629 research outputs found

    Extended bounds limiter for high-order finite-volume schemes on unstructured meshes

    Get PDF
    This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [Accuracy preserving limiter for the high-order accurate solution of the Euler equations, J. Comput. Phys. 228 (2009) 8693–8711], for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations

    An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs

    Full text link
    We extend the entropy stable high order nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations presented by Wintermeyer et al. [N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. Journal of Computational Physics, 340:200-242, 2017] with a shock capturing technique and a positivity preservation capability to handle dry areas. The scheme preserves the entropy inequality, is well-balanced and works on unstructured, possibly curved, quadrilateral meshes. For the shock capturing, we introduce an artificial viscosity to the equations and prove that the numerical scheme remains entropy stable. We add a positivity preserving limiter to guarantee non-negative water heights as long as the mean water height is non-negative. We prove that non-negative mean water heights are guaranteed under a certain additional time step restriction for the entropy stable numerical interface flux. We implement the method on GPU architectures using the abstract language OCCA, a unified approach to multi-threading languages. We show that the entropy stable scheme is well suited to GPUs as the necessary extra calculations do not negatively impact the runtime up to reasonably high polynomial degrees (around N=7N=7). We provide numerical examples that challenge the shock capturing and positivity properties of our scheme to verify our theoretical findings

    Embedded discontinuous Galerkin transport schemes with localised limiters

    Get PDF
    Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The underlying high-order transport scheme is constructed by injecting the partially-continuous field into an embedding discontinuous finite element space, applying a stable upwind discontinuous Galerkin (DG) scheme, and projecting back into the partially-continuous space; we call this an embedded DG scheme. We prove that this scheme is stable in L2 provided that the underlying upwind DG scheme is. We then provide a framework for applying limiters for embedded DG transport schemes. Standard DG limiters are applied during the underlying DG scheme. We introduce a new localised form of element-based flux-correction which we apply to limiting the projection back into the partially-continuous space, so that the whole transport scheme is bounded. We provide details in the specific case of tensor-product finite element spaces on wedge elements that are discontinuous P1/Q1 in the horizontal and continuous P2 in the vertical. The framework is illustrated with numerical tests

    WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach

    Get PDF
    In this paper a relaxed formulation of the a posteriori Multi-dimensional Optimal Order Detection (MOOD) limiting approach is introduced for weighted essentially non-oscillatory (WENO) finite volume schemes on unstructured meshes. The main goal is to minimise the computational footprint of the MOOD limiting approach by employing WENO schemes—by virtue of requiring a smaller number of cells to reduce their order of accuracy compared to an unlimited scheme. The key characteristic of the present relaxed MOOD formulation is that the Numerical Admissible Detector (NAD) is not uniquely defined for all orders of spatial accuracy, and it is relaxed when reaching a 2nd-order of accuracy. The augmented numerical schemes are applied to the 2D unsteady Euler equations for a multitude of test problems including the 2D vortex evolution, cylindrical explosion, double-Mach reflection, and an implosion. It is observed that in many events, the implemented MOOD paradigm manages to preserve symmetry of the forming structures in simulations, an improvement comparing to the non-MOOD limited counterparts which cannot be easily obtained due to the multi-dimensional reconstruction nature of the schemes
    • …
    corecore