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Abstract
We show that first-order separation logic with one record field re-
stricted to two variables and the separating implication (no sep-
arating conjunction) is as expressive as weak second-order logic,
substantially sharpening a previous result. Capturing weak second-
order logic with such a restricted form of separation logic requires
substantial updates to known proof techniques. We develop these,
and as a by-product identify the smallest fragment of separation
logic known to be undecidable: first-order separation logic with one
record field, two variables, and no separating conjunction.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords separation logic, expressive completeness

1. Introduction
Expressive completeness The literature is rich with results compar-
ing the expressive power of non-classical logics with first-order or
second-order logic. For instance, the celebrated Kamp’s Theorem
amounts to stating that linear-time temporal logic (LTL) is equal
in expressive power to first-order logic. More generally, we know
the expressive completeness of Stavi connectives for general lin-
ear time, see e.g. [16]. This has been refined to the restriction to
two variables, leading to the equivalence between unary LTL and
FO2, see e.g. [14, 30]. In addition, there is a wealth of results re-
lating first-order logic with two variables and non-classical logics,
providing a neat characterization of the expressive power of many
formalisms since first-order logic and second-order logic are queen
logics. For instance, Boolean modal logic with converse and iden-
tity is as expressive as FO2 [26]. In the realm of interval temporal
logics, we also know expressive completeness of metric proposi-
tional neighborhood logic with respect to the two-variable fragment
of first-order logic for linear orders with successor function, inter-
preted over natural numbers [5].
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In this paper, we compare separation logic restricted to two
variables with (weak) second-order logic over concrete heaps.

Expressive power of separation logic Separation logic is used as an
assertion language for Hoare-style proof systems about programs
with pointers [28], and there is an ongoing quest for understanding
its complexity and expressive power. Alternatively, there are a lot
of activities to develop verification methods with decision proce-
dures for fragments of practical use, see e.g. [10]. Many decision
procedures have been designed for fragments of separation logics
or abstract variants, from analytic methods [17, 20] to translation
to theories handled by SMT solvers [27], passing via graph-based
algorithms [19].

Theoretical issues for separation logic stem from the design of
expressive fragments with relatively low complexity (see e.g. [10])
to the extension of known decidability results, see e.g. [2, 4, 22]. In-
deed, it is known since [9] that first-order separation logic with two
record fields (called herein 2SL) is undecidable (with a proof that
does not require separating connectives and uses Trakhtenbrot’s
Theorem). This is sharpened in [7] by showing that first-order sep-
aration logic with a unique record field (called herein 1SL) is also
undecidable, as a consequence of the expressive equivalence be-
tween 1SL and weak second-order logic. More recently, 1SL re-
stricted to two variables (1SL2) is shown undecidable too [12] but
without touching the central question of expressive completeness—
the purpose of the current paper. From the very beginning, the re-
lationships between separation logic and second-order logic have
been quite puzzling (see e.g. an interesting answer with infinite ar-
bitrary structures in [23]). In this paper, we go one step further by
showing that two variables suffice to get expressive completeness.
As a consequence, 1SL2(−∗) (that is, 1SL2 without separating con-
junction) is undecidable too, which should not be confused with
undecidability results from [8, 24] obtained in an alternative set-
ting with propositional variables and no first-order quantification.
It is fair to recall that separating implication has been less well-
studied than separating conjunction in the literature, but its use for
program verification is far more recognized nowadays; see e.g. [25,
Section 1] for a recent, insightful analysis (see also [20, Section 8]).

Our contribution In this paper, we sharpen the main result in [7],
namely we show that first-order separation logic with one record
field, two quantified variables, and no separating conjunction is as
expressive as weak second-order logic on heaps; in short, 1SL2(−∗)
≡ WSOL. Even though conjectured in [6, 7], it is surprising that
two variables suffice, and that further we are able to drop the sepa-
rating conjunction, thus obtaining expressive completeness and un-
decidability with only two variables and the magic wand operator.
In doing so, we improve previous undecidability results about sep-
aration logic [7, 9, 12]. Because we forbid ourselves the use of
many syntactic resources, this underlines even further the power of
the magic wand. By way of comparison with [18, 21], we show
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undecidability of a two-variable logic with second-order features,
and our main undecidability result cannot be derived from [18,
21] since in 1SL models, we deal with a single functional bi-
nary relation. We believe that we have identified the core of sep-
aration logic as far as undecidability and expressive completeness
are concerned, since, for instance, first-order separation logic with
one record field, one quantified variable and an unbounded num-
ber of program variables, has recently been shown decidable and
PSPACE-complete [13]. Below, we illustrate how the main result
of the paper (Theorem 23) compares with known results from the
literature (Section 2 contains definitions of the different logics).

1SL
≡ DSOL ≡WSOL ≡ 1SL(−∗), undec. [7]

2SL
undec. [9]

1SL2
undec. [12]

1SL(∗)
dec., non-elem. [7]

1SL2(−∗)
≡ DSOL, undec.

(Theorem 23)

1SL2(∗)
dec., non-elem. [12]

1SL1
PSPACE-C. [13]

Propositional 1SL
PSPACE-C. [9]

In our proof, most of the difficulties are concentrated on the use
of only two variables: we recycle variables as done for modal log-
ics [15], but this is insufficient, especially when separating conjunc-
tion is also banished. So, as far as the proof for expressive com-
pleteness goes, we borrow some of the first principles from [7], but
very quickly we are faced with serious problems when we need to
identify in some heap at least k > 0 heap patterns (a typical ex-
ample is to specify that at least k > 0 locations point to a given
location).

Indeed, the standard way to identify such patterns is to use
an unbounded number of variables or the separating conjunction.
So, in the presence of only two variables and by using only the
magic wand operator, instead of chopping the heap in k disjoint
subheaps, we add O(k) new patterns so that the newly combined
heap satisfies structural properties that witness the presence of the
k patterns in the original heap. This high-level description has
to be instantiated as many times as we have to identify different
types of patterns, but this new point of view allows us to go far
beyond what is known today (see e.g., the proof of Lemma 5).
At times, it is not strictly necessary to introduce a radically new
method, but instead we can be more thrifty in the way formulae
are defined to express desirable properties; of course, this may
come with more complex proofs and, above all, more ingenuity to
design such formulae. It should be noted that the paper is structured
in such a way that we provide more and more complex building
blocks to establish our main results. Another contribution rests
on the fact that we considerably simplify some of the technical
insights borrowed from [7] and therefore the current paper proposes
a self-contained proof of the equivalence between 1SL2(−∗) and
weak second-order logic that in many ways is much simpler than
what has been done so far, even though our results are stronger.
Extensions with program variables or with heaps having k > 1
record fields are presented in Section 5.5.

2. Preliminaries
2.1 First-order separation logic with one selector (1SL)
A heap h is a partial function h : N ⇁ N with finite domain.
We write dom(h) to denote its domain and ran(h) to denote its

range. Two heaps h1, h2 are said to be disjoint, if their domains are
disjoint; when this holds, we write h1 ] h2 to denote the disjoint
union. Locations are elements of N and are denoted by l, possibly
decorated with exponents or subscripts. We write l1 → l2 →
· · · → lm to mean that for every i ∈ [1,m − 1], h(li) = li+1.
In that case {l1, . . . , lm−1} ⊆ dom(h). We write ]̃l to denote the
cardinal of the set {l′ ∈ N : h(l′) = l} made of predecessors
of l (heap h is implicit in the expression ]̃l) and ]̃l

?
to denote the

cardinal of ({l′ ∈ N : h(l′) = l} \ {l}). So, ]̃l = ]̃l
?

iff (either
l 6∈ dom(h) or h(l) 6= l).

Let FVAR = {u1, u2, . . .} be a countably infinite set of vari-
ables. Formulae of 1SL are defined by the grammar φ ::= ui =
uj | ui ↪→ uj | φ∧ φ | ¬φ | φ ∗ φ | φ−∗φ | ∃ ui φ. The con-
nective ∗ is called the separating conjunction and −∗ is called the
separating implication (also known as the magic wand). We make
use of standard notations for the derived connectives.

A valuation is a map f : FVAR→ N. The satisfaction relation |=
is parameterized by valuations and is defined as follows (Boolean
clauses are omitted):

• h |=f ui = uj iff f(ui) = f(uj).
• h |=f ui ↪→ uj iff f(ui) ∈ dom(h) and h(f(ui)) = f(uj).
• h |=f φ1 ∗ φ2 iff there exist h1, h2 such that h1 and h2 are

disjoint, h = h1 ] h2, h1 |=f φ1 and h2 |=f φ2.
• h |=f φ1−∗φ2 iff for all h′, if h and h′ are disjoint, and h′ |=f φ1

then h ] h′ |=f φ2.
• h |=f ∃ ui φ iff there is l ∈ N such that h |=f[ui 7→l] φ.

We also introduce so-called septraction operator ¬−∗: φ ¬−∗ ψ is
defined as ¬(φ−∗¬ψ). So, h |=f φ

¬−∗ ψ iff there is h′ disjoint
from h such that h′ |=f φ and h ] h′ |=f ψ. Septraction states the
existence of a disjoint heap satisfying a formula and for which its
addition to the original heap satisfies another formula.

For i ≥ 1, 1SLi denotes the fragment of 1SL restricted to i
variables and 1SLi(−∗) to denote its restriction when separating
conjunction is disallowed. Let L be a logic among 1SL, 1SLi,
1SLi(−∗). The satisfiability problem for L takes as input a sentence
φ from L and asks whether there is h such that h |= φ (regardless
of valuation, as φ has no free variables).

Theorem 1. [7, 12] The satisfiability problem for 1SL is undecid-
able, even if restricted to 1SL2.

2.2 Weak second-order logic (WSOL)
We consider a family SVAR = (SVARi)i≥1 of second-order vari-
ables, denoted by P, Q, R, . . . and interpreted as finite relations over
N. A second-order valuation f is an interpretation of the second-
order variables such that for every P ∈ SVARi, f(P) is a finite subset
of Ni. Formulae φ of WSOL are defined by φ ::= ui = uj | ui ↪→
uj | φ ∧ φ | ¬φ | ∃ ui φ | ∃ P φ | P(u1, . . . , un), where the
P are second-order variables with P ∈ SVARn for some n ≥ 1. We
write DSOL (dyadic second-order logic) to denote the restriction
of WSOL to second-order variables in SVAR2. Like 1SL, models
for WSOL are finite heaps and quantifications are done over all the
locations. Satisfaction relation |= is defined as follows (f is a hybrid
valuation providing interpretation for any variable):

• h |=f ∃ P φ iff there is a finite relation R ⊆ Nn such that
h |=f[P 7→R] φ where P ∈ SVARn.
• h |=f P(u1, . . . , un) iff (f(u1), . . . , f(un)) ∈ f(P).

The satisfiability problem for WSOL takes as input a sentence φ
in WSOL and asks whether there is h such that h |= φ. By Trakht-
enbrot’s Theorem (see e.g. [3, 29]), the satisfiability problem for
DSOL (and therefore for WSOL) is undecidable since finite satis-
fiability for first-order logic with a unique binary relation symbol
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is undecidable. Note that a monadic second-order variable can be
simulated by a binary second-order variable from SVAR2, and this
can be used to relativize a formula from DSOL in order to check
finite satisfiability.

Theorem 2. [7] 1SL, WSOL and DSOL have the same expressive
power.

Consequently, in order to show that 1SL2(−∗) is as expressive as
WSOL (our main result), it is sufficient to prove that every sentence
from DSOL has an equivalent sentence in 1SL2(−∗). It is worth
noting that Theorem 2 extends to k > 1 record fields [7], which
actually requires a simpler proof. A similar adaptation is possible
from our main result (see Section 5.5).

3. Expressing Properties in 1SL2(−∗)
In the following, let u and u be the variables u1 and u2, in either
order. Throughout this paper, we build formulae with the quantified
variables u and u. Note that any formula φ(u) with free variable u
can be turned into an equivalent formula with free variable u by
permuting the two variables.

In 1SL2(−∗) it is not difficult to state that the domain of the
heap is empty or that it is a singleton—for example, we can write
∃ u ((∃ u u ↪→ u) ∧ ∀ u (u 6= u⇒ ¬ (∃ u u ↪→ u)))). However,
to express that the domain contains exactly two locations, we run
out of variables if we attempt to use a similar technique. Below,
we propose a new and natural method to compare a number of pre-
decessors against a constant or to express a reachability property.
First, though, we define simple, standard formulae.

• u has a successor: alloc(u) def
= ∃ u u ↪→ u.

• u is an isolated location (it is not in dom(h) ∪ ran(h)):
isoloc(u)

def
= ¬alloc(u) ∧ ¬∃ u u ↪→ u.

• dom(h) has exactly one location: (size = 1)
def
=

∃ u
(
alloc(u) ∧ ∀ u (u 6= u⇒ ¬alloc(u))

)
.

• u has at least one predecessor: ]u > 0
def
= ∃ u u ↪→ u.

Naturally, we can also write: ]u = 0
def
= ¬(]u > 0).

Let us now proceed with more complicated constructions.

3.1 Counting z-predecessors
In this paper, we will make heavy use of counting predecessors of
locations. Without an adequate number of variables to refer to lo-
cations of interest, we instead “remember” locations by installing a
large (and unique) number of predecessors to a location in the heap.
At another point in the formula, we can identify this location and
operate on it, having not used any of the logic’s limited syntactic
resources.

As one may imagine, counting and comparing numbers of pre-
decessors is difficult to do in this logic. We first build up a method
of counting a certain type of predecessor, then use it to formulate
more involved constructions, and finally introduce a way to count
the full number of predecessors of a location—that is, to compare
its number of predecessors with some k ≥ 0. After this is achieved,
nearly the entirety of Section 4 extends this to comparing numbers
of predecessors between two locations (rather than just a compari-
son to some k).

We first introduce the notion of z-predecessors, which are pre-
decessors of a location that themselves have no predecessors (‘z’ is
for ‘zero’). We can then write:

• u’s predecessors are all z-predecessors:
allzpred(u)

def
= ∀ u u ↪→ u⇒ ]u = 0.

• u has zero z-predecessors:
]zu = 0

def
= ∀ u u ↪→ u⇒ ]u > 0.

• u has at most k > 0 z-predecessors:
]zu ≤ k

def
= (size = 1) ¬−∗ ]zu ≤ k− 1 with ]zu ≤ 0 defined

as ]zu = 0.

Lemma 3. Let h be a heap, f be a valuation, and k ∈ N.
h |=f ]zu ≤ k iff card({l ∈ N : ]̃l = 0, h(l) = f(u)}) ≤ k.

Variants ]zu ./ k with ./ ∈ {=, <,>,≥} are easily defined.

3.2 A matter of forks and knives
To address the problem of referring to memory locations despite
not having the variables to do so, we introduce the notion of forks.
Forks are simple, recognizable shapes that we add to the heap
with the magic wand. Forks are also a critical building block for
comparing predecessors in Section 4. A fork in h is a sequence
of distinct locations l, l0, l1, l2 such that h(l0) = l, ]̃l0 = 2,
h(l1) = h(l2) = l0 and ]̃l1 = ]̃l2 = 0. The endpoint of the fork is
l. The fork is isolated iff ]̃l = 1 and l /∈ dom(h). Similarly, a knife
in h is a sequence of distinct locations l, l0, l1 such that h(l0) = l,
]̃l0 = 1, h(l1) = l0 and ]̃l1 = 0. The endpoint of the knife is l. The
knife is isolated iff ]̃l = 1 and l /∈ dom(h).

To identify fork and knife endpoints in a heap, we define:

forkendpt(u)
def
= ∃ u (u ↪→ u ∧ ]zu = 2 ∧ allzpred(u))

knifeendpt(u)
def
= ∃ u (u ↪→ u ∧ ]zu = 1 ∧ allzpred(u))

Now, let forky(u) be a formula stating that all predecessors of
f(u), possibly except f(u), are endpoints of forks: forky(u) def

=
∀ u ((u ↪→ u ∧ u 6= u)⇒ forkendpt(u)). Three forks, two end-

fork endpoints

forky

points, and a forky location
are depicted at left. Next, let
antiforky(u) be a formula
stating that no predecessor of
f(u) is the endpoint of a fork,
and let antiknify(u) be a
formula stating that no pred-
ecessor of f(u) is the endpoint
of a knife. We define these as

antiforky(u)
def
= ∀ u (u ↪→ u⇒ ¬forkendpt(u)) and

antiknify(u)
def
= ∀ u (u ↪→ u⇒ ¬knifeendpt(u)). Note the

asymmetry between forky(u) and antiforky(u) since f(u) does
not have to be the endpoint of a fork in forky(u) (which would
be then impossible to realize for all the predecessors of f(u) if f(u)
were a self-loop). It is also easy to enforce that the heap is made of
a single fork, which will be useful afterwards.

Lemma 4. There is a formula 1fork in 1SL2(−∗) such that for all
h, we have h |= 1fork iff h is only made of a single, isolated fork.

Now let us build formulae that constrain the number of predeces-
sors (not just z-predecessors): with k ∈ Z, we define ]u ≤ k

def
=⊥

if k < 0, ]u ≤ 0
def
= ¬∃ u u ↪→ u, and for k > 0,

]u ≤ k def
=

(u ↪→ u ∧
?

]u ≤ k − 1) ∨ (¬(u ↪→ u) ∧
?

]u ≤ k)

where
?

]u ≤ 0
def
= ¬∃ u (u ↪→ u ∧ u 6= u) and

?

]u ≤ k
def
= (]u =

0) ¬−∗ (antiforky(u) ∧ (1fork ¬−∗ · · · ¬−∗ 1fork︸ ︷︷ ︸
k times

¬−∗ forky(u))

for k > 0. In a nutshell, f(u) has at most k > 0 predecessors
if one can make f(u) antiforky without changing its predecessor
count (always possible) and then adding k forks to make f(u) forky
(we distinguish the case when f(u) is a self-loop).
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Lemma 5. Let k ∈ N, h be a heap and f be a valuation. (I)

h |=f

?

]u ≤ k iff ]̃f(u)
?

≤ k; (II) h |=f ]u ≤ k iff ]̃f(u) ≤ k.

Thus we can express in 1SL2(−∗) the following properties:

• f(u) has at least k predecessors: ]u ≥ k def
= ¬ (]u ≤ k − 1).

• f(u) has exactly k predecessors: ]u = k
def
= ]u ≤ k ∧ ]u ≥ k.

Lonely memory cells Now, we can express a useful property on
the heap itself. The formula below states that f(u) is an isolated
cell: isocell(u) def

= alloc(u) ∧ ]u = 0 ∧ (∃ u u ↪→
u ∧ ]u = 1 ∧ ¬alloc(u)). A heap h is segmented whenever
dom(h) ∩ ran(h) = ∅ and no location has strictly more than
one predecessor. Otherwise said, all the memory cells are isolated.
Being segmented can be naturally expressed in 1SL2(−∗) too:

seg
def
= ∀ u ∀ u

(
u ↪→ u⇒

(
]u = 1 ∧ ]u = 0

))
3.3 Expressing reachability
In 1SL, reachability can be expressed, and [12] gives a technique
for doing so with the two-variable restriction, itself a variant of
material from [7, 11]. Without the separating conjunction, we can
still specify reachability from f(u) to f(u), but we need a new
technique: we put a fork on f(u), propagate this fork forward in
the heap, and finally check whether f(u) is the endpoint of some
fork. This is analogous to the way reachability is handled with a
monadic second-order predicate, but here, a finite set of locations
is identified by propagation of forks. We define propagate(u) as
the formula characterizing the property that f(u) is the endpoint
of some fork, and that the property of being the endpoint of some
fork is propagated along memory cells. The reachability predicate
is written reach(u, u):

propagate(u)
def
= forkendpt(u) ∧

∀ u ∀ u
(
(u ↪→ u ∧ forkendpt(u))⇒ forkendpt(u)

)
reach(u, u)

def
= >−∗ (propagate(u)⇒ forkendpt(u))

The purpose of “>−∗” is to destroy forks in the original heap (if
any) and to augment it with new forks such that propagate(u)
is satisfied. Of course, a disjoint subheap could change the very
reachability property we are testing. But some such subheaps do
not, and the universal quantification of the magic wand ensures
that we are on the safe side: if for all combined heaps satisfying
propagate(u), f(u) is the endpoint of a fork, then we can conclude
that f(u) reaches f(u) in the original heap.

Lemma 6. Given a heap h and valuation f, we have h |=f

reach(u, u) iff hk(f(u)) = f(u) for some k ≥ 0.

It is notable that 1SL2(−∗) has no need for built-in reachability
predicates, in contrast to formalisms from e.g. [21]. In the rest of
the paper, we generalize, in a sense, what was done here in an ad
hoc manner for reachability, so that any second-order property can
be represented in 1SL2(−∗).

4. Comparing Numbers of Predecessors
The main goal of this section is to define in 1SL2(−∗) a formula
expressing that ]̃f(u) + k ≤ ]̃f(u) + k′, where k, k′ ∈ N, for
any heap h and valuation f. Without the restriction on the number
of variables, we know that such properties can be expressed in
1SL(−∗) [7]. Note that arithmetical constraints on list lengths can
be found in [4] but this is primitive in the logical formalism. By
contrast, we show that ]̃f(u) + k ≤ ]̃f(u) + k′ can be expressed in
1SL2(−∗) itself. Since a property ]̃f(u) + k ≤ ]̃f(u) + k′ requires
a formula with O(k + k′) variables in 1SL(−∗) according to [7],
herein we need to circumvent this issue by proposing an alternative

way to express the key properties that are helpful to state that
]̃f(u)+k ≤ ]̃f(u)+k′. Below, we still use first principles from [7] to
construct a formula in 1SL2(−∗)—mainly, how to build a fork from
a knife and an isolated memory cell—but we will need to bypass
the serious problem of having only two variables at our disposal,
without permitting ourselves any use of the separating conjunction.

4.1 Principles and difficulties with 1SL2(−∗)
Let h be a heap and f be a valuation for which we wish to check
if ]̃f(u)

?

+ k ≤ ]̃f(u)
?

+ k′ holds (it is easy to conclude if
]̃f(u)+k ≤ ]̃f(u)+k′ holds, see the proof of Theorem 10). Below,
we explain which extensions of h must be performed to achieve
this. We mainly describe first principles from [7], but the reader
should be warned that in several places, we propose a simplified
alternative, apart from the fact that all the formulae need to be part
of the restricted fragment 1SL2(−∗).

4.1.1 Preparing the heap
The first step consists in preparing the heap by destroying any forks
and knives at f(u) and f(u), and ensuring there are no isolated
memory cells—these properties will be necessary in later steps—
while maintaining the number of predecessors at f(u) and f(u). To
do this, we augment h with a heap hp so that (a) hp is disjoint from
h; (b) f(u) has the same number of predecessors in h and in h] hp,
say ]̃f(u)

?

= m ≥ 0; (c) f(u) has the same number of predecessors
in h and in h ] hp, say ]̃f(u)

?

= m ≥ 0; (d) In h ] hp, f(u) has no
predecessor that is an endpoint of a fork or knife; (e) In h]hp, f(u)
has no predecessor that is an endpoint of a fork or knife; (f) h ] hp
has no isolated memory cell. This step is always possible, since to
destroy the structure of an isolated memory cell, a fork or a knife,
it is sufficient to add a memory cell at the adequate position. We
take advantage of the formulae antiforky(·) and antiknify(·)
to establish properties (d) and (e); the others are straightforward.

4.1.2 Addition of a segmented heap
This step consists in checking whether, for each segmented heap
hs satisfying certain properties, the condition (P) defined below
holds true. The heap hs must be segmented and also must satisfy
the following: (a) hs is disjoint from h ] hp; (b) f(u) and f(u) have
no predecessors in hs; (c) In h ] hp ] hs, neither f(u) nor f(u)
has a predecessor that is an endpoint of a fork or knife (they are
antiforky and antiknify). Let n be the number of isolated memory
cells in h] hp ] hs. Note that for each q ≥ 0, it is possible to build
hqs so that h ] hp ] hqs has exactly q isolated memory cells and hqs
satisfies the above conditions.

u

u

u

u

Figure 1: The construction of forks used for comparison.

In order to construct forks in h ] hp ] hs whose endpoints
are predecessors of f(u) or f(u), either we can augment the heap
with a fork, or we can augment the heap with a knife so that its
combination with an isolated memory cell in h] hp ] hs leads to a
fork whose endpoint is a predecessor of f(u) or f(u). See Figure 1,
which depicts two locations, each with three predecessors. Imagine
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we are performing the comparison ]̃f(u)
?

≤ ]̃f(u)
?

(presently
equivalent to ]̃f(u) ≤ ]̃f(u)). First, a segmented heap is added
(allocated locations are marked with a white circle in the figure).
The left half of the figure shows the addition of a collection of
knives through these segments to make f(u) forky; with the same
segments, it must then be possible to add a collection of knives to
make f(u) forky. Indeed it is; if this is true for all such segmented
heaps, then it must be that ]̃f(u)

?

≤ ]̃f(u)
?

. The segments from the
segmented heap should really be seen as “potential forks.” When
k or k′ is nonzero, we consider additional forks on one or both
sides to compensate for the offset.

This illustrates the principle behind the definition of the follow-
ing property (P): If there is a heap h[k] disjoint from h ] hp ] hs
made of isolated knives and k isolated forks so that f(u) is forky
in h ] hp ] hs ] h[k], then there is a heap h[k′] disjoint from
h ] hp ] hs made of isolated knives and k′ isolated forks so that
f(u) is forky in h ] hp ] hs ] h[k′]. Note that by the conditions
satisfied by h[k] or by h[k′], the number of predecessors of f(u)
[resp. f(u)] in h[k] [resp. h[k′]] is necessarily zero (there is no need
to specify explicitly that we do not add predecessors). The number
of forks in h ] hp ] hs ] h[k] whose endpoints are predecessors
of f(u) is bounded by n + k and similarly, the number of forks in
h ] hp ] hs ] h[k′] whose endpoints are predecessors of f(u) is
bounded by n + k′. Note also that the number of predecessors of
f(u) is the same in h and in h ] hp ] hs ] h[k′] and the number
of predecessors of f(u) is the same in h and in h ] hp ] hs ] h[k].
So, n + k ≥ m implies n + k′ ≥ m, i.e. n ≥ m − k implies
n ≥ m− k′.

4.1.3 Checking the resulting heap
By checking step 2 for all n ≥ 0, we get that for all n ≥ 0,
we have n ≥ m − k implies n ≥ m − k′, which entails that
m − k ≥ m − k′, i.e. m + k ≤ m + k′, whenever m − k′ ≥ 0
and m − k ≥ 0. Universal quantification over n is simulated in a
formula by using separating implication. When m < k′ or m < k,
we make a dedicated case analysis (see the proof of Theorem 10).
Below, we present the technical developments.

4.2 Building blocks
Apart from forks, we introduce the notions of collections and large
forks (instrumental in the proof of Lemma 7 below). A large fork
is a sequence of distinct locations l1, · · · , l5 such that l1, l2, and l3
have no predecessors, h(l1) = h(l2) = h(l3) = l4, ]̃l4 = 3 and
h(l4) = l5. Location l5 is called the endpoint of the large fork, and
as with forks and knives, the large fork is called isolated iff ]̃l5 = 1

and l5 /∈ dom(h). A heap h is a collection of knives and forks def⇔
there is no location in dom(h) that does not belong to an isolated
knife or to an isolated fork. Similarly, a heap h is a collection of
knives and large forks def⇔ there is no location in dom(h) that does
not belong to an isolated knife or isolated large fork.

Lemma 7. There are formulae ksfs, kslfs and ksfsk (k ≥ 0)
in 1SL2(−∗) such that for every heap h, (1) h |= ksfs iff h is a
collection of knives and forks, (2) h |= kslfs iff h is a collection
of knives and large forks, (3) h |= ksfsk iff h is a collection of
knives and forks with exactly k forks.

Here is the way we can use the formulae from Lemma 7.

Lemma 8. Let k ≥ 0, h be a heap and f be a valuation such that
h |=f antiforky(u) ∧ antiknify(u), h has n isolated memory
cells and m = ]̃f(u)

?

. We have h |=f (ksfsk
¬−∗ forky(u)) iff

n ≥ m− k.

The proof of Lemma 8 uses principles similar to what has been
done in [7, 12] except that all formulae belong to 1SL2(−∗) and
we propose a simplified version of the lemma and proof (note also
our use of ]̃f(u)

?

). Let anti be antiforky(u)∧ antiknify(u)∧
antiforky(u) ∧ antiknify(u) and let comp(u, u, k, k′) be[

(seg ∧ ]u = 0 ∧ ]u = 0)−∗(
anti⇒

([
ksfsk

¬−∗ forky(u)
]
⇒
[
ksfsk′

¬−∗ forky(u)
]))]

Proposition 9. Let k, k′ ≥ 0, f and h such that h |=f anti ∧
¬∃ u isocell(u), ]̃f(u)

?

− k′ ≥ 0 and ]̃f(u)
?

− k ≥ 0. We have
h |=f comp(u, u, k, k

′) iff ]̃f(u)
?

+ k ≤ ]̃f(u)
?

+ k′.

Here is the main result in this section using comp(u, u, k, k′).

Theorem 10. For k, k′ ≥ 0, there is φ in 1SL2(−∗) (of linear size
in k+k′) such that for all h, f, (h |=f φ iff ]̃f(u)+k ≤ ]̃f(u)+k′).
We denote such a formula φ as ]u+k ≤ ]u+k′ and, as usual, easily
extend to <,≥, >,=. The structure of the proof of Theorem 10 is
similar to the structure of the proof of [7, Theorem 5.5], except
that now all formulae are in 1SL2(−∗) instead of being defined in
the less-constrained 1SL(−∗). Moreover, our case analysis is quite
different and we also provide several simplifications, making our
new proof even more valuable.

Proof. Below, we show that for k, k′ ≥ 0, there is a formula φk,k′
in 1SL2(−∗) (of linear size in k+k′) such that for every heap h and
valuation f, we have h |=f φk,k′ iff ]̃f(u)

?

+k ≤ ]̃f(u)
?

+k′. Once
we have such a φk,k′ , we easily define φ as:

(u ↪→ u ∧ u ↪→ u ∧ φk,k′) ∨ (¬(u ↪→ u) ∧ u ↪→ u ∧ φk,k′+1) ∨
(u ↪→ u∧¬(u ↪→ u)∧φk+1,k′)∨(¬(u ↪→ u)∧¬(u ↪→ u)∧φk,k′)

So it only remains to define the formulae φk,k′ with k, k′ ≥ 0.
By Proposition 9, we have the following property for any h, f:

(?) When h satisfies anti ∧ ¬∃ u isocell(u), ]̃f(u)
?

− k′ ≥ 0

and ]̃f(u)
?

− k ≥ 0, we have h |=f comp(u, u, k, k′) iff
]̃f(u)

?

+ k ≤ ]̃f(u)
?

+ k′.

Even though the original heap h does not satisfy the formula anti
∧ ¬∃ u isocell(u), it can be safely extended to satisfy this
property without modifying the number of predecessors of f(u) and
f(u).

Whenever ]̃f(u)
?

− k′ ≥ 0 and ]̃f(u)
?

− k ≥ 0, we have the
following equivalences:

(1) h |=f (]u = 0 ∧ ]u = 0) ¬−∗ (anti ∧ (¬∃ u isocell(u)) ∧
comp(u, u, k, k′)).

(2) There is h′ disjoint from h such that h′ |=f (]u = 0 ∧ ]u =
0), h ] h′ |=f anti ∧ ¬∃ u isocell(u) and h ] h′ |=f

comp(u, u, k, k′).
(3) There is h′ disjoint from h such that h′ |=f (]u = 0 ∧ ]u = 0)

and h ] h′ |=f anti ∧ ¬∃ u isocell(u) and ]̃f(u)
?

+ k ≤
]̃f(u)

?

+ k′ (in h ] h′) by (?).
(4) ]̃f(u)

?

+ k ≤ ]̃f(u)
?

+ k′ in h.

Observe that ]̃f(u)
?

and ]̃f(u)
?

in h are equal to their values in
h ] h′ since h′ |=f (]u = 0 ∧ ]u = 0). Moreover, (4) implies
(3) since it is always possible to extend a model satisfying anti ∧
¬∃ u isocell(u) while preserving ]̃f(u)

?

and ]̃f(u)
?

.
W.l.o.g., we can assume that k × k′ = 0.
Case k = 0 and k′ ≥ 0. So ]̃f(u)

?

− k ≥ 0 and we need to make
a case analysis depending on the satisfaction of ]̃f(u)

?

≥ k′. Note
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that if ]̃f(u)
?

< k′, then obviously ]̃f(u)
?

≤ ]̃f(u)
?

+ k′. So, we
write φk,k′ to denote the formula below:

(
?

]u < k′) ∨ ((
?

]u ≥ k′) ∧ ((]u = 0 ∧ ]u = 0) ¬−∗

(anti ∧ (¬∃ u isocell(u)) ∧ comp(u, u, 0, k′))))

Formulae of the form
?

]u ≥ k′ (and variants) can be defined thanks
to Lemma 5.
Case k′ = 0 and k ≥ 0. So ]̃f(u)

?

− k′ ≥ 0 and we need to make
a case analysis depending on the satisfaction of ]̃f(u)

?

≥ k. Note
that if ]̃f(u)

?

< k, then ]̃f(u)
?

+ k ≤ ]̃f(u)
?

cannot hold. So, we
write φk,k′ to denote the formula below:

(
?

]u ≥ k) ∧ ((]u = 0 ∧ ]u = 0) ¬−∗

(anti ∧ (¬∃ u isocell(u)) ∧ comp(u, u, k, 0)))

We can now find locations in a heap with a maximal number of
predecessors, and we conclude this section with a definition useful
in later constructions. Let maxdeg(u) def

= ¬∃ u ]u > ]u. For all h
and f, we have h |=f maxdeg(u) iff ]̃f(u) = max ({]̃l : l ∈ N}).

5. Expressive Completeness for 1SL2(−∗)
In order to express sentences in DSOL by sentences in 1SL2(−∗), a
hybrid valuation is encoded in the heap by building a disjoint val-
uation heap that takes care of pairs of locations (for interpretation
of second-order variables) and that takes care of locations (for in-
terpretation of first-order variables). In principle, this makes sense
since every heap has a finite domain and therefore there is always an
infinite set of locations that is not in its domain. This leaves enough
room to encode a finite amount of information such as the interpre-
tation of second-order variables when they are interpreted by finite
sets. We can easily add to the original heap with the magic wand;
this permits us to create and update the valuation heap. However,
we then must always be able to distinguish between the original
heap and the valuation heap.

The main idea to build such a valuation heap rests on the fact
that a pair of locations (l, l′) belongs to the interpretation of a
second-order variable Pi whenever l and l′ can be identified by
special patterns involving l and l′ that uniquely characterize the
interpretation by Pi. Similarly, a location l is the interpretation of
a first-order variable whenever l can be identified in the valuation
heap thanks to some dedicated pattern around l.

Before explaining further the general principles, let us first
provide more information about the above-mentioned patterns. An
entry of degree d ≥ 2 is a sequence of distinct locations l1, . . . ,
ld, lind, l such that h(l1) = · · · = h(ld) = lind, ]̃lind = d,
]̃l1 = · · · = ]̃ld = 0 and h(lind) = l. The location l is called the
element, lind the index and the locations l1, . . . , ld, the pins. Entries
generalize the notions of forks and large forks from Section 3 and
are called markers in [7]. See an entry of degree 4 in the middle of
Figure 2. So, the pair of locations (l, l′) is identified as part of the
interpretation of Pi when l and l′ are elements of entries with very
large degree. The above-mentioned special patterns are therefore
entries, but we require that the degree of the respective entries for
l and l′ satisfy arithmetical constraints, which is possible thanks to
Theorem 10, and which allows us to relate l with l′.

Then, the principle of the translation consists in building the
valuation heap on demand (typically when a quantification appears)
and to find special patterns involving entries with large degree
whenever an atomic formula needs to be evaluated.

Apart from our essential restriction to 1SL2(−∗) and therefore
the need for encoding also first-order valuations, these princi-
ples have been introduced in [7] to translate DSOL formulae into

1SL(−∗) formulae. However, because we are restricted to two first-
order variables and because we also require that the separating
conjunction is banished, we present below a different way to apply
these principles so that we can show that 1SL2(−∗) is expressively
equivalent to DSOL.

This high-level description of the formula translation and of
the encoding of some hybrid valuation in the heap hides many of
the details, which can be found below. However, before explaining
how we apply these principles within 1SL2(−∗), let us emphasize
the most obvious and difficult problems to be solved: (I) we must
be able to distinguish the pairs of locations from distinct second-
order variables, (II) we also need to encode first-order valuations,
and (III) the main problem is certainly to access the original heap
properly without interference from the valuation heap.

5.1 Left and right parentheses
We introduce variants of entries that are used as delimiters. A left
j-parenthesis of degree d ≥ 3 with j ≥ 0 is a sequence of distinct
locations l′j+1, . . . , l′1, l1, . . . , ld, lind such that (u) h(l1) = · · · =
h(ld) = lind; ]̃lind = d; ]̃l′j+1 = ]̃l3 = ]̃l4 = · · · = ]̃ld = 0,
(v) lind 6∈ dom(h); l′j+1 → l′j → l′j−1 → · · · → l′1 → l1;
]̃l′j = ]̃l′j−1 = · · · = ]̃l′1 = ]̃l1 = 1, and (w) ]̃l2 = 0. The
location lind is called the index. The heap at the left of Figure 2
presents a left j-parenthesis of degree 3. A right j-parenthesis of
degree d ≥ 3 with j ≥ 0 is a sequence of distinct locations l′j+1,
. . . , l′1, l′′j+1, . . . , l′′1 , l1, . . . , ld, lind such that (u), (v), ]̃l′′j+1 = 0,

]̃l′′j = ]̃l′′j−1 = · · · = ]̃l′′1 = ]̃l2 = 1, and l′′j+1 → l′′j → l′′j−1 →
· · · → l′′1 → l2. The location lind is also called the index. The heap
at the right of Figure 2 presents a right j-parenthesis of degree 5. A
j-parenthesis can be understood as an entry, except that the index
location is not allocated, and containing one or two paths of length
j + 1, depending whether it is a left or a right parenthesis.

Lemma 11. For all j ≥ 0, there is a formula lpj(u) [resp. rpj(u)]
in 1SL2(−∗) such that for all heaps h and valuations f, we have
h |=f lpj(u) [resp. h |=f rpj(u)] iff f(u) is the index of some left
[resp. right] j-parenthesis in h.

In several places, we need to identify the indices from en-
tries as well as their pins. Let eindex(u) be (]zu ≥ 2) ∧
allzpred(u) ∧ ∃ u u ↪→ u that characterizes indices from en-
tries. Let epin(u) characterize pins from entries: epin(u)

def
=

∃ u u ↪→ u ∧ eindex(u). Similarly, we need to characterize
the locations from parentheses. We already know how to identify
their indices (Lemma 11). It remains to identify the other locations
via the formula onpi(u) to characterize the locations on some i-
parenthesis: roughly speaking, such locations are exactly those that
can reach the index of some i-parenthesis in less than i+2 steps. Let
onpi(u)

def
=
∨i+2
j=0 disti(j, u) with disti(0, u)

def
= lpi(u)∨ rpi(u)

and disti(j + 1, u)
def
= ∃ u (u ↪→ u) ∧ disti(j, u) for all j ≥ 0.

Lemma 12. Let h be a heap, f be a valuation and i ≥ 0. Then,
h |=f onpi(u) iff f(u) is on some i-parenthesis in h.

5.2 The role of parentheses
First, we introduce the interval [1,K] (K ∈ N\{0}) assuming that
for each j ∈ [1,K], either Pj or uj occurs in the DSOL formula
to be translated (but not both of them). So, the developments below
are relative to a finite set of first-order and second-order variables
and this is concretized by [1,K] (always possible since a formula
has a finite number of variables).

Let us come back to parentheses and assume that X is a subset
of [0,K]. In an X-well-formed heap h (see Definition 18 below),
the parentheses play the following role. For each j ∈ X , we have
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the index location lpj from a distinguished left j-parenthesis and
the index location rpj from a distinguished right j-parenthesis.
Moreover, let dlj = ]̃lpj and drj = ]̃rpj (in h). When j ∈ X is re-
lated to a first-order variable, we require that drj = dlj+2 and there
is an entry of degree dlj + 1 such that its element is understood as
the interpretation of the variable uj (see Figure 2 with drj = 5 and
dlj = 3). That explains why the parentheses are viewed as delim-
iters. Similarly, let {(l1, l′1), . . . , (lβ , l′β)} be a finite set of pairs of
locations, understood as the interpretation of a second-order vari-
able Pj with j ∈ X . In h, there are 2β entries whose respective de-
grees are exactly {dlj+3(i−1)+1, dlj+3(i−1)+2 : i ∈ [1, β]}
with drj = dlj + 3β + 1. A pair of entries of respective degrees
dlj +3(i−1)+1 and dlj +3(i−1)+2 have exactly as elements li
and l′i respectively, which allows to encode the pair (li, l′i). All this
underlying encoding makes sense only if the left and right paren-
theses as well as the entries whose degrees are related to their de-
grees are uniquely determined (see Condition (1) in Definition 14,
below). For this reason, we introduce a left 0-parenthesis and a
right 0-parenthesis with dr0 = dl0 + 1 (0 is not a variable index),
the degree dl0 is strictly greater than the degree of any location in
the original heap, all degrees dlj with j 6= 0 are strictly greater
than dl0 and finally, the above-mentioned entries and parentheses
are the only ones with their respective degrees. This guarantees
that any entry from a pair of entries with successive degrees serv-
ing for the interpretation of a second-order variable, cannot serve
twice for another pair or for another variable. Below, we provide
the technical developments. A heap h is made of entries and paren-
theses only def⇔ every location in dom(h) belongs either to a left
i-parenthesis for some i ≥ 0, to a right i-parenthesis for some
i ≥ 0, or to an entry. Given a heap h made of entries and parenthe-
ses only, we write ispect(h) to denote {]̃l : l is the index of some
entry or parenthesis in h} and call this the index spectrum of h.

l

length (j + 1)

Figure 2: Encoding [uj 7→ l].

Let hB be a heap such that α = max ({]̃l : l ∈ N}). We have
seen in Section 4 that it is possible to characterize the locations that
witness this maximal value α thanks to maxdeg(u). A valuation
heap hV for hB is made of entries and parentheses only whose
degrees are greater than max (3, α + 1). The heap hV satisfies
the following simple conditions (more constraints will follow):
min(ispect(hV )) is greater than max (3, α+1) and it is witnessed
by the degree of some left 0-parenthesis; each degree in ispect(hV )
is witnessed by exactly one entry or parenthesis. Formula imin(u)
below is satisfied in h = hB ] hV by a location l witnessing the
minimal value in ispect(hV ):

imin(u)
def
= lp0(u) ∧ (∀ u ((u 6= u) ∧ lp0(u))⇒ ]u < ]u)

Note that thanks to Section 4, we know that it is possible to compare
numbers of predecessors as expressed above. So, imin(u) holds
when f(u) is the unique location that is the index of some left 0-
parenthesis with greatest degree.

Lemma 13. Let f be a valuation and h be a heap. We have h |=f

imin(u) iff f(u) is an index of some left 0-parenthesis and there is
no other location l 6= f(u) such that ]̃l ≥ ]̃f(u) and l is the index of
some left 0-parenthesis.

The proof is by an easy verification by using Lemma 11. Once
a heap h satisfies ∃ u imin(u), the unique location l0 such that
h |=[u7→l0] imin(u) (say with ]̃l0 = d0) plays the role of a delimiter
between the original heap and the part of the heap than encodes the
hybrid valuation. We have seen that an index spectrum is defined
for heaps made of entries and parentheses only. This is fine, but
below we adapt the definition to heaps h satisfying ∃ u imin(u).
Let us define the set spect(h) as

{]̃l : l is an index of some entry or parenthesis in h} ∩ [d0,+∞[

The set spect(h) is called the spectrum of h. This illustrates how l0
and ]̃l0 = d0 play the role of separator between the original heap
and the valuation heap.

The subheap encoding the valuation is made of parentheses and
entries and we shall need to identify the indices of such patterns.
The formula lindex(u) defined below does the job:

(∃ u imin(u) ∧ ]u ≤ ]u) ∧(( ∨
i∈[0,K]

(lpi(u) ∨ rpi(u))
)
∨ eindex(u)

)
(u is interpreted as a large index). Entries and parentheses with
large indices are also called large entries and parentheses, respec-
tively. It is easy to define a large index that is also the index of a left
[resp. right] parenthesis. Let llpi(u)

def
= lindex(u) ∧ lpi(u) and

lrpi(u)
def
= lindex(u) ∧ rpi(u) (see Lemma 11). The large index

with a maximal degree can be also characterized as follows:

maxlindex(u)
def
= (∀ u lindex(u)⇒ (]u ≤ ]u)) ∧ lindex(u)

Below, we state how the parentheses are organized.

Definition 14. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 <

i1 < · · · < is. A heap h is X-almost-well-formed def⇔

1. For every j ∈ [0, s], there is a unique location llj [resp. lrj ] such
that h |=[u 7→llj ]

llpij (u) [resp. h |=[u 7→lrj ]
lrpij (u)].

2. For every j ∈ [0, s], ]̃llj < ]̃lrj , and ]̃lr0 = ]̃ll0 + 1.

3. For every j ∈ [1, s], we have ]̃llj = ]̃lrj−1 + 1.
4. h |=[u 7→lrs ]

maxlindex(u).
5. For every j ∈ [1, s], if ij is the index of a first-order variable,

then ]̃llj = ]̃lrj − 2 (see Figure 2).
6. For every j ∈ ([1,K] \ X), there is no location l such that

h |=[u 7→l] llpj(u) ∨ lrpj(u).

The degrees are organized as follows and they all belong to the
spectrum of h (below we let dlj = ]̃llj and drj = ]̃lrj ).

dl0

|= imin(u)

< dr0

||
dl0 + 1

< dl1 < dr1

||
dr0 + 1

< dl2 < dr2

||
dr1 + 1

< . . . < dls < drs

||
drs−1 + 1

|= maxlindex(u)

Lemma 15. There is awfhX in 1SL2(−∗) such that h |= awfhX iff
h is X-almost-well-formed.

Let h be an X-almost-well-formed heap for some {0} ⊆ X ⊆
[0,K] and i ∈ X . We write vindi(u) to denote

lindex(u) ∧ eindex(u) ∧
(∃ u llpi(u) ∧ ]u < ]u) ∧ (∃ u lrpi(u) ∧ ]u > ]u)
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It characterizes indices whose degree is strictly between the de-
gree of some large left i-parenthesis and the degree of some large
right i-parenthesis. We write degrees(i, h) to denote the set: {]̃l :
h |=[u 7→l] vindi(u), l ∈ N}.
Lemma 16. Let h be such that h |= ∃ u imin(u) and i ≥ 0 be such
that there are unique locations lp and rp with h |=[u 7→lp] llpi(u)
and h |=[u 7→rp] lrpi(u). For every l ∈ N, we have h |=[u 7→l]

vindi(u) iff l is the index of some entry and ]̃lp < ]̃l < ]̃rp.

The translation of Pi(uj , uk) is therefore: ∃ u (onj(u) ∧ ∃ u (u ↪→
u ∧ vindi(u)∧ ∃ u (]u = ]u + 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u∧
onk(u))))), where onj(u)

def
= ∃ u (u ↪→ u) ∧ vindj(u). Formula

onj(u) holds true when u is interpreted as the element of the
unique entry attached to uj . These definitions take advantage of the
fact that there are unique large left and right parentheses for each
variable index. Figure 3 illustrates the constraints when j < i < k.
From left to right, it represents explicitly a left j-parenthesis, then
a right j-parenthesis, then a left i-parenthesis, a right i-parenthesis
and a left k-parenthesis, followed finally by a right k-parenthesis.
Other entries and parentheses are present in the figure, but they are
represented by dots in order to focus on the memory cells relevant
to evaluate the formula obtained by translation of Pi(uj , uk). The
degrees of parentheses and entries increase from left to right.

5.3 Taking care of valuations
Now that we have a way of identifying that part of the heap that
encodes our valuation, we turn our attention to encoding the valu-
ation itself. Below, we introduce a condition for a subheap to be
“glued” to an existing valuation. We distinguish three cases. A lo-
cal 0-valuation is a heap made of a left 0-parenthesis of degree d
and a right 0-parenthesis of degree d + 1 only, for some d ≥ 3.
Let i ∈ [1,K] be the index of some first-order variable. A local
i-valuation is a heap made of a left i-parenthesis of degree d, an
entry of degree d+1 and a right i-parenthesis of degree d+2 only,
for some d ≥ 3. Let i ∈ [1,K] be the index of some second-order
variable. A local i-valuation is a heap h such that

1. every location l in dom(h) belongs either to a left i-parenthesis,
to a right i-parenthesis, or to an entry,

2. h contains a unique left [resp. right] i-parenthesis,
3. min(ispect(h)) is the degree of some left i-parenthesis,
4. max (ispect(h)) is the degree of some right i-parenthesis,
5. ispect(h) is of the form below for some α ≥ 3, β ≥ 0, {α} ∪
{α+3(i−1)+1, α+3(i−1)+2 : i ∈ [1, β]}∪{α+3β+1}
(when β = 0, ispect(h) is equal to {α, α+ 1}),

6. there are no two distinct indices with the same degree.

Since local i-valuations are typically heaps that are added to the
current heap to encode the interpretation of a variable, it is essential
to be able to characterize them by 1SL2(−∗) formulae. This is the
purpose of the result below.

Lemma 17. Let i ∈ [0,K]. There is localvali(u) in 1SL2(−∗)
such that h |=f localvali(u) iff h is a local i-valuation and f(u)
is the index of its left i-parenthesis.

The definition for X-almost-well-formed heaps mainly takes care
of parentheses. In Definition 18, constraints on the degrees of large
indices are specified.

Definition 18. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 <

i1 < · · · < is. A heap h is X-well-formed def⇔
1. h is X-almost-well-formed,
2. for every j ∈ [1, s], if ij is the index of a first-order variable,

then degrees(ij , h) is a singleton,

3. for every j ∈ [1, s], if ij is the index of a second-order variable,
degrees(ij , h) is the set below for some αj ≥ 3, βj ≥ 0:
{αj + 3(i− 1) + 1, αj + 3(i− 1) + 2 : i ∈ [1, βj ]},

4. for every location l such that h |=[u 7→l] lindex(u), there is no
l′ 6= l such that h |=[u 7→l′] lindex(u) and ]̃l = ]̃l′.

When h is X-well-formed, we write h = hB ] hV such that
dom(hV ) is made of entries and parentheses of degree d ≥ ]̃l0
for some l0 ∈ N such that h |=[u 7→l0] imin(u). By Definition 18,
we have spect(h) = ispect(hV ) and clearly the decomposition is
unique since l0 is unique.

Again, well-formed heaps can be characterized by formulae in
1SL2(−∗) whose size is linear in K.

Lemma 19. Given {0} ⊆ X ⊆ [0,K], there is a formula wfhX in
1SL2(−∗) such that h |= wfhX iff h is X-well-formed.

Let us define a valuation from a valuation heap.

Definition 20. Let h be an X-well-formed heap for some {0} ⊆
X ⊆ [0,K]. For every second-order i ∈ X , we define Vh(Pi)

def
=

{(hV (l), hV (l′)) : ]̃l′ = ]̃l + 1, ]̃l, ]̃l′ ∈ degrees(i, h), l, l′ are
index locations} and for every first-order i ∈ X , Vh(ui)

def
= hV (l)

where l is the unique index location such that ]̃l ∈ degrees(i, h).
We say that Vh is the valuation extracted from h.

Below, we present an essential result stating how heaps can be com-
posed when a new variable needs to be interpreted. The formulae
involved to compose the X-well-formed heap h and the local i-
valuation heap h′ are directly used in the translation of quantified
formulae (see Section 5.4). Lemma 21 is only used in the proof of
Lemma 22 but it is stated here in order to emphasize how the heaps
can be safely composed.

Lemma 21 (Composition). Let f be a valuation, h be an X-well-
formed heap with {0} ⊆ X ⊆ [0,K], i ∈ [1,K] \ X with
i > max (X), and h′ be a disjoint heap such that:

1. h |=f imin(u) ∧ isoloc(u),
2. h′ |=f localvali(u),
3. h ] h′ |=f wfhX∪{i} ∧ imin(u) ∧ llpi(u).

Then, spect(h ] h′) = spect(h) ] ispect(h′).

The proof of Lemma 21 is quite combinatorial and this is the place
where we check that the original heap cannot be confused with
the valuation heap (and the other way around). It is important to
guarantee, as the proof does, that adding a new part of the valuation
does not destroy what has been built so far.

5.4 A reduction from DSOL into 1SL2(−∗)
Below, we define a translation from a sentence φ in DSOL into
a sentence in 1SL2(−∗) that uses only logspace. Without any loss
of generality, we assume that (1) two occurrences of quantified
variables in φ have distinct variable indices (e.g., P4 and u4 cannot
both occur in φ and “∀ u4” cannot occur more than once) and (2)
if ∃ ui ψ1 is a subformula of ∃ uj ψ2, then i > j and this holds
for any combination of first-order/second-order variables. We may
rename variables so that these conditions are satisfied. We assume
that the variable indices are among [1,K].

The translation of the formula φ, written T(φ), first applies
a top-level translation ttop(·) which takes care of initializing the
valuation heap; then, a recursive map t(·) is applied. So, T(φ) def

=
ttop(φ) where ttop(φ) is defined as follows:

ttop(φ)
def
= ∃ u isoloc(u) ∧ (localval0(u)

¬−∗ (wfh{0}∧

imin(u)∧(∀ u ((u 6= u)∧¬lrp0(u))⇒ (]u < ]u))∧t({0}, φ)))
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l l′

Figure 3: How the translation of Pi(uj , uk) works (j < i < k): (l, l′) ∈ Vh(Pi).

The first step of the translation consists in adding 0-parentheses
so that the heap that evaluates t({0}, φ) is {0}-well-formed. The
recursive map t(·) is inductively defined as follows (X ⊆ [0,K],
ψ subformula of φ):

• t(X, ·) is homomorphic for Boolean connectives,

• t(X, ui = uj)
def
= ∃ u oni(u) ∧ onj(u),

• t(X, ui ↪→ uj)
def
= ∃ u ∃ u (oni(u) ∧ onj(u) ∧ u ↪→ u),

• t(X, Pi(uj , uk))
def
= ∃ u (onj(u) ∧ ∃ u (u ↪→ u ∧ vindi(u) ∧

∃ u (]u = ]u+ 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ onk(u))))).
• For the quantifier ∃ ui, we choose l and l′ such that l is the index

of the left 0-parenthesis and l′ is an isolated location. We con-
struct a new heap that is a local i-valuation while enforcing that
the index of the left 0-parenthesis is preserved and l′ becomes
the index of the unique large left i-parenthesis (see Lemma 21).
t(X, ∃ ui ψ)

def
=

∃ u ∃ u ((imin(u) ∧ isoloc(u)) ∧ (localvali(u)
¬−∗

(wfhX∪{i} ∧ imin(u) ∧ llpi(u) ∧ t(X ∪ {i}, ψ))))

• The translation with second-order variables is analogous (the
formula localvali(u) is actually defined differently, see the
proof of Lemma 17): t(X, ∃ Pi ψ)

def
= ∃ u ∃ u ((imin(u) ∧

isoloc(u)) ∧ (localvali(u)
¬−∗ (wfhX∪{i} ∧ imin(u) ∧

llpi(u) ∧ t(X ∪ {i}, ψ)))).

Every subformula t(X,ψ) has no free variable from fr(ψ) ⊆ X
where fr(ψ) denotes the set of variable indices in ψ from either
first-order or second-order free variables. As noted by one anony-
mous referee, a standard trick is to convert first-order variables into
second-order ones so that the proof has only to deal with one type of
variable. Herein, we do not quite eliminate first-order variables but
we provide a uniform treatment for first-order quantifications and
second-order quantifications, which essentially amounts to dealing
with a single type of encoding.

Below, we state the correctness lemma that allows us to get
Theorem 23.

Lemma 22. Let φ be a DSOL sentence of the above form, ψ be
one of its subformulae and (fr(ψ) ∪ {0}) ⊆ X ⊆ [0,K]. Let
h = hB ] hV be a X-well-formed heap and Vh be the valuation
extracted from h. Then, hB |=Vh ψ iff h |= t(X,ψ).

Here is the main result of the paper.

Theorem 23. For every sentence φ in DSOL, for every heap h, we
have h |= φ iff h |= T(φ), so WSOL and 1SL2(−∗) have the same
expressive power.

Observe that T(φ) can be computed in logspace (to do this, one
must check the size of all the formulae built in the proofs). So, the
restriction to two variables does not reduce the expressive power,
unlike restrictions in [14], for instance.

We get the ultimate undecidability result below (no separating
conjunction, two quantified variables, one record field).

Corollary 24. Satisfiability problem for 1SL2(−∗) is undecidable.

The absence of program variables in 1SL2(−∗) makes the proof
of Corollary 24 even more difficult to design, which is perfect
to obtain the sharpest undecidability result. An expressivity result
with program variables is briefly presented in Section 5.5.

It is also possible to establish the following consequences.

Corollary 25. (I) Let φ be a sentence in 1SL. There is an equivalent
sentence in 1SL2(−∗) of polynomial size in the size of φ. (II)
1SL2(−∗) is strictly more expressive than 1SL(∗).
Corollary 25(II) follows from Theorem 23 and 1SL(∗) is strictly
less expressive than MSO [1, Corollary 5.3].

Our main results are Theorem 23 and Corollary 24, significantly
improving previously known results (see the figure in Section 1).
As far as the translation into 1SL2(−∗) is concerned (see the current
section but it uses in essential ways the formulae of Section 4),
the lack of variables is partially compensated by the introduction
of the parentheses in order to constrain sufficiently the valuation
heap. More importantly, we have shown that this is a viable solution
in 1SL2(−∗) despite only having two variables (see the proof of
Lemma 21). This was not at all clear at the outset, and of course,
in view of the complexity of the final proof, this led to lengthy
arguments to show correctness of the whole enterprise.

5.5 Adding an unbounded number of program variables
We consider 1SL with program variables, which is a strict extension
of 1SL and therefore undecidability for 1SL2(−∗) is still valid in
the presence of program variables. Let PVAR = {x1, x2, . . .} be a
countably infinite set of program variables. A memory state is a
pair (s, h) such that s : PVAR → N and h is a heap. Formulae of
1SL with program variables are built from expressions of the form
e ::= x | u where x ∈ PVAR and u ∈ FVAR, and atomic formulae
of the form π ::= e = e′ | e ↪→ e′. Formulae are defined by
φ ::= π | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ | ∃ u φ, where u ∈ FVAR.
A valuation is a map f : FVAR → N. The satisfaction relation |= is
extended as follows:

• (s, h) |=f e = e′ iff [e] = [e′], with [x]
def
= s(x), [u]

def
=

f(u). Obviously, program variables can be understood as free
quantified variables interpreted rigidly.
• (s, h) |=f e ↪→ e′ iff [e] ∈ dom(h) and h([e]) = [e′].
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The satisfiability problem takes as input a sentence from 1SL with
program variables, in which the only free variables are program
variables. The version of DSOL with program variables is defined
similarly when models are memory states.

Theorem 26. There is a translation T such that for every sentence
φ in DSOL with program variables, the sentence T(φ) in 1SL2(−∗)
with program variables (of polynomial-size in the size of φ) is such
that for all (s, h), we have (s, h) |= φ iff (s, h) |= T(φ).

Actually, the translation T is defined as a variant of the one in
Section 5.4 that takes into account program variables. The variant is
pretty natural since program variables do not require any encoding.
For instance, the map t(·) is extended as follows (more details in
the proof of Theorem 26): t(X, ui = x)

def
= ∃ u (oni(u) ∧ u = x)

and t(X, ui ↪→ x)
def
= ∃ u (oni(u) ∧ u ↪→ x).

Extension with k record fields So far, memory cells have a unique
record field but it is possible to extend our results to k > 1 record
fields, along the lines of [7, Section 7]. Let kSL2(−∗) be the logic in
which heaps are partial functions h : N ⇁ Nk with finite domain
and atomic formulae include uj

i
↪→ uj′ (i ∈ [1, k]); kWSOL and

kDSOL are defined similarly. One can show that every sentence in
kDSOL has an equivalent sentence in kSL2(−∗). To do so, we need
to adapt the definitions from Sections 3 and 4 so that memory cells
involved in the valuation heap are relevant only with respect to

1
↪→

(and comparing numbers of predecessors is performed only with
respect to

1
↪→). Details are tedious because many notions need to be

redefined relatively to
1
↪→ but the encoding of valuations is based

on the same general principles as for 1SL2(−∗).

6. Conclusion
We have shown that 1SL2(−∗) is as expressive as weak second-
order logic on concrete heaps (Theorem 23). As a consequence, the
satisfiability problem for 1SL2(−∗) is undecidable (Corollary 24)
and we have identified the undecidable core of separation logic,
apart from illustrating further the power of separating implication
when interpreted on concrete heaps. We only use two variables, and
our results also exclude separating conjunction, which is quite re-
markable in view of the restricted number of variables. As far as
the proofs are concerned, we used first principles from [7] but we
had to provide non-trivial adaptations to fit the restricted fragment
1SL2(−∗). However, this illustrates the robustness of those princi-
ples since they could be applied by using the proof techniques de-
veloped in the present paper. Other semantical variants are possible
and will be the subject of future work.
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