6 research outputs found

    Modeling and Tuning of Energy Harvesting Device Using Piezoelectric Cantilever Array

    Get PDF
    Piezoelectric devices have been increasingly investigated as a means of converting ambient vibrations into electrical energy that can be stored and used to power other devices, such as the sensors/actuators, micro-electro-mechanical systems (MEMS) devices, and microprocessor units etc. The objective of this work was to design, fabricate, and test a piezoelectric device to harvest as much power as possible from vibration sources and effectively store the power in a battery.;The main factors determining the amount of collectable power of a single piezoelectric cantilever are its resonant frequency, operation mode and resistive load in the charging circuit. A proof mass was used to adjust the resonant frequency and operation mode of a piezoelectric cantilever by moving the mass along the cantilever. Due to the tiny amount of collected power, a capacitor was suggested in the charging circuit as an intermediate station. To harvest sufficient energy, a piezoelectric cantilever array, which integrates multiple cantilevers in parallel connection, was investigated.;In the past, most prior research has focused on the theoretical analysis of power generation instead of storing generated power in a physical device. In this research, a commercial solid-state battery was used to store the power collected by the proposed piezoelectric cantilever array. The time required to charge the battery up to 80% capacity using a constant power supply was 970 s. It took about 2400 s for the piezoelectric array to complete the same task. Other than harvesting energy from sinusoidal waveforms, a vibration source that emulates a real environment was also studied. In this research the response of a bridge-vehicle system was used as the vibration sources such a scenario is much closer to a real environment compared with typical lab setups

    Graph Coloring Problems and Group Connectivity

    Get PDF
    1. Group connectivity. Let A be an abelian group and let iA(G) be the smallest positive integer m such that Lm(G) is A-connected. A path P of G is a normal divalent path if all internal vertices of P are of degree 2 in G and if |E(P)|= 2, then P is not in a 3-cycle of G. Let l(G) = max{lcub}m : G has a normal divalent path of length m{rcub}. We obtain the following result. (i) If |A| ≥ 4, then iA( G) ≤ l(G). (ii) If | A| ≥ 4, then iA(G) ≤ |V(G)| -- Delta(G). (iii) Suppose that |A| ≥ 4 and d = diam( G). If d ≤ |A| -- 1, then iA(G) ≤ d; and if d ≥ |A|, then iA(G) ≤ 2d -- |A| + 1. (iv) iZ 3 (G) ≤ l(G) + 2. All those bounds are best possible.;2. Modulo orientation. A mod (2p + 1)-orientation D is an orientation of G such that d +D(v) = d--D(v) (mod 2p + 1) for any vertex v ∈ V ( G). We prove that for any integer t ≥ 2, there exists a finite family F = F(p, t) of graphs that do not have a mod (2p + 1)-orientation, such that every graph G with independence number at most t either admits a mod (2p+1)-orientation or is contractible to a member in F. In particular, the graph family F(p, 2) is determined, and our results imply that every 8-edge-connected graph G with independence number at most two admits a mod 5-orientation.;3. Neighbor sum distinguishing total coloring. A proper total k-coloring &phis; of a graph G is a mapping from V(G) ∪ E(G) to {lcub}1,2, . . .,k{rcub} such that no adjacent or incident elements in V(G) ∪ E( G) receive the same color. Let m&phis;( v) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if m &phis;(u) ≠ m&phis;( v) for each edge uv ∈ E( G ). Let chitSigma(G) be the neighbor sum distinguishing total chromatic number of a graph G. Pilsniak and Wozniak conjectured that for any graph G, chitSigma( G) ≤ Delta(G) + 3. We show that if G is a graph with treewidth ℓ ≥ 3 and Delta(G) ≥ 2ℓ + 3, then chitSigma( G) + ℓ -- 1. This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when ℓ = 3 and Delta ≥ 9, we show that Delta(G)+1 ≤ chit Sigma(G) ≤ Delta(G)+2 and characterize graphs with equalities.;4. Star edge coloring. A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Let ch\u27st(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound of the star chromatic index of trees also holds for list star chromatic index of trees, i.e. ch\u27st( T) ≤ [3Delta/2] for any tree T with maximum degree Delta. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs

    Subject Index Volumes 1–200

    Get PDF

    Unification of the Fundamental Forces in Higher-Order Differential Geometry

    Full text link
    Riemannian geometry is generalized to allow infinitesimals to any order. In the differential calculus, it is shown how to extend the affine connection to enable parallel transport in the direction of a higher tangent vector, while on the integral side, a theory of integration adapted to integrands possibly of higher than first order in the differentials is developed. The curvature tensor generalizes naturally in order to describe how space can curve along higher tangents. These elegant ideas stand on their own as a discovery in pure mathematics, independent of whatever fate they may encounter when applied to physics, where one expects novel phenomena rooted in interactions among infinitesimals differing in order (never before studied). Free fall must now be described by geodesics in a higher sense and Einstein's field equations acquire a hierarchy of higher sectors. As soon as one goes to second order, a profound revision of the concept of inertia is called for which manifests itself on the phenomenological level as a modified Newtonian dynamics obeyed by spacecraft in the solar system (thereby explaining the flyby anomaly). A second major implication is to open a path to field-theoretical unification on the classical level in the spirit of Einstein. The present theory leads immediately to another fundamental force arising at each successive order in the jets. The 1-jet case reduces to gravity as known in the conventional general theory of relativity, of course. It is striking that, at the 2-jet level, one recovers the electroweak forces including spontaneous symmetry breaking from a single postulate, the proper generalization of the equivalence principle. At the 3-jet level, following the same procedure we obtain chromodynamics without any ad hoc modifications. In future work, we hope to analyze the 4-jet level and its implications for the anomalous magnetic moment of the muon.Comment: 222 pages, 1 figur

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Foundations of Mechanics, Second Edition

    Get PDF
    Preface to the Second Edition. Since the first edition of this book appeared in 1967, there has been a great deal of activity in the field of symplectic geometry and Hamiltonian systems. In addition to the recent textbooks of Arnold, Arnold-Avez, Godbillon, Guillemin-Sternberg, Siegel-Moser, and Souriau, there have been many research articles published. Two good collections are "Symposia Mathematica," vol. XIV, and "Géométrie Symplectique el Physique Mathématique," CNRS, Colloque Internationaux, no. 237. There are also important survey articles, such as Weinstein [1977b]. The text and bibliography contain many of the important new references we are aware of. We have continued to find the classic works, especially Whittaker [1959], invaluable. The basic audience for the book remains the same: mathematicians, physicists, and engineers interested in geometrical methods in mechanics, assuming a background in calculus, linear algebra, some classical analysis, and point set topology. We include most of the basic results in manifold theory, as well as some key facts from point set topology and Lie group theory. Other things used without proof are clearly noted. We have updated the material on symmetry groups and qualitative theory, added new sections on the rigid body, topology and mechanics, and quantization, and other topics, and have made numerous corrections and additions. In fact, some of the results in this edition are new. We have made two major changes in notation: we now use f^* for pull-back (the first edition used f[sub]*), in accordance with standard usage, and have adopted the "Bourbaki" convention for wedge product. The latter eliminates many annoying factors of 2. A. N. Kolmogorov's address at the 1954 International Congress of Mathematicians marked an important historical point in the development of the theory, and is reproduced as an appendix. The work of Kolmogorov, Arnold, and Moser and its application to Laplace's question of stability of the solar system remains one of the goals of the exposition. For complete details of all tbe theorems needed in this direction, outside references will have to be consulted, such as Siegel-Moser [1971] and Moser [1973a]. We are pleased to acknowledge valuable assistance from Paul Chernoff, Wlodek Tulczyjew, Morris Hirsh, Alan Weinstein, and our invaluable assistant authors, Richard Cushman and Tudor Ratiu, who all contributed some of their original material for incorporation into the text. Also, we are grateful to Ethan Akin, Kentaro Mikami, Judy Arms, Harold Naparst, Michael Buchner, Ed Nelson, Robert Cahn, Sheldon Newhouse, Emil Chorosoff, George Oster, André Deprit, Jean-Paul Penot, Bob Devaney, Joel Robbin, Hans Duistermaat, Clark Robinson, John Guckenheimer, David Rod, Martin Gutzwiller, William Satzer, Richard Hansen, Dieter Schmidt, Morris Kirsch, Mike Shub, Michael Hoffman, Steve Smale, Andrei Iacob, Rich Spencer, Robert Jantzen, Mike Spivak, Therese Langer, Dan Sunday, Ken Meyer, Floris Takens, [and] Randy Wohl for contributions, remarks, and corrections which we have included in this edition. Further, we express our gratitude to Chris Shaw, who made exceptional efforts to transfom our sketches into the graphics which illustrate the text, to Peter Coha for his assistance in organizing the Museum and Bibliography, and to Ruthie Cephas, Jody Hilbun, Marnie McElhiney, Ruth (Bionic Fingers) Suzuki, and Ikuko Workman for their superb typing job. Theoretical mechanics is an ever-expanding subject. We will appreciate comments from readers regarding new results and shortcomings in this edition. RALPH ABRAHAM, JERROLD E. MARSDEN</p
    corecore