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This paper explores the impact of the definition of the bounds of the limiter proposed by 
Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central 
Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the 
finite-volume (FV) framework. A new modification of the limiter is proposed where the 
bounds are redefined by utilising all the spatial information provided by all the elements 
in the reconstruction stencil. Numerical results obtained on smooth and discontinuous 
test problems of the Euler equations on unstructured meshes, highlight that the newly 
proposed extended bounds limiter exhibits superior performance in terms of accuracy and 
mesh sensitivity compared to the cell-based or vertex-based bounds implementations.

Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pursuit of accuracy has been one of the key-drivers for the development of novel numerical methods for the time-
dependent Navier–Stokes equations, for the efficient application of Direct Numerical Simulation (DNS) and Large Eddy 
Simulation (LES) for structured and unstructured meshes. There are numerous approaches involving various frameworks 
that have tried to address the challenging task of obtaining a robust, efficient, high-order accurate, monotone and simple in 
implementation numerical scheme for unstructured meshes. State-of-the-art approaches span the finite volume (FV) [1–20,
48], the discontinuous Galerkin (DG) [15,21–29], the Spectral [30–37], and Flux Reconstruction (FR) [21,38–41] mathematical 
frameworks that have made novel efforts in trying to address these challenges for unstructured meshes.

How the high-order of spatial accuracy is achieved for these schemes varies, but the main objective is the same. This is 
detecting and eliminating spurious oscillations that can occur at flow regions of sharp gradients in any of the flow variables, 
and provide high-order of accuracy at smooth flow regions. Typical families of algorithms utilised to detect and eliminate 
the spurious oscillations include the MUSCL-Total Variation Diminishing (TVD) [42–44], the essentially non-oscillatory (ENO) 
[45] and weighted-ENO (WENO) [46], the Total Variation Bounding (TVB) [47] and the Multi-Dimensional Optimal Order 
Detection (MOOD) [48] scheme. The MOOD being different from the rest of the algorithms in the sense that it detects the 
maximum order of accuracy allowed without producing spurious oscillations and reduces the order of accuracy if some 
monotonicity conditions are not satisfied.

In this study, possible high-order extensions within the MUSCL framework for unstructured meshes are targeted. The 
main reason for using this framework is it’s lower computational cost compared to ENO and WENO type of schemes, simplic-
ity and robustness when low-quality of unstructured meshes are encountered. First limiter for FV schemes on unstructured 
meshes in 2D was proposed by Tilliayeva [49], which extended Kolgan’s novel MUSCL approach [50,51] to arbitrary 2D cells. 
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Barth and Jespersen [52] then presented a novel upwind scheme for unstructured grids by introducing a limiter that was 
acting on a linear reconstruction polynomial, and it was free of oscillations at regions of strong gradients that was widely 
used in 2D and 3D applications. The disadvantage with this limiter is that it uses non-differentiable functions that limit the 
convergence of non-linear problems to steady state. Venkatakrishnan [53] on the other hand introduced a modification to 
the limiter by making it differentiable. This way both the shortcomings such as achieving the second order accuracy and 
the convergence difficulties are overcome at least for smooth unstructured meshes.

The design of high-order limiters in the MUSCL framework is challenging for several reasons including obtaining differen-
tiable functions, satisfying the bounds of the solution, dependency on the mesh quality, computational efficiency, simplicity 
and robustness. There have been numerous approaches that tried to address some of these aspects. Li and Ren [54] proposed 
a weighted biased averaging procedure (WBAP) limiter up to 4th-order of accuracy on unstructured meshes by employing 
non-linear weighting coefficients for the reconstruction. Liu and Zhang [55] proposed the distance weighted biased aver-
aging procedure (DWBAP), which combines linear and non-linear weight coefficients and up to 4th-order of accuracy is 
obtained. Michalak and Ollivier-Gooch [56] proposed a limiting procedure for higher-order accurate unstructured finite-
volume methods where a new differentiable function is used with a parameter controlling the balance between accuracy at 
non-uniform meshes and convergence properties. Excellent convergence and higher order accuracy at smooth regions and 
monotone behaviour were obtained with the Michalak and Ollivier-Gooch [56] (MOG).

In the present work the quest for a high-order limiter is going to be based on the Michalak and Ollivier-Gooch [56]
limiter. This is because it is simple to implement and relies on the robust k-exact least-squares reconstruction. Although it 
is not parameter free it is less sensitive to the κ parameter introduced by Venkatakrishnan [53] to control monotonicity and 
accuracy balance as it has been reported by Michalak and Ollivier-Gooch [56] for a number of test problems.

However, there are two key issues that are encountered when developing and implementing limiters for higher-order 
schemes, that need to be considered. The first issue is associated with the distinction between vertex-based or cell-based 
approaches (not related to the formulation of the reconstruction itself or the implementation of the CFD code) for the 
establishment of the bounds of the reconstructed solution. Some approaches use the first-layer of neighbours (with the 
layer definition been different across different approaches), or the direct side neighbours, or the vertex neighbours of the 
considered cell. There are numerous limiters that due to the definition of their bounds they can exhibit significant variation 
in their performance when applied to a vertex-based or cell-based reconstruction. The second issue is associated with the 
definition of the bounds. The bounds are defined by the selected cells in the close spatial proximity that may differ from 
the total number of cells in the stencil. For 3rd-order and 4th-order schemes there is going to be a discrepancy between 
the number of cells in the stencil and the number of cells that are used for the definition of the bounds. This discrepancy 
itself could be important when designing high-order limiters, since for higher-order of accuracy eventually the bounds need 
to be violated or redefined. Therefore, by using more cells for defining the bounds of the solution, the bounds arising from 
fewer elements could be violated.

In the present work the impact of these two key issues are explored through new extensions of the high-order limiting 
procedure based on the Michalak and Ollivier-Gooch [56] limiter. A series of stringent test-problems of the Euler equations 
using unstructured meshes are considered, where the impact of the definition of bounds can be appreciated. Moreover, 
the extended limiter that utilises all the elements in the stencil as bounds, exhibits superior accuracy compared to the 
other implementations for all the test problems. The paper is organized as follows. Section 2 is dedicated to the generic 
framework used to describe the high-order finite-volume framework for unstructured meshes, the spatial discretisation, 
the implementation of the considered limiters, the fluxes and temporal discretisation. Numerous remarks are pointed out, 
for a series of algorithmic/formulation or implementation challenges faced. The numerical results obtained for the Euler 
equations are presented in Section 3 where the focus is on the accuracy and robustness of the limiter employed. The 
conclusions drawn from the present study are outlined in the last section.

2. General framework

The 2D unsteady compressible Euler equations are considered; written in compact form as:

∂U

∂t
+ ∇(Fc(U)) = 0, (1)

where U = U(x, t) is the vector of the unknown function, x = (x, y) denotes the coordinates of a point of the domain �, 
and Fc is the inviscid flux vector given by:

U = [ρ,ρu,ρv, E, ]T ,

F x
c =

[
ρu,ρu2 + p,ρuv, u(E + p)

]T
,

F y
c =

[
ρv,ρuv,ρv2 + p, v(E + p)

]T
.

(2)

In the above equations, ρ is the density; u, v are the velocity components in x, y Cartesian directions respectively. Calor-
ically perfect gas is assumed where the total energy is computed according to the equation of state as E = p/ (γ − 1) +
(1/2)ρ(u2 + v2), where p is the pressure, and the ratio of specific heats is set as γ = 1.4 unless otherwise stated.
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Fig. 1. Schematic of region around considered cell i, and it’s direct side neighbours in grey colour, the corresponding normal vectors for each of it’s sides, 
and the quadrature points at the edges in white colour.

The physical domain � in 2D consists of any combination of conforming quadrilateral and triangular elements of surface 
area Si , indexed by a unique mono-index i. Integrating Eq. (1) over a mesh element using a high-order explicit finite-volume 
formulation the following equation is obtained:

Un+1
i = Un

i − �t
1

|Si |
N f∑
j=1

Nqp∑
α=1

Fnij
(

Un
i j,L(xi j,α, t),Un

i j,R(xi j,α, t)
)
ωα |Eij|, (3)

where Ui are the volume averaged conserved variables, Fnij is a numerical flux function in the direction normal to the 
cell interface between cell i and the neighbouring cell at the cell face j, N f is the number of faces/sides per element, 
Nqp is the number of quadrature points used for approximating the line integrals, |Eij | is the length of the corresponding 
edge, Un

i j,L(xα, t) and Un
i j,R(xα, t) are the high-order approximation of the solution at the left (considered cell) and the right 

(neighbouring cell) of the cell interface respectively; finally α corresponds to different Gaussian integration points xα and 
weights ωα over the edge as shown in Fig. 1.

The weights and distribution of the quadrature points depend upon the order of the Gaussian rule and in the present 
study a Gauss–Legendre quadrature is employed. The high-order approximation of the conserved vector for the intercell 
fluxes is obtained by a reconstruction process that employs cell-averaged data. The following sections describe the method-
ology adopted for space and time discretisation.

2.1. Spatial discretization

The main objective of the reconstruction process is to build a high-order polynomial pi(x, y) of arbitrary order r, for 
each considered element i that has the same average as a general quantity Ui . This can be formulated as:

Ui = 1

|Si|
∫
Si

U(x, y)dS = 1

|Si|
∫
Si

pi(x, y)dS. (4)

The present reconstruction algorithm is based upon the approaches of [4,5,9], that has been successfully applied to smooth 
and discontinuous flow problems [8,57–63] and only key-components will be presented herein, and the reader is referred 
to [4,5,9] for further details.

For minimising the scaling effects that appear in grids consisting of elements of different sizes, many approaches exist 
including inverse-distance weighting, transformation to a reference coordinate system and column-scaling among others. 
Column scaling approach of Jalali and Ollivier-Gooch [64] deals with improving the condition number of least-squares sys-
tems by scaling the reconstruction matrix with the large entry of each column. Inverse distance-weighted least-squares 
reconstruction is reducing the influence of the elements farther away from the considered cell in the reconstruction pro-
cess. For the present study the reconstruction is carried out in a transformed system of coordinates for improving the 
condition number of the system of equations similarly to [4,5,9,16,17,65]. The transformation is achieved by decomposing 
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Fig. 2. Schematic of quadrilateral cell and decomposition into triangles for transformation to reference space.

each element into triangular elements and using one of the decomposed triangular elements as the reference element for 
transforming to the new system of coordinates as shown in Fig. 2. It must be stressed that this transformation is only com-
puted once at the initialisation phase of our simulation since the mesh does not change with time for the present study, 
and is intended for performing reconstruction in a reference space.

Let vi j , j = 1, 2, . . . J i be the vertices of the considered general element. By decomposing non-triangular elements into 
triangles and choosing one of them with w1 = (x1, y1), w2 = (x2, y2), w3 = (x3, y3), being it’s three vertices. These vertices 
are always one of the vi j ones. The transformation from the Cartesian coordinates x, y into a reference space ξ, η is given 
by the following equations:(

x
y

)
=

(
x1
y1

)
+ J ·

(
ξ

η

)
, (5)

with the Jacobian matrix given by:

J =
[

x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
. (6)

Using an inverse mapping the element Si can be transformed to the element S ′
i in the reference co-ordinate system as:

v′
i j = J−1 · (vi j − w1

)
, j = 1,2, . . . J i, (7)

and the spatial average of the conserved variable Ui does not change during transformation

Ui = 1

|Si|
∫
Si

U(x, y) dS ≡ 1

|S ′
i |

∫
S ′

i

U(ξ,η) dξdη. (8)

To perform the reconstruction on the target element Si , the central reconstruction stencil is formed S by recursively 
adding neighbouring elements, consisting of M + 1 elements, including the target element Si as shown in Fig. 3,

S =
M⋃

m=0

Sm, (9)

where the index m refers to the local numbering of the elements in the stencil, with the element with index 0 being the 
considered cell i.

Stencil selection strategies is a challenging task when dealing with high-order methods on unstructured meshes since 
there is a variation of the size and quality of the elements that can play a crucial role in the reconstruction accuracy, 
robustness and computational cost.

Remark 1. The stencil size can be measured in terms of number of cells included in it. Their number is proportional to 
the computational requirements, robustness and inversely proportional to the accuracy, since compact stencils (with fewer 
elements) can achieve higher accuracy as opposed to stencils with more elements. Typical example of approaches include 
adding a single layer of neighbours for every increment of the spatial order of accuracy [64], and adding neighbours in the 



P. Tsoutsanis / Journal of Computational Physics 362 (2018) 69–94 73
Fig. 3. Examples of central stencils with the considered cell in red colour. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

stencil until a target condition number for the matrix of the linear system has been achieved [2,48] although there should 
be stop criteria in place to prevent the stencil growing too much in size.

Therefore algorithms that use criteria such as adding the closest elements to the considered cell might thrive in uniform 
meshes since they can result in quite compact stencils, but they will fail in meshes of poor quality since they can result in 
stencil elements aligned in one coordinate direction that can impair the robustness of the multi-dimensional reconstruction. 
Hence, there is a plethora of strategies that could be considered to build the “ideal” stencil selection algorithm that adapts 
based on the quality of the spatial information available and computational budgets.

Remark 2. Investigating various stencil selection algorithms is beyond the scope of the present paper although it is an 
interesting aspect that could be pursued in the future, and for the sake of robustness more cells are involved in the stencil 
than the number of equations K = 1

2 (r +1)(r +2) −1. So similarly to [2,4,5,9,14,16], the number of employed cells including 
the considered cell are, 5 cells for r = 1, 12 cells for r = 2 and 20 cells for r = 3. The selection process is based on firstly 
adding the direct side neighbours, and then recursively adding neighbours of neighbours until the required number of 
elements is reached.

The considered cell and it’s corresponding stencil is transformed in the reference space as shown in Fig. 4,

S ′ =
M⋃

m=0

S ′
m, (10)

and the rth order reconstruction polynomial at the transformed cell S ′
0 is sought as an expansion over local polynomial 

basis functions λk(ξ, η) given by:

p(ξ,η) =
K∑

k=0

akλk(ξ,η) = U0 +
K∑

k=1

akλk(ξ,η), (11)

where U0 corresponds to the vector of conserved variables at the considered cell i, and ξ, η are the coordinates in the 
reference system. ak are the degrees of freedom and the upper index in the summation of expansion K corresponds to the 
number of the degrees of freedom.

To find the unknown degrees of freedom ak for each cell m from the stencil the cell average of the reconstruction 
polynomial p(ξ, η) must be equal to the cell average of the solution Um:∫

S ′
m

p(ξ,η)dξdη = |S ′
m|U0 +

K∑
k=1

∫
S ′

m

akλk dξdη = |S ′
m|Um, m = 1, . . . , M. (12)

Where S ′
m is the surface area of the cell m in the stencil in the transformed coordinate system. Since for general cells the 

transformation in a unit quadrilateral cell cannot be guaranteed, the basis functions λk used should satisfy the constraint of 
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Fig. 4. Examples of central stencils in physical space and (x, y) coordinates and in transformed reference space and (ξ, η) coordinates with the considered 
cell illustrated in red colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

equation (4) irrespective of the values of degrees of freedom. The basis functions λk for all the elements in the stencil are 
defined as follows:

λk(ξ,η) ≡ ψk(ξ,η) − 1

|S ′
0|

∫
S ′

0

ψk dξdη k = 1,2, . . . , K , (13)

where S ′
0 is the surface area of the considered cell i, in the transformed coordinate system, and in the present study ψk are 

Legendre polynomials basis functions. Denoting the integrals of the basis function k over the cell m in the stencil, and the 
vector of right-hand side by Amk and b respectively as given by

Amk =
∫
S ′

m

λk dξdη, bm = |S ′
m|(Um − U0),

the equations for degrees of freedom ak can be rewritten in a matrix form as:

K∑
k=1

Amkak = bm, m = 1,2, . . . M. (14)

The complete linear system is given by:⎡
⎢⎢⎢⎣

A1,1(ξ,η) A1,2(ξ,η) A1,3(ξ,η) · · · A1,K (ξ,η)

A2,1(ξ,η) A2,2(ξ,η) A2,3(ξ,η) · · · A2,K (ξ,η)
...

...
... · · · ...

AM,1(ξ,η) AM,2(ξ,η) AM,3(ξ,η) · · · AM,K (ξ,η)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1
a2
...

aK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

|S ′
1|(U1 − U0)

|S ′
2|(U2 − U0)

...

|S ′
M |(UM − U0)

⎤
⎥⎥⎥⎦ . (15)

The matrix Amk is purely based on the geometry of the elements in the stencils, which remains unchanged for the present 
study, while the information on the right-hand vector bm is dependent upon the solution, and the surface area of each of 
the element in the stencil in the transformed coordinate system. The matrix AT

km Amk , is invertible and the equation (14), 
can be rewritten in the following form:

ak =
(

AT
km Amk

)−1
AT

kmbm = A†
kmbm, (16)

where the matrix A†
km corresponds to the Moore–Penrose pseudo-inverse of Amk . The polynomial coefficients are there-

fore obtained through a matrix vector multiplication of A† with bm . In the present study a QR decomposition based on 
km
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Householder transformation [66] is used, where the pseudo-inverse is decomposed in the following manner in an orthogo-
nal matrix Q and an upper triangular one R , and the inverse of RT R is obtained by a forward-substitution followed by a 
backward-substitution.

A†
km =

(
(Q R)T (Q R)

)−1
AT

km =
(

RT R
)−1

AT
km (17)

The main memory requirements of the present least-squares reconstruction is the associated storage of the pseudo-inverse 
matrix A†

km , that is only computed once at the preprocessing stage of the simulation.

2.2. MUSCL

In the MUSCL framework employed in this work the high-order variation of the solution within every cell is approxi-
mated by the corresponding polynomial, whose degrees of freedom ak are computed during the least-squares reconstruction 
process by incorporating information from the entire central stencil as shown in Fig. 3. The scheme can be written as:

Ui j,α = Ui + φi ·
K∑

k=1

akλk(ξa, ηa), (18)

where Ui j,α is the extrapolated reconstructed solution at face j, and at quadrature point α, Ui is the value for the conserved 
variable of element i, and (ξa, ηa) are the coordinates of the quadrature point at the i j edge. All polynomials, for all the 
faces and for all the quadrature points are then limited by the limiter φi which is valid for cell i to prevent any spurious 
oscillations from contaminating the solution.

2.2.1. Barth and Jespersen limiter (BJ)
One of the first limiters that has been widely used for unstructured meshes is the slope limiter of Barth and Jespersen 

[52]. Although this limiter is not considered in the present work due to it’s non-differentiable nature and limited application 
for high-order schemes, elements of this limiter are going to be used as a building block for high-order limiters and therefore 
it’s key characteristics are outlined. The design of this slope limiter requires the minimum and maximum values from the 
stencil formed by the considered cell i and the direct side neighbours:

Umin
i = min(Ul : l = 1, .., L) and Umax

i = max(Ul : l = 1, .., L), (19)

where l = 1, .., L; L is the local numbering for the cell i and it’s direct-side neighbours, where l = 1 corresponds to the cell 
i. The limiter seeks the minimum value of the slope limiter for all the direct-side neighbours,and all the quadrature points 
α that satisfy the following conditions:

φi = min(φil,a) l ∈ [1, L], α ∈ [1, Nqp]. (20)

Where φil,α corresponds to the slope limiter value at side l and quadrature point α for cell i. Then, the limiting function 
is applied, composed by three different states according to the difference of the unlimited reconstructed value Uil,α at the 
quadrature points of the considered element U(i,l,α) , the minimum Umin

i and maximum Umax
i values from the direct-side 

neighbours, yielding:

φil,α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

(
1,

Umax
i − Ui

Uil,α − Ui

)
, if Uil,α − Ui > 0

min

(
1,

Umin
i − Ui

Uil,α − Ui

)
, if Uil,α − Ui < 0

1, if Uil,α − Ui = 0

(21)

2.2.2. Michalak and Ollivier-Gooch limiter (MOG)
The high-order limiter that is going to be used as the reference in the present work is the Michalak and Ollivier-Gooch 

[56] limiter, and expansions of these limiter are going to be explored. Therefore, the key-details of this limiter are outlined. 
For achieving the accuracy of the higher order schemes, Michalak and Ollivier-Gooch [56] proposed a new function m̃in(1, y)

which replaces the minimum function of Barth and Jespersen slope limiter [52]. Similar to Venkatakrishnan’s [53] function 
this needs to be completely differentiable at all points and at the same time contained within the limit min(1, y). An 
additional requirement is that this function should have an exact value of 1 for all the range of values y ≥ yt , where 
1 < yt < 2 represents a threshold value. This function has the following form:

m̃in(1, y) =
{

P (y) y < yt

1 y ≥ y
(22)
t
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where P (y) is a polynomial which satisfies the following criteria:

P |0 = 0, P |yt = 1,

dP
dy |0 = 1, dP

dy |yt = 0,

P (y) ≤ min(1, y) y ∈ [0, yt].

(23)

The resulting polynomial for yt = 1.50 is given by the equation:

P (y) = −4

27
(y3) + y, yt = 1.50. (24)

The choice of yt is basically a compromise between maintaining a good accuracy and convergence properties on non-
uniform grids and dictates the degree of non-uniformity that can be accommodated. In general smaller values of yt are less 
likely to activate the limiter but increases its non-differentiability. Also, Michalak and Gooch [56] suggests that in order to 
maintain higher order accuracy it is necessary to deactivate the limiter in the smooth regions. Similar to the Venkatakrish-
nan limiter [53], the limiters are deactivated when the local solution variation is O (�x2) or even smaller. Thus the action 
of limiter is deactivated under the following criteria:

δU ≡ δUmax
i − δUmin

i < (κ�x)
3
2 , (25)

where κ is a tunable parameter. Using a simple switch can worsen the convergence therefore to maintain differentiability a 
new modified limiter was utilised φ̃i as follows:

φ̃i = σ̃i + φi(1 − σ̃i), (26)

where φi is the limiter value calculated as mentioned in equation (21) and is applied to all the degrees of freedom of the 
polynomial as seen in equation (18). The value of σ̃i is used as a switch in deactivating the limiter in the smooth region 
and its function is defined as:

σ̃i =

⎧⎪⎨
⎪⎩

1 δU2 ≤ (κ�x)3

S(
δU2−(κ�x)3

(κ�x)3 ) (κ�x)3 < δU2 < 2(κ�x)3

0 δU2 ≥ (κ�x)3

(27)

Where S = 2y3 − 3y2 + 1. Though this limiter deactivation looks similar to that of (VK) limiter, limiting actions are different 
between these two. The value of ε2 as used in the (VK) limiter modifies the limiting value in all cases and increasing the 
value of κ causes larger overshoots in the solution especially at shock discontinuities. In this modified limiter the transition 
function is exactly 1, at regions of strong gradients, and the limiter achieves monotonicity regardless of κ , hence this 
modified limiter as proposed by Michalak and Ollivier-Gooch [56] is less sensitive to κ . For all the studies in the present 
work a κ = 5 is employed.

Remark 3. The key-elements that can lead to confusion when implementing a limiter such as the Michalak and Ollivier-
Gooch [56] lies in the fact that the maximum and minimum bounds of the solution are determined by the immediate 
neighbours, similarly to Barth and Jespersen limiter [52] and the MOOD scheme of Diot et al. [2]. Some of the questions 
that arise from this are outlined below:

1. Vertex-based neighbours, or direct-side neighbours?
2. What happens when the number of vertex-based neighbours is greater that the number of stencil elements required, 

which can occur for meshes of poor quality?
3. Can the definition of this neighbourhood for establishing the bounds of the solution have an impact on the performance 

of the limiter?

In this paper, possible extensions of the limiter are pursued, by exploring the answers to the above questions. Following 
the work and definition [52], the subject MOG limiter is going to be implemented by using the direct-side neighbours of 
the considered cell, as the elements that bound the solution as shown in Fig. 5.

2.2.3. Michalak and Ollivier-Gooch limiter vertex based (MOGV)
The first modification or variation in the implementation of the MOG limiter, is to ensure that all the vertex-based 

neighbouring elements are used to obtain the solution bounds. However, this has the following consequences:

1. For the 2nd-order implementation of this limiter, more than 5 cells will be used for bounding the solution which was 
the initial number of cells already employed in the stencil selection algorithm, therefore ending up with more elements 
in the stencil.
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Fig. 5. Stencils for 3rd and 4th-order MOG limiter, the Min and Max bounds are obtained from the yellow coloured elements and the considered cell in 
red colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Stencils for 3rd and 4th-order MOGV limiter, the Min and Max bounds are obtained from the yellow coloured elements and the considered cell in 
red colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2. The stencil selection algorithm is modified to ensure that it uses all the vertex side neighbours for all spatial orders, 
and recursively add as many elements needed to reach the number of elements required.

3. For poor quality of meshes a vertex based stencil selection algorithm can result in significant more elements than a cell 
based stencil selection algorithm.

4. For meshes of good quality for 3rd-order and 4th-order schemes the number of vertex-based neighbours is always 
smaller than the total number of elements in the stencil.

The implementation of the present vertex-based neighbours is used for the limiting purposes only rather than changing 
the entire implementation of the used UCNS3D code [4,5,8,57–60] to vertex-based. UCNS3D is a parallel 2D and 3D un-
structured CFD research code written in Fortran, and uses the cell-centred finite-volume framework and WENO and MUSCL 
schemes for steady-state and unsteady flow problems. This subject modification/variation of the MOG limiter using the 
vertex-based neighbours as the elements that bound the solution is going to be labelled (MOGV) as it can be seen in Fig. 6.

2.2.4. Michalak and Ollivier-Gooch limiter extended bounds (MOGE)
The MOG and MOGV limiters contain all the required ingredients to enable high-order of spatial accuracy, for uniform 

grids in principle. However, for more realistic unstructured meshes there are additional parameters that can prohibit the 
scheme from achieving it’s designed order of accuracy. One key parameter is that the geometry of the unstructured mesh 
and the resulting condition number of the least-squares system reconstruction can activate the limiter itself. The other 
parameter is the mismatch between the stencil elements used for the reconstruction, and the elements that dictate the 
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Fig. 7. Stencils for 3rd and 4th-order MOGE limiter, the Min and Max bounds are obtained from the yellow coloured elements and the considered cell in 
red colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Min and Max bounds of the solution for smooth and discontinuous flow regions. To give a better perspective of this 
parameter consider the following:

1. Assume that the unlimited reconstructed solution of a smooth function in a good quality mesh is accurate and does not 
produce any oscillations

2. This unlimited reconstructed solution might be out of the bounds established from the direct-side neighbours and the 
considered cell.

3. By applying a limiter using these bounds the reconstructed solution will be unnecessarily limited.

Remark 4. It must be stressed that for obtaining higher-order of accuracy, eventually the bounds must be violated. The 
definition of the bounds associated with these type of limiters can be redefined. Therefore the development of a scheme 
that can be considered either a bound-violating, or a limiter with wider-bounds is pursued.

In smooth flow regions, a limiter should be completely deactivated since the unlimited reconstruction can produce a 
high-order accurate solution without any oscillations. Therefore, in principle the unlimited reconstruction should provide 
boundary extrapolated reconstructed solutions at the quadrature points of the considered cell that lie within the values 
of all the elements in the stencil in smooth flow regions. Hence, for smooth flow regions the bounds provided by the 
direct side neighbours, or the vertex neighbours have a narrower range of values allowed. Furthermore, when the unlimited 
reconstructed solution is out of these bounds, the limiter function is controlled by the threshold value yt , and for meshes 
of poor quality the limiting applied could prove to be excessive and more dependent upon the mesh quality.

For discontinuous flow regions, even if one element in the stencil neighbourhood lies in a discontinuous region it can 
produce oscillations in the unlimited reconstructed solution, especially if the mesh quality is poor and consequently the 
condition number of the linear system is relatively large. This will in turn activate the limiter although the bounds are 
determined by all the elements included in the stencil.

Remark 5. For this modified version of the MOG limiter, reducing the threshold value yt for reducing the activation of the 
limiter at non-uniform meshes would result in increased non-differentiability of the limiter which is undesirable. Hence, by 
simply obtaining the Min and Max bounds of the solution from all the elements in the stencil, in principle the performance 
of the limiter would become less sensitive to the grid quality.

The minimum and maximum values from the all the elements in the stencil including the considered cell i are consid-
ered:

Umin
i = min(Um : m = 1, .., M) and Umax

i = max(Um : m = 1, .., M), (28)

where m = 1, .., M; M is the local numbering for the cell i and it’s stencil elements, where m = 1 corresponds to the cell i.
This limiter with the extended bounds is labelled (MOGE) and the stencil elements used for a third-order and fourth 

order scheme, can be seen in Fig. 7.
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Fig. 8. L2 convergence curves obtained with various numerical schemes on quadrilateral and triangular meshes for the 2D vortex evolution problem at 
t = 10. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)

2.3. Fluxes approximation and temporal discretisation

For the evaluation of the intercell numerical flux function Fnij the approximate HLLC (Harten–Lax–van Leer-Contact) Rie-
mann solver of Toro [67] is employed. For ensuring that the pressure and density remain positive through the reconstruction 
the positivity condition of [68] is used where the reconstructed values of density and pressure for each Gaussian quadrature 
points (α) and for all the faces l must satisfy the following:

|ρil,α − ρi| < 0.8ρi and |pil,α − pi| < 0.8pi . (29)

If the condition (29) is not satisfied for any of the Gaussian quadrature point then the order of the accuracy for the cell 
is reduced by one order until the condition is satisfied. The solution is advanced in time by the explicit Strong Stability 
Preserving (SSP) Runge–Kutta 4th-order method of Spiteri and Ruuth [69] which is stable for C F L ≈ 1.50, with a constant 
wave speed estimate during the 5 stages, and a C F L of 1.3 is used for all the test-cases in the present study, unless other-
wise stated. For all the test problems involved the initial condition is approximated with a 7th-order Gaussian quadrature 
rule, to ensure that the initial condition is of high-accuracy, and during the simulation the volume/surface/line integrals are 
approximated by Gaussian quadrature rule suitable for the order of polynomial employed.

3. Numerical results

3.1. 2D vortex evolution

The 2D vortex evolution test problem presented by Balsara and Shu [70] is used where an isentropic vortex propagates 
at supersonic Mach number at 45◦ across the domain. The computational domain is given by [0, 10] × [0, 10] with peri-
odic boundary conditions applied on all sides. The unperturbed domain has an initial condition (ρ, u, v, p) = (1,1,1,1), 
where temperature and density are defined as T = p/ρ , and S = p/rγ the adiabatic gas constant γ = 1.4 and the vortex 
perturbations are given by:

δT = − (γ − 1) ε2

8γπ2
e
(
1−r2

)
, (δu, δv) = ε

2π
e0.5

(
1−r2

)
(− (y − 5) , (x − 5)) . (30)

The vortex strength ε = 5 and adiabatic gas constant γ = 1.4. The eL2 and the eL∞ errors are computed as follows:

eL2 =

√√√√∑
i

∫
�i

(
Ue

(
x, t f

) − Uc
(
x, t f

))2
dV∑ |�i | , (31)
i
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Fig. 9. L∞ convergence curves obtained with various numerical schemes on quadrilateral and triangular meshes for the 2D vortex evolution problem at 
t = 10. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)

eL∞ = Max
∣∣(Ue

(
x, t f

) − Uc
(
x, t f

)∣∣ , (32)

where Uc
(
x, t f

)
and Ue

(
x, t f

)
are the computed and exact solutions at the end of the simulation t f . The exact solution 

Ue
(
x, t f

)
being given by the initial condition itself at t0. Two types of unstructured meshes a quadrilateral and triangular 

types are used for this test problem of 64, 128, 256 and 512 nodes per side resolution, and the simulation is run for a time 
of t f = 10. From the L2 and L∞ convergence curves at Fig. 8 and Fig. 9 it can be noticed that all the unlimited schemes 
achieve their designed order of accuracy for both mesh types. As expected the MOGE version of the limiter is the one that 
has the closest agreement with it’s equivalent unlimited scheme, since the reconstructed solution is within the bounded 
values of all the elements in the stencil, therefore the limiter is not activated at all. The vertex based MOGV limiter is not 
as accurate as the unlimited scheme, since the fact that there is a discrepancy between the number of elements used for 
bounding the reconstructed solution and the total number of elements, this results in the limiter being mistakenly activated 
especially. Lastly, the MOG limiter is the one that is the most sensitive in terms of being activated, due to the exaggerated 
difference between bounding elements and stencil elements, which is worse for triangular meshes. For comparing the 
accuracy and computational cost of all the schemes, the WENO method of Tsoutsanis et al. [4,5] has also been utilised for 
this test problem. From the results of Table 1 and Table 2, it can be seen that the WENO method of same order of accuracy 
is as accurate as the MOGE and the unlimited scheme for this test problem. However, the computational cost is increased 
by (60% to 300%) compared to the MOGE scheme due to the additional reconstruction stencils and the overheads associated 
with them. In general the fourth order schemes reduce the eL2 two to three orders of magnitude more than a second order 
scheme for the same computational cost. It has to be noted that all the CPU measurements have been taken at the Hazelhen 
High Performance Computing Cluster consisting of Intel Haswell E5-2680 v3 CPUs with 24 cores per node, and all the CPU 
times are expressed in units of (cores × time(sec)).

3.2. Shu–Osher problem

A widely used benchmark for high-order schemes is the Shu–Osher [71] problem where the interaction between a 
shock wave and an entropy wave takes place. The computational domain is [−5, 5] × [−0.1, 0.1], with periodic boundary 
conditions in y-axis, a supersonic inflow and outflow on the left and right side of the domain respectively. The initial profile 
consists of a shock wave (ρ, u, v, p) = (3.857143,2.629369,0,10.333333) on the left when x < −4 and an entropy wave in 
the rest of the domain (ρ, u, v, p) = (1 + 0.2sin(5x),0,0,1).

Two unstructured meshes of triangular elements with 128 and 256 nodes for the top and bottom sides with approxi-
mately 16,000 and 52,000 elements. The reference solution is computed with an one-dimensional Euler equations on 10,000 
grid points using a WENO-5th order scheme. The calculation is run until t = 1.8. From the density distribution and limiting 
function φ plots for th 4th-order limiter of the fine mesh at Fig. 10 it can be seen that the MOG limiter is being activated 
in more regions that the MOGV and MOGE limiters where they are activated in the expected regions of sharp-gradients.
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racy with the unlimited, MOG, MOGV, MOGE and WENO 

mited O = 4

OL2 eL∞ OL∞ CPU

3E−04 – 2.618E−03 – 21.77
2E−06 4.22 1.661E−04 3.97 159.60
9E−07 4.13 8.862E−06 4.22 1167.72
1E−08 4.00 5.540E−07 3.99 8285.36

MOG O = 4

OL2 eL∞ OL∞ CPU

−04 – 2.779E−03 – 23.42
−04 −1.57 1.984E−02 −2.83 178.16
−04 0.62 1.154E−02 0.36 1281.26
−04 1.41 2.173E−03 2.82 8506.07

MOGV O = 4

OL2 eL∞ OL∞ CPU

3E−04 – 2.007E−02 – 24.62
6E−05 3.88 9.210E−04 4.44 191.64
2E−06 4.06 5.394E−05 4.09 1342.54
8E−07 3.18 3.174E−06 4.08 8615.29

MOGE O = 4

OL2 eL∞ OL∞ CPU

3E−04 – 2.618E−03 – 25.09
2E−06 4.22 1.661E−04 3.97 193.24
9E−07 4.13 8.862E−06 4.22 1352.16
1E−08 4.00 5.540E−07 3.99 8702.93

WENO O = 4

OL2 eL∞ OL∞ CPU

E−04 – 2.624E−03 – 62.61
E−06 4.22 1.665E−04 3.97 380.18
E−07 4.13 8.880E−06 4.22 2271.21
E−08 4.00 5.551E−07 3.99 13234.48
Table 1
L2 and L∞ errors and convergence rates, and CPU time (cores × time(sec)) for the 2D vortex evolution problem obtained with various orders of acc
scheme at the final time of t = 10 on quadrilateral meshes.

Mesh 
points

Unlimited O = 2 Unlimited O = 3 Un

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 1.752E−03 – 4.048E−02 – 7.51 1.625E−03 – 2.864E−02 – 12.64 1.3
1282 4.231E−04 2.05 9.738E−03 2.05 44.89 2.685E−04 2.59 4.551E−03 2.65 97.42 7.2
2562 1.018E−04 2.05 2.173E−03 2.16 281.36 3.546E−05 2.92 6.052E−04 2.91 723.41 4.1
5122 2.545E−05 2.00 5.425E−04 2.00 1230.62 4.433E−06 2.99 7.565E−05 3.00 4579.23 2.5

Mesh 
points

MOG O = 2 MOG O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 3.196E−03 – 6.733E−02 – 7.72 1.625E−03 – 2.864E−02 – 13.05 1.399
1282 8.814E−04 1.85 1.737E−02 1.95 49.23 3.231E−04 2.33 5.999E−03 2.25 102.67 4.168
2562 2.223E−04 1.98 4.129E−03 2.07 292.42 9.013E−05 1.84 3.945E−03 0.60 740.22 2.705
5122 9.018E−05 1.30 3.173E−03 0.37 1310.62 4.018E−05 1.16 1.173E−03 1.75 4730.11 1.018

Mesh 
points

MOGV O = 2 MOGV O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 4.239E−03 – 9.489E−02 – 7.86 3.245E−03 – 5.866E−02 – 13.23 6.8
1282 1.256E−03 1.75 2.624E−02 1.85 50.39 6.078E−04 2.41 1.066E−02 2.46 106.48 4.6
2562 3.118E−04 2.01 6.225E−03 2.07 302.77 8.522E−05 2.83 1.489E−03 2.84 752.47 2.7
5122 7.018E−05 2.15 1.738E−03 1.84 1321.39 2.018E−05 2.07 2.174E−04 2.77 4810.88 3.0

Mesh 
points

MOGE O = 2 MOGE O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 1.752E−03 – 4.048E−02 – 7.91 1.625E−03 – 2.864E−02 – 13.48 1.3
1282 4.231E−04 2.05 9.738E−03 2.05 51.26 2.685E−04 2.59 4.551E−03 2.65 98.72 7.2
2562 1.018E−04 2.05 2.173E−03 2.16 304.01 3.546E−05 2.92 6.052E−04 2.91 758.61 4.1
5122 2.545E−05 2.00 5.425E−04 2.00 1334.59 4.433E−06 2.99 7.565E−05 3.00 4852.66 2.5

Mesh 
points

WENO O = 2 WENO O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 1.755E−03 – 4.057E−02 – 20.16 1.627E−03 – 2.870E−02 – 38.64 1.35
1282 4.236E−04 2.05 9.758E−03 2.05 132.24 2.688E−04 2.59 4.560E−03 2.65 217.96 7.25
2562 1.019E−04 2.05 2.178E−03 2.16 731.18 3.550E−05 2.92 6.065E−04 2.91 1253.78 4.11
5122 2.548E−05 2.00 5.436E−04 2.00 3521.75 4.438E−06 2.99 7.581E−05 3.00 6980.23 2.57
u
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Unlimited O = 4

OL2 eL∞ OL∞ CPU

E−05 – 1.384E−03 – 33.81
E−06 4.10 8.509E−05 4.02 243.43
E−07 4.03 5.134E−06 4.05 1742.97
E−08 4.00 3.210E−07 4.00 12392.53

MOG O = 4

OL2 eL∞ OL∞ CPU

E−03 – 1.881E−01 – 35.12
8E−03 1.09 1.047E−01 0.84 247.91
E−03 0.78 5.334E−02 0.97 1803.72

8E−04 1.24 8.666E−03 2.62 12584.06

MOGV O = 4

OL2 eL∞ OL∞ CPU

E−04 – 3.730E−03 – 35.92
E−06 3.66 2.032E−04 4.20 258.67
E−07 4.45 6.903E−06 4.88 1834.68
E−09 3.08 8.659E−07 3.00 12757.92

MOGE O = 4

OL2 eL∞ OL∞ CPU

E−05 – 1.670E−03 – 36.28
E−06 4.32 9.630E−05 4.12 264.72
E−07 3.98 5.907E−06 4.03 1871.55
E−08 4.03 3.800E−07 3.96 12905.83

WENO O = 4

OL2 eL∞ OL∞ CPU

E−05 – 1.387E−03 – 96.22
8E−06 4.10 8.527E−05 4.02 632.918
9E−07 4.03 5.145E−06 4.05 3834.53
E−08 4.00 3.217E−07 4.00 19990.77
Table 2
L2 and L∞ errors and convergence rates, and CPU time (cores × time(sec)) for the 2D vortex evolution problem obtained with various orders of accu
scheme at the final time of t = 10 on triangular meshes.

Mesh 
points

Unlimited O = 2 Unlimited O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 7.631E−04 – 1.753E−02 – 9.12 6.298E−04 – 9.697E−03 – 17.54 7.858
1282 1.764E−04 2.11 3.867E−03 2.18 61.14 9.229E−05 2.77 1.372E−03 2.82 130.88 4.568
2562 4.278E−05 2.04 8.666E−04 2.16 380.02 1.186E−05 2.96 1.771E−04 2.95 824.54 2.803
5122 1.070E−05 2.00 2.170E−04 2.00 1930.99 1.480E−06 3.00 2.210E−05 3.00 5112.23 1.750

Mesh 
points

MOG O = 2 MOG O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 8.557E−04 – 1.945E−02 – 9.36 3.415E−03 – 8.936E−02 – 17.93 7.175
1282 1.996E−04 2.10 4.405E−02 2.14 62.49 1.997E−03 0.77 5.703E−02 0.64 133.29 3.36
2562 4.850E−04 2.04 1.015E−03 397.42 292.42 8.464E−04 1.24 4.061E−02 0.49 839.38 1.962
5122 1.278E−05 1.92 2.959E−04 1.78 1976.14 3.278E−04 1.37 7.666E−03 2.41 5163.71 8.27

Mesh 
points

MOGV O = 2 MOGV O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 1.188E−03 – 2.888E−02 – 9.68 1.249E−03 – 1.997E−02 – 18.36 1.001
1282 2.825E−04 2.07 6.585E−02 2.13 64.66 2.055E−04 2.60 3.094E−03 2.69 140.91 7.893
2562 6.830E−05 2.05 1.466E−03 2.17 401.36 2.711E−05 2.92 4.179E−04 2.89 851.23 3.608
5122 2.478E−05 1.46 3.666E−03 2.00 1996.80 5.278E−06 2.36 5.666E−05 2.88 5196.84 4.278

Mesh 
points

MOGE O = 2 MOGE O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 7.631E−04 – 1.753E−02 – 9.91 6.322E−04 – 9.723E−03 – 18.88 8.568
1282 1.764E−04 2.11 3.867E−03 2.18 65.29 9.229E−05 2.78 1.372E−03 2.82 143.15 4.623
2562 4.278E−05 2.04 8.666E−04 2.16 421.37 1.186E−05 2.96 1.771E−04 2.95 856.17 2.921
5122 1.070E−05 2.00 2.170E−04 2.00 2014.28 1.480E−06 3.00 2.210E−05 3.00 5211.46 1.790

Mesh 
points

WENO O = 2 WENO O = 3

eL2 OL2 eL∞ OL∞ CPU eL2 OL2 eL∞ OL∞ CPU eL2

642 7.647E−04 – 1.757E−02 – 32.66 6.311E−04 – 9.718E−03 – 56.32 7.874
1282 1.768E−04 2.11 3.875E−03 2.18 199.29 9.248E−05 2.77 1.375E−03 2.82 340.45 4.57
2562 4.287E−05 2.04 8.684E−04 2.16 1135.58 1.188E−05 2.96 1.774E−04 2.95 1956.25 2.80
5122 1.072E−05 2.00 2.175E−04 2.00 6132.17 1.483E−06 3.00 2.215E−05 3.00 10588.23 1.754
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Fig. 10. Density distribution with various 4th-order limiters using the N = 256 mesh for the Shu–Osher [71] test problem at t = 1.8, coloured by the 
limiting function φ where it can be seen that the MOGV and MOGE schemes do not activate the limiter as often as the MOG scheme. (For interpretation of 
the colours in this figure, the reader is referred to the web version of this article.)

Fig. 11. Density distribution with various 3rd-order limiters using two mesh resolutions for the Shu–Osher [71] shock tube test problem at t = 1.8, where 
the MOGE scheme is in closer agreement with the reference solution. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Looking closer at the interaction of the entropy wave with the shock wave region as shown at Fig. 11 and Fig. 12 for 
all the schemes and limiters, it can be noticed that the MOGE and MOGV are consistently more accurate with a sharper 
profile obtained than the MOG limiter. In conclusion, the MOGE limiter is consistently in closer agreement with the reference 
solution compared with the MOGV limiter, highlighting that the extended bounds of this limiter do not cause the simulation 
to diverge or obtain unphysical results.

3.3. Double Mach reflection

The double Mach reflection test problem introduced by Woodward and Colella [72] is employed here since it contains 
various waves and therefore is a well suited problem for assessing the performance of the subject limiters. The initial 
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Fig. 12. Density distribution with various 4th-order limiters using two mesh resolutions for the Shu–Osher [71] shock tube test problem at t = 1.8, where 
there is not any improvement for the MOG scheme as opposed to the MOGE and MOGV schemes which are in closer agreement with the reference solution. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Distribution of density and density limiting function φ with 3rd-order limiters for the double Mach reflection problem, at t = 4. It can be noticed 
that the limiting function is activated in the correct places for the MOGE, and MOGV schemes, whereas for the MOG scheme it is activated in a large 
portion of the computational domain. The MOGE and MOGV schemes resolve more flow features than the MOG scheme, and the MOGV scheme produces a 
more curved Mach stem as seen in the density distribution plots. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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Fig. 14. Distribution of density and density limiting function φ with 4th-order limiters for the double Mach reflection problem, at t = 4. It can be noticed 
that the limiting function is activated more frequently for the MOG scheme as opposed to the MOGE and MOGV schemes. The MOGE and MOGV schemes 
are resolving shear waves and vortex rollup as opposed to the MOG scheme which does not. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

conditions involve a moving shock wave with Mach number M = 10 at an inclination of α = 60◦ . The conditions ahead of 
the shock is at rest with uniform density and pressure ρ = 1.4 and p = 1.0. Reflecting boundary conditions are used for the
bottom of the domain beginning at x = 1/6 and post shock conditions before, supersonic inflow boundary conditions on the 
left side and supersonic outflow boundary conditions on the right side. At the top boundary the exact solution of an isolated 
moving oblique shock wave with M = 10 is prescribed. For additional details the regarding the setup of the problem the 
reader is referred to Woodward and Colella [72]. The computational domain is given by [0, 4] × [0, 1] and is discretised by 
an unstructured mesh of approximately 400,000 triangular cells, that correspond to an equivalent resolution of h = 1/200. 
The 3rd-order and 4th-order numerical schemes are employed with the three limiters. The calculations are performed until 
time t = 0.2, as seen in Fig. 13 and Fig. 14 for the 3rd and 4th order schemes respectively.

All the schemes capture the correct flow pattern with the reflected shock, the two Mach stems and two contact discon-
tinuities. In these figures, the distribution limiting function φ for density is also illustrated to highlight which cells required 
the activation of the limiter. This is quite important for illustrating that the MOG limiter is the one that gets activated at 
more cells than the other two versions for both the 3rd and the 4th-order schemes. For the 4th-order scheme the activation 
of the MOGV and MOGE limiters is more pronounced than in the 3rd-order scheme, which is expected since either sharp 
gradient, or pressure waves created by the rolling of the shear waves, or the grid-topology itself can cause the limiter to 
be activated since the reconstructed solution violates the bounds. In Fig. 15 the density distribution at the vortex interac-
tion zone is zoomed in for appreciating the differences between the schemes. It is quite clear that the 4th-order schemes 
resolve more vortices than the 3rd-order schemes, as expected but this is true only for the MOGV and MOGE limiters, since 
the MOG limiter fails to capture any vortex rollup due to the excessive activation of the limiter itself. Nevertheless, the 
differences between the MOGE and MOGV limiters for this test-problem are minimal for the 4th-order of accuracy, but sig-
nificant for the 3rd-order since the MOGE scheme resolves more shear waves compared to the MOGV scheme. Additionally 
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Fig. 15. Density distribution with various limiters for the double Mach reflection problem at t = 4. Zoomed on the wave interaction zone where it can be 
noticed that the differences between the MOGE and MOGV schemes are significant for the 3rd-order with the MOGE scheme resolving more flow features 
and the MOGV scheme producing a curved Mach stem. For the 4th-order the MOGE scheme produces marginally more pronounced shear waves compared 
to the MOGV scheme, and the MOG scheme fails to resolve the flow features that the other two schemes resolve. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

for the MOGV3 scheme a more curved Mach stem is noticed, resembling a Triple-Mach White-Reflection TM-WR as docu-
mented by other computational and experimental studies [73,74]. It can be attributed to the current setup of the problem 
where a rectangular computational domain is used and the shock wave is inclined with respect to the grid, and due to 
the nature of the unstructured mesh employed perturbations in the initial profile of the shock wave can result in this flow 
feature.

3.4. Mach 3 forward facing step

The Mach 3 forward facing step test problem introduced by Woodward and Colella [72] is employed here since it involves 
a flow with complex structures of interacting shocks. The size of the domain is 3 units length with the step placed at 
0.6 length units from the left side of the domain, and is having a height of 0.2 units. An ideal gas is considered with 
constant density ρ = 1.4, velocity (u, v) = (3, 0) and pressure p = 1.0. A supersonic inflow condition is applied on the 
left, a supersonic outflow condition on the right and reflective boundary conditions on the upper and lower sides. The 
computational domain is discretised by an unstructured mesh of approximately 180, 000 triangular cells, that correspond to 
an equivalent resolution of h = 1/200. For avoiding the singularity point at the corner of the step the corner was rounded 
off as suggested in [75] with a curvature of radius 0.003. The 3rd-order and 4th-order numerical schemes are employed 
with the three limiters. The calculations are performed until time t = 4.0, as seen in Fig. 16 and Fig. 17 for the 3rd and 4th 
order schemes respectively.

All the schemes capture the correct flow pattern with the contact discontinuity resulting from the three-shock inter-
action. It can be noticed that the limiting action for the MOGE and MOGV limiters occurs only in the places where it is 
needed which is across the waves with sharp gradients. For the MOG limiter as in the previous test problem the sensitiv-
ity of the limiter activates it for an overwhelming number of cells in the domain. The resulting difference in the results 
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Fig. 16. Distribution of density and density limiting function φ with 3rd-order limiters for the Mach 3 forward facing step problem, at t = 4. It can be 
noticed that the limiting function is activated more frequently for the largest portion of the domain for the MOG scheme as opposed to the MOGE and 
MOGV schemes. The MOGE resolves more instabilities than the MOGV scheme across the contact discontinuity. (For interpretation of the colours in this 
figure, the reader is referred to the web version of this article.)

is more pronounced in Fig. 18 where the region at which the Kelvin–Helmholtz instabilities develop along the contact 
discontinuity is zoomed in. It is obvious that the MOGE limiter has the best resolution in terms of the Kelvin–Helmholtz 
instabilities compared to the MOGV limiter for both the 3rd- and 4th-order schemes. However it only the MOGE and MOGV 
limiters that can capture the Kelvin–Helmholtz instabilities highlighting the more restrictive performance of the MOG lim-
iter.

3.5. 2D Riemann problem

The performance of the limiters is assessed in the widely used 2D Riemann problem for Euler equations introduced 
by Schulz et al. [76]. The computational domain is [−0.5, 0.5] × [−0.5, 0.5] and the initial condition is represented 
by the four different states assigned to each of the quadrants of the domain as shown in Fig. 19, with the adiabatic 
gas constant γ = 1.4. The computational domain has been discretised by a hybrid unstructured mesh of approximately 
831, 000 elements consisting of quadrilateral and triangular elements. The lower left quadrant has been refined and has 
the equivalent resolution of approximately h = 1/1818. The simulation has been performed until t = 0.5. It was consid-
ered essential to compare the limiters employed to a WENO scheme of the same order of accuracy that has a com-
putational cost of approximately 1.7 more than the MOGE and MOGV schemes in their current implementation in the 
employed CFD code UCNS3D [4,5,8,57–60]. For further details regarding the WENO scheme employed the reader is referred 
to [4,5].

From the obtained results in Fig. 20 it can be noticed that due to the high-order of accuracy of the schemes and the 
fine grid resolution, several small-scale flow features appear in the solution. The roll-up of the Kelvin–Helmholtz instabil-
ity is very sharply captured by the all the schemes, the main difference lies in the number of roll-ups and small-scale 
features that each scheme resolves. WENO scheme provides the largest number of small-scale structures as it was ex-
pected, however it is approximately 185% more expensive than the MOGE scheme for the present test problem. MOGE 
has more pronounced Kelvin–Helmholtz instabilities at the Mach stem and the roll-up is more prominent as opposed 
to MOGV and MOG limiters. Equally, to the previous tests the MOG limiter exhibits the largest numerical dissipation 
due to activation of the limiting process, hence the number of flow-structures is reduced compared to the other lim-
iters.
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Fig. 17. Distribution of density and density limiting function φ with 4th-order limiters for the Mach 3 forward facing step problem, at t = 4. It can be 
noticed that the limiting function is activated at the expected places only for the MOGE and MOGV schemes. The MOGE and MOGV schemes resolve more 
flow features and the differences between them are minimal. (For interpretation of the colours in this figure, the reader is referred to the web version of 
this article.)

3.6. Shock-wave in cylindrical cavity

The final test problem involves the interaction of a shock wave with a cylindrical cavity, a test-problem defined experi-
mentally by Skews and Kleine [77] and investigated computationally by Diot et al. [2]. A cylindrical cavity is considered 
as seen in Fig. 21, with a shock wave of Mach number M = 1.33. The initial profile consists of a post-shock region 
(ρ, u, v, p) = (1.7522,166.3435,0,180219.75) on the left side of the domain, and the pre-shock region on the right 
(ρ, u, v, p) = (1.1175,0,0,95000). It was chosen to refine the pre-shock region as shown in Fig. 21, since this is the region 
of interest for the current test problem. A supersonic inflow is applied on the left side with the post-shock conditions, a su-
personic outflow on the right-side outlet, and reflective boundary conditions in the rest of the domain. Similarly, to Diot et 
al. [2] the simulation is performed only for the lower-half of the domain using the symmetry assumption. The mesh consists 
of approximately 300,000 cells including triangles and quadrilateral elements. The simulation is run until t ≈ 0.00062 using 
the 4th-order limiters, and for illustration purposes and comparison with the experimental results the images are rendered 
as the full domain.

From the obtained results as seen in Fig. 22 it can be noticed that the obtained results with all the schemes are in 
agreement with the experimental results of Skews and Kleine [77] at the equivalent times of Fig. 7(a), Fig. 8(d) and Fig. 9(c) 
of [77]. It is evident that the results obtained with the MOGE limiter the obtained flow features are crispier compared to the 
other two. From the zoomed in solutions at late times as shown in Fig. 23 and Fig. 24, the difference between the limiters 
is more pronounced where the MOGE limiter results in an increased number of vortices and instabilities compared to the 
other two, which is in closer agreement with the experimental results.

4. Conclusions

This paper follows in the footsteps of the high-order limiter introduced by Michalak and Ollivier-Gooch [56], and a 
number of modifications are presented. The key characteristics of the modified limiters are the stencil elements that are used 
to establish the bounds of the reconstructed solution. Using the direct side neighbours for establishing the bounds results 
in sub-optimal order of accuracy, since the limiter can be mistakenly activated due to the grid-topology and grid-quality. 
In contrast, the modified versions of the limiters use either all the neighbours of the vertices or all the elements of the 
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Fig. 18. Density distribution with various limiters for the Mach 3 forward facing step problem, at t = 4. Zoomed on the instabilities. The MOGE scheme is 
the only one that can capture the formation of some Kelvin–Helmholtz instabilities along the contact discontinuity even with the 3rd-order of accuracy, 
whereas the MOG scheme fails to capture any of them. (For interpretation of the colours in this figure, the reader is referred to the web version of this 
article.)

Fig. 19. Initial conditions and mesh for the multidimensional Riemann problem.
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Fig. 20. Density distribution with various 4th-order numerical schemes for the multidimensional Riemann problem at t f inal = 1.0. Only the lower left 
portion of the computational domain is shown. It can be noticed that the MOGE scheme is in closer agreement with the WENO scheme with a more 
prominent roll-up and largest number of small-scale structures in the shear layer compared to the MOG and MOGV schemes. (For interpretation of the 
colours in this figure, the reader is referred to the web version of this article.)

stencil for the MOGV and MOGE limiters respectively. By applying these limiters to several stringent applications for Euler 
equations, the benefits of the modified limiters are presented, showing that they work well for smooth and discontinuous 
flow problems. Finally, the best performance is achieved with the MOGE limiter, which has the bounds defined by all 
the elements in the stencil, resulting in a limiter with wider range of bounds and therefore better accuracy. Considering 
that the computational cost of the MOGE limiter is significant lower than a WENO type scheme, it could be used as a 
cost-effective option for a variety of flow problems. Future work involves expanding the scheme to 3D applications, where 
the computational savings with respect to WENO schemes are considered to be more significant than in 2D.
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Fig. 21. Overview of the hybrid unstructured mesh used for the cylindrical cavity test problem.

Fig. 22. Distribution of the density gradient magnitude with 4th-order limiters for the shock on cylindrical cavity test problem at different times. The MOGE 
scheme provides the sharpest resolution of all the flow features, compared to the other two schemes.
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