq+i)− f t(gŠ,k;V∗
t+2 jq+i)

−E
[
f t(g;V∗

t+2 jq+i)− f t(gŠ,k;V∗
t+2 jq+i)

])∣∣∣
≤ 1

q

q−1∑
i=0

(∣∣ f t(g;V∗
t+2 jq+i)− f t(gŠ,k;V∗

t+2 jq+i)
∣∣︸ ︷︷ ︸

≤2‖g−gŠ,k‖∞(Y ∗
t+2 jq+i+1+M)/(1−L1)

+E
∣∣ f t(g;V∗

t+2 jq+i)− f t(gŠ,k;V∗
t+2 jq+i)

∣∣︸ ︷︷ ︸
≤2‖g−gŠ,k‖∞(EY ∗

t+2 jq+i+1+M)/(1−L1)

)

≤ 1
q

q−1∑
i=0

(2(Y ∗
t+2 jq+i+1 +M)

1−L1
2−Š2k+1pγδ

+ 4M)
1−L1

2−Š2k+1pγδ

)
= 1

q

q−1∑
i=0

(Y ∗
t+2 jq+i+1 +3M)

2
1−L1

2−Š2k+1pγδ
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≤ 1
q

q−1∑
i=0

(Y ∗
t+2 jq+i+1 +3M)2k−6γδ2/(15M) .

In the last estimate, we used the fact that 2
1−L1

2−Š2k+1pγδ ≤ 2k−6γδ2/(15 M),

which follows from the definition of Š. We conclude,

P
{

sup
g∈Gk

q
n− t

∣∣∣ N−1∑
j=0

ε j
[
X∗

2 j(g)− X∗
2 j(gŠ,k)

]∣∣∣> 22k−6γδ2/3
}

≤ P
{

1
n− t

∣∣∣n−1∑
i=t

(Y ∗
i+1 +3M)2k−6γδ2/(15 M)

∣∣∣> 22k−6γδ2/3
}

≤ P
{

1
n− t

∣∣∣n−1∑
i=t

Y ∗
i+1

∣∣∣> 2 M 2k
}

≤ P
{

1
n− t

∣∣∣n−1∑
i=t

(Y ∗
i+1 −E Y ∗

i+1)
∣∣∣> M 2k

}
≤ 2−2k

M2 (n− t)2
var

(n−1∑
i=t

Y ∗
i

)
,

for any k. We recall that the process {Y ∗
i } is q-dependent and stationary and

conclude that

var
(n−1∑

i=0
Y ∗

i
)= n−1∑

i, j=0
cov

(
Y ∗

i ,Y ∗
j
)

= ∑
0≤i, j≤n−1
|i− j|≤q

(
E(Y ∗

i Y ∗
j )−EY ∗

i EY ∗
j
)

≤ 2
q−1∑
r=0

n−r∑
i=1

(√
EY ∗

i
2
√

EY ∗
i+r

2 −EY ∗
i EY ∗

i+r

)
≤ 2nq

(
E

[
Y ∗

0
2]− [

EY ∗
0

]2
)

≤ 2M nq .

This proves that there exists a constant C0 > 0 and a number n(P1) such that for

all n ∈N with n > n(P1) and all k ∈N

P1 = P
{

sup
g∈Gk

q
n− t

∣∣∣ N−1∑
j=0

ε j
[
X∗

2 j(g)− X∗
2 j(gŠ,k)

]∣∣∣> 22k−6γδ2/3
}
≤ C02−2k q

n− t
.

We proceed by addressing the second term, P2. First of all, since for any

g ∈Gk the first approximation g0,k =π0,k g is selected from the finite set G (0)
k , we

may reduce the supremum of all possible values of π0,k g for g ranging in Gk to a

maximum of all elements hk,0 ∈G (0)
k :

P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j X∗
2 j(g0,k)> 22k−6γδ2/3

}
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= P
{

max
h0,k∈G (0)

k

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)> 22k−6γδ2/3

}
.

This exceedance probability will be bounded with the help of Bernstein’s inequality

(Lemma A.4.3). A necessary condition for the application of the inequality in the

form of Lemma A.4.3 is that all random variables in the sum are bounded. To that

end, we introduce the Σ-measurable events

Ak,2 j = Ak,2 j(n) := {
ω ∈ S : max

i=0,...,q−1
Y ∗

t+2 jq+i+1 ≤ 2(k+2)logn
}

By Proposition 3.2.13, we conclude that P
(⋃N−1

j=0 Ac
k,2 j

)
≤ eM n−(k+1) . This implies

P
{

max
h0,k∈G (0)

k

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)> 22k−6γδ2/3

}

≤ eM n−(k+1) +P
{

max
h0,k∈G (0)

k

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j > 22k−6γδ2/3

}

= eM n−(k+1) +P
⋃

h0,k∈G (0)
k

{
q

n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j > 22k−6γδ2/3

}

≤ eM n−(k+1) + ∑
h0,k∈G (0)

k

P
{

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j > 22k−6γδ2/3

}
.

Now all involved variables are bounded. In order to apply Bernstein’s inequality,

we need bounds on the variance of the sum
∑N−1

j=0 ε j X∗
2 j(h0,k)1Ak,2 j , and a bound on

the absolute values of the addends ε j X∗
2 j(h0,k)1Ak,2 j . Furthermore, the addends

have to be centered. For the variance bound recall that the sequences {ε j} and

{Y ∗
i } are independent. Hence,

{
ε j X∗

2 j(h0,k)1Ak,2 j

}
j∈N is a sequence of i.i.d. random

variables. Moreover, we observe E
[
ε j X∗

2 j(h0,k)1Ak,2 j

]= Eε j E
[
X∗

2 j(h0,k)1Ak,2 j

]= 0.

Thus, for any h0,k ∈G (0)
k ⊂Gk, we can invoke the first statement of Lemma 3.2.11

to conclude that there exists a number n∗ such that for all n > n∗ and for all k ∈N

var
( N−1∑

j=0
ε j X∗

2 j(h0,k)1Ak,2 j

)
= E

( N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j

)2

=
N−1∑
j=0

E
(
X∗

2 j(h0,k)1Ak,2 j

)2

≤
N−1∑
j=0

E
(
X∗

2 j(h0,k)
)2

= (n− t)2

q2 E
(

q
n− t

N−1∑
j=0

X∗
2 j(h0,k)

)2

= (n− t)2

q2 var

(
q

n− t

N−1∑
j=0

X∗
2 j(h0,k)

)
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≤ (n− t)2

q2 (M2 +2 M3/2 +M)22k+4γδ2 q
n− t

= C1
(n− t)

q
22kδ2

:=σ2
n .

In the second to last line, we introduced the positive constant C1 = 16(M2 +
2 M3/2 +M)γ. Let us now bound the absolute values of the addends. First, we

remark that f t(m;V∗
t+2 jq+i) = 0, and we infer with the use of Proposition 3.2.14

that

∣∣ f t(h0,k;V∗
t+2 jq+i)

∣∣= ∣∣ f t(h0,k;V∗
t+2 jq+i)− f t(m;V∗

t+2 jq+i)
∣∣

≤ 2‖h0,k −m‖∞
1−L1

(M+Y ∗
t+2 jq+i+1)

≤ 2M
1−L1

(M+Y ∗
t+2 jq+i+1) .

In virtue of the definition of the events Ak,2 j, we obtain

∣∣ε j X∗
2 j(h0,k)1Ak,2 j

∣∣ = ∣∣X∗
2 j(h0,k)1Ak,2 j

∣∣
= 1Ak,2 j

1
q

∣∣∣ q−1∑
i=0

[
f t(h0,k;V∗

t+2 jq+i)−E f t(h0,k;V∗
t+2 jq+i)

]∣∣∣
≤ 1Ak,2 j

1
q

q−1∑
i=0

(∣∣ f t(h0,k;V∗
t+2 jq+i)

∣∣+E
∣∣ f t(h0,k;V∗

t+2 jq+i)
∣∣)

≤ 1Ak,2 j

1
q

q−1∑
i=0

2M
1−L1

[
(Y ∗

t+2 jq+i+1 +M)+E(Y ∗
t+2 jq+i+1 +M)

]
≤ 1

q

q−1∑
i=0

2M
1−L1

(Y ∗
t+2 jq+i+1 +3M)1Ak,2 j

≤ 2M
1−L1

(2(k+2)log(n)+3M)

≤ C2 (k+1)logn

=: bn

with C2 = 10 M
1−L1

, for all n ∈N with n ≥ e3 M and all k ∈N. We are ready to apply

Bernstein’s inequality. To resemble the notation in Lemma A.4.3, we introduce

the variables

η j := ε j X∗
2 j(h0,k)1Ak,2 j xn := n−t

q 22k−6γδ2/3

and obtain the display

P
{ N−1∑

j=0
ε j X∗

2 j(h0,k)1Ak,2 j >
n− t

q
22k−6γδ2/3

}
= P

{ N−1∑
j=0

η j > xn

}
.
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We have shown that the random variables η j are independent and centered. They

take values in the interval [−bn,bn], and var(η0+. . .+ηN−1)≤σ2
n. We can therefore

apply Bernstein’s inequality in the form of Lemma A.4.3, and conclude that

P
{ N−1∑

j=0
η j > xn

}
≤ exp

(
− 1

2
x2

σ2
n + xnbn/3

)
. (3.33)

In this case, σ2
n ³ 22k n−t

q δ2 is dominated by xn bn ³ 22k n−t
q δ2 (k+1)logn since

limsup
n→∞

sup
k∈N

σ2
n

xnbn
≤ limsup

n→∞
sup
k∈N

C
k+1

1
logn

≤ C limsup
n→∞

(logn)−1 = 0

with a positive constant C. Hence, there exists a number n∗∗, independent of

k, such that σ2
n ≤ 2

3 xnbn for all n > n∗∗ and all k ∈ N. Consequently, under the

assumptions δn = n−1/3 logn and t(n)³ q(n)³ logn, we obtain for the exponent in

(3.33)

liminf
n→∞

1
2

x2
n

σ2
n + xnbn/3

·n−1/3 ≥ liminf
n→∞

xn

2bn
·n−1/3

= 2−6γ

6C2

22k

k+1
liminf

n→∞
n− t

q
δ2

logn
·n−1/3

≥ C3 2k

for some positive constant C3. We conclude that there exists a number n0 ≥
max{e3M , n∗ , n∗∗} such that 1

2
x2

σ2
n+xnbn/3

≥ C3 2k n1/3 for all n ≥ n0 and all k ∈ N.

Thus, for all k and all n ≥ n0

P
{ N−1∑

j=0
ε j X∗

2 j(h0,k)1Ak,2 j >
n− t

q
22k−6γδ2/3

}
≤ exp

(
−C3 2kn1/3

)
.

Note, that n0 does not depend on k. The previous bound is independent of the

specific function h0,k ∈G (0)
k . Thus, for any n ≥ n0

∑
h0,k∈G (0)

k

P
{

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j > 22k−6γδ2/3

}
≤ #G (0)

k exp
(−C3 2kn1/3)

= exp
(
log

(
#G (0)

k

)−C3 2k n1/3
)

≤ exp
(C4

δ
−C3 2k n1/3

)
≤ exp

(
2k(C4

δ
−C3n1/3))

.
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In the last estimate we used the fact that for C4 := 2MB/pγ we have

sup
k

log
(
#G (0)

k

)≤ sup
k

C4 2−k/δ≤ C4/δ , (3.34)

which follows from the bounds in Proposition 3.2.16 with s = 0. Subsequently, we

observe that limn→∞ n−1/3δ−1 = 0 and conclude that there exists a number n1 ∈N

such that C4δ
−1 −C3n1/3 ≤−C3

2 n1/3 for all n ≥ n1. Hence, for all n ≥ n0 ∨n1 and

all k ∈N

∑
h0,k∈G (0)

k

P
{

q
n− t

N−1∑
j=0

ε j X∗
2 j(h0,k)1Ak,2 j > 22k−6γδ2/3

}
≤ exp

(− C3

2
2kn1/3)

.

In conclusion, there exists a natural number n(P2) ≥ n0 ∨ n1 such that for all

n ≥ n(P2) and all k ∈N the term P2 is bounded by

P
{

sup
g∈Gk

q
n− t

N−1∑
j=0

ε j X∗
2 j(g0,k)> 22k−6γδ2/3

}
< eM n−(k+1) +exp

(
−C 2k n1/3

)
,

with some positive constant C.

It is left to find a bound for the third term, P3. For that sake we define the sets

Ms,k by

Ms,k :=
{
(g1, g2) : g1 ∈G (s)

k , g2 ∈G (s+1)
k , ‖g1 − g2‖∞ ≤ 2−s2k+2pγδ

}
.

Let g ∈ Gk. Then for the images of g under the mappings πs,k : Gk → G (s)
k and

πs+1,k : Gk →G (s+1)
k it holds

‖g− gs,k‖∞ ≤ 2−s2k+1pγδ ,

‖g− gs+1,k‖∞ ≤ 2−(s+1)2k+1pγδ ,

respectively. The triangle inequality implies

‖gs,k − gs+1,k‖∞ ≤ ‖gs,k − g‖∞+‖g− gs+1,k‖∞ ≤ 2−s2k+2pγδ

and therefore (gs,k, gs+1,k) ∈Ms,k . We conclude,

sup
g∈Gk

Š−1∑
s=0

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)∣∣∣
= max

(g1,g2)∈Mk,s

Š−1∑
s=0

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣
≤

Š−1∑
s=0

[
max

(g1,g2)∈Mk,s

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣] . (3.35)
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We observe, again by Proposition 3.2.14,

∣∣∣(X∗
2 j(g2)− X∗

2 j(g1)
)∣∣∣≤ 1

q

q−1∑
i=0

∣∣ f t(g1;V∗
t+2 jq+i)− f t(g2;V∗

t+2 jq+i)
∣∣

+1
q

q−1∑
i=0

E
∣∣ f t(g1;V∗

t+2 jq+i)− f t(g2;V∗
t+2 jq+i)

∣∣
≤ 2‖g1 − g2‖∞

1−L1

1
q

q−1∑
i=0

(
(Y ∗

t+2 jq+i+1 +M)+E(Y ∗
t+2 jq+i+1 +M)

)
≤ 2‖g1 − g2‖∞

1−L1

1
q

q−1∑
i=0

(Y ∗
t+2 jq+i+1 +3 M) .

By the fact that the variables ε j are independent and satisfy Eε j = 0, we can apply

Hoeffding’s inequality (Corollary A.4.2) conditionally on
(
V∗

t , . . . ,V∗
n−1

)′ to obtain

for (g1, g2) ∈Mk,s the bound

P
{

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣> x
∣∣∣∣V∗

t , . . . ,V∗
n−1

}

≤ 2 exp

− x2 (n−t)2
q2

2
∑N−1

j=0
(
X∗

2 j(g2)− X∗
2 j(g1)

)2


≤ 2 exp

− x2 (n−t)2
q2

2
∑N−1

j=0

[
2‖g1−g2‖∞

(1−L1)
1
q

∑q−1
i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2


= 2 exp

− x2 (n−t)2
q2

2
∑N−1

j=0

[
2·2−s2k+2pγδ

(1−L1)
1
q

∑q−1
i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2


= 2 exp

− x2

2
∑N−1

j=0

[
2−s2k+3pγδ

(n−t)(1−L1)
∑q−1

i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2

 .

We apply the integrated Bernstein inequality (Lemma A.4.4) with a = 0 and

b =
N−1∑
j=0

[ 2−s2k+3pγδ

(n− t)(1−L1)

q−1∑
i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2

.

Conditionally on V∗
t , . . . ,V∗

n−1, this yields almost surely in P that

E
[

max
(g1,g2)∈Mk,s

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣ ∣∣∣∣V∗
t , . . . ,V∗

n−1

]

≤ C
√

log#Mk,s

√√√√N−1∑
j=0

[ 2−s2k+3pγδ

(n− t)(1−L1)

q−1∑
i=0

(
Y ∗

t+2 jq+i+1 +3M
)]2

(3.36)

for some positive constant C. Furthermore, we use the known bound E|F ∗
i

Y ∗2
i+1 =
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var|F ∗
i

Y ∗
i+1+(E|F ∗

i
Y ∗

i+1)2 ≤ M+M2 and the triangle inequality for the L2(P) norm

to conclude(
E

[q−1∑
i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2)1/2

≤
q−1∑
i=0

(
E

[
Y ∗

t+2 jq+i+1 +3 M
]2

)1/2

= q E
(
Y ∗

0 +3 M
)2

= q
[
EY ∗

0
2 +6 M EY ∗

0 +9 M2
]

≤ q
[
(M+M2)+15M2

]
≤ 16(M2 +M) q

=:
√

C3 q .

This means,

E
[q−1∑

i=0

(
Y ∗

t+2 jq+i+1 +3 M
)]2

≤ C3 q2 . (3.37)

Together with the last bound as well as the established fact N < n−t
q , taking

expectations in inequality (3.36) yields

E
[
E

[
max

(g1,g2)∈Mk,s

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣ ∣∣∣∣V∗
t , . . . ,V∗

n−1

]]

≤ C
√

log#Mk,s E

√√√√N−1∑
j=0

[ 2−s2k+3pγδ

(n− t)(1−L1)

q−1∑
i=0

(
Y ∗

t+2 jq+i+1 +3M
)]2

≤ C
√

log#Mk,s

√√√√E
N−1∑
j=0

[ 2−s2k+3pγδ

(n− t)(1−L1)

q−1∑
i=0

(
Y ∗

t+2 jq+i+1 +3M
)]2

= C
√

log#Mk,s

√√√√ 64γ

(1−L1)2
N−1∑
j=0

[
2−s+kδ

(n− t)

]2

E
[q−1∑

i=0

(
Y ∗

t+2 jq+i+1 +3M
)]2

≤ C
√

log#Mk,s

√√√√ 64γ

(1−L1)2
N−1∑
j=0

[
2−s+kδ

(n− t)

]2

C3q2 by (3.37)

= C

√
64C3 γ

1−L1︸ ︷︷ ︸
=:C5

√
log#Mk,s

p
N

2k−sδq
(n− t)

≤ C5

√
log#Mk,s

2k−sδ
pqp

n− t
(3.38)

Concerning the cardinality of the set Mk,s, we observe that

#Mk,s ≤ #G (s)
k #G (s+1)

k ≤ e2MB (2s−k+2s+1−k)/(pγδ) ≤ e2MB2s+2−k /(pγδ) ,
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or, with C6 :=
√

8MBp
γ

,

√
log#Mk,s ≤ C6 2s/22−k/2δ−1/2 . (3.39)

Applying the Markov inequality, we finally arrive at a bound for P3:

P
{

sup
g∈Gk

Š−1∑
s=0

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)∣∣∣> 22k−6γδ2/3
}

≤ 3 ·26

γ
2−2kδ−2 E

[
sup
g∈Gk

Š−1∑
s=0

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)∣∣∣]

≤ 3 ·26

γ
2−2kδ−2

Š−1∑
s=0

E
[

max
(g1,g2)∈Mk,s

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(g2)− X∗
2 j(g1)

)∣∣∣] by (3.35)

≤ 3 ·26 C5

γ
2−2kδ−2

∞∑
s=0

√
log#Mk,s

2k−sδ
pqp

n− t
by (3.38)

≤ 3 ·26 C5

γ
C6︸ ︷︷ ︸

=:C7

2−2kδ−2
∞∑

s=0
2s/22−k/2δ−1/2 2k−sδ

pqp
n− t

by (3.39)

= C7 2−3k/2 δ−3/2(n− t)−1/2q1/2︸ ︷︷ ︸
³(logn)−1

∞∑
s=0

2−s/2

︸ ︷︷ ︸
<∞

.

There exists a constant C > 0 and a number n3 ∈N such that

C7 δ−3/2(n− t)−1/2q1/2
∞∑

s=0
2−s/2 ≤ C (logn)−1 .

for all n ≥ n3. Of course, 2−3k/2 ≤ 2−k for all k ∈N. Thus, for n ≥ n(P3) = n3 and all

k ∈N we obtain the following bound for P3:

P
{

sup
g∈Gk

Š−1∑
s=0

q
n− t

∣∣∣ N−1∑
j=0

ε j
(
X∗

2 j(gs+1,k)− X∗
2 j(gs,k)

)∣∣∣> 22k−6γδ2/3
}
≤ C 2−k(logn)−1.

To summarize, we have found that

P1 +P2 +P3. 2−2k q
n− t

+n−(k+1) +exp
(
−C 2k n1/3

)
+2−k(logn)−1

for all n ≥max
{
n(P1), n(P2), n(P3)} and all k ∈N. This concludes the proof. �

Conclusion of the proof of Theorem 3.2.2. We can combine the established auxiliary

results to obtain the final chain of inequalities. The first two inequalities are

obtained by applying Corollary 3.2.10 and Lemma 3.2.12 respectively. The third

step is a simple application of Markov’s inequality on the exceedance probability

of the remainder terms Rn(g) and ∆n. The final bound is obtained by Lemma
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3.2.17, Corollary 3.2.15 to bound E(Rn(g)), and Lemma 2.2.9 to bound the mixing

coefficients φt(q). The bound E∆n. t
n +Lt

1 is taken from Lemma 3.2.8. Thus, we

obtain the following inequalities for all but finitely many n and all k ∈N:

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}

≤
∞∑

k=0
P

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

1
n− t

n−1∑
i=t

(
f t(g;V∗

i )−E f t(g;V∗
i )

)> 22k−2γδ2
}

+n− t
q

φt(q)+P
{
∆n > γδ2

4

}
≤

∞∑
k=0

[
8P

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}

+P
{

sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

Rn(g)> 22k−3γδ2
} ]

+n− t
q

φt(q)+P
{
∆n > γδ2

4

}
≤

∞∑
k=0

[
8P

{
sup
g∈G

E[m[t](Z∗
t )−g[t](Z∗

t )]2≤22k+2γδ2

q
n− t

N−1∑
j=0

ε j X∗
2 j(g)> 22k−6γδ2

}

+8
γ
·2−2k δ−2 E

(
sup
g∈G

Rn(g)
) ]

+n− t
q

φt(q)+ 4
γ
δ−2E∆n

.
∞∑

k=0

[
2−2k logn

n
+n−kn−1 +exp

(
−C n1/3 2k

)
+2−k(logn)−1

+2−2kδ−2 q
n− t

]
+n− t

q
(L1 +L2)q−t +δ−2( t

n
+Lt

1
)
.

We argue that this quantity is in o(1) as n →∞. To that end, recall that t(n) =
− 2

3logL1
logn and q(n) ³ t(n) by the assumptions in Lemma 3.2.8 and Lemma

3.2.17 respectively. These facts imply that δ−2 q
n−t ³ n−1/3(logn)−1, from which it

can be seen that for all k ∈N

lim
n→∞

[
2−2k logn

n
+n−kn−1 +exp

(
−C n1/3 2k

)
+2−k(logn)−1 +2−2kδ−2 q

n− t

]
= 0.

Since there exists an absolute summable sequence {ηk}k∈N ⊂R such that for any k

sup
n≥2

∣∣∣2−2k logn
n

+n−kn−1 +exp
(
−C n1/3 2k

)
+2−k(logn)−1 +2−2kδ−2 q

n− t

∣∣∣≤ ηk ,
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we conclude that

∞∑
k=0

[
2−2k logn

n
+n−kn−1 +exp

(
−C n1/3 2k

)
+2−k(logn)−1 +2−2k q

n− t

]
= o(1)

as n → ∞. If we furthermore specify the quantity q as q(n) = −( 1
log(L1+L2) +

2
3logL1

)
logn, we obtain

n− t
q

(L1 +L2)q−t +δ−2( t
n
+Lt

1
)³ (logn)−1 +n−1/3(logn)−1 + (logn)−2

implying that

n− t
q

(L1 +L2)q−t +δ−2( t
n
+Lt

1
)= o(1) .

In total, we have shown that

limsup
n→∞

P
{
E|m̂n=g

[
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

]2 > δ2
}
= 0.

The proof of Theorem 3.2.2 is now complete. �

3.2.3 Growing classes of candidate functions

At last we want to address the implications of the cutoff threshold B. Recall that

we considered all functions g ∈G constant with respect to the count component

from B onward. This contained the class of candidate functions to a size that

allowed the rate n−1/3 logn. If we forwent this cutoff, i.e. setting B =∞, we would

blow up the class G dramatically. The consequence would be much larger covering

numbers and supposedly a rate of convergence not faster that n−1/4. However,

from the model selection point of view this advantage is worthless if we have

assigned B too small a value. This would lead to model misspecification, as we

indicated at the beginning of the chapter. We need to find a compromise between

a broad model and a fast rate of convergence.

Let m denote the true link function. We stick to the assumption that there

exists a number B∗ such that y 7→ m(λ, y) is constant for all y ≥ B∗−1. Since m
is unknown so is B∗, and we face the challenge to specify a number B such that

m ∈G (M,B,L1,L2). We suggest to circumvent this challenge with the following

idea. Assume that {Bn}n∈N ⊂ N+ is a sequence with Bn ≤ Bn+1 for all n, and

Bn →∞. With a slight abuse of notation, we define the classes

G∞ :=G (M,∞,L1,L2) ,

Gn :=G (M,Bn,L1,L2) ,
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G ∗ :=G (M,B∗,L1,L2) .

There exists a number n∗ ∈N such that Bn∗−1 ≤ B∗ ≤ Bn∗ and therefore

G0 ⊂ . . .Gn∗−1 ⊂G ∗ ⊂Gn∗ ⊂ . . .⊂G∞.

Note that for any g ∈⋃∞
n=0 Gn the strong contractive condition holds by assumption.

We define a sequence of modified least squares estimators.

DEFINITION 3.2.18. Let {(λt,Yt)}t∈Z be a stationary version of a two-sided non-

parametric INGARCH(1,1) process with link function m ∈ G ∗. The estima-

tor m̃n[Y0, . . . ,Yn] := Tn(Y0, . . . ,Yn) of m on the basis of n+ 1 successive obser-

vations of the count process is given by the measurable selection functional

(y0, . . . , yn) 7→ Tn(y0, . . . , yn) with

Tn(y0, . . . , yn) ∈ arg min
g∈Gn

n−1∑
i=0

(
yi+1 − g[i](0, y0, . . . , yi)

)2 .

The definition is meaningful in the sense that for any n it is possible to find

a selection functional Tn with the desired properties. This can be seen after

an inspection of the proofs of Proposition 3.1.3 and Lemma 3.1.6. The proofs of

these statements required the set of candidate functions to be totally bounded.

Furthermore, we assumed that the contractive condition is valid for any candidate

function. Both conditions are satisfied by the sets Gn for any n. Let us briefly

discuss the asymptotic behavior of the sequence {m̃n}n∈N+ .

PROPOSITION 3.2.19. Suppose that m ∈ G (M,B∗,L1,L2), and let m̂n denote the
least squares estimator of m chosen from the correctly specified set of candidate
functions G (M,B∗,L1,L2) on the basis of Definition 3.1.11. Let the non-decreasing
sequence {Bn}n∈N ⊂ N+ satisfy Bn ≤ B0

√
logn. Then the sequence of estimators

{m̃n}n∈N chosen accordingly to Definition 3.2.18 from the growing classes of can-
didate functions {Gn}n∈N, respectively, attains the same rate of convergence as
{m̂n}n∈N , i.e. L(m̃n,m)=OP(n−2/3(logn)2).

Sketch of a proof. We will try to copy the approach taken in the investigation of

m̂n. Essentially we inspect all results for the effect of replacing G with Gn as the

set of candidate functions.

Lemma 3.2.3 and Lemma 3.2.4 hold for all g ∈ Gn, even if G ∗ ( Gn. The

reason is that the only requirement on g that were necessary in the proofs are

the strong contractive condition (C∗). By assumption, this condition is satisfied

by any g ∈ Gn, for any n ∈N. Hence, Lemma 3.2.3 and Lemma 3.2.4 hold if we

substitute G with Gn. The same is true for Lemma 3.2.6 in which we discussed

measurability of suprema over subsets G0 ⊂ G . The proof required continuity
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of the functional g 7→ f t(g,Y i+1
i−t ) and separability of G . Both arguments can be

upheld with Gn in place of G . Hence, the proposition remains valid for any n if we

consider sub-classes G0 ⊂Gn.

Proposition 3.2.7 is unaffected by the change from G to Gn because the contrac-

tive property stays valid. Lemma 3.2.8 relied on the fact that the true function

m is an element of the set of candidate functions. This is true for the candidate

set Gn if n ≥ n∗. Thus, for all n ≥ n∗ the lemma remains valid if we substitute the

supremum over G with a supremum taken over Gn. The coupling, the variance

bound, and the symmetrization argument (i.e. Lemma 3.2.9 and Corollary 3.2.10,

Lemma 3.2.11, and Lemma 3.2.12, respectively) remain unaffected by a substi-

tution of G with Gn. Proposition 3.2.14 uses the contractive condition which is

granted with the use of Gn as well. Corollary 3.2.15 is a direct consequence of the

former and is valid under the same conditions.

Proposition 3.2.16 is valid for Gn replacing G if we substitute B with Bn.

Thus, the number of elements needed to cover the classes Gn with balls of radius

2−s+k+1pγδ is bounded by e2MBn2s−k /(γδ). Proposition 3.2.13 can be left unaltered.

In Lemma 3.2.17 the bound has to be corrected by the rate of Bn. Recall that

Bn =O(
√

logn). The bounds for P1 and P2 can be upheld. Note that the quantity

C4 introduced in line (3.34) is now O(
√

logn). However, the final bound for P2

relies on the fact that there exists a number n1 such that

C4δ
−1n−1/3 −C3 ≤−C3

2

for all n ≥ n1. This is still valid for C4 =O(
√

logn) because C4δ
−1
n n−1/3 = o(1).

The bound for P3 has to be slightly corrected. The constant C6 from line (3.39)

would now be of order O((logn)1/4), and consequently C7 = O((logn)1/4) as well.

Thus, the term P3 can be bounded by C 2−k(logn)−3/4, where C > 0 is some positive

constant. This is still good enough to obtain the rate n−1/3 logn for the sequence of

estimators {m̃n} because the sum P1 +P2 +P3 from Lemma 3.2.17 is still in o(1)

for any k ∈N, as n →∞. �

We are thus equipped with a tool to deal with the unknown parameter B∗.

As opposed to work with a fixed value B, choosing a least squares estimator

m̂n ∈G (M,B,L1,L2), and risking to work with too restrictive a model, we can now

choose the least squares estimator m̃n ∈ G (M,Bn,L1,L2). If the sample size is

sufficiently large, such that Bn ≥ B∗, we know that m ∈Gn. Thus, asymptotically,

the alteration of the model by introducing the boundaries Bn does not result in an

elevated risk of model misspecification. We have to bear in mind, however, that a

larger parameter Bn induces a larger class of candidate functions, which makes it

harder to find an actual least squares estimation in these classes.
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3.2.4 Conclusion and final remarks

This chapter was concerned with the problem of estimating the link function in a

nonparametric INGARCH(1,1) model with hidden intensities under the strong con-

tractive assumption. We proposed a least squares estimator that selects an estima-

tion as a minimizer of the sum of squares functional
∑n−1

i=0
(
Yi+1−g[i](0,Y0, . . . ,Yi)

)2

over the function class of candidate functions G or, in case of growing classes,

Gn. We assured that this estimator is well defined and examined its performance

in terms of the rate of convergence of its L2(π)-risk. As the main result of this

chapter, Theorem 3.2.2 states that the L2(π)-risk is in OP(n−2/3(logn)2) .

The core arguments in the proof of this claim were the coupling in Lemma 3.2.9

and the chaining approximation technique in Lemma 3.2.17. Both arguments

relied to some extent on the assumption of full contractivity. The coupling used

the uniform mixing property of the data generating process. This property was

derived in Chapter 1 under the assumption that the link function m is a full

contraction. However, there is room for a relaxation of the contractive assumption

with respect to the coupling. Berbee’s coupling lemma, which was the basis of

our argument, can as well be applied to processes that are absolutely regular

instead of uniformly mixing. In a recent publication, Doukhan and Neumann

(2018) found a way to prove absolute regularity of the count process under the

semi-contractive condition (C∗). This means that the coupling should work under

the semi-contractive condition. On the contrary, the chaining argument fails if we

drop the assumption that all candidate functions g ∈G satisfy (C∗).
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Chapter 4

Practical nonparametric inference on
semi-contractive link functions

So far, we have proven that a theoretically attainable realization of the least

squares estimator from Definition 3.1.11 is consistent with the rate δn = n−1/3 logn.

However, even under the premise that this rate is nearly optimal, there are several

shortcomings of the previous approach.

First, the estimator was defined as the solution of an optimization over a huge

class of functions. Finding the solution to such a problem is a computationally

unfeasible task. We desire an estimator that is easier to obtain.

Second, in the preceding chapter we assumed the constants L1 and L2 to be

fixed. The quality of an approximation of the theoretical estimator would depend

heavily on our ability to guess these parameters. Of course we know that the

constants are not larger than one. But apart from this, virtually anything can

happen. Choosing a class G of candidate functions with too small specifications of

L1 and L2 would introduce a structural estimation error that is asymptotically

not negligible. On the other hand, choosing larger constants than necessary would

waste computational resources as the complexity of the underlying optimization

problem soars. It would be better to have an estimator that does not necessarily

depend on the specification of the true constants L1 and L2.

Third, we have seen that the contraction property for the second component

(i.e. L2 < 1−L1) is only necessary to obtain uniform mixing of the count process

and to deliver the chaining argument. If we had an estimator the asymptotic

analysis of which does not rely on these tools, we could drop the assumption of

full contractivity and thus broaden our model.

The next section shows how we can achieve these goals. Restricting the

set of candidate functions to a finite grid allows us to abandon the chaining

approximation technique in the asymptotic analysis. Furthermore, if the grid is
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fine enough, we shall see that the assumption of contractivity can be relinquished

entirely with respect to the candidate functions and partially with respect to the

true function. Considering convergence in terms of the empirical mean square

error enables us to use martingale techniques to get hold on the dependencies

of the data. We can therefore abandon all considerations related to the notion of

mixing and most of the model assumptions associated to the derivation of this

property.

4.1 Estimation on a finite grid of functions

4.1.1 Preliminaries

In the following definition we fix the set of assumptions that we impose throughout

this chapter. The notation will differ slightly from the last chapter since it is better

suited to clarify the underlying ideas in the asymptotic analysis.

DEFINITION 4.1.1. (a) For fixed constants M > 0, B ∈N+, and 0 ≤ ` < 1, let the

function m : [0, M]×N→ [0, M] satisfy the semi-contractive condition (C∗) with

constant `, and assume furthermore that m(λ, y)= m(λ,B−1) for all y≥ B−1 and

all λ ∈ [0, M] . Let the data generating process {(λt,Yt)}t∈Z be given by a stationary

version of a two-sided nonparametric INGARCH(1,1) process with link function

m.

(b) Let {Bn}n∈N+ ⊂N+ be a non-decreasing unbounded sequence of natural num-

bers such that Bn ≤ B0 logn for all n, and let L ∈ [`,∞) be fixed. For n ∈N+, the

set G (M,Bn,L) of possible candidate functions is defined as the set of all functions

g : [0, M]×N→ [0, M] that satisfy

sup
y

|g(λ1, y)− g(λ2, y)| ≤ L|λ1 −λ2| (L)

and furthermore g(λ, y)= g(λ,Bn −1) for all y≥ Bn −1 and all λ .

(c) For n ∈N+ and a function g ∈G (M,Bn,L), we define the processes {λg
i }i∈N+ by

λ
g
i+1 := g[i](0,Y0, . . . ,Yi) .

(d) For n ∈N+, let Gn ⊂G (M,Bn,L) be a finite subset of candidate functions. Let

mn ∈Gn be an element in Gn such that

‖m−mn‖∞ = min
g∈Gn

‖m− g‖∞ ,
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i.e. mn is a best approximation of m among all elements in Gn. The sequence

{ρn}n∈N+ ⊂R shall be given by ρn := ‖m−mn‖∞. The estimator m̂n[Y0, . . . ,Yn] on

the basis of observations of Y0, . . . ,Yn is defined as

m̂n[Y0, . . . ,Yn] := arg min
g∈Gn

n−1∑
i=0

(
Yi+1 − g[i](0,Y0, . . . ,Yn)

)2 = arg min
g∈Gn

n∑
i=1

(
Yi −λ

g
i
)2

We call m̂n the approximate least squares estimator on the basis of the approxi-

mating set Gn.

The function classes G (M,Bn,L) of candidate functions differ from the classes

G and G (M,Bn,L1,L2) that we considered in the previous chapter. Here we

impose considerably less smoothness on the candidate functions: in the first

argument the contractive condition is weakened to a simple Lipschitz condition,

and in the second argument no restrictions are imposed at all. We remark that

certainly m ∈G (M,Bn,L) if n is sufficiently large. This is the case if Bn ≥ B. But

even then it is not true in general that m is an element of Gn. We chose the name

‘approximate least squares’ since the estimator minimizes the sum of squares over

the subclass Gn as opposed to the whole class G (M,Bn,L).

4.1.2 Asymptotic analysis

As in the previous chapter, we investigate the asymptotic properties of m̂n in

terms of convergence in probability with the sample size tending to infinity. We

differ, however, from the previous chapter in the measure of distance between

m and m̂n. As opposed to investigating the L2(π) risk, we want to consider the

asymptotic properties of the empirical mean square error (MSE),

1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2
.

We begin the investigation with two preliminary lemmas.

LEMMA 4.1.2. Recall the definitions of the estimator m̂n and the process {λm̂n
i }

from Definition 4.1.1. Then

1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2 ≤ 4(1+L2)
1
n

n∑
i=1

(
λi −λ

m̂n
i

)2

for all ω ∈Ω.
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Proof. For i = 2, . . . ,n it holds that(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2

=
(
m(λi−1,Yi−1)− m̂n(λm̂n

i−1,Yi−1)+ m̂n(λm̂n
i−1,Yi−1)− m̂n(λi−1,Yi−1)

)2

≤ 2
(
m(λi−1,Yi−1)− m̂n(λm̂n

i−1,Yi−1)
)2 +2

(
m̂n(λm̂n

i−1,Yi−1)− m̂n(λi−1,Yi−1)
)2

≤ 2
(
m(λi−1,Yi−1)− m̂n(λm̂n

i−1,Yi−1)
)2 +2L2

(
λ

m̂n
i−1 −λi−1

)2

= 2
(
λi −λ

m̂n
i

)2 +2L2
(
λ

m̂n
i−1 −λi−1

)2

≤ 2(1+L2)
[(

λi −λ
m̂n
i

)2 + (
λ

m̂n
i−1 −λi−1

)2
]

.

Therefore, we obtain the following estimate:

1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2

≤ 2(1+L2)
n

[ n∑
i=2

(
λi −λ

m̂n
i

)2 +
n∑

i=2

(
λi−1 −λ

m̂n
i−1

)2
]

≤ 4(1+L2)
1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 . �

LEMMA 4.1.3. There exists a sequence {tn} with 0< tn < n such that for all ω ∈Ω

the following relation holds:

2
n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]
≥ 1

n

n∑
i=1

(
λi −λ

m̂n
i

)2 −
[

1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
.

Proof. In virtue of the assumptions on m and mn, we conclude that

∣∣λi −λ
mn
i

∣∣= ∣∣m(λi−1,Yi−1)−mn(λmn
i−1,Yi−1)

∣∣
≤ ∣∣m(λi−1,Yi−1)−m(λmn

i−1,Yi−1)
∣∣

+∣∣m(λmn
i−1,Yi−1)−mn(λmn

i−1,Yi−1)
∣∣

≤ `
∣∣λi−1 −λ

mn
i−1

∣∣+‖m−mn‖∞︸ ︷︷ ︸
=ρn

≤ `
(
`

∣∣λi−2 −λ
mn
i−2

∣∣+ρn

)
+ρn

...

≤ ` j ∣∣λi− j −λ
mn
i− j

∣∣+ j−1∑
k=0

`kρn

...
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≤ `i ∣∣λ0 −λ
mn
0

∣∣+ i−1∑
k=0

`kρn

≤ M`i + ρn

1−`

≤ 1+M
1−`

(
ρn +`i)

for all i ∈ {1, . . . ,n}. It follows that

1
n

n∑
i=1

(
λi −λ

mn
i

)2 = 1
n

tn∑
i=1

(
λi −λ

mn
i

)2 + 1
n

n∑
i=tn+1

(
λi −λ

mn
i

)2

≤ M2 tn

n
+ n− tn

n

[
1+M
1−`

]2(
ρn +`tn

)2

≤
[

1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
. (4.1)

The next inequality is basically an immediate consequence of the definition of m̂n

combined with the fact that mn ∈Gn.

0≤ 1
n

n∑
i=1

(
Yi −λ

mn
i

)2 − 1
n

n∑
i=1

(
Yi −λ

m̂n
i

)2

= 1
n

n∑
i=1

(
Yi −λi +λi −λ

mn
i

)2 − 1
n

n∑
i=1

(
Yi −λi +λi −λ

m̂n
i

)2

= 1
n

n∑
i=1

(
Yi −λi

)2 + 1
n

n∑
i=1

(
λi −λ

mn
i

)2 + 2
n

n∑
i=1

(
Yi −λi

)(
λi −λ

mn
i

)
− 1

n

n∑
i=1

(
Yi −λi

)2 − 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 − 2
n

n∑
i=1

(
Yi −λi

)(
λi −λ

m̂n
i

)
= 2

n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]+ 1
n

n∑
i=1

(
λi −λ

mn
i

)2

− 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 .

Hence,

1
n

n∑
i=1

(
λi −λ

m̂n
i

)2

≤ 2
n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]+ 1
n

n∑
i=1

(
λi −λ

mn
i

)2

≤ 2
n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]+[
1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
. �

Let us shortly pause to think about the consequences of Lemma 4.1.2 and

Lemma 4.1.3. Assume for a moment that λi = λ
mn
i for all i ∈N. In this case the

statement of Lemma 4.1.2 combined with the second part of the proof of Lemma
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4.1.3 would have yielded that

1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2
.

1
n

n∑
i=1

(
λi −λ

m̂n
i

)2

≤ 1
n

n∑
i=1

(Yi −λi)
(
λ

m̂n
i −λi

)
. (4.2)

This is the essence of both lemmas. The difference between inequality (4.2) and

Lemma 4.1.3 is merely attributed to the fact that |λi −λ
mn
i | > 0. However, due

to the contraction property, the iteration scheme ensures that |λi −λ
mn
i | is of

negligible size if i is large enough. The quantity tn serves as a threshold value: for

i ≥ tn we have λi ≈λ
mn
i , otherwise their difference may be substantial. The error

term in Lemma 4.1.3 reflects the fact that we have to balance the requirements

tn →∞ and tn
n → 0 to approximately uphold (4.2).

In order to find a bound for the MSE of the approximate least squares estimator,

it suffices to control the magnitude of the linear term in line (4.2). The subject of

the following pages is an examination of this linear term. Using its martingale

structure, we will derive a bound in probability. To get prepared for the core

argument, we first invoke a peeling argument that is similar to the approach of

Lemma 3.2.8.

LEMMA 4.1.4. Assume that the sequences {δn}, {tn}, {ρn}, as well as the constant `

satisfy the condition

limsup
n→∞

tn
n + (

ρn +`tn
)2

δ2
n

= 0.

Then there exists a constant γ> 0 and a number n0 such that

P

{
1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2 > δ2
n

}
≤

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

2
n

n∑
i=1

(Yi −λi)
[
(λi −λ

mn
i )− (λi −λ

g
i )

]
> 2k−1 γ

2
δ2

n

}

for all n ∈N with n > n0.

Proof. In view of Lemma 4.1.2, we see that for γ := 1
4(1+L2) the following chain of

inequalities holds:

P

{
1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2 > δ2
n

}
≤P

{
1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 > γδ2
n

}
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≤P
∞⋃

k=1

{
2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 ≤ 2kγδ2
n

}
≤

∞∑
k=1

P

{
2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 ≤ 2kγδ2
n

}
.

From the assumption in the formulation of the lemma, we conclude that there

exists a number n0 ∈N such that for all n > n0 and all k ∈N

[
1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
≤ 2k−2γδ2

n .

Using the result of Lemma 4.1.3 and the fact that m̂n ∈Gn, we can continue the

above chain of inequalities in the following way: for all n > n0

∞∑
k=1

P

{
2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 ≤ 2kγδ2
n

}
=

∞∑
k=1

P

{
2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 ≤ 2kγδ2
n ;

2
n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]
≥ 1

n

n∑
i=1

(
λi −λ

m̂n
i

)2

︸ ︷︷ ︸
>2k−1γδ2

n

−
[

1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
︸ ︷︷ ︸

≤ 1
2 2k−1γδ2

n

}

≤
∞∑

k=1
P

{
2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

m̂n
i

)2 ≤ 2kγδ2
n ;

2
n

n∑
i=1

(Yi −λi)
[(

λi −λ
mn
i

)− (
λi −λ

m̂n
i

)]> 1
2

2k−1γδ2
n

}
. �

DEFINITION 4.1.5. For every g ∈G (M,Bn,L), we define the process {X i(g)}i∈N+ by

X i(g) := (Yi −λi)
[
(λi −λ

mn
i )− (λi −λ

g
i )

]
.

LEMMA 4.1.6. For every function g ∈G (M,Bn,L), the process {X i(g)} is a square in-
tegrable martingale difference with respect to the natural filtration {Fn} generated
by the bivariate data generating process. Consequently, the processes {Mn(g)}n∈N
with M0(g)= 0 and

Mn(g) :=
n∑

i=1
X i(g)

are square integrable {Fn}-martingales.
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Proof. We remark that the variables λi, λ
mn
i , and λ

g
i are measurable with respect

to Fi−1. Hence,

E
[
X i(g) |Fi−1

]=E
[
(Yi −λi)

[
(λi −λ

mn
i )− (λi −λ

g
i )

] |Fi−1
]

= [
(λi −λ

mn
i )− (λi −λ

g
i )

]
E

[
(Yi −λi) |Fi−1

]
= 0, a.s. .

Clearly, X i(g) is Fi-measurable, and E|X i(g)|2 <∞ . The immediate consequence

is that {Mn(g)} is adapted to the filtration {Fn}, and

E[Mn(g) |Fn−1]=E[Mn−1(g)+ Xn(g) |Fn−1]= Mn−1(g), a.s. .

Furthermore, Mn(g) is square integrable because the triangle inequality implies

that

(
EM2

n(g)
)1/2 ≤

n∑
i=1

(
EX2

i (g)
)1/2 <∞

for all n. Hence, {Mn(g)} is a square integrable martingale with respect to the

filtration {Fn}. �

At this point it may become clear why we need to substitute all events de-

scribing m̂n with events making uniform statements over Gn. If we had not done

this, we would be confronted with the process {Mn(m̂n)}. This process is not a

martingale since λ
m̂n
n =λ

m̂n[Y0,...,Yn]
n depends on the full information up to Yn and

is thus not measurable with respect to Fn−1. Therefore, E[Xn(m̂n) |Fn−1] is not

in general zero.

Our main tool in the subsequent analysis will be an exponential tail bound

for the martingales {Mn(g)}. We use a result of Dzhaparidze and van Zanten

(2001). In order to apply their result, we have to control the following quantity

that measures the magnitude of Mn(g).

DEFINITION 4.1.7. Let {an} be a sequence of positive numbers. For a function

g ∈G (M,Bn,L), the random variable Han
n (g) is defined as

Han
n (g) :=

n∑
i=1

X2
i (g) 1{

|X i(g)|>an
}+ n∑

i=1
E

[
X2

i (g) |Fi−1
]
.

The second term in the definition of Han
n (g) is the sum of conditional variances.

Finding a way to bound it will be crucial for our purpose. The first term, however,

will be dominated with high probability by the variance term if the cutoff threshold

an is large enough and the increments X i(g) satisfy a suitable moment condition.

We remark that the resemblance in the notation between the objects of Definition
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4.1.7 and Theorem A.4.7 is intended. It is justified by the following observations.

By definition of Mn(g), the jump process of increments is given by ∆Mn(g)= Xn(g).

Furthermore, the predictable quadratic variation of the process M(g) is given by

〈M(g)〉0 = 0 and

〈M(g)〉n =
n∑

i=1

(
E

[
M2

i (g) |Fi−1
]−M2

i−1(g)
)

=
n∑

i=1
E

[
2 Mi−1(g) X i(g)+ X2

i (g)
∣∣Fi−1

]
=

n∑
i=1

E
[
X2

i (g) |Fi−1
]
, a.s.

for n ≥ 1. This follows from the Doob-Meyer decomposition (Karatzas and Shreve,

1991, page 21).

LEMMA 4.1.8. For the predictable quadratic variation of the Martingale M(g), we
have the following bound:

n∑
i=1

E
[
X2

i (g) |Fi−1
]≤ 2(1+M)3

(1−`)2
[
tn +n

(
ρn +`tn

)2 +
n∑

i=1

(
λi −λ

g
i
)2

]
, a.s. .

Proof. We compute straightforwardly that with probability one

n∑
i=1

E
[
X2

i (g) |Fi−1
]= n∑

i=1
E

[
(Yi −λi)2

[
(λi −λ

mn
i )− (λi −λ

g
i )

]2 |Fi−1

]
=

n∑
i=1

[
(λi −λ

mn
i )− (λi −λ

g
i )

]2
E

[
(Yi −λi)2 |Fi−1

]
=

n∑
i=1

λi
[
(λi −λ

mn
i )− (λi −λ

g
i )

]2

≤ 2M
[ n∑

i=1
(λi −λ

mn
i )2 +

n∑
i=1

(λi −λ
g
i )2

]

≤ 2M
[
n

[
1+M
1−`

]2( tn

n
+ (

ρn +`tn
)2

)
+

n∑
i=1

(
λi −λ

g
i
)2

]
≤ 2(1+M)3

(1−`)2
[
tn +n

(
ρn +`tn

)2 +
n∑

i=1

(
λi −λ

g
i
)2

]
.

In the next-to-last line, we used the inequality (4.1) to bound
∑n

i=1
(
λi −λ

mn
i

)2.

This is the desired result. �

LEMMA 4.1.9. Let an,k = 2(M2+2M) (k+1)logn. Then for all n ∈N with n > e, and
all k ∈N ,

P

{
∃ g ∈Gn :

n∑
i=1

X2
i (g)1{

|X i(g)|>an,k

} 6= 0
}
≤ eM n−(k+1) .
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Proof. Certainly, for all natural numbers n > e and all k ∈N

(k+1)log(n)
2M2 +4M

M
≥ 2M .

The following chain of inequalities holds for all n > e:

P

{
∃ g ∈Gn :

n∑
i=1

X2
i (g)1{

|X i(g)|>an,k

} 6= 0
}

≤P
{
∃ g ∈Gn : max

i≤n
|X i(g)| > an,k

}
=P

{
∃ g ∈Gn : max

i≤n
|Yi −λi| |λi −λ

mn
i −λi +λ

g
i | > an,k

}
≤P

{
∃ g ∈Gn : max

i≤n
(Yi +λi) |λg

i −λ
mn
i | > an,k

}
≤P

{
max
i≤n

(Yi +M) M > an,k

}
≤P

{
max
i≤n

Yi > 2M2 +4M
M

(k+1)log(n)−M
}

≤P
{

max
i≤n

Yi > 2M2 +4M
2M︸ ︷︷ ︸

=2+M>2

(k+1)log(n)
}

≤P
{

max
i≤n

Yi > 2(k+1)log(n)
}

.

Now the assertion follows in view of Proposition 3.2.13. �

COROLLARY 4.1.10. Assume that

limsup
n→∞

tn +n
(
ρn +`tn

)2

nδ2
n

= 0.

Then there exists a number n0 such that for all n ∈N with n > n0 and all k ∈N,

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Han,k
n (g)> 8(1+M)3

(1−`)2
2kγnδ2

n

}
≤ eM

n
.

Proof. Using

Han,k
n (g) :=

n∑
i=1

X2
i (g) 1{

|X i(g)|>an,k

}+ n∑
i=1

E
[
X2

i (g) |Fi−1
]

and the triangle inequality for probabilities, we observe that

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ; Han,k
n (g)> 8(1+M)3

(1−`)2
2kγnδ2

n

}
≤

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;
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n∑
i=1

X2
i (g)1{

|X2
i (g)|>an,k

} > 4(1+M)3

(1−`)2
2kγnδ2

n

}
+

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

n∑
i=1

E[X2
i (g) |Fi−1]> 4(1+M)3

(1−`)2
2kγnδ2

n

}
≤

∞∑
k=1

P

{
∃ g ∈Gn :

n∑
i=1

X2
i (g)1{

|X2
i (g)|>an,k

} > 4(1+M)3

(1−`)2
2kγnδ2

n

}
+

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

n∑
i=1

E[X2
i (g) |Fi−1]> 4(1+M)3

(1−`)2
2kγnδ2

n

}
.

Due to the formulated condition, there exists a number n0 such that for all n ∈N

with n > n0 and all k ∈N

tn +n
(
ρn +`tn

)2 ≤ γ

2
nδ2

n .

For any k ∈ N, all n ∈ N with n > n0, and all g ∈ Gn, we conclude in view of the

previous fact and Lemma 4.1.8, that for almost all ω in the sets
{
ω ∈Ω : 2kγnδ2

n ≥∑n
i=1

(
λi −λ

g
i
)2 > 2k−1γnδ2

n
}

the relation

n∑
i=1

E
[
X2

i (g) |Fi−1
]≤ 2(1+M)3

(1−`)2
[

tn +n
(
ρn +`tn

)2︸ ︷︷ ︸
≤ γ

2 nδ2
n

+
n∑

i=1

(
λi −λ

g
i
)2

︸ ︷︷ ︸
≥ γ

2 nδ2
n

]

≤ 4(1+M)3

(1−`)2
n∑

i=1

(
λi −λ

g
i
)2

≤ 4(1+M)3

(1−`)2
2kγnδ2

n .

The set Gn is finite. Therefore,

sup
n>n0

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γnδ2

n <
n∑

i=1

(
λi −λ

g
i
)2 ≤ 2kγnδ2

n ;

n∑
i=1

E[X2
i (g) |Fi−1]> 4(1+M)3

(1−`)2
2kγnδ2

n

}
= 0.

The other sum will be treated with an application of Lemma 4.1.9. According to

Lemma 4.1.9,

∞∑
k=1

P

{
∃ g ∈Gn :

n∑
i=1

X2
i (g)1{

|X2
i (g)|>an,k

} > 4(1+M)3

(1−`)2
2kγnδ2

n

}
≤ eM

n

∞∑
k=1

n−k
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= eM

n

( n
n−1

−1
)
,

for all n > e. Thus, the claim is correct for all n >max{n0 , e} and all k ∈N. �

LEMMA 4.1.11. We suppose again that the condition

limsup
n→∞

tn +n
(
ρn +`tn

)2

nδ2
n

= 0

holds. Then there exists a positive constant C and a number n0 such that for all
n ∈N with n > n0

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Mn(g)> 2k−2 γ

2
nδ2

n

}
≤ eM

n
+4 #Gn e−C nδ2

n
logn .

Proof. First of all, we use that

Ω=
{
Han,k

n (g)> 8(1+M)3

(1−`)2
2kγnδ2

n

}
∪

{
Han,k

n (g)≤ 8(1+M)3

(1−`)2
2kγnδ2

n

}
is a disjoint partition and use the additivity of P. Then, in view of Corollary 4.1.10,

there exists a number n0 such that for all n > n0

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Mn(g)> 2k−2 γ

2
nδ2

n

}
=

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Han,k
n (g)> 8(1+M)3

(1−`)2
2kγnδ2

n;

Mn(g)> 2k−2 γ

2
nδ2

n

}
+

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Han,k
n (g)≤ 8(1+M)3

(1−`)2
2kγnδ2

n;

Mn(g)> 2k−2 γ

2
nδ2

n

}
≤

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;
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Han,k
n (g)> 8(1+M)3

(1−`)2
2kγnδ2

n

}
+

∞∑
k=1

P

{
∃ g ∈Gn : Mn(g)> 2k−2 γ

2
nδ2

n ; Han,k
n (g)≤ 8(1+M)3

(1−`)2
2kγnδ2

n

}
≤ eM

n

+
∞∑

k=1
P

{
∃ g ∈Gn : Mn(g)> 2k−2 γ

2
nδ2

n ; Han,k
n (g)≤ 8(1+M)3

(1−`)2
2kγnδ2

n

}
.

The probabilities in the last line will be estimated using the exponential tail

bound for martingales by Dzhaparidze and van Zanten (2001). We have stated

their theorem in the Appendix in Lemma A.4.7. We introduce the abbreviations

C1 := 8(1+M)3/(1−`)2 and C2 := 2(M2 +2M). Then, for

an,k = C2 (k+1)logn ,

zn,k = 2k−2 γ

2
nδ2

n ,

Ln,k = C1 2kγnδ2
n ,

we obtain according to Lemma A.4.7

∞∑
k=1

P

{
∃ g ∈Gn : Mn(g)> 2k−2 γ

2
nδ2

n ; Han,k
n (g)≤ 8(1+M)3

(1−`)2
2kγnδ2

n

}
=

∞∑
k=1

P
{
∃ g ∈Gn : Mn(g)> zn,k ; Han,k

n (g)≤ Ln,k

}
≤

∞∑
k=1

∑
g∈Gn

P
{

Mn(g)> zn,k ; Han,k
n (g)≤ Ln,k

}

≤
∞∑

k=1

∑
g∈Gn

2 exp
(
− 1

2

z2
n,k

Ln,k
ψ

(an,k zn,k

Ln,k

))

= #Gn

∞∑
k=1

2 exp
(
− 1

2
22k−4(γ

2
)2(nδ2

n)2

C12kγnδ2
n

ψ
(C2(k+1)log(n)2k−2 γ

2 nδ2
n

C12kγnδ2
n

))
= 2#Gn

∞∑
k=1

exp
(
− γ

28C1
nδ2

n 2k+1 ψ
( C2

8C1
(k+1)logn

))
.

We use the fact that ψ(x) ≥ 1/(1+ x
3 ) for x ≥ −1. Choose a number n1 ≥ e24C2/C1 .

For all n ∈N with n > n1

C2

24C1
logn ≥ 1,

and we conclude that

ψ
( C2

8C1
(k+1)logn

)≥ 1

1+ C2
24C1

(k+1)logn
≥ 12C1

C2 (k+1)logn
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for all n > n1 and all k ∈N. Therefore, using the notation C := 2−6γ/C2 and the

fact that 2k ≥ k2/3 for all k, we obtain

2#Gn

∞∑
k=1

exp
(
− γ

28C1
2k+1 nδ2

n ψ
( C2

8C1
(k+1)logn

))
≤ 2#Gn

∞∑
k=1

exp
(
− 12γ

28C2

nδ2
n

logn
2k+1

(k+1)

)
≤ 2#Gn

∞∑
k=1

exp
(
−C

nδ2
n

logn
(k+1)

)

< 2#Gn
e−C nδ2

n
logn

1− e−C nδ2
n

logn

for all n > max{n0 , n1}. Furthermore, liminfn→∞
(
1− e−C nδ2

n
logn

)
> 1

2 , which means

that there exists a number n2 such that for all n ∈N with n > n2

2#Gn
e−C nδ2

n
logn

1− e−C nδ2
n

logn

≤ 4#Gn e−C nδ2
n

logn .

In summary, we have proven that

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Mn(g)> 2k−2 γ

2
nδ2

n

}
≤ eM

n
+4 #Gn e−C nδ2

n
logn

for all n >max{n0,n1,n2}. �

We are now in the position to state and prove the main theorem about the rate

of convergence of the approximate least squares estimator.

THEOREM 4.1.12. In the setting of Definition 4.1.1, we have the following result.
Assume that cρ ·n−1/3 ≤ ρn ≤ Cρ ·n−1/3 for some constants cρ ,Cρ > 0. Then there exist
finite subsets {Gn ⊂ G (M,Bn,L) : n ∈ N, n ≥ 2} such that mingn∈Gn ‖m− gn‖ = ρn

and #Gn ≤ eκn1/3 logn for some positive constant κ and all but finitely many n ∈N.
Suppose that {Gn} is any such sequence of subsets. Let m̂n denote the approximate
least squares estimator of m on the basis of the approximating set Gn. With respect
to the empirical mean square error, the sequence of estimators {m̂n} is consistent
with rate n−1/3 logn. In other words, for any ε> 0 there exists a constant K(ε) such
that

limsup
n→∞

P

{
1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2 > K ·n−2/3(logn)2
}
< ε .
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Proof. We have seen in the proof of Lemma 3.1.5 that we can find a set Gn

containing at most e2MBn(L∨1)/ρn ≤ e
2MB0(L∨1)

cρ n1/3 logn elements such that the balls

{B∞(g,ρ) : g ∈Gn} cover G (M,Bn,L). Let n∗ :=max{n ∈N : Bn ≤ B}. If n > n∗, the

true link function m is contained in G (M,Bn,L). Thus, there exists a constant

κ> 0 such that for any n > n∗ there exists a set Gn with #Gn ≤ eκ·n1/3 logn such that

the approximation condition mingn∈Gn ‖m− gn‖∞ = ρn is satisfied.

Let ε> 0 be arbitrary. We define δn :=p
K n−1/3 logn, where the constant K is

chosen according to an inequality that will appear later in this proof. Choosing

{tn} such that tn = o(nδ2
n) and `tn = o(δ2

n) (e.g. tn =− 2
3log`

logn), we see that the

condition

limsup
n→∞

tn +n
(
ρn +`tn

)2

nδ2
n

= 0

is satisfied. Therefore, we may apply Lemma 4.1.4 and plug in the abbreviation

Mn(g)=
n∑

i=1
(Yi −λi)

[
(λi −λ

mn
i )− (λi −λ

g
i )

]
.

Subsequently we apply Lemma 4.1.11. Taken these two steps together, we con-

clude that there exist a constant C > 0 and a number n0 such that for all n ∈N

with n > n0

P

{
1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n(λi−1,Yi−1)

)2 > δ2
n

}
≤

∞∑
k=1

P

{
∃ g ∈Gn : 2k−1γδ2

n < 1
n

n∑
i=1

(
λi −λ

g
i
)2 ≤ 2kγδ2

n ;

Mn(g)> 2k−2 γ

2
nδ2

n

}
≤ eM

n
+4 #Gne−C nδ2

n
logn .

We choose the constant K = K(C,κ) such that (κ−CK)<−1. There exists a number

n1(ε)> n∗ such that for all n > n1

#Gn e−C nδ2
n

logn ≤ exp
(
κn1/3 log(n)−C K n1/3 logn

)
= exp

(
n1/3 log(n) (κ−C K)

)
< ε .

Thus, for n >max{n0 , n1} and the choice K = K(κ,C), the assertion is true. In fact,

K is independent of ε, which means that we have proven a stronger statement

than necessary. �
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4.1.3 Discussion: extending the result to the L2(π) risk

We have proven that the empirical MSE of the approximate least squares estimator

converges in probability to zero with the rate n−2/3(logn)2. Having established

this result, we are interested in the question whether there is a way to deduce a

similar behavior of the L2(π) risk of the estimator. One possible way to answer

this question is to examine the difference between empirical MSE and L2(π)-risk,[
E|m̂n[Y0,...,Yn]=g

(
m(λ′

0,Y ′
0)− g(λ′

0,Y ′
0)

)2

− 1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂n[Y0, . . . ,Yn](λi−1,Yi−1)

)2
]

.

In order to deal with the randomness of m̂n, we bound this difference by a maxi-

mum over the class Gn,

max
g∈Gn

[
E

(
m(λ0,Y0)− g(λi−1,Yi−1)

)2 − 1
n

n∑
i=2

(
m(λi−1,Yi−1)− g(λi−1,Yi−1)

)2
]

.

What are the chances to bound this quantity in probability? In view of the size of

the class Gn, we need an exponential tail bound for the differences

[
E

(
m(λ0,Y0)− g(λ0,Y0)

)2 − 1
n

n∑
i=2

(
m(λi−1,Yi−1)− g(λi−1,Yi−1)

)2
]

for every g. Our favorite tools, exponential tail bounds for martingales or mixing

sequences, are unfortunately not applicable because neither is the above sum a

martingale in n nor is the bivariate INGARCH(1,1) process mixing. However, there

are results available that assure absolute regularity of the lagged count process

{Y n
n−t : n ∈Z}, with Y n

n−t := (0,Yn−t, . . . ,Yn), under the conditions of Definition 4.1.1.

The notion of absolute regularity was introduced by Volkonskii and Rozanov

(1959) who attributed it to Kolmogorov (Bradley, 2007, page 66). We use the

characterization that we found in Bradley (2007, page 89).

DEFINITION 4.1.13. Let A and E be sub σ-fields of F . Suppose that E is sepa-

rable and that there exists a regular conditional distribution P( · |A ) on E . The

coefficient of absolute regularity between A and E is given by

β(A ,E ) :=E
[
sup

{ |P(B |A )−P(B)| : B ∈ E
]
.

For integers n ∈ Z and k ∈ N, the absolute regularity coefficients of the count

process {Yt}t∈Z are given by

β(k,n) :=β(F Y
−∞,n,F Y

n+k,∞) ,
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β(k) := sup
n∈Z

β(k,n) ,

where F Y−∞,n = σ{Yt : t ≤ n} and F Y
n+k,∞ = σ{Yt : t ≥ n+ k}. The process {Yt} is

called absolutely regular if limk→∞β(k)= 0. The absolute regularity coefficients

of the lagged count process {Y n
n−t : n ∈Z} are denoted

βt(k,n) :=β
(
σ

{
Y i

i−t : i ≤ n
}
, σ

{
Y i

i−t : i ≥ n+k
})

,

βt(k) := sup
n∈Z

βt(k,n) .

Since all involved σ-fields are separable, the coefficients of absolute regularity

of the count process and the lagged count process, respectively, are well defined.

The main result of Doukhan and Neumann (2018) suggest that under the semi-

contractive condition the lagged count process is absolute regular with mixing

coefficients βt(k). %
p

k−t for some 0 < %< 1. This can be seen by combining the

proof of our Lemma 2.2.9 with the proof of Theorem 2.1 in the paper by Doukhan

and Neumann (2018) and the statement of their Proposition 2.1 (ibid.). We can

therefore use the Bernstein inequality for absolute regular processes (Doukhan,

1994, page 36) and obtain the necessary exponential bound to establish a bound of

sup
g∈Gn

E
[
m[tn](0,Y0, . . . ,Ytn )− g[tn](0,Y0, . . . ,Ytn )

]2
(4.3)

− 1
n− tn

n−1∑
i=tn

(
m[tn](0,Yi−tn , . . . ,Yi)− g[tn](0,Yi−tn , . . . ,Yi)

)2.

The result of the next lemma will come into effect after we apply a peeling

argument to the expression in (4.3), which we postpone to Corollary 4.1.15.

LEMMA 4.1.14. Let t = tn ³ logn. Let {(λt,Yt)}t∈Z be the data generating pro-
cess from Definition 4.1.1. The process {Y n

n−t : n ∈ Z} is absolutely regular with
coefficients βt(k) ≤ β0 %

p
k−t for some positive constants % < 1 and β0 < ∞. Let

Gn be a subset of G (M,Bn,L) with the same properties specified in Theorem
4.1.12. There exists a number n0 and positive constants C1,C2,C3 such that
for δn := C1n−1/3(logn)3/2 the following inequality holds for all k ∈N+:

sup
n>n0

P

{
max
g∈Gn :

E
[

m[t](Y t
0 )−g[t](Y t

0 )
]2≤2k+1δ2

n

E
[(

m[t](Y t
0 )− g[t](Y t

0 )
)2

]

− 1
n− t

n−1∑
i=t

[
m[t](Y i

i−t)− g[t](Y i
i−t)

]2 > 2k−1δ2
n

}
≤ C2

(
n−2k(logn)−2 + e−C3

2k

k2 n1/3 logn
)
.
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Proof. For the mixing property of the stationary two-sided count process under the

semi-contractive condition, we refer to Doukhan and Neumann (2018, Theorem

2.1). Similarly to the argument in Lemma 2.2.9, the coupling result of Doukhan

and Neumann (2018) can be extended to the lagged count process. Thence we

obtain the bounds for the absolute regularity coefficients of the lagged count

process.

Let g ∈ Gn be chosen such that E
[
m[t](Y t

0 )− g[t](Y t
0 )

]2 ≤ 2k+1δ2
n. We define

X i(g) by

−X i(g) :=
([

m[t](Y i
i−t)− g[t](Y i

i−t)
]2 −E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2
)

=
([

m[t](Y i
i−t)− g[t](Y i

i−t)
]2 −E

[
m[t](Y i

i−t)− g[t](Y i
i−t)

]2
)
.

Note that the process {X i(g) : i ∈Z} is stationary. We want to adapt the proof of

Bernstein’s inequality for absolute regular processes (Doukhan, 1994, page 36) to

bound 1
n−t

∑n−1
i=t X i(g) in probability. For k ∈N+, we introduce the variables

qk = qk,n =
⌈

t+
(

(2k+1) logn
| log%|

)2⌉
. (4.4)

Note that there exists a constant ct > 0 and a number n(t) ∈N+ such that t ≤ ct logn
for n > n(t). Thus,

1
| log%|2︸ ︷︷ ︸

=:cq

(k logn)2 ≤ qk ≤ [
ct + 9

| log%|2 +1
]

︸ ︷︷ ︸
=:Cq

(k logn)2

for all natural numbers n >max{n(t), e} and all k ∈N+. Furthermore, qk satisfies

%
p

qk−t ≤ n−(2k+1) for n ∈ N+. The variable qk will determine the length of the

blocks in the following coupling argument. It should be emphasized that here, in

contrast to the proof of Theorem 3.2.2, the block length depends on an additional

index k. The reason for this difference will become apparent after the proof of this

lemma.

As in Chapter 3, we invoke Berbee’s coupling to obtain i.i.d. sequences of blocks

of length qk. The technical argument is identical to the one that we delivered in

Lemma 3.2.9: there exists a coupling (S,Σ,P, (V ′,V∗)), where V ′ = {
V ′

i
}

i∈Z and{
V∗

i
}

i∈Z are vector-valued processes with the following properties.

(1) The processes {V ′
i } and {Y i

i−t} are identically distributed.

(2) For each index j ∈N, the distributions of the blocks
(
V ′

t+ jqk
, . . . ,V ′

t+ jqk+qk−1
)

and
(
V∗

t+ jqk
, . . . ,V∗

t+ jqk+qk−1
)

are identical.

(3) The blocks
{(

V∗
t+ jqk

, . . . ,V∗
t+ jqk+qk−1

)
: j is even

}
form a sequence of i.i.d. vari-

ables, and so do the blocks
{(

V∗
t+ jqk

, . . . ,V∗
t+ jqk+qk−1

)
: j is uneven

}
.
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(4) For any j ∈N,

P
{(

V∗
t+ jqk

, . . . ,V∗
t+ jqk+qk−1

) 6= (
V ′

t+ jqk+1, . . . ,V ′
t+ jqk+qk

)
for some 0≤ j < n− t

qk

}
≤ n− t

qk
βt(qk) .

We introduce the variables X∗
i (g) that are defined canonically to X i(g) by

−X∗
i (g) :=

([
m[t](V∗

i )− g[t](V∗
i )

]2 −E
[
m[t](V∗

i )− g[t](V∗
i )

]2
)
.

Note that the new sequence {X∗
i (g)} satisfies for all j ∈N the relation

P
(

X∗
t+2 jqk+1(g),...,X∗

t+2 j+qk
(g)

)
=P

(
X t+2 jqk+1(g),...,X t+2 j+qk (g)

)
=P

(
X t+1(g),...,X t+qk (g)

)
.

We have the estimate

P

{
max
g∈Gn :

E
[

m[t](Y t
0 )−g[t](Y t

0 )
]2≤2k+1δ2

n

1
n− t

n−1∑
i=t

X i(g)> 2k−1δ2
n

}

≤ n− t
qk

βt(qk)+P
{

max
g∈Gn :

E
[

m[t](Y t
0 )−g[t](Y t

0 )
]2≤2k+1δ2

n

1
n− t

n−1∑
i=t

X∗
i (g)> 2k−1δ2

n

}

≤ n− t
qk

βt(qk)+ ∑
g∈Gn :

E
[

m[t](Y t
0 )−g[t](Y t

0 )
]2≤2k+1δ2

n

P
{

1
n− t

n−1∑
i=t

X∗
i (g)> 2k−1δ2

n

}
.

Applying the same strategy as in the computations leading to (3.24), we arrange

the sum 1
n−t

∑n−1
i=t X∗

i (g) into sums of even and uneven blocks, respectively, and a

remainder term. Defining Nk := 1
2

⌊
n−t
qk

⌋
if

⌊
n−t
qk

⌋
is even, or Nk := 1

2

(⌊
n−t
qk

⌋
−1

)
if⌊

n−t
qk

⌋
is odd, as in the paragraph preceding (3.24), we have

1
n− t

n−1∑
i=t

X∗
i (g)= 1

n− t

Nk−1∑
j=0

(
X∗

t+(2 j+1)q + . . .+ X∗
t+(2 j+1)qk+qk−1

)
+ 1

n− t

Nk−1∑
j=0

(
X∗

t+2 jqk
+ . . .+ X∗

t+2 jqk+qk−1
)

+ 1
n− t

n−1∑
i=2Nk

X∗
t+i(g) .

The sum in the remainder term

Rn,k := 1
n− t

n−1∑
i=2Nk

X∗
t+i(g)
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contains no more than 2qk addends, which are bounded by M2. The term Rn,k is

therefore bounded by 2M2 qk
n−t ≤ 2M2 Cq(k logn)2

n−t for n > n(q), which means that

limsup
n→∞

sup
k

Rn,k

2kδ2
n
≤ limsup

n→∞
sup

k
2M2Cq

k2

2k
(logn)2

(n− t)δ2
n
= 0.

Thus, there exists a number n0 ∈N such that for all n > n0

sup
k

P
{
Rn,k(g)> 2k−2δ2

n

}
= 0.

And we obtain in resemblance to the approach in Lemma 3.2.12 that

P
{

1
n− t

n−1∑
i=t

X∗
i (g)> 2k−1δ2

n

}

≤ 4P
{

1
n− t

Nk−1∑
j=0

(
X∗

t+2 jqk
(g)+ . . .+ X∗

t+2 jqk+qk−1(g)
)> 2k−3δ2

n

}

for all k ∈N and all n > n0. In order to apply the Bernstein inequality for sums of

independent and bounded random variables, we check the following conditions.

(1) E X∗
i (g)= 0 for all natural numbers i ≥ t;

(2) there exists a σ2
n,k > 0 such that for all j ∈N

E
[
X∗

t+2 jqk
(g)+ . . .+ X∗

t+2 jqk+qk−1(g)
]2 ≤σ2

n,k;

(3) there exists a bn,k such that for all j ∈N

∣∣X∗
t+2 jqk

(g)+ . . .+ X∗
t+2 jqk+qk−1(g)

∣∣≤ bn,k .

Condition (1) is obviously satisfied, as is condition (3). As a bounding constant we

can choose bn,k = qk M2. To verify condition (2), we apply the triangle inequality

and obtain(
E[X∗

t+2 jqk
(g)+ . . .+ X∗

t+2 jqk+qk−1(g)]2
)1/2 =

(
E[X t(g)+ . . .+ X t+qk−1(g)]2

)1/2

≤ (
E[X2

t (g)]
)1/2 + . . .+ (

E[X2
t+qk−1(g)]

)1/2

= qk
(
E[X2

t (g)]
)1/2 .

Furthermore,

EX2
t (g)=E

[
m[t](Y t

0 )− g[t](Y t
0 )

]4 −
(
E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2
)2

≤ M2E
[
m[t](Y t

0 )− g[t](Y t
0 )

]2

≤ M2 2k+1δ2
n ,
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where we used in the last line that g is chosen from the set{
g ∈Gn : E

[
m[t](Y t

0 )− g[t](Y t
0 )

]2 ≤ 2k+1δ2
n

}
.

Therefore,

sup
j∈N

E[X∗
t+2 jqk

(g)+ . . .+ X∗
t+2 jqk+qk−1(g)]2 ≤ M2 q2

k 2k+1δ2
n =: σ2

n,k .

For illustrative purposes, we define for g ∈Gn the variables

η j,k(g) := X∗
t+2 jqk+1(g)+ . . .+ X∗

t+2 jql+qk
(g)

xk,n := (n− t)2k−3δ2
n

vn,k := Nk σ2
n,k.

The random variables η0,k(g), . . . ,ηNk−1,k(g) are independent, centered, and bounded.

Thus, we can apply Bernstein’s inequality in the version of Lemma A.4.3. For any

g ∈Gn

P
{

1
n− t

Nk−1∑
j=0

(
X∗

t+2 jqk
(g)+ . . .+ X∗

t+2 jqk+qk−1(g)
)> 2k−3δ2

n

}

= P
{ Nk−1∑

j=0
η j,k(g)> xn,k

}

≤ exp
(
− 1

2

x2
n,k

vn,k +bn,k xn,k/3

)
.

From the definition of Nk, it is apparent that Nk is a uniform (in k) asymptotic

(as n →∞) upper bound for (n− t)/qk. To make this argument explicit, we observe

sup
k

∣∣∣ (n− t)/qk

Nk

∣∣∣≤ sup
k

∣∣∣ (n− t)/qk
1
2

(
n−t
qk

−2
) ∣∣∣≤ sup

k

1∣∣ 1
2 − qk

n−t

∣∣ .

Recall that cq(k logn)2 ≤ qk ≤ Cq(k logn)2, which means that there exists a k0 ∈N+
such that

limsup
n→∞

sup
k

(n− t)/qk

Nk
≤ limsup

n→∞
1∣∣ 1

2 − qk0
n−t

∣∣ <∞ .

We conclude that xn,k bn,k is asymptotically bounded from above by vn,k , uniformly

in k: there exists a constant c1 > 0 and a number n1 ∈N such that for all n > n1
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and all k

xn,kbn,k

vn,k
= 2k−3(n− t)δ2

nqkM2

Nk q2
kM22k+1δ2

n
=

n−t
qk

Nk︸︷︷︸
=O(1)

2−4 ≤ 3 c1 .

Recall that qk ≤ Cq(k logn)2 for n > n(q), and that t ≤ ct logn for n > n(t). We

conclude for the whole exponent that there exists a positive constant c2 and

number n2 ∈N such that for all n > n2 and all k ∈N+

1
2

x2
n,k

vn,k + xn,kbn,k/3
≥

x2
n,k

2(1+ c1)vn,k

= 1
2(1+ c1)

(n− t)2

Nk q2
k

22k−6δ4
n

M2 2k+1 δ2
n

= 2−6

4(1+ c1)M2
(n− t)/qk

Nk

(n− t)
qk

δ2
n 2k

≥ c2
2k

k2
n

(logn)2
δ2

n .

Therefore, for all n > n2 and all k ∈N+ we have the bound

P
{

1
n− t

Nk−1∑
j=0

(
X∗

t+2 jqk+1(g)+ . . .+ X∗
t+2 jqk+qk

(g)
)> 2k−3δ2

n

}

≤ exp
(− c2

2k

k2
n

(logn)2
δ2

n
)
.

According to Theorem 4.1.12, we can assume without loss of generality that

#Gn ≤ eκn1/3 logn for all n > n2. Furthermore, 2k > k2/3 for all k ≥ 0. Hence, we

obtain for all n > n2 and all k ∈N+

P

{
max
g∈Gn :

E
[

m[t](Y i
i−t)−g[t](Y i

i−t)
]2≤2k+1δ2

n

1
n− t

n−1∑
i=t

X i(g)> 2k−1δn

}

≤ n− t
qk

βt(qk)+ ∑
g∈Gn :

E
[

m[t](Y i
i−t)−g[t](Y i

i−t)
]2≤2k+1δ2

n

4 P
{ Nq−1∑

j=0
η j,k(g)> xk,n

}

≤ n− t
qk

βt(qk)+4 #Gn exp
(− c2

2k

k2
n

(logn)2
δ2

n

)
≤ n− t

qk
βt(qk)+4 exp

(
κn1/3 logn− c2

2k

k2
n

(logn)2
δ2

n

)
< n− t

qk
βt(qk)+4 exp

(
3κ

2k

k2 n1/3 logn− c2
2k

k2
n

(logn)2
δ2

n

)
.
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With δ2
n := 6κ

c2
n−2/3(logn)3 we obtain

P

{
max
g∈Gn :

E
[

m[t](Y i
i−t)−g[t](Y i

i−t)
]2≤2k+1δ2

n

1
n− t

n−1∑
i=t

X i(g)> 2k−1δn

}

≤ n− t
qk

βt(qk)+4 exp
(−3κ

2k

k2 n1/3 logn
)

for n > n2 and all k ∈ N+. From the facts that βt(qk) ≤ β0 %
p

qk−t ≤ β0 n−(2k+1)

and qk ≥ cq(k logn)2, we conclude that there exists a number n3 ∈N and positive

constants c3, c′3 such that for all n > n3 and all k ∈N+

n− t
qn,k

βt(qn,k)≤ c3
n− t

(k logn)2
n−(2k+1)

≤ c′3
n−2k

(logn)2
.

If we define C1 :=
√

6κ
c2

, C2 := 4+ c′3, and C3 := 3κ, we get the claim of the Lemma

for all n ≥max{n0, . . . ,n3} and all k ∈N+. �

What is the merit of the previous result? As we indicated above, we use it to

establish a connection between the modified empirical MSE of certain estimators

and their modified L2(π) risk. For these estimators we will intentionally use the

notation m̃n to emphasize the fact that the approximate least squares estimator

m̂n does not necessarily satisfy the condition of the following Corollary 4.1.15. The

reason is that without the assumption of full contractivity of the estimation, it

seems hardly possible to establish a link between the empirical MSE of Theorem

4.1.12,

1
n

n∑
i=2

(
m(λi−1,Yi−1)− m̂(λi−1,Yi−1)

)2 ,

and the modified empirical MSE,

1
n− tn

n−1∑
i=tn

(
m[tn](0,Yi−tn , . . . ,Yi)− m̃[tn]

n (0,Yi−tn , . . . ,Yi)
)2 ,

that shapes the condition of Corollary 4.1.15.

COROLLARY 4.1.15. Let m̃n[Y0, . . . ,Yn] be an estimator with values in Gn and the
property that

1
n− tn

n−1∑
i=tn

(
m[tn](0,Yi−tn , . . . ,Yi)− m̃[tn]

n (0,Yi−tn , . . . ,Yi)
)2 =OP(n−2/3(logn)3)
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for a sequence {tn} with tn ³ logn. Then, for an independent copy
{
(λ′

i,Y
′
i )

}
i∈Z of

the data generating process, the estimator fulfills also

E|m̃n[Y0,...,Yn]=g

[
m[tn](0,Y ′

0, . . . ,Y ′
tn )− g[tn](0,Y ′

0, . . . ,Y ′
tn )

]2 =OP(n−2/3(logn)3)

Proof. The proof consists of the following chain of inequalities and an application

of the previous Lemma. Let ε> 0 be arbitrary but fixed, and let C1 > 0 and n0 ∈N

be the same quantities as in the previous lemma. We set δn := C1n−1/3(logn)3/2

and observe that

P

{
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 > 2lδ2
n

}
=P

∞⋃
k=l

{
2k+1δ2

n ≥E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 > 2kδ2
n

}
=P

∞⋃
k=l

({
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2

− 1
n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2

+ 1
n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2kδ2

n

}
∩

{
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 ≤ 2k+1δ2
n

})
≤P

∞⋃
k=l

({
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2

− 1
n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2k−1δ2

n

}
∩

{
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 ≤ 2k+1δ2
n

})
+P

∞⋃
k=l

({
1

n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2k−1δ2

n

}
∩

{
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 ≤ 2k+1δ2
n

})
≤P

∞⋃
k=l

({
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2

− 1
n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2k−1δ2

n

}
∩

{
E|m̃n=g

[
m[tn](Y ′′′ tn

0 )− g[tn](Y ′′′ tn
0 )

]2 ≤ 2k+1δ2
n

})
+P

∞⋃
k=l

({
1

n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2k−1δ2

n

})
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≤
∞∑

k=l
P

{
max
g∈Gn :

E
[

m[t](Y tn
0 )−g[t](Y tn

0 )
]2≤2k+1δ2

n

E
[(

m[tn](Y tn
0 )− g[tn](Y tn

0 )
)2

]

− 1
n− tn

n−1∑
i=t

[
m[tn](Y i

i−tn
)− g[tn](Y i

i−tn
)
]2 > 2k−1δn

}
+P

{
1

n− tn

n−1∑
i=tn

(
m[tn](Y i

i−tn
)− m̃[tn]

n (Y i
i−tn

)
)2 > 2l−1δ2

n

}
︸ ︷︷ ︸

→0 (l→∞)

≤ C2

∞∑
k=l

(
n−2k(logn)−2 + e−C3

2k

k2 n1/3 logn)
︸ ︷︷ ︸

→0 (l→∞)

+ ε

2

≤ ε

for all l > l0(ε) if l0(ε) is chosen sufficiently large, and all n > n0. �

It appears to be a reasonable guess that the modified approximate least squares

estimator defined by

m̃n := arg min
g∈Gn

n−1∑
i=tn

(
Yi+1 − g[tn](0,Yi−tn , . . . ,Yi)

)2 (4.5)

satisfies the condition of Corollary 4.1.15. The strategy for a proof of that claim

would closely resemble the proof of Theorem 4.1.12. However, since no new ideas

would emerge from a detailed display of the argument, we decide to leave it at the

conjecture.

Instead of the original rate n−2/3(logn)2, we were only able to show that the

rate n−2/3(logn)3 could be established for the L2(π)-risk of m̃n if the estimator

satisfies the condition of Corollary 4.1.15. The additional logarithmic factor can be

attributed to the fact that the absolute regularity coefficients of the lagged count

process decrease only sub-geometrically. This has the effect that the quantities

qk in the proof of Lemma 4.1.14 increase like O(logn)2. With geometrically

decreasing mixing coefficients, it would suffice to choose these quantities to be

of the smaller order O(logn). This effect can be considered the price to pay for

relinquishing the strong contractive condition in Definition 4.1.1.

Alternatively, choosing the thresholds {Bn} such that Bn =O(1) would bring

us back to the old rate because this choice would spare us the logarithmic factor

in the bound of log #Gn. However, a bounded sequence of thresholds {Bn} would

deprive us of the comfortable certainty that our set of candidate functions contains

the true link function if only the sample size is sufficiently large. The potential

drawbacks of this situation has been discussed in Subsection 3.2.3. A strategy

offering this prospect does not seem advisable.
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4.1.4 Conclusion

In this section we have proposed a slightly different estimation approach compared

to the perspective taken in Chapter 3. Instead of minimizing a least squares

functional over the whole class of admissible functions, we search for a solution in

a finite subset.

We were able to prove a rate of convergence for the approximate least squares

estimator from Definition 4.1.1. Our main result states that the empirical mean

square error of the estimator has the order OP

(
n−2/3(logn)2)

. The essential tool

for the proof of this result was an exponential tail bound for martingales by

Dzhaparidze and van Zanten (2001).

With limited success we contemplated on the possibility to derive a rate for

the L2(π)-risk on the bases of the result from Theorem 4.1.12. We were not able to

adapt the martingale based approach to this endeavor. Hence, we had to employ

again techniques that are based on the notion of mixing. As a consequence, we

ended up with the condition of Corollary 4.1.15, which unfortunately does not

match the result of Theorem 4.1.12 for the approximate least squares estimator.

Thus, the conditions under which we could prove that a rate for the empirical

MSE implies a similar rate for the L2(π)-risk are not suitable for the approximate

least squares estimator. However, we believe that this implication might be valid

for the slightly modified estimator of equation (4.5).
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4.2 The least squares spline estimator

4.2.1 Splines as the approximating class

The last section has revealed the main condition that a possible choice of the

approximating grids {Gn} has to satisfy: we have to ensure that the sequence

of fineness parameters {ρn} is asymptotically equivalent to n−1/3, and that the

number of elements in Gn is bounded by eκ·n1/3 logn for some positive constant κ.

Thus, in order to asses the suitability of a proposed set Gn, we need results from

approximation theory concerning the distance of G to Gn in the uniform metric. A

popular and well understood approximation technique for which such results are

available is the approximation of continuous functions by splines (de Boor, 1978;

Dierckx, 1995; Lyche and Mørken, 2008). We define splines of degree k according

to the definition stated in Powell (1981, page 29).

DEFINITION 4.2.1. A function s : [0, M] →R is called a piece wise polynomial of

degree k on the interval [0, M] if s ∈ C([0, M]) and there exist points 0= ξ0 < ξ1 <
. . .< ξl = M such that s is a polynomial of degree at most k on [ξi−1,ξi] for every

i = 1, . . . , l. If additionally s ∈ C(k−1)([0, M]), we call s a spline of degree k with knots

{ξi, i = 1, . . . , l} . The set of all such splines will be denoted by S (k;ξ0,ξ1, . . . ,ξl) .

The next result is well established. We mainly worked with the remarks of

Powell (1981, page 29). Another good reference is Lyche and Mørken (2008).

LEMMA 4.2.2. The spline space S (k;ξ0, . . . ,ξl) is a linear space with dimension
k+ l.

Proof. A linear combination of piece wise polynomials is again a piece wise poly-

nomials. The continuous differentiability carries over to linear combinations as

well. Hence, S (k;ξ0, . . . ,ξl) is a linear space.

For i = 0, . . . , l−1 and j = 0, . . . ,k, the functions µi, j with

µi, j(x)=
(x−ξi) j1[ξi ,ξi+1)(x) for i ∈ {0, . . . , l−2},

(x−ξi) j1[ξi ,ξi+1](x) for i = l−1

are linearly independent and span the space of piece wise polynomials of degree at

most k. Therefore, the dimension of the space of piece wise polynomials is (k+1) · l.
Consider a piece wise polynomial s(x)=∑l−1

i=0
∑k

j=0 αi, jµi, j(x). All derivatives of

s exist except at the knots. At x ∈ [0, M]\ {ξ0, . . . ,ξl}, the derivative of order q is

given by

(∂q
x s)(x)=

l−1∑
i=0

k∑
j=q

αi, j
j!

( j− q)!
(x−ξi) j−q1[ξi ,ξi+1)(x) .

109



Since the limits limx→ξi (∂
q
x s)(x) exist and are finite, the derivative (∂q

x s)(x) exists

at every point x ∈ [0, M] if and only if limx↑ξi (∂
q
x s)(x) = limx↓ξi (∂

q
x s)(x) for all i ∈

{1, . . . , l − 1}. This claim can be easily verified. To prove sufficiency, let a :=
limx→ξi (∂

q
x s)(x) and note that for any ε> 0 there exists a δ(ε)> 0 such that a−ε<

(∂q
x s)(x)< a+ε for all x ∈ [ξi −δ,ξi +δ]\{ξi}. Hence, a−ε≤ (∂q−1

x s)(x)−(∂q−1
x s)(y)

x−y ≤ a+ε

for all ξi −δ < y < x < ξi +δ (Königsberger, 2004, page 164), which means that

∂−x (∂q−1
x s)(ξi) and ∂+x (∂q−1

x s)(ξi) exist and are equal to a. To verify necessity, we

invoke the fact that a derivative cannot have simple discontinuities (Rudin, 1976,

page 109).

Therefore, s ∈ C(k−1)([0, M]) if and only if the constraints

k∑
j=q

αi, j
j!

( j− q)!
(ξi+1 −ξi) j−q = q!αi+1,q

for q = 0, . . . ,k−1 and i = 0, . . . , l −2 are satisfied. In other words, a piece wise

polynomial s =∑l−1
i=0

∑k
j=0 αi, j µi, j is an element of S (k;ξ0, . . . ,ξl) if and only if it

solves

(
A(i) B

)


αi,0
...

αi,k

αi+1,0
...

αi+1,k


=


0
...

0



for all i ∈ {0, . . . , l−2}, where the (k+1)× (k+1) matrices A(i) and B are given by

A(i) :=



A(i)
0,0 A(i)

0,1 . . . A(i)
0,k−1 A(i)

0,k

0 A(i)
1,1 . . . A(i)

1,k−1 A(i)
1,k

...
. . .

. . .
...

...

0 . . . 0 A(i)
k−1,k−1 A(i)

k−1,k

0 . . . 0 0 0


, A(i)

q, j :=
(

j
q

)
(ξi+1 −ξi) j−q ,

and

B :=



−1 0 0 . . . 0

0 −1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 0

0 . . . 0 0 0
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and have rank k. Hence, with respect to the basis {µi, j : i = 0, . . . , l−1; j = 0, . . . ,k},

the set S (k;ξ0, . . . ,ξl) is equal to the kernel of

A :=



A(0) B 0 . . . 0

0 A(1) B
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 A(l−2) B
0 . . . 0 0 0


.

Recall that the space of piece wise polynomials has dimension (k+1)l. Since the

matrix A has rank (l−1)k, its kernel has the dimension (k+1)l− (l−1)k = k+ l.
We conclude that S (k;ξ0, . . . ,ξl) is a linear space with dimension k+ l.

Alternatively, consider the basis of truncated power functions

{
(x−ξi) j1(ξi ,ξl ] : i = 0, . . . , l−1; j = 0, . . . ,k

}
.

Since (x−ξ j)+ is not differentiable in x at x = ξ j, all truncated power functions

(x−ξi)
j
+, for which j ∈ {0,1, . . . ,k−1} and i ∈ {1, . . . , l−1}, are not in C(k−1)([0, M])

because ∂−x
(
∂

j−1
x (x− ξi)

j
+
)

and ∂+x
(
∂

j−1
x (x− ξi)

j
+
)

at x = ξi exist but they do not

coincide. For the same reason, any linear combination of truncated power functions

that involve some (x−ξi)
j
+ for i > 0 and j < k is not in C(k−1)([0, M]). Therefore,

any spline of order k is a linear combination of the remaining of k+ l truncated

power functions. �

We have already learned about two different bases of the spline space. Yet,

they are not the most practical ones. Next, we want to introduce the alternative

basis of B-splines. Again, we follow the presentation of Powell (1981, pages 229

and 241).

DEFINITION 4.2.3. For a subset {ξp, . . . ,ξp+k+1}⊂ {ξ−k, . . . ,ξl+k} of k+1 successive

points, the B-spline with knots ξp, . . . ,ξp+k+1 and order k is defined as

Bp,k(x) :=
p+k+1∑

j=p

[ p+k+1∏
i=p
i 6= j

1
(ξi −ξ j)

]
(x−ξ j)k

+ . (4.6)

The normalized B-splines are given by

Np,k(x) := (ξp+k+1 −ξp)Bp,k(x) . (4.7)

LEMMA 4.2.4. Consider a set of l+2k+1 points in ascending order,

ξ−k < . . .< ξ0 < . . .< ξl < . . .< ξl+k ,

111



with ξ0 = 0 and ξl = M . For p ∈ {−k, . . . , l −1} , let the B-spline Bp,k be given by
(4.6). The set of B-splines restricted to the interval [0, M] ,{

Bp,k
∣∣
[0,M] : p ∈ {−k, . . . , l−1}

}
,

is a basis of the vector space S (k;ξ0, . . . ,ξl) . Of course, the same is true for the set
of normalized B-splines restricted to [0, M].

Proof. Cf. Lemma A.5.1. �

Lemma 4.2.2 tells us that the space of splines with a certain degree k and

number of knots l+1 is a linear space with dimension l+k. However, the crucial

question remains to be answered yet. How accurately can a continuous function

be approximated by a spline of given degree k? It seems intuitive that the quality

of the approximation grows with the dimension of the approximating space. We

will see that this intuition is quite arguable. The next lemma and its proof are

modeled on the exposition of Powell (1981, Theorem 20.2).

LEMMA 4.2.5. Let f ∈ C[0, M] be a Lipschitz continuous function with Lipschitz
constant L. Then there exists a spline function s ∈S (k;ξ0, . . . ,ξl) such that

‖ f − s‖∞ ≤ (k+1)L max
i∈{0,...,l−1}

|ξi+1 −ξi| .

Moreover, if the knots are equidistant, then s satisfies the same Lipschitz condition
as f .

Proof. We consider the absolute difference between f and a spline s at a point

x ∈ [0, M] . The spline s can be written as a linear combination of the normalized

B-splines,

s(x)=
l−1∑

p=−k
αp Np,k(x) .

The spline s that we use to approximate f shall be given by the coefficients

αp := f (ξp). Then, by the partition of unity property of the normalized B-splines

on [0, M] (Lemma A.5.1 (vi)), we obtain

| f (x)− s(x)| =
∣∣∣ l−1∑

p=−k

(
f (x)−αp

)
Np,k(x)

∣∣∣ .

Assume without loss of generality that x ∈ [ξi,ξi+1] and i ∈ {0, . . . , l −1}. Lemma

A.5.1 (i) and the continuity of B-splines tells us that in this case Np,k(x) = 0 if
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p ≤ i−k−1 or p ≥ i+1. Then the sum in the last display boils down to

∣∣∣ i∑
p=i−k

(
f (x)−αp

)
Np,k(x)

∣∣∣≤ max
i−k≤p≤i

| f (x)−αp|
i∑

p=i−k
Np,k(x)

= max
i−k≤p≤i

| f (x)−αp|
l−1∑

p=−k
Np,k(x)

= max
i−k≤p≤i

| f (x)−αp| . (4.8)

Recall that αp = f (ξp). We assume without loss of generality that the knots

outside the interval [0, M] can be chosen such that their distance to each other is

smaller than the maximal distance between knots inside the interval. Hence,

| f (x)− s(x)| ≤ max
i−k≤p≤i

| f (x)− f (ξp)|
≤ L max

i−k≤p≤i
|x−ξp|

≤ Lmax
i

|ξi+1 −ξi−k|
≤ L(k+1) max

p
|ξp −ξp−1| .

It remains to be shown that s has the Lipschitz property in case of equidistant

knots. For that sake we compute the derivative of s on [ξ0,ξl] in between the knots.

With the formula of Lemma A.5.1 and the fact that the B-splines are non-negative,

we see that

|∂xs(x)| =
∣∣∣ l−1∑

p=−k
f (ξp)(ξp+k+1 −ξp)∂xBp,k(x)

∣∣∣
=

∣∣∣ l−1∑
p=−k

kf (ξp)
(
Bp,k−1(x)−Bp+1,k−1(x)

)∣∣∣
=

∣∣∣k f (ξ−k) B−k,k−1(x)︸ ︷︷ ︸
=0 if x≥ξ0

+
l−1∑

p=−k+1

[
k
(
f (ξp)− f (ξp−1)

)
Bp,k−1(x)

]
−kf (ξl−1) Bl,k−1(x)︸ ︷︷ ︸

=0 if x≤ξl

∣∣∣
=

∣∣∣ l−1∑
p=−k+1

f (ξp)− f (ξp−1)
ξp −ξp−1

k(ξp −ξp−1)Bp,k−1(x)
∣∣∣

≤ L
l−1∑

p=−(k−1)
(ξp+k −ξp)Bp,k−1(x)

= L . �

An immediate corollary of the last lemma is that in the case of equidis-

tant knots the distance between the class of Lipschitz functions on [0, M] and
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S (k;ξ0, . . . ,ξm) intersected with that same class is at most

sup
f

inf
s

‖ f − s‖∞ ≤ (k+1)L max
i

|ξi−1 −ξi| .

The only way to increase the dimension of S while keeping k fixed is the insertion

of new knots. If we assume that the knots are evenly distributed among the

interval [0, M], increasing the number of knots has the consequence that the

size of the partition in terms of the maximal distance of two neighboring knots

decreases. Under the condition of fixed degree of smoothness k and balanced

knot distribution, we see now that increasing the dimension of the approximating

spline space indeed lowers the maximal approximation error.

So far, we have investigated the properties of the finite dimensional set

S (k;ξ0, . . . ,ξl) and concluded, given a reasonable knot sequence, that it is ap-

propriate for the approximation of Lipschitz functions. Yet, to realize the ideas of

the approximate least squares estimator, we need an approximating set of finitely

many elements. We can obtain such a set by restricting the coefficients {αp}l−1
p=−k

to a finite set An.

DEFINITION 4.2.6. Let k ≥ 1 be a natural number and

ξ−k < . . .< ξ0 = 0< ξ1 < . . .< ξl = M < ξl+1 < . . .< ξl+k

a sequence of equidistant knots. Suppose that An is a set of real numbers. Let

S (k;ξ−k, . . . ,ξl+k; An) denote the linear combinations of the normalized B-splines{
Np,k|[0,M]

}l−1
p=−k with coefficients αp from the set An.

For the set S (k;ξ−k, . . . ,ξl+k; An) we have a statement about the quality of

approximations of bounded Lipschitz functions, which is similar to Lemma 4.2.5.

LEMMA 4.2.7. Let k ≥ 1 be an integer and {ξp}l+k
p=−k be a knot sequence as in the

previous definition. Let the finite set An be such that

sup
x∈[0,M]

min
λ∈An

|λ− x| ≤ max
p

|ξp −ξp−1| .

Let f : [0, M]→ [0, M] be a Lipschitz continuous function with Lipschitz constant
L. Then there exists a spline function s ∈S (k;ξ−k, . . . ,ξl−k; An) such that

‖ f − s‖∞ ≤ (Lk+L+1) max
p∈{0,...,l−1}

|ξp+1 −ξp| .
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Proof. Copy the proof of Lemma 4.2.5 until line (4.8). Here we make the slight

modification defining

αp := arg min
λ∈An

|λ− f (ξp)| .

By assumption, it follows that

|αp − f (ξp)| ≤max
p

|ξp −ξp−1| .

We conclude that

| f (x)−αp| = | f (x)− f (ξp)+ f (ξp)−αp|
≤ | f (x)− f (ξp)|+max

p
|ξp −ξp−1|

and

| f (x)− s(x)| ≤max
i

max
i−k≤p≤i

x∈[ξi ,ξi+1]

| f (x)−αp|

≤max
p

|ξp −ξp−1|+max
i

max
i−k≤p≤i

x∈[ξi ,ξi+1]

| f (ξp)− f (x)|

≤max
p

|ξp −ξp−1|+Lmax
i

|ξi−k −ξi+1|
≤max

p
|ξp −ξp−1|+L(k+1)max

p
|ξp −ξp−1| . �

In the next definition we use the preceding results on splines to define a

specific approximation grid Gn from which we select the approximate least squares

estimator. The grid will consist of functions s(λ, y) ∈ G such that for all y the

univariate functions λ 7→ s(λ, y) are splines of order k. It is convenient to choose

k = 2 since this ensures continuous differentiability with respect to λ.

DEFINITION 4.2.8. Let the equidistant knot sequence {ξp}ln+2
p=−2 be given by

ξ−2 < ξ−1 < ξ0 = 0< ξ1 . . .< ξln = M < ξln+1 < ξln+2 .

The knot distance is denoted by ∆n := ξi+1 −ξi for i ∈ {−2, . . . , ln +1}. Let An be an

equidistant partition of [0, M] with ln
2 +1≤ #An ≤ C ln points; An = (α0,α1, . . . ,αKn )

in ascending order with a0 = 0 and aKn = M. The sequence {∆n} is required to

satisfy ∆n ³ n−1/3. Note that then ln = M
∆n

³ n1/3. Let the class G (M,Bn,L be as in

Definition 4.1.1. The grid Gn is then defined as

Gn := {
s ∈G (M,Bn,L) : s( · , y) ∈S (2;ξ−2, . . . ,ξln+2; An) for all y ∈ {0, . . . ,Bn −1}

}
.

The approximate least squares estimator on the basis of the approximating set Gn
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in the sense of Definition 4.1.1 is called least squares spline estimator.

LEMMA 4.2.9. The least squares spline estimator is consistent with rate n−1/3 logn.

Proof. We quickly verify that the set Gn satisfies the conditions of Theorem

4.1.12. The distance of any point x ∈ [0, M] to its closest element in An is at most
M

2Kn
= M

2(#An−1) ≤ ∆n. This means that the condition ”supx∈[0,M] minλ∈An |λ− x| ≤
maxp |ξp −ξp−1|“ from Lemma 4.2.7 is satisfied, and we can conclude that for any

g∗ ∈ G (M,Bn,L) there exist functions s∗0 , . . . , s∗Bn−1 ∈S (2;ξ−2, . . . ,ξln+2; An) such

that for all y ∈ {0, . . . ,Bn −1}

sup
λ∈[0,M]

|s∗y(λ)− g∗(λ, y)| ≤ (2L+L+1)∆n .

Defining s∗ ∈Gn by s(λ, y) := s∗y(λ), we see that

min
s∈Gn

‖g∗− s‖∞ =min
s∈Gn

max
y∈{0,...,Bn−1}

sup
λ∈[0,M]

∣∣s(λ, y)− g∗(λ, y)
∣∣

≤ max
y∈{0,...,Bn−1}

sup
λ∈[0,M]

∣∣s∗(λ, y)− g∗(λ, y)
∣∣

= max
y∈{0,...,Bn−1}

sup
λ∈[0,M]

∣∣s∗y(λ)− g∗(λ, y)
∣∣

≤ (2L+L+1)∆n ³ n−1/3 .

Since g∗ was arbitrary, the relations holds uniformly for all g∗ ∈G , which includes

g∗ = m. This means in the notation of Theorem 4.1.12 that ρn has the right order.

The number of elements in Gn is bounded by

#Gn = (#An)Bn(ln+2) = eBn(ln+2)log#An ≤ eκ·n1/3 logn

for some positive constant κ. Thus, Theorem 4.1.12 is valid for the least squares

spline estimator, and the claim follows. �

The rate is conjectured to be optimal up to the logarithmic term. With the next

lemma we provide the recipe to compute the least squares spline estimator.

LEMMA 4.2.10. Let the (ln +2)Bn-dimensional vector α be given by

α := (
α−2(y), . . . ,αln−1(y)

)
y=0,...,Bn−1 ∈ A(ln+2)Bn

n ,

and let the mappings Sn(α) : A(ln+2)Bn
n →Gn and Q(α, y) : A(ln+2)Bn

n ×Nn+1 → [0,∞),
and the constraint function C = (

Cy,0 , Cy,1
)

y=0,...,Bn−1 : A(ln+2)Bn
n →R2Bn be given

by

Snα [λ, y] :=
l−1∑

p=−2
αp(y) Np,2(λ) ,
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Q(α, y) :=
n−1∑
i=0

(
yi+1 −

(
Snα

)[i][0, y0, . . . , yi]
)2

Cy,i(α) := sup
λ∈[0,M]

ln−1∑
p=−1

(
(−1)i αp(y)−αp−1(y)

∆n
−L

)
Np,1(λ) , i ∈ {0,1} .

The mapping Sn maps the parameter vector α to the corresponding spline function.
The functional Q is the sum of squares functional for this spline function and the
observations y= (y0, . . . , yn).

(i) Let α∗
n ∈ A(ln+2)Bn

n be a solution of the restricted optimization problem

argmin
α

{
Q(α,Y ) : α ∈ A(ln+2)Bn

n
}

subject to C(α)≤ 0,
(4.9)

where the vector Y = (Y0, . . . ,Yn) is given by n+1 successive count variables of the
data generating process. The least squares spline estimator is given by

m̂n = Sn(α∗
n) .

(ii) Let the underlying knot sequence {ξi}
2+ln
i=−2 be equidistant with ln ≤ L. Then the

least squares spline estimator is given by m̂n = Sn(α∗
n), where

α∗
n = argmin

α

{
Q(α,Y ) : α ∈ A(ln+2)Bn

n
}

is the unconstrained minimizer of α 7→Q(α,Y ).

Proof. (i) Certainly, every element in Gn corresponds to a unique element α ∈
A(ln+2)Bn

n that satisfies Sn(α) ∈ G (M,Bn,L). Therefore, the least squares spline

estimator is uniquely determined by the minimizer of the functional α 7→Q(α,Y )

under the restriction that Sn(α) ∈G (M,Bn,L). An element α ∈ A(ln+2)Bn
n is called

feasible if Sn(α) ∈G (M,Bn,L). The necessary and sufficient condition for a vector

α to be feasible is that Sn(α) satisfies the smoothness condition (L) from Definition

4.1.1 (b). This means that we have to check the condition

∣∣Snα[λ1, y]−Snα[λ2, y]
∣∣≤ L |λ1 −λ2|

for all y. Since the functions λ 7→ Snα[λ, y] are by assumption splines of order

2, we know that the first derivatives exist everywhere. Hence, the smoothness

condition is fulfilled if and only if for all y ∈ {0, . . . ,Bn −1} the derivative with

respect to λ is at most L:

max
y

sup
λ

∣∣∂λ (Snα)[λ, y]
∣∣≤ L . (4.10)
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The formula for the derivatives of spline functions,

∂x

( l−1∑
p=−k

αpNp,k(x)
)
=

l−1∑
p=−(k−1)

k
αp −αp−1

ξp+k −ξp
Np,k−1(x) ,

can be found in Lemma A.5.1 (iv). We are in the case of equidistant knots with

distance ∆n and spline degree k = 2. This fact and the partition of unity property,∑l−1
p=−1 Np,1 ≡ 1, yield

sup
λ∈[0,M]

(
(−1)i ∂λ (Snα)[λ, y]−L

)
= sup

λ∈[0,M]

( l−1∑
p=−1

(−1)i αp(y)−αp−1(y)
∆n

Np,1(λ)−L
l−1∑

p=−1
Np,1(λ)

)
= Cy,i(α) .

The necessary bound (4.10) holds for α if and only if Cy,i(α)≤ 0 for all i ∈ {−1,1}

and all y ∈ {0, . . . ,Bn −1}. This proves the first part.

(ii) By definition, all coefficients αp(y) are selected from the set An ⊂ [0, M]. The

distance between the equidistant knots is ∆n = M/ln. Therefore,

|ap(y)−ap−1(y)| ≤ M = ln∆n ≤ L∆n

for all y= 0, . . . ,Bn −1. Note that the function λ 7→ ∂λ(Snα)[λ, y] is a spline of first

degree. We invoke Lemma A.5.1 (v) and the last estimate to conclude that for any

y the absolute value
∣∣∂λ(Snα)[λ, y]

∣∣ is bounded by

max
p

2
|αp(y)−αp−1(y)|

ξp+2 −ξp
=max

p

|αp(y)−αp−1(y)|
∆n

≤ L .

Thus, the constraint (4.10) is always satisfied. �

In order to obtain an estimation, we have to solve the high dimensional con-

strained optimization problem (4.9). If we attempt to solve this optimization

problem, we have to come up with an algorithm that is designed to find an approx-

imate global maximum point of a high dimensional real valued function over a

very fine grid. This calls for algorithms from the field of integer programming. An

alternative approach could be to treat the variables αp as continuous variables.

In this case we would have to solve a so called global optimization problem for an

objective function without indication of convexity. The acquired solution will be

close to the solution of the original discrete problem if the grid An is very fine. In

Appendix A.6 we gathered some additional information about the computational

complexity of these problems and some techniques that are available to solve

them.
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Once we have figured out a way to solve Problem (4.9), we face the challenge to

choose the hyper-parameters that arise from the definition of the estimator. The

central objects that have to be determined prior to an application of our model

are the set G (M,Bn,L) and the approximating finite subsets Gn. The defining

parameters for G are the domain boundaries M and Bn, and the Lipschitz constant

L; for the finite subsets Gn, we additionally have to specify ln and An, the number

of knots and the set of coefficients for the splines respectively. To avoid model

misspecification, the constants M, Bn, and L must not be chosen too small: if the

true function m is not contained in G (M,Bn,L), we have obviously no chance to

select a realization of a consistent estimator.

Having observed the data, it has to be made plausible that the given choices of

the constants are indeed large enough. Even though Bn grows with the sample

size, we do not know whether our specific sample is sufficiently large to guarantee

that Bn ≥ B. In the case that Bn < B, difficulties may arise if some observations

exceed Bn. However, if this does not happen, a possible model misspecification

due to Bn < B will not be effective. In this case, we may safely accept the proposed

value for Bn.

Determining adequacy of the choice of M (i.e. the boundary of the domain

of estimation with respect to the intensity variable) requires a more involved

procedure since the intensities are not observed. However, the value M should be

large enough to explain the observed counts reasonably well. Assume that we have

used prior information to guess an upper bound M for the intensities. Formally, we

could consider at each time t the family of distributions Pt := {
PYt|λt=λ : λ ∈R+

}
and test the hypothesis

H0 : λ≥ M vs. H1 : λ< M .

For a given level of significance αt, a test Tt(Yt) that satisfies

sup
λ≥M

βTt (λ)≤αt (4.11)

for the power function βTt (λ) :=E[Tt(Yt) |λt =λ] would be given by a randomized

test rejecting H0 with the probability

Tt(Yt)=


1 if Yt < cαt

γαt if Yt = cαt

0 if Yt > cαt .

The critical value cαt is given by cαt = inf
{
c : P{Yt ≤ c |λt = M} ≥ αt

}
, and γαt =

αt−P{Yt<cαt |λt=M}
P{Yt=cαt |λt=M} . The family Pt is by assumption the family of Poisson distribu-
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tions with intensities λ> 0. This family has a monotone likelihood ratio, which

implies that the power function λ 7→βTt (λ) is monotonically non-increasing (Shao,

2003, Lemma 6.3), and the property (4.11) follows from βTt (M)=αt. If at all time

instances the null hypothesis can be rejected, we have reason to believe that all

intensities λt have fallen into the interval [0, M]. Since the power function βTt is

non-increasing, the test Tt has larger power in regions that are more distant from

the interval [M,∞). Thus, in order to prevent failure in rejecting H0 for values

λ< M, it seems advisable to avoid narrow choices of M.

Regarding the evaluation of the choice for L, we can safely accept any choice

L ≥ 1 because this guarantees `< L.

So far, the described ad-hoc procedures give hints as to whether we should

dismiss a particular choice for M,Bn, or L as too small. With regard to excessively

large values of the constants, however, they are insensitive. From a statistical

point of view, extreme choices of model parameters should be avoided. Even

thought the asymptotic result holds regardless of the constants’ magnitudes, large

constants may deteriorate the estimators performance. The proof of Theorem

4.1.12 suggests that larger classes Gn lead to larger bounds for the MSE in prob-

ability. The quantities M,Bn,L, An, and ln determine the size of the sets Gn.

Larger values of the constants lead to larger sets of candidate functions, from

which we expect larger estimation errors. In analogy to non-parametric smoothing

techniques, we could term this phenomenon over-fitting. Its terminological coun-

terpart, over-smoothing, is expected to occur with too small choices of M,Bn,L, An,

and ln. In order to prevent the occurrence of these phenomena, it seems advisable

to apply an adaptive procedure of hyper-parameter selection.

An illustrative example of such an adaptive inference procedure is the data

driven choice of the bandwidth for kernel regression or density estimators. Several

methods have been proposed to select the bandwidth in a data driven way. A

classical approach is the use of leave-one-out cross-validation for kernel-based

estimators in i.i.d. settings (Rudemo, 1982; Stone, 1984; Hardle and Marron, 1985;

Györfi et al., 2002; Tsybakov, 2008). Adapting the presentation of Györfi et al.

(2002, page 112), we give a short motivation of the method, and we briefly mention

the modifications which may be appropriate to adapt this method to our setting.

The basic i.i.d. setting is as follows.

Suppose that the standard regression model E(Y |X = x)= m(x) explains the

data Dn = {(X i,Yi) : i = 1, . . . ,n} . We consider a finite set of possible parameters

H = {h1, . . . ,hq} such that for every h ∈ H there is a corresponding estimator m̂n,h

of m (e.g. the bandwidth of a kernel regression estimator). Our goal is to select

the best deterministic choice h̄n, defined by

E

∫(
m̂n,h̄n

−m
)2 dP X =min

h∈H
E

∫(
m̂n,h −m

)2 dP X ,
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in a data driven way. The idea of cross-validation is to divide the sample in

training and validation samples. In the case of leave-one-out, we would define for

i = 1, . . . ,n the ith training sample as

D−i =
{
(X j,Y j) : j ∈ {1, . . . ,n}\ {i}

}
.

Accordingly, m̂n,h[D−i] denotes the estimator based on the ith training sample

with parameter h ∈ H. The best deterministic choice of h can be estimated by

choosing,

h∗ := argmin
h∈H

1
n

n∑
i=1

[(
m̂n,h[D−i]

)
(X i)−Yi

]2 .

Of course, this approach has to be modified to work in a setting with dependent

data. The intuitive reason is that the training samples D−i and their correspond-

ing validation singletons {(X i,Yi)} are not independent any more, which may lead

to over-adaption to the specific sample and hence a generally bad estimator for

h̄n. A possible modification was suggested for instance by Györfi et al. (1989) and

Burman et al. (1994). It reflects the idea to leave a gap in the training samples

that grows with the sample size, and to take the validation sample out of these

gaps. For a sufficiently large gap, this has the effect that dependencies between

training and validation sample are small. The ith training sample now contains

less variables,

D−i,bn = {
(X1,Y1), . . . , (X i−bn ,Yi−bn ) , (X i+bn ,Yi+bn ) , . . . , (Xn,Yn)

}
,

and h is now chosen as the minimizer of

1
n

n∑
i=1

[(
m̂n,h[D−i,bn ]

)
(X i)−Yi

]2 .

If we wanted to apply the cross validation technique in our model, we would

have to encounter the fact that we are unable to evaluate m̂n,h[D−i,bn ](λi) because

λi is a hidden variable. Hence, an iteration procedure has to be applied again.

The modified cross validation functional to be minimized is then

1
n

n∑
i=1

[(
m̂n,h[D−i,bn ]

)[i](0,Y0, . . . ,Yi−1)−Yi

]2
.

Intuitively, it appears natural to let bn tend to infinity while the fraction bn/n
should tend to zero, which had been remarked by Burman et al. (1994) referring

to Györfi et al. (1989) in the context of kernel regression estimators.

At this point, we want to give the computational costs of adaptive parameter

selection some consideration. As we cannot make use of Lemma 4.2.10 (ii), each in-

121



stance of determining a least squares spline estimation of m requires the solution

of a constrained optimization problem. After an inquiry of methods in nonlinear

constrained optimization, which is to a limited extend presented in Appendix

A.6, we find that the standard approach to such a problem is the use of penalty

based methods. These methods consist of a sequence of unconstrained optimiza-

tion problems with gradually increasing penalty terms that penalize unfeasible

solutions (cf. Definition A.6.8). Thus, every solution of the high-dimensional con-

strained optimization problem require a number of solutions of high-dimensional

unconstrained problems. Due to the large number of variables, these problems

themselves are highly complex, which is also discussed in Appendix A.6. Thus,

the cross validation scheme lets the computational costs soar.

If we have a very high preference for containing the computational effort of

the procedure, we might ignore possible over-fitting effects and restrict our efforts

to avoiding too small choices for the constants: we would accept any sufficiently

large choice that guarantees m ∈G . For the boundary values M and Bn, we would

apply the ad hoc testing procedures that we presented previously. For the choice

of L and ln, we might adopt the strategy to choose a value as small as possible for

ln ≥ 1 that is just about tolerable from a statistical point of view. Subsequently

set L = ln. This can be motivated as follows. In order to save computing power,

the number of knots should be chosen as small as possible because it determines

the dimension of the optimization problem associated to the least squares spline

estimation. Very large choices of ln mean that #An is large, and we come close

to the complexity of a high dimensional global optimization problem, which is

computationally extremely challenging (Appendix A.6). A statistically tolerable

choice is one that does not contradict the requirement ∆n ³ n−1/3. The choice

L = ln is motivated by Lemma 4.2.10 (ii). It is the smallest possible choice to

ensure that we only need to solve an unconstrained optimization problem as

opposed to a constrained one. This saves computational costs as well.

In view of limited computational resources, we pursued this strategy in our

simulation study that we present in the next section.

4.2.2 A simulation study

Now that we have presented an approach to actually compute estimations of the

regression function m from the data, it is in order to demonstrate the feasibility

of this approach. We will present a simulation study in which we use the ideas of

the fourth chapter to calculate estimations of the intensity function of a simulated

count processes.

We briefly describe the basic procedure. We will generate a count process

based on an intensity function of linear type with trigonometric perturbations
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similar to the example Meister and Kreiß (2016) chose to illustrate their results.

We declare a domain [0, M]× {0, . . . ,B−1} and a specification of the parameters

a,b, c,d,ν that determine the link function

m(λ, y)=
(
a+bλ+ c

(
y∧ (B−1)

)+d
[
sin

(
2π
ν

λ

)
+cos

(
2π
ν

(
y∧ (B−1)

))])∧M .

Next, we simulate the count process starting with λ1 := 1 and a random number

y1 ∼Poiss(λ1) . Then we proceed following the model equation. Given (λi−1, yi−1) ∈
[0, M]×N , we calculate m(λi−1, yi−1) =: λi and generate a random variable yi ∼
Poiss(λi) . Since we want to work with a process in its stationary regime, we define

a burn-in period of length n0 and throw away all (xi, yi) with i ≤ n0.

It is our aim to infer the true function m from the simulated process while we

pretend not to have any information about the intensities {λi}. We use the least

squares spline estimator to tackle this inference problem and assess the quality of

our estimation using the empirical mean square error (MSE),

1
n−n0

n∑
i=n0+1

(
m(xi, yi)− m̂n(xi, yi)

)2,

where n0 is the length of the burn-in period.

In order to cap the size of the optimization problem, we wanted to restrict the

domain with respect to the count variable to {0,1,2,3,4,5}. The parameter M was

set to M := 2, which allows a reasonable approximation with 15 knots for every

possible count value. This means that a total number of 72 variables need to be

optimized. To avoid an overly homogeneous count process, the intensity function

has to provide enough steepness. For our simulation, we selected the parameters

a = b = c = 0.3, d =−0.1 and ν= 2.

We estimated m on the domain [0,2]× {0, . . . ,5} with the least squares splines

estimator from Definition 4.2.8. The defining constants were set to M = 2,Bn = 6,

and L = ln = 10; the underlying knot sequence was {−0.4,−0.2,0.0, . . . ,2.0,2.2,2.4}.

The set An was chosen to be an equidistant partition of the interval [0,2] in 20

parts. According to Lemma 4.2.10 (ii), we were spared the handling of a con-

strained optimization problem to calculate the estimation. To solve the resulting

optimization problem, we used the Genetic Algorithm (GA) in the form of the

MATLAB® (version R2018a) function ga(). The main motivation for the choice

of the algorithm was accessibility. The function ga() is an implementation of a

global optimization algorithm that is able to process integer constraints.

In order to detect a possible over-fitting effect caused by too many candidate

functions, we experimented with a larger specification of the set An by setting

An = [0, M]. The resulting global optimization problem was solved using the GA,

and additionally we used Particle Swarm Optimization (PSO) and Simulated
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Annealing (SA), which are implemented in MATLAB® R2018a in form of the func-

tions particleswarm() and simulannealbnd(), respectively. Again, the main

considerations in the choice for these algorithm were practicability. The mentioned

algorithms are easy to access and produce fairly well results in high-dimensional

global optimization problems. A short description of the used algorithms can be

found in Appendix A.6.

In total, we conducted 32 experiments treating two different data sets with four

different approaches. The first 16 Experiments were carried out with a sample

size of n = 1050 with burn-in period from index 1 to n0 = 50 such that the effective

sample consisted of 1000 realizations of the bivariate process. Experiments 1 – 4

were carried out using the GA and the set An = {0,0.1, . . . ,1.9,2.0}. Experiments 5

– 16 are a succession of four applications of GA, PSO and SA, respectively, with

An = [0, M]. In Experiments 17–32, we used an independent sample of n = 150

realizations with burn-in period from 1 to n0 = 50. We conducted the experiments

according to the same pattern as in Experiments 1–16. The repeated application

of one algorithm to the same data set has the purpose to illustrate the inherent

randomness of the used optimization procedures; a specific estimation is in general

not reproducible from the same data set, and two independent runs yield two

different estimations. All estimations were evaluated using the empirical mean

square error. To get an idea about the scales, we computed the mean of all

intensities, λn = 1
n

∑n
i=1 λi, as a reference value. The results are reported in detail

in Table A.9.1 and Figures A.8.2–A.8.9. The experiments were carried out on an

Intel® Core™ i7-2600 3.40 GHz machine with 16.0 GB RAM, using MATLAB®

version R2018a.

Using the script shown in Listing A.7.1, data sets one and two were generated

as independent realizations of 1050 and 150 elements of the bivariate process,

respectively. The first 50 realizations were used as a burn in to approach the

stationary regime. Illustrations of the data sets are given in Figure A.8.1. Estima-

tions were computed using the scripts in Listing A.7.2. The results suggest that

the strategy to use a discrete set An of coefficients and the Genetic Algorithm as

a solver is preferable to the use of a non-discrete set An and global optimization.

This impression is particularly clear in the experiments with sample size 1000.

With smaller sample sizes the difference between the performances are less in-

dicative. It is not clear whether the difference in the quality of the estimations

with different specifications of An could be attributed to the over-fitting effect

that was discussed earlier or simply to differences in the performances of the used

algorithms. The different performance of GA-discrete and GA-global for the larger

sample size hint at the presence of an over-fitting effect.

Lastly we want to emphasize that this simulation study has a purely illus-

trative character. Its primary purpose is to show that the estimation of a semi-
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contractive link function, using the least squares spline estimator, is feasible.

Numerical experiments that can serve as a solid base for conjectures about fi-

nite sample error bounds of the prescribed methods would require a lot more

repetitions.
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Chapter 5

Discussion

In this thesis we presented two main results. In a nonparametric integer-valued

GARCH model for count data with hidden intensities, we proved the existence

of an entirely nonparametric least squares estimator and demonstrated that it

attains a rate of convergence that we suspect to be optimal up to logarithmic

terms. The essential assumption in the model was a contractive condition which

is a Lipschitz condition with constant smaller than one. We proposed two different

approaches to least squares estimation that require different extents to which

the contractive condition has to be satisfied. Furthermore, the approaches are

distinguished by the sets of candidate functions from which the estimations are

selected.

In the first approach taken in this thesis, we specified a class of functions

G (M,B,L1,L2) that was assumed to contain the true function m. At the same

time, the class G (M,B,L1,L2) served as the set of candidate functions, which

means that the estimator minimizes the least squares functional over the class

G (M,B,L1,L2). The methods we employed to prove asymptotic bounds for the

L2(π)-risk required a strong form of the contractive assumption. The proof relied

heavily on a chaining argument which required the strong contractive condition

to be valid for all functions in G (M,B,L1,L2). Furthermore, the assumption of

full contractivity of m reduced the necessary effort to prove uniform mixing of the

count process. We proposed a generalization of this first approach by letting the

constants B grow gently with the sample size.

In the second approach, we restricted the set of candidate functions to a

finite grid of functions. The size of the grid had to depend on the sample size in

order to ensure that the accuracy of the estimator grows with the sample size.

The circumstance that the estimation was selected from finitely many candidate

functions allowed us to omit the chaining procedure, and we were able to prove
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bounds for the empirical MSE of the so called approximate least squares estimator,

using only the assumption that the true link functions has the semi-contractive

property. For the set of candidate functions, we are then free to relax the conditions

to Lipschitz continuity in the first argument with constants not necessarily smaller

than one. While the first approach relied on exponential inequalities for mixing

sequences, the second approach was based on martingale techniques. In both

settings we were able show that the respective estimator attains the rate of

convergence n−1/3 up to a logarithmic term.

The rate reflects the smoothness of the link function and the dimension of

its domain. In terms of mini-max theory, the optimal rate of convergence for

nonparametric estimators with degree of smoothness β and domain dimension d is

typically of order n−β/(2β+d). In their examination of a nonparametric GARCH(1,1)

model, which is closely related to our count model, Meister and Kreiß (2016)

proved the following lower bound for the rate of convergence. Assume that the

true function m belongs to a Hölder class of monotone functions with smoothness

parameter β over a domain with dimension d = 2 (ibid., page 3014). Then

inf
{m̂n}

liminf
n→∞ n2β/(2β+2) sup

m
E

∫(
m− m̂n

)2 dπ> 0,

where π denotes the stationary distribution of the data generating process. In

our case, the assumption that the functions are constant in the count variable

from a threshold value B onward reduces the problem to a parametric one in the

second component. As a consequence, nonparametric smoothing is only necessary

with respect to the intensity variable, and the effective dimension is d = 1. The

contractive property is a tighter version of Lipschitz continuity. Lipschitz functions

are absolutely continuous and therefore differentiable almost everywhere. Of

course, in this case the derivative is bounded almost everywhere by the Lischitz

constant (Bass, 2013, page 128). Consequently, for any y0 ∈ {0, . . . ,B−1},∫
[0,M]

∣∣∂λm(λ, y0)
∣∣2 dλ<∞ .

Thence we conclude that m( · , y) is an element of the Sobolev class of functions

with smoothness parameter β= 1 (Tsybakov, 2008, page 13). Hence, in view of the

classical results in nonparametric statistics, we suspect the optimal rate in our

model to be of order n−1/3. If this is true, the rates that we provide in Theorems

3.2.2 and 4.1.12 are optimal only up to a sub-polynomial term.

We shall briefly discuss the origin of the disturbing logarithmic terms that

separate us from an optimal rate. A close inspection of the proofs uncovers

several pitfalls that may be responsible for these terms. Let us start discussing

the approach leading to Theorem 3.2.2. We examine the structure of the random
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quantities that play the central role in the analysis. Recall that due to the iteration

procedure, the essential random quantity driving our estimator are functions of

the form

(
Yi+1 − g[t](Yi−t, . . . ,Yi)

)2 . (5.1)

The parameter t indicates how many iterations we apply to approximate the

unobservable intensities λi ≈ m[t](0,Yi−t, . . . ,Yi). We have investigated the mixing

properties of these variables. They are measurable transformations of the lagged

count process
{
Y i+1

i−t
}
. Hence, the dependence structure is driven by the mixing

properties of this process. For the mixing coefficients we have acquired the bound

φt(r)≤min
{
1, C Lr−t} (5.2)

for some positive constant C. The ultimate step in our argumentation was the

application of Bernstein’s inequality to sums of variables of the form (5.1). Here

the first difficulties arise when we try to find bounds for the variance of sums of

square integrable transformations T(Vi) := T(Y i+1
i−t ) of the lagged process. Using

the covariance inequalities for uniformly mixing process (Lemma A.2.1) and the

bound (5.2), we obtain

var
(n−1∑

i=t
T(Vi)

)
=

n−1∑
i1,i2=t

cov(ϕ(Vi1 ),T(Vi2 ))

≤ 2
n−1−t∑

r=0

n−1−r∑
i1=t

cov(T(Vi1 ),T(Vi1+r))

≤ 4
n−1−t∑

r=0

n−1−r∑
i1=t

√
φt(r) ET2(V0)

. n
∞∑

r=0

√
min

{
1, C Lr−t

}
︸ ︷︷ ︸

O(t)

. n t .

The order t is owed to the absence of a better bound for indexes with small time

gaps such that the mixing coefficients are not small enough. Recall that the

iteration parameter t has to grow with the sample size, t = t(n) ³ logn. This

means that

var
( n∑

i=t
T(Vi)

)
=O(n logn) .

This extra logarithmic factor inevitably carries over to any application of an

exponential tail bound.
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Another pitfall with the application of exponential inequalities in this setting

is that they require the random variables under consideration to be bounded.

As the count process is conditionally Poisson distributed, the variables (5.1) are

unbounded. To remedy this deficiency, we need to introduce a cutoff threshold for

the variables, which has to grow with n. This is another source for disturbing

logarithmic terms. Last, we remark that the blocking technique, which was used to

obtain i.i.d. sequences blocks of length q via a coupling, contributes a disturbance

in form of the block length q as can be inspected in the proof of Lemma 3.2.17.

The martingale based approach leading to Theorem 4.1.12 avoids the technical

problems related to the use of mixing properties. We are thus spared from the

difficulties that arise from the variance bounds and blocking procedure which

were necessary in the proof of Theorem 3.2.2. However, the fact remains that we

deal with unbounded variables. This persists to be a problem. The exponential

tail bound for martingales with unbounded increments (Lemma 4.1.11), which

is well suited for this situation, requires a cutoff procedure as well. This cutoff

is hidden in the definition of the term Ha
t , and it is responsible for the extra

logarithmic factor in the result of Theorem 4.1.12. We suggest that a model with

bounded count variables would allow for a result in the shape of Theorem 4.1.12

but without the disturbing factor.

We conclude the discussion of the theoretical results with a remark on the in-

volved constants. A correct application of the proposed model would include a pre-

ceding specification of the model parameters that define domain and smoothness

of the true function and the candidate functions. To avoid model misspecification,

a sufficiently large choice of these constants is in order. Apart from this conditions,

we have seen that the rate of convergence is unaffected by the specific choice of

the constants. However, we strongly suspect that large constants deteriorate the

estimator’s performance in terms of finite sample error bounds.

In Chapter 4 we have proposed and discussed a possible way to approximately

calculate a nonparametric least squares estimator from count data. The resulting

least squares spline estimator can still be interpreted as a nonparametric esti-

mator. Even if we construct the estimator from a finite sub-class, no parametric

assumption on the true link function are imposed, which is the key feature of

nonparametric inference. We experimentally approximated the least squares

spline estimator from the count data of a simulated bivariate data generating

process using different heuristic optimization algorithms. The outcomes differed

in quality, but all estimations had reasonably small errors.

Computing a nonparametric estimation comes at the expense to solve compu-

tationally hard optimization problems and therefore requires more resources than

a parametric model. The relative comfort of a model with less severe structural

assumptions that is associated with the choice of a nonparametric approach has
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to be weighted against two main disadvantages in form of a nonparametric rate

of convergence, as opposed to the rate n−1/2 in a correctly specified parametric

model, and a much higher demand for computing power.
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Appendix A

Supplementary material

A.1 Berbee’s coupling

The next Lemma is taken from Doukhan et al. (1995). It is originally attributed

to Berbee (1979).

LEMMA A.1.1 (Berbee’s Lemma; Doukhan et al., 1995, page 406). On a probability
space (E,E ,P) , let X and Y be two random variables taking theirs values in
Borel spaces S1 and S2 respectively, and let U be a random variable with uniform
distribution over [0,1], independent of (X ,Y ). Then there exists a random variable
Y ∗ = f (X ,Y ,U) , where f is a measurable function from S1 ×S2 × [0,1] into S2

such that:

1. Y ∗ is independent of X and has the same distribution as Y ;

2. P{Y ∗ 6=Y }=β (σ(X ),σ(Y )) .

The next Lemma is adapted from Proposition 2 in Doukhan et al. (1995, page

407) which is stated there without a proof.

LEMMA A.1.2. Let q ∈N+ be a positive integer. Suppose that a two-sided sequence
{Vt}t∈Z of random vectors Vt with values is (Rd ,Bd) is defined on a probability space
(E,E ,P), and let β(q, t) and φ(q, t) denote the coefficients of absolute regularity and
uniform mixing, respectively, between the sub σ-fields σ{Vs : s ≤ t} and σ{Vs : s ≥ t+
q}. As in Definitions 2.2.2 and 4.1.13, let β(q)= supt β(q, t) and φ(q)= supt φ(q, t).
Suppose that the probability space (E,E ,P) is sufficiently rich such that there
exists a sequence {Ut}t∈N+ of independent, uniformly over [0,1] distributed random
variables that is independent of {Vt}t∈Z. Then there exists a one-sided random
sequence {V∗

t }t∈N on (E,E ,P) with the following properties:
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1. P
(
V∗

ql ,V
∗
ql+1,...,V∗

ql+q−1

)
= P

(
Vql ,Vql+1,...,Vql+q−1

)
for all l = 0,1,2, . . . ;

2. The even blocks
{(

V∗
ql ,V

∗
ql+1, . . . ,V∗

ql+q−1

)
: l = 0,2,4, . . .

}
are mutually inde-

pendent, as are the uneven blocks
{(

V∗
ql ,V

∗
ql+1, . . . ,V∗

ql+q−1

)
: l = 1,3,5. . .

}
;

3. P
{∃ i = 0, . . . ,n−1 : Vi 6=V∗

i
}≤ n

q β(q)≤ n
q φ(q), for n ≥ q.

Proof. In the course of the proof, we will use the following two facts about the

coefficients of absolute regularity. First, let A0,A ,F0, and F be sub σ-fields of E

such that A0 ⊂A and F0 ⊂F . Then β(A0,F0)≤ β(A ,F ) (Bradley, 2007, page

68).

Second, suppose that F , G , C , and D are sub σ-fields of E , and the σ-fields

σ(F ∪G ) and σ(C ∪D ) are independent. Then

β
(
σ(F ∪C ) , σ(G ∪D )

)≤β(F ,G )+β(C ,D )−β(F ,G ) ·β(C ,D )

(Bradley, 2007, Lemma 6.4 (b), page 194). If D = {;,E}, then σ(G ∪D) = G ,

β(C ,D )= 0, and the inequality reduces to

β
(
σ(F ∪C ) , G

)≤β(F ,G ) . (A.1)

Let us proceed with the main part of the proof. We split the sequence

(V0,V1,V2,V3, . . .) in blocks of length q,

ξi := (
V2iq, . . . ,V(2i+1)q−1

)
ηi := (

V(2i+1)q, . . . ,V2(i+1)q−1
)

,

i ∈ N. Then {Vi}i∈N = {ξi,ηi}i∈N. We shall construct a sequence {ξ∗i }i∈N of inde-

pendent random variables that satisfy Pξ∗i = Pξi and P{ξi 6= ξ∗i } ≤ β(q). Define

ξ∗0 := ξ0. Note that (Rd·q,Bd·q) is a Borel space (Bradley, 2007, page 11). According

to Berbee’s Lemma, there exists a measurable function such that the variable

ξ∗1 = f1(ξ0,ξ1,U1) satisfies the following conditions:

(1) ξ∗1 is independent of ξ∗0 = ξ0;

(2) Pξ∗1 = Pξ1 ;

(3) P
{
ξ∗1 6= ξ1

}=β
(
σ{ξ0},σ{ξ1}

)
.

Since σ{ξ1} ⊂ σ{Vt : t ≥ 2q}, σ{ξ0} ⊂ σ{Vt : t ≤ q−1}, and the sequence {β(q)}q∈N+
is non-increasing, it follows that β

(
σ{β0},σ{ξ1}

) ≤ β(q+1, q−1) ≤ β(q+1) ≤ β(q).

Therefore, P
{
ξ∗1 6= ξ1

}≤β(q).

In the ith step we do the following. Suppose we already have a vector

(ξ∗0 , . . . ,ξ∗i−1) of independent random variables such that for j ∈ {1, . . . , i−1} the

variable ξ∗j is independent of (ξ∗0 , . . . ,ξ∗j−1); Pξ∗j = Pξ j ; and ξ j = f j(ξ∗0 , . . .ξ∗j−1,ξ j,U j)
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for some measurable function f j. Again, (Rd·q·i,Bd·q·i) and (Rd·q,Bd·q) are

Borel spaces. According to Berbee’s Lemma, there exists a random variable

ξ∗i = f i(ξ∗0 , . . . ,ξ∗i−1,ξi,Ui) with the following properties:

(1) ξ∗i is independent of (ξ∗0 , . . . ,ξ∗i−1);

(2) Pξ∗i = Pξi ;

(3) P
{
ξ∗i 6= ξi

}=β
(
σ{ξ∗0 , . . . ,ξ∗i−1},σ{ξi}

)
.

The construction of (ξ∗0 , . . . ,ξ∗i−1) implies that there exists a vector-valued, mea-

surable function Fi such that (ξ∗0 , . . . ,ξ∗i−1) = F j(ξ0, . . . ,ξi−1,U1, . . . ,Ui−1). Hence,

σ{ξ∗0 , . . . ,ξ∗i−1} ⊂ σ{ξ0, . . . ,ξi−1,U1, . . . ,Ui−1}. Since the σ-fields σ{U1, . . . ,Ui−1} and

σ{ξ0, . . . ,ξi} are independent, we can apply inequality A.1 with F =σ{ξ0, . . . ,ξi−1},

C =σ{U1, . . . ,Ui−1}, and G =σ{ξi} to conclude that

β
(
σ{ξ∗0 , . . . ,ξ∗i−1},σ{ξi}

)≤β(σ{ξ0, . . . ,ξi−1,U1, . . . ,Ui−1} , σ{ξi})

≤β (σ{ξ0, . . . ,ξi−1} , σ{ξi})

≤β(σ{Vt : t ≤ 2iq− (q+1)} , σ{Vt : t ≥ 2iq})

≤β(q+1, 2iq− (q+1))

≤β(q) .

Thence we deduce that P
{
ξ∗i 6= ξi

}≤β(q).

The sequence {η∗i }i∈N is constructed analogously. We finally obtain a sequence

(ξ∗1 ,η∗1,ξ∗2 ,η∗2, . . .) such that Pξi = Pξ∗i ; Pηi = Pη∗i ; and all ξi are mutually indepen-

dent, as are the ηi. Moreover, P
{
ξi 6= ξ∗i

}≤β(q) and P
{
ηi 6= η∗i

}≤β(q). The proof

is almost complete. We only remark that

P
{∃ i = 0, . . . ,n−1: Vi 6=V∗

i
}

≤ P
{
∃ i = 0, . . . ,

n+ q
2q

−1: ξi 6= ξ∗i or ηi 6= η∗i

}
≤ n

q
β(q)

if n ≥ q. For a uniformly mixing sequence, we obtain the bound with φ(q) since

any uniformly mixing sequence is absolutely regular as well, with β(q) ≤ φ(q)

(Bradley, 2007, page 76). �
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A.2 Covariance bounds for mixing processes

LEMMA A.2.1 (Doukhan, 1994, page 9). Let (E,E ,P) be a probability space and
F and B be two sub σ-fields of E . Let X and Y be two random variables that are
measurable with respect to F and B respectively. Then,

|cov(X ,Y )| ≤ 2
(
φ(F ,B)

)1/p (
EX p)1/p(

EY q)1/q ,

for any p, q ≥ 1 with 1
p + 1

q = 1. Furthermore,

|cov(X ,Y )| ≤ 8 (α(F ,B))1/r (
EX p)1/p(

EY q)1/q ,

for any p, q, r ≥ 1 such that 1
r + 1

p + 1
q = 1.

A.3 A symmetrization lemma

LEMMA A.3.1 (Giné and Nickl, 2016, page 131). On a probability space (E,E ,P) ,
let Y1, . . . ,Yn be Rd-valued random variables and Y ′

1, . . . ,Y ′
n independent copies. Let

G be a class of continuous functions g : Rd →R such that
∫ |g(Y )|2 dP <∞. Then,

for t > s > 0,

P
{

sup
g∈G

∣∣ n∑
i=1

g(Yi)
∣∣> t

}
≤ P

{
supg∈G

∣∣∑n
i=1[g(Yi)− g(Y ′

i )]
∣∣> t− s

}
1−supg∈G P

{|∑n
i=1 g(Yi)| > s

} .

If additionally

sup
g∈G

var
( n∑

i=1
g(Yi)

)
≤ t2

8
, (A.2)

then

P
{

sup
g∈G

∣∣ n∑
i=1

g(Yi)
∣∣> t

}
≤ 2P

{
sup
g∈G

∣∣ n∑
i=1

[g(Yi)− g(Y ′
i )]

∣∣> t/2
}

.

Proof. Measurability of the supremum is secured by the fact that G is separable

with respect to the uniform norm; consult the proof of Lemma 3.2.6 for the details

of this argument.

Let g∗ ∈ G such that
∣∣∑n

i=1 g∗(Yi)
∣∣ > t if such an element exists. Otherwise

let g∗ be any function from G . Note that g∗ depends on Y1, . . . ,Yn. Hence, it is a

G -valued random element. Denote Y := (Y1, . . . ,Yn). Then,

P
{

sup
g∈G

∣∣ n∑
i=1

g(Yi)−
n∑

i=1
g(Y ′

i )
∣∣> t− s

}
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≥ P
{∣∣ n∑

i=1
g∗(Yi)−

n∑
i=1

g∗(Y ′
i )

∣∣> t− s
}

≥
∫

P
{∣∣ n∑

i=1
g∗(Yi)−

n∑
i=1

g∗(Y ′
i )

∣∣> t− s
∣∣∣Y = y

}
PY (dy)

≥
∫{

|∑n
i=1 g∗(yi)|>t

} P
{∣∣ n∑

i=1
g∗(Yi)−

n∑
i=1

g∗(Y ′
i )

∣∣> t− s
∣∣∣Y = y

}
PY (dy)

≥
∫{

|∑n
i=1 g∗(yi)|>t

} P
{∣∣ n∑

i=1
g∗(Y ′

i )
∣∣≤ s

∣∣∣Y = y
}

PY (dy)

≥ P
{∣∣ n∑

i=1
g∗(Yi)

∣∣> t
}

inf
g∈G

P
{∣∣ n∑

i=1
g(Y ′

i )
∣∣≤ s

}
= P

{
sup
g∈G

∣∣ n∑
i=1

g(Yi)
∣∣> t

}
inf
g∈G

P
{∣∣ n∑

i=1
g(Y ′

i )
∣∣≤ s

}

= P
{

sup
g∈G

∣∣ n∑
i=1

g(Yi)
∣∣> t

}(
1−sup

g∈G
P

{∣∣ n∑
i=1

g(Y ′
i )

∣∣> s
})

≥ P
{

sup
g∈G

∣∣ n∑
i=1

g(Yi)
∣∣> t

}(
1−sup

g∈G

var
∑n

i=1 g(Y ′
i )

s2

)
.

This proves the first assertion, and setting s = t
2 yields the second one. �

A.4 Tail bounds

All results in this section are to be understood with respect to a probability space

(E,E ,P) and, if necessary, a filtration {En}n∈N of sub σ-fields of E .

LEMMA A.4.1 (Hoeffding’s inequality; Giné and Nickl, 2016, page 114). For n ∈N+,
let X1, . . . , Xn be independent random variables with EX i = 0, taking values in
[ai,bi] with −∞< ai < 0≤ bi <∞, for all i ∈ {1, . . . ,n}. Then, for all t ≥ 0,

P
{∣∣ n∑

i=1
X i

∣∣> t
}
≤ 2 e

− 2 t2∑n
i=1(bi−ai )2

COROLLARY A.4.2. Let ε1, . . . ,εn be independent Rademacher variables, i.e. P{εi =
1}= 1

2 = P{εi =−1}, and let αi be real numbers. It holds that

P
{ 1

n
∣∣ n∑

i=1
αiεi

∣∣> t
}
≤ 2 exp

(
− (nt)2

2
∑n

i=1 α2
i

)
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LEMMA A.4.3 (Bernstein’s inequality; Giné and Nickl, 2016, page 118). For n ∈N+,
suppose that the random variables η1, . . . ,ηn are independent, have bounded ranges
[−b,b] , and satisfy Eηi = 0 for all i ∈ {1, . . . ,n}. For non-negative real numbers x,

P
{
η1 + . . .+ηn > x

}≤ e
− 1

2
x2

σ2
n+b x/3 ,

where σ2
n ≥ var(η1 + . . .+ηn) .

The proof of the following integrated version of Bernstein’s inequality is

adapted from Doukhan et al. (1995, page 408).

LEMMA A.4.4 (Bernstein-type bound). Let X1, . . . , Xm be random variables that
satisfy the tail bound

P
{|X i| > x

}≤ 2 e−
1
2

x2
b+ax ,

for all non-negative real numbers x and fixed constants a,b ≥ 0. Then there exists
a universal constant C > 0 such that

E
[

max
1≤i≤m

|X i|
]
≤ C

(√
b logm+a logm

)
.

Proof.

E
[

max
1≤i≤m

|X i|
]
=

∫∞

0
P

{
max
i≤m

|X i| > x
}

dx

=
∫∞

0
1∧P

{
max
i≤m

|X i| > x
}

dx

≤
∫∞

0
1∧

m∑
i=1

P
{
|X i| > x

}
dx

≤
∫∞

0
1∧

m∑
i=1

2 e−
1
2

x2
b+ax dx

≤
∫∞

0
1∧

m∑
i=1

2 e−
1
2

x2
2(b∨ax) dx

≤
∫∞

0
1∧

m∑
i=1

2
(
e−

1
4

x2
b + e−

1
4

x
a
)

dx

≤
∫∞

0
1∧ (

2m e−
x2
4b

)
dx+

∫∞

0
1∧ (

2m e−
x

4a
)

dx

=
∫∞

0
e−

(
x2
4b −log(2m)

)+
dx+

∫∞

0
e−

( x
4a −log(2m)

)+
dx

≤
√

4b log(2m)+
∫∞

0
e−

x2
4b dx+4a log(2m)+

∫∞

0
e−x/(4a) dx

≤
√

4b log(2m)+
p

bπ+4a log(2m)+4a . �
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LEMMA A.4.5. Let Y ∼Poiss(λ). For non-negative real numbers x,

P
{
Y −λ> x

}≤ e−
x2

2λ+2x/3 .

Proof. The moment generating function of a centered Poisson random variable is

given by

Ees(Y−λ) = eλ(es−1−s) .

Therefore, according to Giné and Nickl (2016, page 116), the claim follows. �

DEFINITION A.4.6. Let M = {Mn}n∈N be a square integrable martingale with

respect to the filtration {En}. The predictable quadratic variation 〈M〉 is defined

as the, up to indistinguishability, unique increasing process {〈M〉n}n∈N such that

〈M〉0 = 0 a.s. and

(1) for every n > 0 the random variable 〈M〉n is En−1-measurable;

(2) the process {mn}n∈N, given by mn = M2
n −〈M〉n, is a martingale with respect

to the filtration {En} .

The predictable quadratic variation is well defined according to the Doob-Meyer

decomposition (Karatzas and Shreve, 1991, page 21). The jump process ∆M =
{∆Mn}n∈N is defined by the increments ∆Mn = Mn −Mn−1 if n > 0, and ∆M0 = M0

otherwise .

LEMMA A.4.7 (Dzhaparidze and van Zanten, 2001, page 110). Let {Mn,En}n∈N be
a square integrable martingale, and for a > 0 let the process {Ha

n}n∈N be defined by

Ha
n := 〈M〉n +

n∑
k=0

(
∆Mk

)2
1{

|∆Mk |>a
} .

Then for every finite stopping time τ, and any real numbers a, z,L > 0 ,

P
{

max
n≤τ

|Mn| > z ; Ha
τ ≤ L

}
≤ 2 exp

(
− 1

2
z2

L
ψ

(
az/L

))
,

where the function ψ is given by

ψ(x)= 2
x2

∫x

0
log(1+ y) d y .

It satisfies ψ(x)≥ 1
1+x/3 for x ≥−1.

REMARK A.4.8. The original version of the previous lemma was formulated for

continuous time martingales {Mt,Et}t≥0 that have right-continuous trajectories
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with left-hand limits. However, defining Mt =∑∞
n=0 Mn1[n,n+1)(t), the result can

be adapted to the case of discrete time.

A.5 Some properties of splines

In the next lemma, we collect the main features of B-splines for our purposes.

Our sources are Powell (1981), Dierckx (1995), Györfi et al. (2002), and Lyche and

Mørken (2008).

LEMMA A.5.1. Let ξ be a set of l+2k+1 points in ascending order,

ξ−k < . . .< ξ0 < . . .< ξl < . . .< ξl+k ,

with ξ0 = a and ξl = b . For p ∈ {−k, . . . , l−1}, let the B-spline Bp,k be given by (4.6).
Then the following statements hold:

(i) The B-splines are non-negative, and suppBp,k = [ξp,ξp+k+1].

(ii) The following recurrence relation holds:

Bp,k(x)= (x−ξp)Bp,k−1(x)+ (ξp+k+1 − x)Bp+1,k−1(x)
(ξp+k+1 −ξp)

.

(iii) The set of B-splines restricted to the interval [a,b] ,{
Bp,k

∣∣
[a,b] : p ∈ {−k, . . . , l−1}

}
,

form a basis of the vector space S (k;ξ0, . . . ,ξl) .

(iv) The derivative of the B-splines are given by

∂x Bp,k(x)= k
Bp,k−1(x)−Bp+1,k−1(x)

ξp+k+1 −ξp
.

Consequently, ∂xNp,k(x)= k Np,k−1
ξp+k−ξp

−k Np+1,k−1
ξp+1+k−ξp+1

, and for x ∈ [0, M]

∂x

l−1∑
p=−k

αpNp,k(x)=
l−1∑

p=−k+1
k
αp −αp−1

ξp+k −ξp
Np,k−1(x) .

(v) Let s =∑l−1
p=−k αp Np,k(x) be an element of S (k;ξ0, . . . ,ξl) . Then the maximal

value and the minimal value of s are bounded by the maximal and minimal
coefficient, respectively:

min
p

αp ≤ s(x)≤max
p

αp .
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(vi) The B-splines of order k ≥ 1, normalized by the factor (ξp+k+1 −ξp), form a
partition of unity on [0, M], i.e.

l−1∑
p=−k

(ξp+k+1 −ξp)Bp,k(x)= 1 for all x ∈ [0, M] .

Proof. (i) The first assertion follows from Theorem 19.1 of Powell (1981, page

230). For the second claim, we follow the argument outlined by Powell (1981, page

229). From the definition it follows immediately that Bp,k(x)= 0 for all x < ξp. We

shall show that additionally

p+k+1∑
i=p

di(x−ξi)k
+ = 0

for all x ∈ [ξp+k+1,b] , with di = ∏p+k+1
j=p
j 6=i

1
(ξ j−ξi)

. For that purpose, recall that the

Lagrangian interpolation polynomial of degree k+1 for interpolating a continuous

function f at the k+2 points ξp, . . . ,ξp+k+1 is given by

P f [x] :=
p+k+1∑

i=p
f (ξi)

p+k+1∏
j=p
j 6=i

(x−ξ j)
(ξi −ξ j)

,

and that P f is unique among all polynomials with degree k+1 . Therefore, P f = f
if f itself is such a polynomial. In particular, for any n ∈ {0, . . . ,k+1}, we have

Pxn = xn. Whence we infer that

xn =
p+k+1∑

i=p
(ξi)n

p+k+1∏
j=p
j 6=i

(x−ξ j)
(ξi −ξ j)

=
p+k+1∑

i=p

(ξi)n∏p+k+1
j=p
j 6=i

(ξi −ξ j)

p+k+1∏
j=p
j 6=i

(x−ξ j)

=
p+k+1∑

i=p

(ξi)n∏p+k+1
i=p
j 6=i

(ξi −ξ j)

k+1∑
q=0

xk+1−q ∑
{r1,...,rq}

⊂{p,...,p+k+1}\{i}

(−1)qξr1 . . . ξrq

︸ ︷︷ ︸∑
;:=1

=
n∑

q=0
xk+1−q

p+k+1∑
i=p

(ξi)n∏p+k+1
i=p
j 6=i

(ξi −ξ j)

∑
{r1,...,rq}

⊂{p,...,p+k+1}\{i}

(−1)qξ j1 . . . ξiq

=:
n∑

q=0
xk+1−q d′

k+1−q,n

Comparing the coefficients on both sides, we see that d′
k+1−q must be equal to zero
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for all q 6= (k+1)−n. For n < k+1 and q = 0, this means that

0= d′
k+1,n =

p+k+1∑
i=p

(ξi)n∏p+k+1
j=p
j 6=i

(ξi −ξ j)
=

p+k+1∑
i=p

(−1)k+1di (ξi)n

For x > ξp+k+1, we obtain

(−1)k+1
p+k+1∑

i=p
di (x−ξi)k

+ = (−1)k+1
p+k+1∑

i=p
di (x−ξi)k

=
k∑

n=0

(
k
n

)
xk−n

p+k+1∑
i=p

(−1)k+1di (ξi)n

= 0.

This gives the second claim.

(ii) We follow Powell (1981, page 234). Rewrite the formula for the B-spline as

Bp,k(x)=
p+k+1∑

j=p
∆

( j)
p,k(x),

where the incremental functions ∆
( j)
p,k have the form,

∆
( j)
p,k(x)=


0 if x ≤ ξ j

(x−ξ j)k∏p+k+1
i=p
i 6= j

(ξi−ξ j)
if x ≥ ξ j .

Then, for x ≥ ξp, the right hand side of the iteration formula reads

(x−ξp)
∑p+k

j=p ∆p,k−1( j)(x)+ (ξp+k+1 − x)
∑p+k+1

j=p+1 ∆
( j)
p+1,k−1(x)

ξp+k+1 −ξp

= x−ξp

ξp+k+1 −ξp
∆

(p)
p,k−1(x)

+
p+k∑

j=p+1

(x−ξp)∆( j)
p,k−1 + (ξp+k+1 − x)∆( j)

p+1,k−1(x)

ξp+k+1 −ξp

+ ξp+k+1 − x
ξp+k+1 −ξp

∆
(p+k+1)
p+1,k−1(x)

= (x−ξp)k

ξp+k+1 −ξp

p+k∏
i=p
i 6=p

1
ξi −ξp

+
p+k∑

j=p+1
1{x≥ξ j }

(x−ξp) (x−ξ j)k−1∏p+k
i=p
i 6= j

(ξi−ξ j)
+ (ξp+k+1 − x) (x−ξ j)k−1∏p+k+1

i=p+1
i 6= j

(ξi−ξ j)

ξp+k+1 −ξp
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+1{x≥ξp+k+1}
(x−ξp+k+1)k

ξp −ξp+k+1

p+k+1∏
i=p+1

i 6=p+k+1

1
ξi −ξp+k+1

= (x−ξp)k∏p+k+1
i=p
i 6=p

(ξi −ξp)

+
p+k∑

j=p+1
1{x≥ξ j }

(x−ξ j)k∏p+k+1
i=p
i 6= j

(ξi −ξ j)
· (x−ξp) (ξp+k+1 −ξ j)− (x−ξp+k+1) (ξp −ξ j)

(ξp+k+1 −ξp) (x−ξ j)

+1{x≥ξk+p+1}
(x−ξp+k+1)k∏p+k+1
i=p

i 6=p+k+1

(ξi −ξp+k+1)

=
p+k+1∑

i=p
∆

( j)
p,k(x)

The last equation follows from

(x−ξp) (ξp+k+1 −ξ j)− (x−ξp+k+1) (ξp −ξ j)

= (x−ξ j) (ξp+k+1 −ξ j)+ (ξ j −ξp) (ξp+k+1 −ξ j)

−(x−ξ j) (ξp −ξ j)− (ξ j −ξp+k+1) (ξp −ξ j)

= (ξp+k+1 −ξp) (x−ξ j) ,

which means that

(x−ξp) (ξp+k+1 −ξ j)− (x−ξp+k+1) (ξp −ξ j)
(ξp+k+1 −ξp) (x−ξ j)

= 1.

This proves the iteration formula.

(iii) Confer Powell (1981, page 232). The set {Bp,k}l−1
p=−k has the right number of

elements. In order to show that this set is indeed a basis of S (k;ξ0, . . . ,ξl), we

need to establish its linear independence. Let

s(x)=
l−1∑

p=−k
αp Bp,k(x)

be a linear combination such that s(x) = 0 for all x ∈ [ξ0,ξl]. Furthermore, we

know by the definition of B-splines that s(x)= 0 for x ≤ ξ−k . Since s ∈ C(k−1) and

on any sub interval [ξ j,ξ j+1] it is a polynomial of degree k, we conclude that the

k−1 fold derivative ∂k−1
x s is piece wise linear. That together with s ≡ 0 outside

(ξ−k,ξ0) implies that ∂k−1
x s does not change signs on [ξ−k,ξ−k+1] and [ξ−1,ξ0] ,

respectively. Therefore ∂k−1
x s has less than k−2 changes of sign on the interval

(ξ−k,ξ0). Hence, ∂k−2
x s has less than k−2 local extreme points in (ξ−k,ξ0). On the

other hand, ∂k−2
x s ≡ 0 outside (ξ−k,ξ0) and has therefore at most k−3 changes in

143



sign. Inductively, ∂xs has no change in sign and s no extreme point in the interval

(ξ−k,ξ0) . It must therefore be constantly zero on [ξ−k,ξl] .

Now assume that there exist integers p1 < . . .< pn such that αpi 6= 0 but αp = 0

for any p ∉ {p1, . . . , pn}. Since on [ξp1 ,ξp1+1] the only non zero B-spline from the

set {Bpi ,k}n
i=1 is Bp1,k, we obtain for x ∈ [ξp1 ,ξp1+1]

s(x)=αp1 Bp1,k(x) 6= 0.

This is a contradiction. Therefore, all αp must be zero and the set {Bp,k}l−1
p=−k is

linearly independent.

(iv) For the proof we refer to Györfi et al. (2002, page 265).

(v) The claim follows easily from the partition of unity property:

l−1∑
p=−k

αp Np,k(x)≤max
p

αp

l−1∑
p=−k

Np,k(x)=max
p

αp .

The lower bound is proven analogously.

(vi) Cf. Powell (1981, page 242). For k = 0, the normalized B-splines are piece

wise constant functions:

(ξp+1 −ξp)Bp,0 =
(ξp+1 −ξp)
(ξp+1 −ξp)

1(ξp ,∞)(x)+ (ξp+1 −ξp)
(ξp −ξp+1)

1(ξp+1,∞)(x)

=1(ξp ,ξp+1](x) .

By the recurrence formula, the first order B-splines are piece wise linear:

(ξp+2 −ξp)Bp,1(x)=


x−ξp

ξp+1−ξp
if x ∈ (ξp,ξp+1]

1− x−ξp+1
ξp+2−ξp+1

if x ∈ (ξp+1,ξp+2]

0 else .

Thus, the only B-splines of order k = 1 that overlap at x ∈ [ξi,ξi+1] are Bi−1,1 and

Bi,1. This yields for x ∈ [ξi,ξi+1] that

l−1∑
p=−1

(ξp+2 −ξp)Bp,1(x)= (ξi+1 −ξi−1)Bi−1,1(x)+ (ξi+2 −ξi)Bi,1

= ξi+1 − x
ξi+1 −ξi

+ x−ξi

ξi+1 −ξi
= 1.

Now assume that the statement is true for k−1, i.e.

l−1∑
p=−k+1

(ξp+k −ξp)Bp,k−1(x)= 1
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Note that the function B−k,k−1 is identically zero outside the interval (ξ−k,ξ0) and

the same is true for Bl,k−1 outside the interval (ξl ,ξl+k) . Again by the recurrence

formula, we obtain for x ∈ [ξ0,ξl]

l−1∑
p=−k

(ξp+k+1 −ξp)Bp,k(x)

=
l−1∑

p=−k

x−ξp

ξp+k −ξp
(ξp+k −ξp)Bp,k−1(x)+ ξp+k+1 − x

ξp+k+1 −ξp+1
(ξp+k+1 −ξp+1)Bp+1,k−1(x)

= x−ξ−k

ξ0 −ξ−k
(ξ0 −ξ−k)B−k,k−1(x)

+
l−1∑

p=−k+1

x−ξp

ξp+k −ξp
(ξp+k −ξp)Bp,k−1(x)

+
l−1∑

p=−k+1

ξp+k − x
ξp+k −ξp

(ξp+k −ξp)Bp,k−1(x)

+ξl+k −ξl

ξl+k −ξl
(ξl+k −ξl)Bl,k−1(x)

=
l−1∑

p=−k+1
(ξp+k −ξp)Bp,k−1(x)

= 1.

The last equality follows from the induction hypothesis. �

A.6 A glance at global and combinatorical optimization

A.6.1 Unconstrained global optimization: information based com-
plexity and worst case analysis

We want to present some well known results about the complexity analysis of

global optimization algorithms. For that sake, let us introduce the basic notions

used in the theory of information based complexity. We use the notation of

Traub et al. (1988). Let F0 ⊂ F1 be a symmetric and convex subset of a space of

functions. Given some function f ∈ F0, our aim is to approximate a characteristic

quantity of this function. Formally, this characteristic quantity is given by a

parameter operator S : F0 → F2 taking values in a normed space F2 which we

call the parameter space. We want to approximate S( f ), given some incomplete

information about the function f .

We shall suppose that this information is given by the value of the function (or

its derivatives) at certain points. It is delivered by an information operator N,

N( f )= N f ( f )= [
L1( f ) , L2, f ( f ; y1) , . . . , Ln( f ), f ( f ; y1, . . . , yn−1)

]
,
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with yi = L i, f ( f ; y1, . . . , yi−1). The operators L i, f ( · ; y1, . . . , yi−1) are assumed to be

linear. Note that the ith information operator depends on f in that it includes

the knowledge about y1, . . . , yi−1 in the choice of L i. Therefore, an information

N with such a structure is called adaptive or sequential information. Adaptive

information means that the point of evaluation of f (or ∂ f ) is chosen according

to the previous evaluations. In contrast, non adaptive information means that

the evaluation points are set in advance, following a predetermined design. An

instance of a non-adaptive information operator is N f ∗ for some fixed function f ∗.

This means that the function f ∗ determines the schedule of the evaluation points.

In this case,

N f ∗ ( f )= [
L1( f ) , L2, f ∗ ( f ; y∗1 ) , . . . , Ln, f ∗ ( f ; y∗1 , . . . , y∗n−1)

]
,

with y∗i = L i, f ∗ ( f ∗; y∗1 , . . . , y∗i−1) . Hence, we can write N f ∗ ( f ) = [
L∗

1( f ), . . . ,L∗
n( f )

]
.

From this form it is visible that N f ∗ does not adapt to the information given by f .

In order to approximate S( f ) on the basis of the available information, we use

algorithms. They are formally introduced as mappings, φ : N(F0)→ F2, from the

set of attainable information into the parameter space. In analogy to the mini-max

approach in nonparametric statistics, the radius and diameter of information are

defined as

r(N;S,F0) = inf
φ∈Φ(N)

sup
f ∈F0

‖S( f )−φ(N( f ))‖F2 ,

d(N;S,F0)= sup
f ∈F0

sup
g∈F0

N( f )=N(g)

‖S( f )−S(g)‖F2

respectively, where Φ(N) denotes the class of algorithms using the information N.

The quantity e(φ, N;S,F0) := sup f ∈F0 ‖S( f )−φ(N( f ))‖F2 is called the error of the

algorithm with respect to S and F0. We give a short proposition to get acquainted

with the terms. It contains a basic relation between radius and diameter of

information (Wasilkowski, 1984, inequality (2.16)).

PROPOSITION A.6.1. The radius and diameter of information satisfy the relation

1
2

d(N;S,F0)≤ r(N;S,F0)≤ d(N;S,F0) .

Proof. We start with the second inequality.

sup
f ∈F0

sup
g∈F0

N( f )=N(g)

‖S( f )−S(g)‖F2 = sup
y∈N(F0)

sup
g∈F0 :
N(g)=y

sup
f ∈F0 :
N( f )=y

‖S( f )−S(g)‖F2

≥ sup
y∈N(F0)

inf
g∈F0 :
N(g)=y

sup
f ∈F0 :
N( f )=y

‖S( f )−S(g)‖F2
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For every y ∈ N(F0) and any ε> 0, there exists an element s∗(y,ε) ∈ S
(
N−1{y}

)⊂ F2

in the parameter space such that

inf
g∈F0 :
N(g)=y

sup
f ∈F0 :
N( f )=y

‖S( f )−S(g)‖F2 > sup
f ∈F0 :
N( f )=y

‖S( f )− s∗‖F2 −ε .

Defining the mapping φ∗
ε : N(F0)→ F2 by φ∗

ε (y) := s∗(y,ε), we obtain

sup
f ∈F0

sup
g∈F0

N( f )=N(g)

‖S( f )−S(g)‖F2 > sup
y∈N(F0)

sup
f ∈F0 :
N( f )=y

‖S( f )−φ∗
ε (y)‖F2 −ε

= sup
y∈N(F0)

sup
f ∈F0 :
N( f )=y

‖S( f )−φ∗
ε (N( f ))‖F2 −ε

= sup
f ∈F0

‖S( f )−φ∗
ε (N( f ))‖F2 −ε

≥ inf
φ∈Φ(N)

sup
f ∈F0

‖S( f )−φ(N( f ))‖F2 −ε .

Since ε> 0 was arbitrary, the second inequality follows. The first one follows from

the fact that for any algorithm φ ∈Φ(N)

sup
f ∈F0

sup
g∈F0

N( f )=N(g)

‖S( f )−S(g)‖F2

= sup
y∈N(F0)

sup
g∈F0 :
N(g)=y

sup
f ∈F0 :
N( f )=y

‖S( f )−S(g)‖F2

≤ sup
y∈N(F0)

sup
g∈F0 :
N(g)=y

sup
f ∈F0 :
N( f )=y

‖S( f )−φ(y)‖F2 +‖S(g)−φ(y)‖F2

≤ 2 sup
f ∈F0

‖S( f )−φ(N( f ))‖F2 .

Taking the infimum on both sides and noting that the left hand side does not

depend on φ yields the desired property. �

We are interested in the comparison of global optimization and function ap-

proximation, from a worst case point of view. To formalize these problems, we

define F1 := C([0,1]d) to be the space of continuous functions from [0,1]d to R,

equipped with the ‖ · ‖∞-norm. In the case of function approximation, the inter-

esting parameter S( f ) of a continuous function f ∈ F1 is the function itself. The

approximation problem can therefore be formulated in the above setting with

F2 = F1 and S = I, the identity operator. In global optimization, the interesting

parameters are real numbers. Thus, the formulation of the global optimization

problem is given by F2 =R and S( f ) := Sm( f ) :=maxx∈[0,1]d f (x). In order to find a

minimum, just maximize − f .

The next lemma, which we adapt from Wasilkowski (1984), examines the

complexity of global optimization. The key idea in the proof is that a global
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optimization algorithm has to be able to distinguish the zero function from an

arbitrary function with small support. Furthermore, the global optimization

problem is not substantially easier than the approximation problem with non-

adaptive information.

LEMMA A.6.2. Let F0 ⊂ F1 be a subset of the class of continuous functions on
[0,1]d . Let f ∗ ≡ 0 be the function that is constantly zero. For any information
operator N, suppose there exists a non-trivial, non-negative perturbation function
h ∈ F0 such that N f ∗ (h) = 0. In other words, the functions f ∗ and f ∗+h are not
distinguishable by means of the information delivered by N f ∗ . Then,

r(N;Sm,F0)≥ 1
2
‖h‖∞ .

If F0 is symmetric and convex, it follows that r(N;Sm,F0)≥ 1
4 r(N f ∗ ; I,F0).

Proof. We follow the presentation of Wasilkowski (1984). Let h ∈ F0 be such that

N f ∗ (h)= 0. It follows that N f ∗+h( f ∗+h)= N f ∗ ( f ∗+h), i.e. the information does

not adapt to h, and N cannot distinguish h from f ∗:

N( f ∗)= N f ∗ ( f ∗)= N f ∗ ( f ∗)+N f ∗ (h)= N f ∗ ( f ∗+h)= N f ∗+h( f ∗+h)= N( f ∗+h) .

Then, by Sm( f ∗)= 0,

2 sup
f ∈F0

∣∣Sm( f )−φ(N( f ))
∣∣≥ ∣∣Sm( f ∗)−φ(N( f ∗))

∣∣+ ∣∣Sm( f ∗+h)−φ(N( f ∗+h))
∣∣

= ∣∣Sm( f ∗)−φ(N( f ∗))
∣∣+ ∣∣Sm( f ∗+h)−φ(N( f ∗))

∣∣
≥ ∣∣Sm( f ∗)+Sm( f ∗+h)

∣∣
= max

x∈[0,1]d
h(x) .

It follows that r(N;Sm,F0)≥ 1
2‖h‖∞.

Suppose F0 is symmetric and convex. We find for f , g ∈ F0 that 1
2 f − 1

2 g ∈ F0,

and therefore

1
2

d(N f ∗ ; I,F0)= sup
{

1
2
‖ f − g‖∞ : f , g ∈ F0 , N f ∗ ( f − g)= 0

}
≤ sup

{‖h‖∞ : h ∈ F0, N f ∗ (h)= 0
}

≤ 2 r(N;Sm,F0) .

We have shown that,

r(N;Sm,F0)≥ 1
4

d(N f ∗ ; I,F0)≥ 1
4

r(N f ∗ ; I,F0) .

This is the desired result. �
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We show that there exist functions h ∈ F0 such that N f ∗ (h) = 0. For that

purpose, recall that the ε-covering number N(ε, [0,1]d ,‖ ·‖∞) of the d-dimensional

unit cube is defined as the minimal number of points x1, . . . , xN such that the balls

B∞(xi,ε) with respect to the uniform norm cover the unit cube. Let # N f ∗ be the

cardinality of the information N f ∗ , i.e. the number of the a priori determined

evaluation points. Chose εh such that

εh = 1
2

sup
{
1> ε> 0: N(ε,‖ ·‖∞, [0,1]d)> # N f ∗

}
. (A.3)

Let then h be a function with the desired smoothness, i.e. h ∈ F0, such that

supph ⊂ B∞(x0,εh) for some point x0 ∈ [0,1]d . Due to the choice of εh, we can

choose x0 in order to ensure that no evaluation point defined by the information

operator N f ∗ lies in the support of h. Therefore, f ∗ and f ∗+h are not distinguish-

able by means of the information operator N f ∗ , and N f ∗+h( f ∗+h)= N f ∗ ( f ∗+h)

as well as N f ∗ (h)= 0 .

Now we state a lemma concerning the error in the problem of global optimiza-

tion of a function belonging to a Hölder class. In the following, the Hölder class

Ck,α
d over the unit cube [0,1]d is defined as

Ck,α
d :=

{
f : D →R ; |∂(l) f (x)−∂(l) f (y)| ≤ max

i=1,...,d
|xi − yi|α , |l| = k

}
,

where l is a multi-index.

The lemma states that the worst case error in global optimization over the

d-dimensional unit cube suffers from the curse of dimensions, i.e. the amount of

information needed to ensure the worst case error to be less then ε grows like ε−d .

In the next lemma, we present results that we found in publications by Novak

(1988) and Vavasis (1991). Note that the methodology is essentially the same as

in the proof of minimax lower bounds for nonparametric estimators as presented

for instance in Tsybakov (2008).

LEMMA A.6.3. Let F0 = Ck,α
d , and let N be any information operator with at most

n−1 function evaluations. Then there exists a constant c > 0 such that

r(N;Sm,F0)≥ c ·n− k+α
d .

Proof. The proof starts giving a lower bound for the covering number of the d-

dimensional unit cube with respect to the norm ‖ · ‖∞. Let D(ε,‖ · ‖∞, [0,1]d) be

the maximal number of points {x1, . . . , xm}⊂ [0,1]d such that, ‖xi − x j‖∞ > ε . This

number is called ε-packing number of the unit cube. An equidistant grid with

mesh size 2ε gives an ε-packing of the unit cube. Therefore, the packing number

for the unit cube with respect to the uniform norm is at least (2ε)−d . The covering
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number N(ε/2,‖ ·‖∞, [0,1]d) is bounded from below by D(ε,‖ ·‖∞, [0,1]d) (Van der

Vaart and Wellner, 1996, page 98). Therefore, N(ε,‖ ·‖∞, [0,1]d)≥ (4ε)−d . We have

assumed that #N f ∗ ≤ n−1. This means that we can estimate the covering number

from below by N
(
(n/4)−1/d ,‖ · ‖∞, [0,1]d) ≥ n > #N f ∗ . For εh from equation (A.3),

we conclude that εh ≥ 1
2 (n/4)−1/d .

We construct the function h. Let x0 ∈ [εh,1− εh]d be some point with the

property that the ball B∞(x0,εh) does not contain any evaluation point given by

N f ∗ . We choose a function g : Rd → R with supp g ⊂ [−1,1]d and g(0) = ‖g‖∞ = 1

that satisfies the Hölder condition |∂(l) g(x)−∂(l) g(y)| ≤ maxi |xi − yi|α for |l| = k,

and define

h(x) := εk+α
h g

(
x− x0

εh

)
.

If l is a multi-index with |l| = k, we obtain

∣∣∂(l)h(x)−∂(l)h(y)
∣∣≤ εk+α−k

h max
i

∣∣∣ xi − yi

εh

∣∣∣α =max
i

|xi − yi|α.

Hence, h ∈ Ck,α
d . Moreover, ‖h‖∞ = εk+α

h ‖g‖∞ ≥ c n−(k+α)/d for some positive con-

stant c. Recall that the function h was chosen such that the information operator

N cannot distinguish f ∗ ≡ 0 from f ∗+h. In virtue of Lemma A.6.2, we obtain the

assertion. �

The next result shows that there is no way to circumvent the curse of dimen-

sions by means of randomized algorithms. A common reference for this result are

Nemirovsky and Yudin (1983). However, for the proof they refer to one of their

papers (Nemirovsky and Yudin, 1978) which is written in Russian. We think that

there are more accessible references for a similar insight; e.g. Novak (1988) and

Bull (2011). We use a result from the latter reference.

For the further proceedings, we need to introduce the notion of a randomized

algorithm. Let (Ω′,A ′,P) be a probability space. On this space we consider

a random information operator N and a random algorithm φ. We define the

estimated point of global maximum after n evaluations of the objective function f
or its derivative as x∗n(ω) :=φ(ω, N f (ω)). We assume that the available information

N f consists of evaluations of f or its derivative at the points x1, . . . , xn. We

suppose that the evaluation points are random variables, i.e. they are (A ′−Bd)-

measurable. The estimated point of global maximum, x∗n, is assumed to be an

element of {x1, . . . , xn}. Again, we presuppose measurability.
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LEMMA A.6.4 (Bull, 2011). There exists a constant C > 0 such that for any random
algorithm

sup
f ∈Ck,α

d

∫
Ω′

∣∣ f (x∗n(ω))−max f
∣∣ P(dω)≥ C ·n− k+α

d .

Proof. The main difference to the ideas of the deterministic case is that we do not

only need one perturbation function h. If we have at least one more function than

evaluation points, almost surely no evaluation point falls inside the support of one

perturbation function.

As in the previous proof, let g : Rd → R with supp g ⊂ [−1,1]d and g(0) =
max g = 1 satisfy the Hölder condition. Then we define functions hi ∈ Ck,α([0,1]d)

by,

hi,ε(x) := εk+αg
( x− xi,ε

ε

)
,

where the number ε > 0 and the points {xi,ε : i = 1, . . . ,n+1} ⊂ [ε,1−ε]d are sup-

posed to ensure that the functions {hi,ε : i = 1, . . . ,n+1} have disjoint supports. This

means that ε must be chosen such that the ε-packing number of the d-dimensional

unit cube is not smaller than n+1. We shall choose ε := 2−(1+d)/dn−1/d . Then,

D(ε,‖ ·‖∞, [0,1]d)≥ (2ε)−d ≥ n+1.

Again, let f ∗ be the zero function. We define the random variable N to be the

number of h j,ε such that h j,ε(xi)= 0 for all i:

N :=
n+1∑
j=1

1{h j,ε(xi)=0 for all i} .

Define the random variable j∗ by

j∗(ω)=
min

{
j = 1, . . . ,n+1: h j,ε(xi)= 0 for all xi

}
if N(ω)> 0

0 if N(ω)= 0.

This variable is indeed measurable. Since all functions hi,ε have disjoint supports

and the total number of these functions is n+1, it follows that the event that for any

h j,ε there are some xi ∈ supph j,ε is the impossible event. Hence, ( j∗)−1{0}=;∈A ′.
For k = 1, . . . ,n

{
ω : j∗(ω)= k

}= k−1⋂
j=1

n⋃
i=1

{
ω : h j(xi(ω))> 0

}∩ n⋂
i=1

{ω : hk(xi(ω))= 0} ∈A ′ .
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Since x∗n is picked from {x1, . . . , xn}, we have h j∗,ε(x∗n)= 0 and conclude

sup
f

∫
| f (x∗n)−max f | dP

≥ 1
2

[∫
{N>0}

| f ∗(x∗n)−max f ∗| dP +
∫

{N>0}
|h j∗,ε(x∗n)−maxh j∗,ε| dP

]
≥ 1

2

∫
{N>0}

min
j

|maxh j,ε| dP

= 1
2
εk+αP {N > 0}

= 2−(k+α)(1+2d)/dn−(k+α)/d P {N > 0} .

We have seen that N > 0 for all ω. Hence, P{N > 0}= 1, and the statement of the

lemma follows. �

We learn from the results of the worst case analysis in global optimization

that for any algorithm, random or deterministic, there is a pathological function

such that the algorithm does not outperform the naive grid search approach in

optimizing this function. In the grid search approach, we construct an equidistant

grid of mesh size ε over the domain [0,1]d , evaluate the objective function at each

node, and return the maximum of these values as the approximate maximum

of the function. If the objective function f satisfies a Lipschitz condition with

Lipschitz constant L, we are guaranteed to approximate the maximal value

of the function with accuracy Lε. However, this approach needs ε−d function

evaluations, which quickly amounts to an unaffordable computing time even if d
grows modestly.

Of course, there may be functions for which grid search is outperformed. But

from the current point of view there is no general rigorous argument as to whether

one particular algorithm is preferable to another. For a specific problem at hand,

several algorithms have to be exhibited and an individual choice has to be made.

We want to give a short review of the result of our search for global optimization

strategies. This is not intended to be an exhaustive comparative study on global

optimization strategies, which would lie beyond the scope of this thesis. Instead,

we want to give an impression of the variety of competing methods that have been

developed in this field.

A.6.2 Deterministic strategies: branch-and-bound

Most deterministic approaches to find a global extreme point of a function consist

of constructing a sequence of partitions of the function domain. In the literature

these strategies are sometimes referred to as “partitioning techniques” (Rios

and Sahinidis, 2013). In contrast to the naive grid search approach, available
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information about the function is employed to drive the partitioning process.

In that way one can hope for a little more efficiency. On the partitions, an

approximation of the objective function is constructed employing information

about the values of the objective function f at certain evaluation points. This

approximation, in turn, is used to estimate the minimum (or maximum) of the

objective function. Strategies differ in the specific partitioning strategy, i.e. which

subset of the current partition should be selected for further division, and in the

choice of the approximation of the objective function. The essence of the approach

is perfectly depicted by the following two steps:

1. Branching: A set of solutions ... can be partitioned into mutually
exclusive sets.

2. Lower bounding: An algorithm is available for calculating a
lower bound on the cost [i.e. value of the objective function] of any
solution in a given subset,

(Papadimitriou and Steiglitz, 1998, page 438)

The basic branch-and-bound algorithm for combinatorial optimization follows this

principle. It is displayed below in Algorithm 1.

In the case of global optimization with non-discrete variables, many algorithms

follow similar ideas. One example for the extension to the case of continuous

variables is the DIRECT algorithm that is designed to find the minimum of a

Lipschitz continuous function over the d-dimensional unit cube. The DIRECT

algorithm is a partitioning scheme first proposed by Jones et al. (1998). It resulted

from advancing the underlying ideas of Piyavskii’s/Schubert’s algorithm which

is used for minimizing one-dimensional lipschitzian functions (Shubert, 1972;

Piyavskii, 1972). The Piyavskii/Shubert algorithm uses an underestimation of

saw-tooth functions based on a partition of the objective function’s domain; for a

more detailed exposition cf. Hansen and Jaumard (1995) or Gablonsky (2001).

The name DIRECT stands for DIvide RECTangles and refers to the partition-

ing nature of the method. The domain [0,1]d is partitioned into sub rectangles,

and the objective functions is evaluated at the centers of these rectangles. We

will briefly explain the partitioning procedure following the outline of Gablonsky

(2001), pages 34–35. We distinguish two cases. The current region I can either be

a hyper cube or a hyper rectangle. Let us begin with the first case. Denote by c
the center of the hyper cube I, and by l the length of its edges. We evaluate the

objective function at two points along each axis. Let e i be the ith vector of the

Euclidean basis. We collect values,

yi,+ = f
(
c+ l

3
e i

)
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yi,− = f
(
c− l

3
e i

)
yi :=min{yi,+ , yi,−} .

Let (i1, . . . , id) be an ordering of the coordinates such that yi1 ≤ . . .≤ yid . We divide

the cube perpendicular to the direction i1 into three rectangles of equal size. The

rectangle containing the center will be divided perpendicular to i2, again into

three parts of equal size. We repeat this procedure until we have divided the cube

with respect to all coordinates.

In case the current region I is a hyper rectangle, we identify the maximum

length l among all edges of I. We collect all edges with this length in a set L
and proceed with the same partitioning scheme as for hyper cubes, applying it

to all edges in L. Now that we have established a branching scheme, we are left

with the decision which rectangles are up for further division. For that purpose,

DIRECT identifies the set of all hyper rectangles that fulfill the property of being

“potentially optimal”. We refer to Gablonsky (2001) for a definition and discussion

of that term. The two decisive parameters in this instance are the values of the

objective function at the center of a hyper rectangle and the potential rate of

decrease of f by dividing a certain rectangle (Rios and Sahinidis, 2013). These

two parameters are handled in a way to balance local and global search for a

minimum. The DIRECT algorithm can be displayed as in Algorithm 2 (Gablonsky,

2001, p. 38). An implementation Direct.m for MATLAB® is available (Finkel,

2004).

A more involved branch-and-bound method to minimize a function is described

by Liberti (2004). We depict the basic idea of a “spatial Branch-and-Bound

algorithm” (ibid., page 106) in Algorithm 2. An essential part of the approach

is the construction of convex relaxations ΦR of the objective function over sub-

regions R of its domain. For an example of the construction of such a convex

relaxation, we refer to the α-BB algorithm. This algorithms dates back to the

work of Androulakis et al. (1995) and was thoroughly analyzed in the papers

Adjiman et al. (1998b) and Adjiman et al. (1998a). In the work of Liberti (2004)

it is seen as an instance of a spatial branch-and-bound algorithm. It is assumed

that the objective function f is twice continuously differentiable. Suppose that

the current region is a sub interval R = [l,u]. Then the function

Φα,R(x) := f (x)+α
d∑

i=1
(l i − xi)(ui − xi)

is a convex underestimator of f with respect to R if and only if

α≥max
{

0, −1
2

min
x∈R

λminH f (x)
}

,
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Eichfelder et al. (2016). Here, λminH f (x) denotes the smallest eigenvalue of the

hessian of f at the point x. For details, we refer to Eichfelder et al. (2016) who cite

Maranas and Floudas (1994). We find a minimum point x∗R of Φα,R using standard

methods from convex optimization, e.g. sequential quadratic programming (Geiger

and Kanzow, 2002). For the upper bound, we could use uR := f (x∗R) (Eichfelder

et al., 2016). For the α-BB algorithm, convergence results and rates of convergence

are available (Eichfelder et al., 2016). Of course, the convergence deteriorates

with increasing dimension.

There have been proposed several other branch and bound algorithms in the

literature. For a first overview, one can refer to Liberti (2004) or Hansen and

Jaumard (1995).
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begin
activeset := {0}; (comment: “0” is the original problem)
U :=∞ ;
x∗ :=∞;
currentbest := anything ;
while activeset is not empty do

choose a set K ∈ activeset;
remove K from activeset;
generate the children C1 . . . ,Cnk of K ;
for i = 1, . . . ,nk do

calculate the corresponding points xi for
which l i := f (xi ) are lower bounds of { f (x) : Ci };
if l i ≥U then

kill child Ci
end
else if child i is a complete solution then

U := l i ;
currentbest := child Ci ;
x∗ := xi ;

end
else

add child Ci to activeset
end

end
end
return U and x∗;

end
Algorithm 1: Basic branch-and-bound algorithm, cf. Papadimitriou and Stei-
glitz (1998, page 438).

begin
c∗ := c1; (c1 is the center of the unit cube)
fmin := f (c∗);
t = 0; (number of iterations)
m = 0; (number of function evaluations)
initialize mmax, tmax ∈N (maximal number of iterations evaluations)
while t ≤ tmax and m ≤ mmax do

S∗ := the set of potentially optimal rectangles;
for R ∈ S∗ do

evaluate f at the centers of the new rectangles;
apply the division rule to R;
update fmin;
update m;
update c∗;

end
update S∗;
update t;

end
return fmin and c∗

end
Algorithm 2: DIRECT algorithm, cf. Gablonsky (2001, page 38).
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begin
initialize activeset; (list of regions comprising the entire set of variable ranges)
initialize ε> 0; (convergence tolerance)
x∗ :=∞;
U :=∞; (current output for the global minimum)
for R ∈ activeset do

lR :=−∞; (lower bound on minx∈R f (x))
end
while activeset 6= ; do

choose a region R ∈ activeset;
activeset= activeset\{R} ;
generate a convex relaxation ΦR of the objective function over the region R and compute

lR :=minx∈R ΦR (x);
if lR ≤U then

find some xR ∈ R such that uR := f (xR ) is an upper bound for the global minimum;
if uR <U then

set U := uR and x∗ := xR ;
delete all regions r from activeset for which lr > u;
if uR − lR < ε then

accept uR as minx∈R f (x);
end
else

Apply a branching rule to split R into disjoint sub-regions S1, . . . ,SN ;
Add the sub-regions to activeset;
lSi := lR (i = 1, . . . , N);

end
end

end
end
return U and x∗;

end
Algorithm 3: Spatial branch-and-bound algorithm for global optimization ac-
cording to Liberti (2004, page 106).

begin
generate X1 ∼Unif[0,1]d ;
initialize a grid {Lk}k∈N; (from which L is estimated)
initialize n ∈N (maximum number of iterations)
initialize t := 1; (number of iterations)
initialize L̂ := 0; (initial estimate for L)
evaluate f (X1);
while t < n do

generate Bt+1 ∼Bin(1, p);
XL̂,t := {

x ∈ [0,1]d : mini=1,...,t f (X i )+ L̂‖x− X i‖2 ≥maxi=1,...,t f (X i )
}
;

if Bt+1 = 1 then
generate X t+1 ∼Unif [0,1]d ;

end
else

generate X t+1 ∼Unif (XL̂,t);

end
evaluate f (X t+1);
t = t+1;

update L̂ := inf
{

Lk : maxi 6= j
| f (Xi )− f (X j )|
‖Xi−X j‖2

≤ Lk

}
;

end
return X∗, f (X∗) with f (X∗)=maxt≤n f (X t);

end
Algorithm 4: AdaLIPO algorithm, cf. Malherbe and Vayatis (2017).
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A.6.3 Random search

THE (ADA)LIPO ALGORITHM

We present a recently proposed example of a random search algorithm. The

LIPO algorithm and its extension adaLIPO have been introduced in the article of

Malherbe and Vayatis (2017). LIPO is a global random search method for finding

the maximum of a lipschitzian function with known Lipschitz constant L. Its

extension to functions with unknown lipschitz constant is called Adaptive LIPO,

or AdaLIPO. The LIPO algorithm works by generating in each step a sample point

from a uniform distribution over [0,1]d , and evaluating f at that point if a decision

rule is fulfilled: given sample points X1, . . . , X t and a new point X t+1 ∼Unif [0,1]d ,

evaluate f (X t+1) if

min
i≤t

[
f (X i)+L‖X t+1 − X i‖2

]≥max
i≤t

f (X i) . (LIPO)

After the current number t of iterations has reached a previously determined

maximum n, the output is defined by X̂n := argmaxi≤n f (X i) .

The AdaLIPO algorithm (Algorithm 4) works with an estimate of the Lipschitz

constant which is updated in each iteration. The parameter p represents the

trade off between pure random exploration of new areas in the domain (in the

case Bt+1 = 1) and exploitation of known function values by applying a LIPO step.

In their experimental studies, Malherbe and Vayatis (2017) used p = 0.1 . The

quantity max f −maxi≤n f (X i) is proven to be of order Op(n−1/d) (ibid.).

BAYESIAN OPTIMIZATION: EXPECTED IMPROVEMENT

The main motivation for the so called Bayesian approach to global optimization

is that the worst case point of view may be too pessimistic. We strongly suspect

that there are functions for which a sensible algorithm outperforms the simple

grid search approach. And it might as well be the case that these functions

are the ones that would most likely appear in a real world problem. This idea

suggests to assess an algorithm based on the average performance over a class

of functions rather than on the worst possible performance. It is well known

that some characteristics of a problem may change if we adopt the average case

point of view. For instance, in global optimization adaptive information does not

yield better rates of convergence than non-adaptive information, in the worst case

setting (Novak, 1988; Wasilkowski, 1984); in the average case analysis, however,

it was shown by Calvin (1997) that adaptation indeed improves the rates.

In order to formulate the average case approach, we have to amend the setting

of random algorithms by a distribution over the set of objective functions. We
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mainly reproduce the conception of Bull (2011). We are in the setting of random

information and random algorithms. Suppose now that not only the information

{xn}n∈N and the estimated minimum point x∗n is random but also that f is a random

function. It will be assumed that the algorithm at time n does not depend on

information about f that is yet unknown. This can be formulated in the restriction

that xn is independent of f , conditionally on the σ-field

Fn−1 :=σ
(
xi, f (xi) : i = 1, . . . ,n−1

)
.

Assume that x∗n ∈ {x1, . . . , xn} is the estimated minimum point after n function

evaluations. We are interested in the average error∫
Ω′

| f (ω, x∗n(ω))−min f (ω)| P(dω) .

The available type of information consists of an evaluation point x and the function

value f (x) at that point. At step i of the algorithm, given the information zi =
(xi, f (xi), a decision function di chooses the next evaluation point xi+1 = di(zi).

The sequence {xi(d)}N
i=1 of evaluation points that we obtain depends heavily on

the strategy d. Our goal is to find the strategy db such that

E| f (x∗N (db))−min f | =min
d

E| f (x∗N (d))−min f | .

Such a strategy is called the Bayesian strategy, cf. Mockus (1989). Here, E denotes

the expectation with respect to the prior distribution P. Using the iterative

conditioning

E
[
E

[
. . .E

[
E

[| f (x∗N (db))−min f | ∣∣zN−1
]∣∣zN−2

]
. . .

∣∣zi+1
]∣∣z1 . . . , zi

]
,

the Bayesian strategy can be formulated as the solution of a recurrent system

of dynamic programming (Mockus, 1989). The last display may be seen as the

formal expression for being at time i and looking ahead to time N, i.e. N − i steps

ahead. A sensible approximation of this strategy would be to look merely one step

ahead, i.e. N = i+1. Being at time n, we would choose xn+1 to minimize

E
[| f (x∗n+1)−min f | ∣∣z1, . . . , zn

]
.. (A.4)

Choosing the evaluation points in this way is called the strategy of “expected im-

provement” (Bull, 2011; Brochu et al., 2010) or “one step approximation” (Mockus,

1989). In order to carry out this procedure, we have to calculate the posterior distri-

bution Law( f (x) | z1, . . . , zn) for which we need to specify the prior probability mea-

sure P. It is a common assumption that f is a stationary Gaussian process under
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P, with expectation E f ≡µ and covariance function cov[ f (x), f (y)]=σ2 Kθ(x− y) ,

where Kθ is called the correlation kernel which is described by smoothness parame-

ters ν and α (Bull, 2011, pages 5-6). Using that all finite dimensional distributions

P( f (t1),..., f (tn)) of f are multivariate normal distributions, one can derive explicit

expressions for the posterior and hence also for the expression

EIn(xn+1,P) := E
[(

f (x∗n)− f (xn+1)
)
+

∣∣z1, . . . , zn
]
.

A strategy that chooses xn+1 to maximize EIn minimizes the quantity (A.4) (Bull,

2011, page 5). It has been remarked by Bull (2011) that the unknown parameters

µ,σ,θ can be estimated using a maximum likelihood approach suggested by Jones

et al. (1998). It is one of the main results of Bull (2011) that the following expected

improvement scheme attains near optimal rates (up to a logarithmic factor) in the

worst case setting.

DEFINITION A.6.5 (Expected improvement strategy; Bull, 2011, Definition 4). An

optimization algorithm is called EI(P,ε) strategy if for a given 0< ε< 1:

1. it chooses initial design points x1, . . . , xk independently of f ;

2. with probability 1− ε, it chooses a design point xn+1 (n ≥ k) to maximize

EIn(xn+1,P) or,

3. with probability ε, it chooses xn+1 (n ≥ k) uniformly at random from [0,1]d .

The parameter ε has to be chosen in advance. It “controls the trade-off between

global and local search” (Bull, 2011, page 14). For fixed parameter θ, the worst case

error is considered over a reproducing-kernel Hilbert space Hθ that is equivalent

to the Sobolev Hilbert space Hν+d/2([0,1]d) (Bull, 2011, page 10). In this setting,

the error of the algorithm using the EI(P,ε) strategy to minimize a function

f ∈Hθ converges to zero with a rate that is asymptotically bounded from above

by (n/ log(n))−ν/d(logn)α,

sup
‖ f ‖Hθ

≤R
EEI

f
[
f (x∗n)−min f

]=O
(
(n/ logn)−ν/d(logn)α

)
for any R > 0 (Bull, 2011, Theorem 5), where ν and α are the smoothness parame-

ter of the covariance kernel Kθ (Bull, 2011, page 6). The results can be extended

to the case where the parameter θ is estimated.

This result demonstrates that the Bayesian approach is not inferior to other

algorithms, from the worst case perspective. However, due to its foundations,

there are grounds for expecting a better average performance. An expected

improvement algorithm is implemented in the MATLAB®® function bayesopt().

In the literature it is insinuated that Bayesian optimization works best in a low

dimensional setting, typically with 10 variables or less.
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A.6.4 Heuristic methods

In this section we depict the heuristic optimization methods that we used in our

simulation study. They originate in analogies to physical or biological processes.

The underlying idea is that physical or biological systems often evolve into very

stable states in terms of energy or fitness, for instance. We try to understand

such a process as a search over the space of all possible states of a system which

terminates in an optimal or nearly optimal state. The aim in all these heuristic

methods is to imitate such a natural system by a random search optimization

algorithm.

SIMULATED ANNEALING

Simulated Annealing (SA) is a minimization algorithm. It tries to resemble the

process of cooling liquid or solid matter. The foundation of this approach is the

observation that the molecules of a liquid or solid piece of matter align themselves

in very a stable structure if the piece is cooled sufficiently slow. Hence, this cooling

procedure corresponds to the process of finding the state of minimum energy for

the system. In statistical physics the Boltzmann distribution is used to describe a

system in contact with a heat reservoir. Such a model is often called the canonical
ensemble (Herman, 2005). The probability for a canonical ensemble to be in a

state of energy E i is described by a discrete probability distribution over the space

of all energy states. This distribution is given by

P{E i}= 1
Zn

e−
Ei

kb T .

Here, Zn is a normalizing constant, T is the temperature of the system and Kb is

the Boltzmann constant of statistical physics (Herman, 2005; Spall, 2003). The

distribution P is often called Boltzmann distribution.

Assume now that f is our objective function which we intend to minimize.

Imagine a canonical ensemble with the energy states f (x). Then the energy states

have the distribution proportional to

pT (x)= e− f (x) / (kb T) .

If we now generate a random sample from these distributions while lowering the

temperature T sufficiently slow, we expect to arrive eventually in the state of

minimum energy which corresponds to a global minimum of f .

To be more specific, we state a rigorous result of Romeijn and Smith (1994)

(Boender and Romeijn, 1995, page 838). Denote by PT the probability distribution

with density c pT (x), where x ∈Rd , and c is the normalizing constant. Then for all
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ε> 0,

lim
T↓0

PT
{
x : f (x)<min f +ε

}= 1. (A.5)

Thus, we have to employ a method which enables us to simulate a sample from the

distributions PT . Such a method is given by the Metropolis-Hastings algorithm

which goes back to the work of Metropolis et al. (1953) and Hastings (1970). It

generates a Markov chain {X T
n }n∈N such that P X T

n  PT . For a detailed exposition

of the Metropolis algorithm and its convergence, we refer to Fishman (1996, pages

384–388).

The Basic idea of simulated annealing is to use the Metropolis-Hastings

algorithm to generate samples {X T
n }n∈N for different temperatures T decreasing

to zero. We combine the convergence P X T
n  PT and equation (A.5) to obtain

lim
T↓0

lim
n→∞P

{
f (X T

n )<min f +ε
}= 1

(Boender and Romeijn, 1995, page 841) . In practice we would let T = Tn grow

slowly with n. The basic SA algorithm can be found for instance in Boender and

Romeijn (1995, page 841). A theorem of Bélisle (1992) (Boender and Romeijn,

1995, Theorem 5) ensures convergence to a global minimum point in probability

under rather general conditions.

The general popularity of Simulated Annealing in various fields is backed

by a vast amount of numerical studies reporting good results (Spall, 2003). An

extensive review of the distribution of SA methods among practitioners is given

by Suman and Kumar (2006). The SA algorithm is implemented in form of the

MATLAB® function simulannealbnd().

GENETIC ALGORITHMS

Genetic algorithms try to copy the principles of evolutionary biology to find the

global maximum of a function. The model of evolution is used in life sciences

to explain the development of species. Its main principle is the survival of the

fittest. If the fitness of a state x is expressed by a fitness functions f , the fittest

state corresponds to a point that maximizes the fitness function. We give a short

description of the principles of evolutionary algorithms following the presentation

of Spall (2003).

The genetic algorithm (GA) is a so called population-based method. This

means that in each iteration not only one candidate point is evaluated but a

whole population {x1, . . . , xN }, with a previously determined population size N,

is under consideration. The xi are called chromosomes. Spall (2003) sketches
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the underlying steps of a genetic algorithm. In order to give the reader some

structural idea about the procedure, we will reproduce this sketch relying on the

intuitive meaning of the used terminology. Afterwards we give proper definitions.

DEFINITION A.6.6 (Core GA Steps; cf. Spall, 2003, page 246).

1. Define a non-negative fitness function f to be maximized over [0,1].

2. Initialization. Randomly generate an initial population {x1, . . . , xN } of N
chromosomes and evaluate the fitness function f (xi) .

3. Parent Selection. Select a set of parent chromosomes according to their

fitness. The parents are then used to produce a next generation of chromo-

somes.

4. Recombination/Cross-over. For each pair of parents, a random variable

C ∼ Bin(1, p) decides whether the two offspring chromosomes are created

by a cross-over procedure, in which gene sequences of the parents are

interchanged (C = 1), or by exactly copying the parents (C = 0).

5. Replacement and Mutation. Replace the parent generation by the offspring

generation. For each offspring chromosome mutate the individual genes

with low probability.

6. Fitness evaluation. Evaluate the fitness of the new generation. If some

termination criterion is fulfilled, stop the algorithm. Otherwise go to step 2.

This scheme illustrates that the central idea of genetic algorithms is to imi-

tate a natural evolution process by accounting for the main evolutionary factors

recombination, mutation and selection. Let us give meaning to these expressions.

A vector x = (ξ1, . . . ,ξd) ∈ [0,1]d is called chromosome, its components are the

genes. Each gene is written in binary code. Assume that we want an accuracy of 3

positions after the decimal point. We choose the number of bits b such that

b = inf
{
b ∈N : 103 ≤

b−1∑
i=0

2i}.

Since 20+ . . .+2b−1 = 2b−1, this is the smallest integer b such that b ≥ log2(1001).

Every ξ ∈ [0,1] will then be encoded as the coefficients of the binary representation

bξ (2b −1)c =∑b−1
k=0 ak2k. In the same way, a bit sequence (a0, . . . ,ab−1) ∈ {0,1}b can

be translated in to the real number (a020 +a121 + . . .+ab−12b−1)/(2b −1) (Spall,

2003, page 239). Therefore, a chromosome will be represented in a bit sequence of

length B = d ·b. The fitness of a chromosome x is given by the value of the fitness

function f at that point.

We shortly describe one possible way of parent selection. This approach is

called “fitness proportionate selection” (Spall, 2003, page 243). Let (x1, . . . , xN ) be

an enumeration of the current generation of chromosomes. For each k = 1, . . . , N
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define the cumulative fitness values by,

S f (xk)=
k∑

i=1
f (xi) .

Let (U1, . . . ,UN ) be a vector of i.i.d. random variables, U j ∼ Unif [0,S f (xN )]. A

sample {P1, . . . ,PN } of parent chromosomes is now drawn with replacement from

the set {x1, . . . , xN } using the following mechanism. For each j ∈ {1, . . . , N}, define

k j =min
{
k ∈ {1, . . . , N} : S f (xk)≥U j

}
.

Then set P j := xk j . The above definition is correct since S f is increasing due to

the non-negativity of f . The selection mechanism ensures that the chromosomes

with higher fitness values are more likely to be chosen as parents.

For the cross-over procedure (Spall, 2003, page 244), the set of parents are

grouped in pairs, (Pi,Pi+1) with i = 1,3, . . . , N −1 (assume that the population size

is an even number). Now we generate the offspring of these pairs of parents. If the

Bernoulli variable C takes the value zero, the parents are cloned. In this case the

offspring is defined as (x̃i, x̃i+1) := (Pi,Pi+1). Otherwise choose a random partition

of the set {0, . . . ,B−1} in q slices,

{0, . . . , i1|i2, . . . , i3| . . . . . . . . . |ik, . . . , ik+1| . . . . . . . . . |iq−1, . . . , iq},

where iq = B−1. Then the bit sequences Pi = (a0, . . . ,aB−1) and Pi+1 = (b0, . . . ,bB−1)

can be displayed as

(
a0, . . . ,ai1 |ai2 , . . . ,ai3 | . . . . . . . . . |aik , . . . ,aik+1 | . . . . . . . . . |aiq−1 , . . . ,aB−1

)
,(

b0, . . . ,bi1 |bi2 , . . . ,bi3 | . . . . . . . . . |bik , . . . ,bik+1 | . . . . . . . . . |biq−1 , . . . ,bB−1
)

.

Now the two offspring chromosomes are defined as the cross-over of Pi and Pi+1

in the sense that

x̃i =
(
a0, . . . ,ai1 |bi2 , . . . ,bi3 |ai4 , . . . ,ai5 | . . . . . . . . .

)
,

x̃i+1 =
(
b0, . . . ,bi1 |ai2 , . . . ,ai3 |bi4 , . . . ,bi5 | . . . . . . . . .

)
.

The notion of mutation is quickly explained. Consider a chromosome in bit

encoding, x = (a0, . . . ,aB−1) ∈ {0,1}B . For every bit ai, we define a random variable

Mi ∼Bin(1,θ) which decides whether the bit is mutated, i.e. replaced with 1−ai.
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After the mutation phase, the new bit has the form

ãi =
ai if Mi = 0

1−ai if Mi = 1.

After the offspring was generated via the crossover method and completed the

mutation phase, we obtain the new generation.

For a discussion on convergence of the algorithm and a performance compari-

son to other optimization methods, we refer to Spall (2003, pages 268 – 275) and

the references therein. A genetic algorithm for global function minimization is

implemented in the MATLAB® function ga().

PARTICLE SWARM ALGORITHMS

In order to maximize a given function, the Particle Swarm Algorithm (PSA) is

designed to mimic the dynamics of social groups. It closely resembles the principles

of swarm intelligence, which was pointed out by Kennedy and Eberhart (1995)

who introduced the algorithm and refer for these principles to Millionas (1994).

We will give a short description of the algorithm, mostly citing the original paper

of Kennedy and Eberhart (1995) and a recent literature survey by Bonyadi and

Michalewicz (2017). For a short introduction to the subject, one can also refer to

Weise (2009) and the references therein.

Similarly to the Genetic Algorithm, the Particle Swarm Algorithm is a popula-

tion based method. The population can be imagined as points (particles) forming

a swarm searching through the domain [0,1]d for the maximum of a specified

function. At each time every particle has a location and a velocity vector con-

taining the direction and speed of its movement. These vectors are updated in

each iteration according to a certain rule. We describe the original version of

Kennedy and Eberhart (1995) which is referred to as “Original Particle Swarm

Optimization” by Bonyadi and Michalewicz (2017).

Assume that we are at iteration t, and consider the ith particle. The necessary

information is carried by the characteristic triplet (xi
t,v

i
t, pi

t). The first component

is the location of the particle; the second component is the velocity vector, i.e.

direction and absolute value of movement; and the last component is the best

position that the particle has visited up to time t (Bonyadi and Michalewicz, 2017).

The original update rule of Kennedy and Eberhart (1995) in the exposition of

Bonyadi and Michalewicz (2017) reads as follows. For each dimension j ∈ 1, . . . ,d
generate two random numbers U i

t ( j) , W i
t ( j)∼Unif[0,1]. Define the jth component
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of the velocity vector vi
t+1 as

vi
t+1( j) := vi

t( j)+φ1 U i
t ( j)

(
pi

t − xi
t
)+φ2 W i

t ( j)
(
gt − xi

t
)
.

Here, gt denotes the best position over all particles in the population at time t,
and φ1,φ2 are fixed positive numbers which are called cognitive and social weights
respectively (Bonyadi and Michalewicz, 2017). After the velocity has been updated,

the new position of the particle is

xi
t+1 = xi

t +vi
t+1 .

This is the original version of the PSO, but several modifications of it have been

proposed in the literature. For instance, one could modify the velocity update in

such a way that each particle considers only the information available from its

immediate surroundings instead of the whole swarm.

The PSA has become a very popular tool in global optimization for the reason

that it is easily adapted for different applications and that it “delivers reasonable

results for many different applications” (Bonyadi and Michalewicz, 2017). We

refer to the same paper for an exposition of theoretical results on the asymptotic

properties of the PSA. Although there have been published some results in this

direction, the algorithm’s popularity cannot be backed entirely by rigorous theo-

retical analysis. An implementation of the PSA for global function minimization

is available in MATLAB® in form of the function particleswarm().

A.6.5 From constrained to unconstrained global optimization

The global optimization algorithms presented in the last section were designed

to solve unconstrained problems. We shall discuss a method how to deal with

possible constraints. Our aim is to reformulate a constrained problem such that

we are allowed to apply methods from unconstrained optimization.

Suppose that X is a compact subset of Rn, the functions f : X →R, g : X →
Rm and h : X →Rp are continuously differentiable, and that the so called set of

feasibility,

F := {x ∈X : g(x)≤ 0, h(x)= 0} ,

is nonempty. The nonlinear optimization problem of interest is given by

minimize f (x)

subject to g(x)≤ 0, h(x)= 0.
(C)
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Since many accessible optimization algorithms are designed to search for points

of local or global minima over the whole domain of the objective function, it would

be convenient to have an alternative formulation of (C) without constraints. A

possible approach to this goal is to penalize minimizers of the objective function

that are not in the set of feasible solutions. The degree to which an unfeasible

solution will be penalized is determined by a so called penalty parameter ε. We

are therefore looking for a function Fε(x) that assigns roughly the same values

as f (x) to feasible points x ∈F but penalizes unfeasible points x ∉F according to

the penalty parameter ε. Such a function will be called penalty function. Under

certain circumstances, we call F an exact penalty function.

DEFINITION A.6.7. The function F : X × [0,∞) → R is called an exact penalty

function for the problem (C) if there exists a critical value ε∗ > 0 such that, for any

penalty parameter 0< ε≤ ε∗, any solution of (C) is a solution to

minimize F(x,ε) , x ∈X o , (U)

and conversely, if for some ε∗> 0 and all ε ∈ (0,ε∗], any solution of (U) is a solution

of (C). The symbol X o denotes the interior of the set X .

As we mentioned before, this approach to constrained optimization is a classical

one, and there is a huge amount of literature covering this field. Our main

reference in this regard is Di Pillo and Grippo (1989). The above definition

corresponds to their definition of a weakly exact penalty function (ibid.). In the

same paper, they give sufficient conditions to ensure that a penalty function is

exact with respect to a given nonlinear program. However, we are not interested

in the generality of their abstract theory. We only want to establish exactness

of the specific class of lq-penalty functions in order to demonstrate a possible

approach to the solution of our nonlinear constrained problem (4.9).

DEFINITION A.6.8. For 1≤ q <∞, the lp penalty function for the problem (C) is

defined as

Jq(x,ε) := f (x)+ 1
ε

[
m∑

i=1
(g i(x))q

++
p∑

j=1
|h j(x)|q

]1/q

.

Collecting the values {(g i(x))+}m
i=1 and {|h j(x)|}p

j=1 in a vector P(x), we may write,

Jq(x,ε)= f (x)+ 1
ε
‖P(x)‖q ,

where ‖ ·‖q denotes the q-norm on Rm+p.

The term ‖P(x)‖q can be seen as a penalty for those x that are not in the set of

feasible solutions. Note that for any point x ∈X we have P(x)= 0, and therefore
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Jq(x) = f (x), if and only if x ∈ F. The proof of exactness of the lq penalties will

move alongside the ideas of Di Pillo and Grippo (1989). In order to follow their

argument, we need the to define what we mean by the Mangasarian-Fromowitz

constraint qualification.

DEFINITION A.6.9. The Mangasarian-Fromowitz constraint qualification (MFCQ)

holds at x ∈ Rn if the set {∇h j(x) : j = 1, . . . , p} is linearly independent and there

exists a vector z ∈Rn such that for all j = 1, . . . , p

〈∇h j(x), z〉 = 0

and for all i with g i(x)= 0

〈∇g i(x), z〉 < 0.

LEMMA A.6.10 (Di Pillo and Grippo, 1989, Proposition 4). Let x0 ∈F be a feasible
point such that the MFSQ holds at x0 . Then, there exist positive numbers ε0 and
σ0 depending on x0 such that, for all ε ∈ (0,ε0] , if xε is a critical point of Jq(·,ε) ,
i.e. the directional derivatives ∂d Jq satisfy

∂d Jq(xε,ε)≥ 0 for all directions d ∈Rn,

and furthermore ‖x0 − xε‖ ≤σ0, then xε is also a feasible point, i.e. xε ∈F .

For a proof of this lemma we refer to Di Pillo and Grippo (1988). The following

theorem states that under reasonable assumptions the lq penalty functions are

exact.

THEOREM A.6.11 (Di Pillo and Grippo, 1989, Theorem 4). Assume that the MFCQ
holds at every global solution to (C) and that every global solution belongs to X o.
Then the function Jq is an exact penalty function for the problem (C).

Proof. The proof proceeds alongside the arguments in the proof of Theorem 1 in

Di Pillo and Grippo (1989). We start with the more difficult part to show that for

all positive ε up to some threshold value ε∗ every global minimizer of Jq(·,ε) is

a solution to (C). We assume the contrary, i.e. for every natural number k there

exists an εk ∈ (0, 1
k ] such that there exists a minimizer xk of Jq(·,εk) that is not a

solution to (C). We collect all those values εk and xk in the sequences {εk}k∈N and

{xk}k∈N . Assume furthermore that xmin is a solution to (C). Then xmin ∈F, and for

any k

f (xmin)= Jq(xmin,εk)≥ Jq(xk,εk) .
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This means that the sequence {Jq(xk,εk)}k∈N is bounded: limsupk Jp(xk,εk) ≤
f (xmin) <∞ . Since 1

εk
→∞, it follows that limsupk ‖P(xk)‖q = 0. The sequence

{xk} is contained in the compact subset X and thus has a convergent sub sequence

{xk(l)}l∈N with liml xk(l) =: x∞ ∈X . By continuity of P and the q-norm, we have

‖P(x∞)‖q = lim
l→∞

‖P(xk(l))‖q = 0,

which tells us that x∞ is a feasible point. By continuity of f , we have

f (xmin)≥ sup
k∈N

J(xk,εk)

≥ limsup
l→∞

Jq(xk(l),εk(l))

≥ limsup
l→∞

f (xk(l))

= f (x∞) .

Hence, x∞ is a global solution to (C). By assumption, the MFCQ holds at x∞,

and x∞ ∈X o. Since x∞ is a feasible point where the MFCQ holds, we can apply

Lemma A.6.10 to the critical points xk of Jq(·,εk). There exist positive constants

ε0 and σ0 such that for any εk ≤ ε0 with ‖x∞−xk‖ ≤σ0 we can conclude that xk ∈F.

By choosing L ∈N large enough, we know from xk(L) → x∞ that ‖xk(L) − x∞‖ can

be made arbitrarily small and in particular smaller than σ0. Therefore, this xk(L)

is a feasible point, and we conclude

f (xmin)= Jq(xmin,εk(L))≥ Jq(xk(L),εk(L))= f (xk(L)) .

Hence, xk(L) is a feasible point and f (xk(L)) is a global minimum of f . This yields a

contradiction to the original assumption. We conclude that there exists a number

ε∗ > 0 such that for all 0< ε≤ ε∗ every global minimum point of Jp(·,ε) is a feasible

solution to (C).

It is left to show that any feasible minimum point xmin of f is also a minimum

point of Jq(·,ε) for all ε ∈ (0,ε∗] . For any x ∈Rn,

Jq(x,ε)≥ f (x)≥ f (xmin)= Jq(xmin,ε) .

This concludes the proof. �

We want to apply this result to the calculation of the least squares spline

estimator in the case that An = [0, M], which means that X = [0,1](ln+2)B. Recall

the constraint functions Cy,i from Lemma 4.2.10. We have to check the MFCQ

for these functions. To simplify matters, we mitigate the constraints a little by

substituting the supremum over λ ∈ [0, M] with a maximum over the partition

0= ξ0 < . . .< ξl = M. If the mesh size, i.e. the knot distance, is small enough, we
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will be content with a solution that satisfies

Cy,i,ξ j (α) :=
l−1∑

p=−1

(
(−1)i αp(y)−αp−1(y)

∆
−L

)
Np,1(ξ j)≤ 0

for all y ∈ {0, . . . ,B−1}, i ∈ {0,1}, and ξ j ∈ {ξ0, . . . ,ξl−1}. Let I0(α0) be the set of all

tuples (y, i,ξ j) such that the constraint Cy,i,ξ j is active at the point α0:

I0 := {
(y, i,ξ j) : Cy,i,ξ j (α0)= 0

}
.

For indexes (y∗, i∗,ξ∗j ) ∈ I0(α0), we consider the gradients ∇αCy,i,ξ j (α0) at some

point α0 ∈ An. The partial derivatives are given by

∂αp(y)Cy∗,i∗,ξ∗j (α0)=


(−1)i∗

∆

(
Np,1(ξ j)−Np+1,1(ξ j)

)
if y= y∗

0 else.

=


(−1)i∗

∆ if y= y∗ and j = p+1
(−1)1−i∗

∆ if y= y∗ and j = p+2

0 else.

Hence, the gradient ∇αCy∗,i∗,ξ∗j (α0) has the form

(−1)i∗

∆

(
0, . . . ,0,−1,1,0, . . . ,0

)
.

The only triple ( ỹ, ĩ, ξ̃ j) such that ∇αC ỹ, ĩ,ξ̃ j
(α0) is a multiple of ∇αCy∗,i∗,ξ∗j (α0)

would be ( ỹ, ĩ, ξ̃ j)= (y∗,1− i∗,ξ∗j ). Suppose that (y∗, i∗,ξ∗j ) ∈ I0. This is equivalent

to the statement that

(−1)i∗
l−1∑

p=−1

αp(y∗)−αp−1(y∗)
∆

Np,1(ξ∗j )= L
l−1∑

p=−1
Np,1(ξ∗j )> 0,

and we conclude that in this case (y∗,1−i∗,ξ∗j ) ∉ I0. From these facts, we infer that

for every α0 ∈ An the set
{∇αCy,i,ξ j (α0) : (y, i,ξ j) ∈ I0(α0)

}
is linearly independent.

This property is called Linear Independence Constraint Qualification (LICQ).

From the validity of the LICQ at the point α0, we can conclude that the MFCQ

hold at this point as well (Di Pillo and Grippo, 1989). Granted the assumption that

a global solution lies in the interior of X , we could apply the theorems of Di Pillo

and Grippo (1989) to solve the problem (4.9) for An = [0, M] and discretized

constraints. If the knot distance ∆ is small, the set of disretized constraints

approximate the original constraint reasonably well.

On the grounds of the above theorem, we can use an iterative scheme defined

by a sequence of unconstrained problems with successively increased penalties
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to approximately solve our initial problem. Such schemes are widely used to

solve constrained nonlinear programs. In Geiger and Kanzow (2002) an iterative

procedure called “multiplier penalty method” is proposed using an augmented

lagrangian penalty function. Further instances are given in Joines and Houck

(1994), Wah et al. (2007) and Chen and Chen (2010) to name but a few. We will

use an iteration scheme similar to the one proposed by Chen and Chen (2010).

DEFINITION A.6.12 (Penalty scheme; Chen and Chen, 2010, page 51). Assume

that we are in the ith iteration and zi is the minimizer of J1(x,εi). Then, setting

αi = 1
εi

, we update the penalty by

αi+1 ←αi +ρ i‖P(zi)‖1 .

The vector P is to be understood in accordance with definition A.6.8. The number

ρ i is updated by

ρ i+1 ← ρ iδ ,

where δ> 1. We stop if the current solution zi is feasible.

Using such an iterative penalty based approach, we have to solve a nonlinear

program in each iteration. Given that the variable of interest is high dimen-

sional (we talk about dimensions ≥ 50), we conclude from the previous complexity

analysis that this is extremely demanding in terms of computational resources.
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A.7 Listings

A.7.1 Generating the sample

The following script generates 1000 realizations (λt,Yt) of the bivariate process in

the approximate stationary regime. First, the auxiliary functions function_true()

and Count_Process() are defined.

1 function z = function_true (a,b,c,d,x,y)
y = floor(y);

3 z = a + b.*x + c.* min(y,5) + d.*(sin((pi).*x)
+ cos((pi).* min(y,5)));

5 z = min(2,z);
end

7

9 function Z = Count_Process(a,b,c,d,n,m)
% the first m simulations are thrown away

11 D = zeros(n,2);
D(1,1) = 1;

13 D(2,1) = poissrnd(D(1,1));
for i = 2:n

15 x = function_true(a,b,c,d,D(i-1,1),D(i-1,2));
y = poissrnd(x);

17 D(i,1) = x;
D(i,2) = y;

19 end
Z = D(m+1:n,:);

21 end

1

%%% sample size
3 n = 1050;
m = 50; % length of burn -in period

5

%%% parameters for the link function
7 a = 0.3;
b = 0.3;

9 c = 0.3;
d = -0.1;

11

%%% The sample
13 D = Count_Process(a,b,c,d,n,m);

Y = D(:,2);
15 X = D(:,1);
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A.7.2 Estimation

We define the auxiliary function B_spline_approx(vec,x,y) that creates a func-

tion Sn(vec) : [0,2]72 → [0,2], with the values of the 72-dimensional vector vec as

coefficients, and evaluates it at the point (x, y).

1 function M = B_spline_approx(vec ,x,y)
Mat = vec2mat(vec ,12);

3 i = y + 1;
i = min(1,6);

5 knots = -0.4:.2:2.4;
coef = Mat(i,:);

7 M = fnval(spmak(knots ,coef),x);
end

The function objective_fun calculates the value Q(vec,Y ) for a given vector of

coefficients, vec, and a vector of counts, Y ; cf. Lemma 4.2.10.

function z = objective_fun(vec ,Y)
2 vec = 0.1* vec; % Only if discrete GA is used!
Xhat = Y;

4 Xhat (1) = mean(Y);
for i = 2:( length(Y))

6 Xhat(i) = B_spline_approx(vec ,Xhat(i-1),Y(i-1));
end

8 diff = zeros(length(Y) ,1);
for i = 2:( length(Y))

10 diff(i) = (Y(i)-Xhat(i))^2;
end

12 z = sum(diff);
end
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In the following script, the least squares spline estimator is calculated using the

genetic algorithm with An = {0.0,0.1, . . . ,2.0}.

1 f = @(B,Y)objective_fun(B,Y);
fun = @(B)f(B,Y);

3 A0 = ones (72,1);
lb = zeros (72,1);

5 ub = ones (72,1);

7 IntCon = 1:72; %(Integer Constraints)
options = optimoptions(’ga’,’ConstraintTolerance ’,1e-10);

9 fhat = 0.1*ga(fun , 72 ,[],[],[],[],lb ,20*ub ,[],IntCon ,options);

If we use GA, PSO, or SA, with An = [0, M], we substitute the last line by

1 fhat = ga(fun , 72 ,[],[],[],[],lb ,2*ub ,[],[], options); %GA
fhat = particleswarm(fun ,72,lb ,2*ub); %PSO

3 fhat = simulannealbnd(fun ,A0,lb ,2*ub); %SA

respectively.
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A.8 Figures

Underlying data for the computer experiments

(a) 3D plot of the true intensity function.
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(b) 1000 realizations of the pairs (λt,Yt)
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(c) 100 realizations of the pairs (λt,Yt)

Figure A.8.1: Underlying data for the numerical experiments. In (a) the true link
function is shown; (b) shows the 1000 realizations of the count process that were used
for estimation in experiments 1–12; (c) shows the 100 realizations of the count process
that were used for estimation in experiments 13–24. The Data in (b) and (c) were
generated independently of each other.
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Estimations with sample size n = 1000

We show estimations of the link function shown in Fig. A.8.1a, on the basis of the

data shown in Fig. A.8.1b. The least squares spline estimator was approximated

using the GA (Figures A.8.2 and A.8.5), PSO (Figure A.8.3), and SA (Figure A.8.4).

The mean square errors are displayed in Table A.9.1.

Figure A.8.2: Estimation with GA, An = {0,0.2, . . . ,1.8,2.0}, n = 1000.

(a) Estimation in experiment no. 1 (b) Estimation in experiment no. 2

(c) Estimation in experiment no. 3 (d) Estimation in experiment no. 4
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Figure A.8.3: Estimation with PSO, An = [0, M], n = 1000.

(a) Estimation in experiment no. 5 (b) Estimation in experiment no. 6

(c) Estimation in experiment no. 7 (d) Estimation in experiment no. 8
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Figure A.8.4: Estimation with SA, An = [0, M], n = 1000.

(a) Estimation in experiment no. 9 (b) Estimation in experiment no. 10

(c) Estimation in experiment no. 11 (d) Estimation in experiment no. 12
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Figure A.8.5: Estimation with GA, An = [0, M], n = 1000.

(a) Estimation in experiment no. 13 (b) Estimation in experiment no. 14

(c) Estimation in experiment no. 15 (d) Estimation in experiment no. 16
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Estimations with sample size n = 100

We show estimations of the link function shown in Fig. A.8.1a, on the basis of the

data shown in Fig. A.8.1b. The least squares spline estimator was approximated

using the GA (Figures A.8.6 and A.8.9), PSO (Figure A.8.7), and SA (Figure A.8.8).

The mean square errors are displayed in Table A.9.2.

Figure A.8.6: Estimation with GA, An = {0,0.2, . . . ,1.8,2.0}, n = 100.

(a) Estimation in experiment no. 17 (b) Estimation in experiment no. 18

(c) Estimation in experiment no. 19 (d) Estimation in experiment no. 20
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Figure A.8.7: Estimation with PSO, An = [0, M], n = 100.

(a) Estimation in experiment no. 21 (b) Estimation in experiment no. 22

(c) Estimation in experiment no. 23 (d) Estimation in experiment no. 24
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Figure A.8.8: Estimation with SA, An = [0, M], n = 100.

(a) Estimation in experiment no. 25 (b) Estimation in experiment no. 26

(c) Estimation in experiment no. 27 (d) Estimation in experiment no. 28
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Figure A.8.9: Estimation with GA, An = [0, M], n = 100.

(a) Estimation in experiment no. 29 (b) Estimation in experiment no. 30

(c) Estimation in experiment no. 31 (d) Estimation in experiment no. 32
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A.9 Tables

In the tables the suffix ‘-global’ in the name of an algorithm refers to the fact

that we used the set An = [0, M] in this case. In contrast, the term ‘GA-discrete’

describes the usage of the genetic algorithm with An = {0.0,0.1, . . . ,1.9,2.0}.

Table A.9.1: Experimental results for the sample size n = 1000.

Experiment No. Algorithm MSE

1 GA-discrete 0.0383

2 0.0277

3 0.0278

4 0.0237

5 PSO-global 0.0733

6 0.0364

7 0.0707

8 0.0320

9 SA-global 0.1874

10 0.0352

11 0.0763

12 0.0500

13 GA-global 0.0355

14 0.0331

15 0.0351

16 0.0420

Control Reference λn 0.1497
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Table A.9.2: Experimental results for the sample size n = 100

Experiment No. Algorithm MSE

17 GA-discrete 0.0625

18 0.1473

19 0.1257

20 0.1133

21 PSO-global 0.1575

22 0.0825

23 0.1537

24 0.1745

25 SA-global 0.1136

26 0.1605

27 0.3121

28 0.0857

29 GA-global 0.1154

30 0.0793

31 0.3699

32 0.1053

Control Reference λn 0.1855
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