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1 Problem Statement

System specification formalisms should come with suitable property specification
languages and effective verification tools. We sketch a framework for the verifi-
cation of quantified temporal properties of systems with dynamically evolving
structure. We consider visual specification formalisms like graph transformation
systems (GTS) where program states are modelled as graphs, and the program
behaviour is specified by graph transformation rules. The state space of a GTS
can be represented as a graph transition system (GTrS), i.e. a transition system
with states and transitions labelled, respectively, with a graph, and with a partial
morphism representing the evolution of state components. Unfortunately, GTrSs
are prohibitively large or infinite even for simple systems, making verification
intractable and hence calling for appropriate abstraction techniques.

2 State-of-the-art in GTS Logics

After the pioneering works on monadic second-order logic (MSO) [7], various
graph logics have been proposed and their connection with topological properties
of graphs investigated [8]. The need to reason about the evolution of graph
topologies has then led to combining temporal and graph logics in propositional
temporal logics using graph formulae as state observations (e.g. [4]). However,
due to the impossibility to interleave the graphical and temporal dimensions
it was not possible to reason on the evolution of single graph components. To
overcome this limitation, predicate temporal logics were proposed (e.g. [2, 16]),
where edge and node quantifiers can be interleaved with temporal operators.

More recent approaches [2] propose quantified µ-calculi combining the fix-
point and modal operators with MSO. These logics fit at the right level of
abstraction for GTSs, allowing to reason on the topological structure of a state,
and on the evolution of its components. We refer to § 8 of [11] for a more complete
discussion. Unfortunately, the semantical models for such logics are less clearly
cut. Current solutions are not perfectly suited to model systems with dynamic
structure, where components might get merged [2, 16], or (re)allocated [2]. These
problems are often solved by restricting the class of admissible models or by
reformulating the state transition relation, hampering the meaning of the logic.
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3 State-of-the-art in GTS Verification

Various approaches have been proposed for the verification of GTSs, often adopt-
ing traditional techniques (e.g. model checking) to the area of graph transforma-
tion. We mention two research lines that have integrated the proposed techniques
in verification tools, namely GROOVE [5, 12, 15, 17] and AUGUR [1–4, 13]1.

The model checking problem for GTSs is in general not decidable for reason-
ably expressive logics, since GTSs are Turing complete languages. Pragmatically,
GTSs are often infinite-state and it is well known that only some infinite-state
model checking problems are decidable. Several approximation techniques in-
spired to abstract interpretation have thus been proposed, the main idea being to
consider a finite-state system approximating an infinite-state one. In order to be
meaningful, those approximations may be related with the original systems via be-
havioural relations. The above mentioned research lines developed approximation
techniques: namely neighbourhood abstractions [5], and unfoldings [1–4].

4 Current Contributions

In [10, 11] we introduced a novel semantics for quantified µ-calculi. We defined
counterpart models, generalizing GTrSs, where states are algebras and the evo-
lution relation is given by a family of partial morphisms. One of the main
characteristics of our approach is that formulae are interpreted over sets of pairs
(w, σw), for w a state and σw an assignment from formula variables to components
of w. This allows for a straightforward interpretation of fixed points and for their
smooth integration with quantifiers, which often asked for a restriction of the class
of admissible models. Our proposal avoids the limitations of existing approaches,
in particular in what regards merging and name reuse. Moreover it dispenses
with the reformulation of the transition relation, obtaining a streamlined and
intuitive semantics, yet general enough to cover the alternatives we are aware of.

In [14] we presented a first step towards a tool support for our approach, prepar-
ing the ground for an efficient tool framework. We first presented a Maude [6]
implementation of graph rewriting as conditional rewrite rules on object multisets.
Then we introduced a prototypal model checker for finite counterpart models.
Our tool allows to analyze the evolution of individual components, and, as far as
we know, it is one of the few model checkers for quantified µ-calculi.

Finally, [9] proposes a general formalization of similarity-based counterpart
model approximations, and a technique for approximated verification exploiting
them. We extended and generalized in several directions the type system of [4],
proposed within the unfolding technique to classify formulae as preserved or
reflected by a given approximation: (i) our type system is technique-agnostic,
meaning that it does not require a particular approximation technique; (ii) we
consider counterpart models, a generalization of GTrSs; (iii) our type system is
parametric with respect to a given simulation relation (while the original one

1 See groove.cs.utwente.nl and www.ti.inf.uni-due.de/research/tools/augur2.



considers only those with certain properties); (iv) we use the type system to
reason on all formulae (rather than just on closed ones); and (v) we propose a
technique that exploits approximations to estimate properties more precisely,
handling also part of the untyped formulae.
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