16 research outputs found

    Expressiveness and complexity of graph logic

    Get PDF
    We investigate the complexity and expressive power of the spatial logic for querying graphs introduced by Cardelli, Gardner and Ghelli (ICALP 2002).We show that the model-checking complexity of versions of this logic with and without recursion is PSPACE-complete. In terms of expressive power, the version without recursion is a fragment of the monadic second-order logic of graphs and we show that it can express complete problems at every level of the polynomial hierarchy. We also show that it can define all regular languages, when interpretation is restricted to strings. The expressive power of the logic with recursion is much greater as it can express properties that are PSPACE-complete and therefore unlikely to be definable in second-order logic

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    On Temporal and Separation Logics

    Get PDF
    International audienceThere exist many success stories about the introduction of logics designed for the formal verification of computer systems. Obviously, the introduction of temporal logics to computer science has been a major step in the development of model-checking techniques. More recently, separation logics extend Hoare logic for reasoning about programs with dynamic data structures, leading to many contributions on theory, tools and applications. In this talk, we illustrate how several features of separation logics, for instance the key concept of separation, are related to similar notions in temporal logics. We provide formal correspondences (when possible) and present an overview of related works from the literature. This is also the opportunity to present bridges between well-known temporal logics and more recent separation logics

    Axiomatising logics with separating conjunctions and modalities

    Get PDF
    International audienceModal separation logics are formalisms that combine modal operators to reason locally, with separating connectives that allow to perform global updates on the models. In this work, we design Hilbert-style proof systems for the modal separation logics MSL(⇤, h6 =i) and MSL(⇤, 3), where ⇤ is the separating conjunction, 3 is the standard modal operator and h6 =i is the di↵erence modality. The calculi only use the logical languages at hand (no external features such as labels) and take advantage of new normal forms and of their axiomatisation

    A logic for application level QoS

    Get PDF
    Service Oriented Computing (SOC) has been proposed as a paradigm to describe computations of applications on wide area distributed systems. Awareness of Quality of Service (QoS) is emerging as a new exigency in both design and implementation of SOC applications. We do not refer to QoS aspects related to low-level performance and focus on those high-level non-functional features perceived by end-users as application dependent requirements, e.g., the price of a given service, or the payment mode, or else the availability of a resource (e.g., a file in a given format). In this paper we present a logic which includes mechanisms to consider the three main dimensions of systems, namely their structure, behaviour and QoS aspects. The evaluation of a formula is a value of a constraint-semiring and not just a boolean value expressing whether or not the formula holds. This permits to express not only topological and temporal properties but also QoS properties of systems. The logic is interpreted on SHReQ, a formal framework for specifying systems that handles abstract high-level QoS aspects combining Synchronised Hyperedge Replacement with constraint-semirings

    Expressive Completeness of Separation Logic With Two Variables and No Separating Conjunction ∗

    Get PDF
    We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak secondorder logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction

    On the Complexity of Modal Separation Logics

    Get PDF
    International audienceWe introduce a modal separation logic MSL whose models are memory states from separation logic and the logical connectives include modal operators as well as separating conjunction and implication from separation logic. With such a combination of operators, some fragments of MSL can be seen as genuine modal logics whereas some others capture standard separation logics, leading to an original language to speak about memory states. We analyse the decidability status and the computational complexity of several fragments of MSL, leading to surprising results, obtained by designing proof methods that take into account the modal and separation features of MSL. For example, the satisfiability problem for the fragment of MSL with 3, the inequality modality = and separating conjunction * is shown Tower-complete whereas the restriction either to 3 and * or to = and * is only NP-complete

    A substructural logic for layered graphs

    Get PDF
    Complex systems, be they natural or synthetic, are ubiquitous. In particular, complex networks of devices and services underpin most of society's operations. By their very nature, such systems are difficult to conceptualize and reason about effectively. The concept of layering is widespread in complex systems, but has not been considered conceptually. Noting that graphs are a key formalism in the description of complex systems, we establish a notion of a layered graph. We provide a logical characterization of this notion of layering using a non-associative, non-commutative substructural, separating logic. We provide soundness and completeness results for a class of algebraic models that includes layered graphs, which give a mathematically substantial semantics to this very weak logic. We explain, via examples, applications in information processing and security
    corecore