
A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS

MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Abstract. Complex systems, be they natural or synthetic, are ubiquitous. In particular, com-

plex networks of devices and services underpin most of society’s operations. By their very

nature, such systems are difficult to conceptualize and reason about effectively. The concept of
layering is widespread in complex systems, but has not been considered conceptually. Noting

that graphs are a key formalism in the description of complex systems, we establish a notion

of a layered graph. We provide a logical characterization of this notion of layering using a
non-associative, non-commutative substructural, separating logic. We provide soundness and

completeness results for a class of algebraic models that includes layered graphs, which give
a mathematically substantial semantics to this very weak logic. We explain, via examples,

applications in information processing and security.

1. Introduction

Complex systems, be they natural or synthetic, are ubiquitous. In particular, complex networks
of devices and services underpin most of society’s operations. By their very nature, such systems
are difficult to conceptualize and reason about effectively.

One seemingly natural notion, which helps to manage complexity and which is commonly
found in discussions of complex systems, is that of layering: the system is considered to consist of
a collection of interconnected layers that have distinct, identifiable roles in the overall operations
of the system.

Examples of systems that are naturally layered include the IP stack, many computer and infor-
mation security architectures, and transport infrastructure systems. Layers can be informational
or physical, and a given system may combine both kinds. For example, a transport system might
be considered to have an infrastructure layer (e.g., roads, railway lines), a timetable layer (e.g.,
buses and trains arriving/departing given locations in the infrastructure), and a social layer (e.g.,
the groupings and movements of people enabled by the transport services).

To understand and reason about complex systems, we typically seek to construct mathematical
models. A number of approaches are possible, and the literature is vast. Many techniques draw
upon mathematical analysis and the theory of (possibly stochastic) differential and integral equa-
tions. Other techniques employ discrete event simulation tools. In neither of these literatures has
the concept of layering been drawn out and studied explicitly, although it is widely used implicitly.
In both approaches, the primary focus tends to be on the dynamics of the systems being studied.

To understand the concept of layering, it is necessary to have an approach to modelling that
makes explicit the structural, as well as the dynamic, aspects of systems. In recent work, some of
us have developed a compositional approach to mathematical systems modelling that is based on
concepts of process (capturing the services delivered by the system as well as its overall evolution),
resource, location, and environment and which uses mathematical techniques from process algebra,
logic, and probability theory [13, 11, 14, 12]. Associated with this work is a tool, Core Gnosis
[14, 12], which implements these concepts rather closely, and which has been employed in a wide
range of industry-based studies [12], most of which are security-related.

Underpinning this work are two semantic judgements,

L,R,E
a−→ L′, R′, E′ and L,R,E � φ ,(1)

where L denotes location, R denotes resource, E denotes a process, a denotes an action (part of
a process), and φ is a logical formula (in a modal substructural logic [13, 11, 12]).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/20345172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

The first judgement is read as ‘the process E evolves by action a with respect to resources R at
location L to become the process E′ executing with respect to resources R′ at location L′’. The
second is read, in the style of Hennessy-Milner logic [27, 12], as ‘property φ holds of process E
executing with respect to resources R at location L’.

Here the concept of layering forms part of the model of location. In [11, 12], the required
properties of a model of location are described axiomatically, but leading examples are given by
various (directed) graph-theoretic constructions. There is very little work in the literature on
layering in graphs. Notable exceptions are [36, 19, 37], which give direct definitions that are
essentially examples of what we shall identify as a special kind of layered graph amounting to the
intuitive notion of a ‘stack’. Another exception is found [23, 24], in which graphs are replicated to
form layered structures that can be understood as stacks. In [6, 29], multiple layers are considered
to be given by multiple relations over a single set of nodes. Various more applied studies (e.g., [46]
or many papers on network architectures) consider notions of layered models, typically without
defining formally the concept of layering. It seems, however, that the key idea is to start with
what it means for one graph (upper) to be layered over another (lower) graph, and for resources
to flow from the upper graph to the lower one. Notions of layering appear to occur naturally
in situations in which there are epistemic considerations on states of worlds; for example, with
information sets in extensive game theory [5].

In this paper, we consider, in Section 2, what should be meant by a layered graph. In Section 3,
we use techniques from bunched logic [35, 41, 20] to give a logical characterization of layering that
uses ‘separating connectives’, in the sense of [44], to describe how properties of layers combine
to give properties of the overall graph. This characterization makes use of a non-commutative,
non-associative separating conjunction (and its associated implications). In Section 4, we set up a
basic algebraic semantics for this logic, building on ideas from [17, 18]. We show that the class of
models we employ includes the graphs considered in Section 2, and so establish a mathematically
substantial semantics for this very weak logic.

Our logic is related to the system DW considered by Read [42], in which the multiplicative
(intensional) conjunction (corresponding to the multiplicative bunching operation) is commutative
and in which the multiplicative (intensional) implications — handed versions of linear implication,
as present in Girard’s Linear Logic [22], O’Hearn and Pym’s BI [35], and Lambek’s systems
[30, 31, 32, 33] — that are naturally present in our system are absent. Read considers a hierarchy
of extensions of DW, including axioms for associativity and many stronger structural properties.
Read’s hierarchy recovers the hierarchy of relevant systems [1, 2, 42, 43] up to Anderson and
Belnap’s R and classical logic itself. Just as in these systems, we work with a classical negation,
deferring consideration of weaker systems of negation to another occasion.

Layering need not be defined in one direction only: it may be that two graphs are layered over
each other. In modelling terms, this would mean that whilst it remains useful to separate the two
layers, resources can flow both up and down. To this end, in Section 5, we establish a notion of
‘bi-layering’ that is consistent with our basic notion of layering. As an example, we recover the
underlying structural concept of the definition of a layered graph given in [36] (we don’t consider
weighted edges, but do consider directedness, and do permit edges within layers). We also consider
an important special case of layering, amounting to the intuitively understood notion of stacking.
In Section 6, we consider logical characterizations of bi-layering and stacking.

To illustrate applicability, Section 7 considers three examples in detail which show how the logic
can be used to detail practical problems. To facilitate giving the presentation of these examples,
we enrich (informally) our logical language with some basic action modalities, with the evident
intended semantics. More generally, this extension can be developed either in the style of dynamic
logic [25] or in the Hennessy-Milner-style mentioned above [34, 12]. Both are beyond the scope
of this paper and are deferred to another occasion. In computer science, motivated by the study
of semi-structured data, Cardelli et al. [9] — in work that is similar to earlier work of Courcelle
[15], with expressiveness and complexity studied by Dawar et al. [16] — have considered ‘a spatial
logic for querying graphs’. This logic is spatial in the sense that its multiplicative conjunction is
interpreted as a composition of graphs, but this conjunction is both associative and commutative,
and so not a candidate for a natural account of layering. Reynolds’ Separation Logic [44], Ishtiaq

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 3

and O’Hearn’s Pointer Logic [28], and Gordon and Cardelli’s Ambient Calculus [10] all employ
constructs for spatial, graph-like models that are both associative and commutative. A comparison
of all of these approaches with our work would be substantial further work and is beyond our
present scope.

The first of our examples is the IP stack, where we use the logic to consider how an email
message is sent from one user to another, as shown in Figure 1. When an email is sent, a user
perceives the message as moving directly through the Client Layer. In practice the message moves
into the IP layer, being split into packets and sent over the internet before being combined and
displayed. Note that in Figure 1, Figure 3, and the corresponding and similar graphs in Section 7,
we draw explicitly only the vertices, edges and associated actions that are relevant to the situation
being described.

Figure 1. Email Clients and Servers in the IP Stack

Actions occur along edges as illustrated. In the Client Layer, for example, we have two vertices
connected by an edge along which the send action can execute. In addition to send there are
additional actions relating to the splitting, sending and reconstitution of the message. After
logically describing properties that must hold as a result of these actions, we are able, using the
layering conjunction, to show how the formulae combine to allow the sending of an email.

The second example is a security example about access control, using the layering conjunction
to investigate avoiding a security barrier (see Bruce Schneier’s website for a photograph). This
scenario is shown in Figure 2 where an attempt at access control is being undermined by the
missing part of the fence. We are able to capture the circumstances where a road user may pass
through the barrier as intended, or avoid the security check and bypass the barrier by moving to
another layer. In both cases the vehicle will be inside the barrier whether permitted or not. The
use of the logic in this example means that we can construct a formula to succinctly represent the
security flaw.

!
! outside!road!

inside!road!

security!barrier!

missing!fence!

route!of!vehicle!

Figure 2. Security Barrier

The final example is also based on security, discussing flaws in the security policy of an organi-
zation. Consider an organization wishing to segregate data into secure and general partitions of

4 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

their computer network, as shown in Figure 3. Policies can be written in an attempt to enforce
this intention but they may be inadequate given the usage of mobile storage devices.

Mobile Storage Layer

Network Layer

General Network Secure Network

Terminal 1 Terminal 2 Terminal 3 Terminal 4

Location 1 Location 2

Figure 3. Data Segregation and Mobile Storage Graph

Mobile storage devices introduce an additional layer within the organizational structure and it is
this additional layer that could lead to a breach of security policy. Secure data can be copied from
the Secure Network, moved through the Mobile Layer and uploaded into the General Network.
This example makes use of the implications associated with the conjunction meaning that we can
determine situations that may lead to the security policy being violated.

In all examples, the non-commutativity and non-associativity of the conjunction plays a key
role. Judgements stem from the way in which graphs combine to form layers and depend on
properties specific to a given layer. Commutativity in particular would make it very difficult to
consider any of the natural examples.

In Section 8 we establish soundness and completeness for the class of models introduced in
Section 4 and conclude, in Section 9, with a section that establishes some basic proof theory for
the logic. We give a sequent calculus and natural deduction system, showing their equivalence for
provability. We also give a display calculus and use this to establish cut-elimination.

Note that many of the results contained in this paper have proofs that are simple consequences
of the chosen definitions, or of a well-known form; such proofs have been omitted.

2. A Layered Graph Construction

Standard graph-theoretic notions are used throughout this paper. All graphs are assumed to
be directed. For any graph G, let V (G) be the set of vertices of G, E(G) be the set of edges of G,
and Sg(G) be the set of subgraphs of G. The notation H v G means H ∈ Sg(G).

We are often interested in situations in which we are given a graph G and a distinguished set
of edges E of G, and we then consider properties of the set of subgraphs of G. In such a situation,
we often refer to G as the ambient graph and E as the distinguished edge set. Let G1 and G2 be
any two subgraphs of G. The notation G1 E G2 is used to signify the fact that G2 is reachable
from G1 via an edge of E . The notation 6 E is the complement of the relation E . Let G1 and
G2 be any two such subgraphs. Write G(G1, G2) for the set of edges of the ambient graph that
connect any vertex of G1 to any vertex of G2. Define G[G1, G2] = G(G1, G2) ∪ G(G2, G1).

We make use of partially-defined functions and expressions throughout. The notationX ↓means
that a given expression X defines a value; the notation X ↑ means that it is undefined. Kleene
equality will also be used: for any two (comparable) expressions X and Y , we write X ' Y to
mean that either X and Y are both undefined, or that X and Y both define the same value.

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 5

V1	

V2	

V3	

V4	

V5	

W1	

W2	

W3	
W4	

V1	

V2	

V3	

V4	

V5	

W1	

W2	

W3	
W4	

Figure 4. Layer Construction of Example 2.1

Given a graph G and a distinguished set of edges E , we define a partial, binary operation

@ : G×G −→ G as follows. For any subgraphs G1 and G2 of G, the value G1 @G2 is defined if and
only if V (G1) ∩ V (G2) = ∅ and G1 E G2 and G2 6 E G1. When defined, G1 @G2 is given by

V (G1 @G2) = V (G1) ∪ V (G2) and E(G1 @G2) = E(G1) ∪ E(G2) ∪ (E ∩ G[G1, G2]).

When G1 @G2 is defined, it gives the (disjoint) union of the graph arguments, together with the
edges of E between G1 and G2. The definition of this operator is relative to the given ambient
graph G and distinguished set of edges E . Where the distinguished set of edges E needs to be
emphasized we write @E and we say that a graph G is layered if G = G1 @G2, for some G1, G2.

Example 2.1. Let 1 ≤ k ≤ m,n. Let G1 and G2 be graphs with V (G1) = {v1, . . . , vm}, V (G2) =
{w1, . . . , wn} and V (G1)∩V (G2) = ∅. Consider the set of pairs S = {(vi, wi) | 1 ≤ i ≤ k}. Define
a set of distinguished, directed edges E to be given by the set of pairs S: that is, the source of each
edge takes the form vi and the target takes the form wi for some 1 ≤ i ≤ k. Let G be the graph
with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E. Then G1 @G2 is defined (with
respect to G and E) and G1 @G2 = G. This construction is shown in Figure 4 for m = 5, n = 4.

We say that a pair (G, E) is a scaffold if it has at least one pair of subgraphs G1, G2 with
G1 @G2 defined. Scaffolds are intended to highlight the ambient graph structure and edge set
that may generate a particular layered graph. Different combinations of graphs and edges can
produce different occurrences of layered graphs. The following result is immediate:

Proposition 2.2. Let G be a graph, and E a set of edges of G. Then (G, E) is a scaffold if and
only if there is a pair of vertices v, w of G with an edge of E from v to w, but no edge of E from
w to v.

Proposition 2.3. Let (G, E) be a scaffold, and G1, G2 be subgraphs of G.

(1) There is neither a left-unit, nor a right-unit for the operation @.
(2) The value G1 @G1 is not defined, so the operation @ is not idempotent (up to Kleene

equality, ').
(3) The operation @ is not commutative (up to Kleene equality). Moreover, if G1 @G2 is

defined, then G2 @G1 is not defined. We say that this makes @ contra-commutative.
(4) If G1 v G′1 and G2 v G′2, and G1 @G2 and G′1 @G′2 are both defined, then G1 @G2 v

G′1 @G′2.

Proof. (1) A left-unit I would need to have I @O = O, where O is the empty graph, but
I @O is undefined. Similarly, no right-unit can exist.

6 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

(2) No subgraph can be disjoint from itself.
(3) If G1 @G2 is defined, then there is an edge of E from G1 to G2, so that G2 @G1 cannot

be defined.
(4) Under the given conditions: V (G1 @G2) = V (G1)∪V (G2) ⊆ V (G′1)∪V (G′2) = V (G′1 @G′2)

and E(G1 @G2) = E(G1)∪E(G2)∪ (E ∩G[G1, G2]) ⊆ E(G′1)∪E(G′2)∪ (E ∩G[G′1, G
′
2]) =

E(G′1 @G′2).
�

The notion of one graph being layered over another, and the applications that we pursue,
suggest that the corresponding graph-theoretic definition should be directed. Thus, when we
compose two graphs to form a layered graph, the composite should retain the directedness. We
therefore seek a composition operation that is non-commutative. Proposition 2.3(3) shows that
the scaffold definition (together with the definition of @) is sufficient to give such a composition,
based on a simple idea of graph union. Note also that if a pair (G, E) is not a scaffold, then the
operation @ is uninteresting since it is undefined on all arguments.

The operation @ is not necessarily associative, as the following example shows:

Example 2.4. Let G be the graph defined by V (G) = {t, u, v, w} and E(G) = {(t, v), (u,w)}. Let
E = E(G). Let G1, G2, G3 be the subgraphs of G defined by V (G1) = {t, u}, V (G2) = {v} and
V (G3) = {w}. Then (G, E) is a scaffold and (G1 @G2) @G3 is defined, but G1 @(G2 @G3) is
undefined.

Let G be a graph, and let E be a distinguished edge set. Let G̃ be a new graph, and let Ẽ be

a new distinguished set of edges as follows. Let V (G̃) = V (G). Let Ẽ be the set of edges formed
by taking each edge of E and swapping its source and target vertices, that is, by reversing its

direction. Let E(G̃) = (E(G) \ E) ∪ Ẽ . Thus G̃ is formed by simply reversing all arrows of E . For

any subgraph G of G, let G̃ be the subgraph of G̃ formed by reversing all edges of E that lie in G.
Further to the contra-commutativity of the graph composition, @, we have:

Proposition 2.5. If the pair (G, E) is a scaffold, then (G̃, Ẽ) is also a scaffold. Let G1, G2 be

subgraphs of G. Then G1 @G2 is defined with respect to the scaffold (G, E) iff G̃2 @ G̃1 is defined

with respect to (G̃, Ẽ).

3. A Logic of Layered Graphs

We define a logical language, LGL, for expressing layering properties of graphs, and give an
interpretation that uses the layered graph composition of the previous section. A different logic for
graphs, with a separating (but associative and commutative) conjunction has also been explored
in [9, 16].

Assume a set Atoms of atomic propositions, ranged over by p. The set, Formulae, of all
propositional formulae is generated by the following grammar:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ� φ | φ−−�φ | φ�−−φ .

The connectives above are the standard (classical additive) logical connectives, together with
multiplicative conjunction, �, and implications −−�,�−−. We define ¬φ as φ→ ⊥.

A Hilbert-type logical calculus, LGLH, is given by the system of axioms and rules in Table 1.
This system is closely related to the logic known as Boolean BI (BBI) [41] that features a com-
mutative multiplicative fragment and an additive fragment with classical negation.

Proposition 3.1. The following rule is derivable in LGLH:

η ` φ φ ` ψ
η ` ψ

(Cut).

The proof is a short derivation using rules 11, 9 and then 10. Further structural properties (for
example, idempotence, commutativity and unit laws) for the additive conjunction, ∧, and unit,
>) are also derivable.

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 7

1. φ ` φ 2. φ ` >

3. ⊥ ` φ 4. (φ→ ⊥)→ ⊥ ` φ

5.
η ` φ η ` ψ
η ` φ ∧ ψ

6.
φ ` ψ1 ∧ ψ2

φ ` ψi
(i = 1, 2)

7.
η ` ψ φ ` ψ
η ∨ φ ` ψ

8.
φ ` ψi

φ ` ψ1 ∨ ψ2
(i = 1, 2)

9.
η ∧ φ ` ψ
η ` φ→ ψ

10.
η ` φ→ ψ η ` φ

η ` ψ

11.
φ ` ψ

η ∧ φ ` ψ
12.

ξ ` φ η ` ψ
ξ � η ` φ� ψ

13.
η � φ ` ψ
η ` φ−−�ψ

14.
ξ ` φ−−�ψ η ` φ

ξ � η ` ψ

15.
η � φ ` ψ
φ ` η�−−ψ

16.
ξ ` φ�−−ψ η ` φ

η � ξ ` ψ

Table 1. The Hilbert-type Logical Calculus LGLH

(G, E), G �E > for all G

(G, E), G �E ⊥ for no G

(G, E), G �E p iff G ∈ V(p)

(G, E), G �E φ ∧ ψ iff (G, E), G �E φ and (G, E), G �E ψ

(G, E), G �E φ ∨ ψ iff (G, E), G �E φ or (G, E), G �E ψ

(G, E), G �E φ→ ψ iff (G, E), G �E φ implies (G, E), G �E ψ

(G, E), G �E φ1 � φ2 iff there exist G1, G2 such that G = G1 @E G2

and (G, E), G1 �E φ1 and (G, E), G2 �E φ2

(G, E), G �E φ−−�ψ iff for all H, G@E H↓ and (G, E), H �E φ implies (G, E), G@E H �E ψ

(G, E), G �E φ�−−ψ iff for all H, H @E G↓ and (G, E), H �E φ implies (G, E), H @E G �E ψ

Table 2. The Satisfaction Relation for LGL

Given a scaffold (G, E) and a valuation V : Atoms −→ P(Sg(G)), where P is the powerset
operator, the language can be given a semantics on the set of subgraphs of G. The satisfaction
relation is �E ⊆ Sg(G)× Formulae. The definition of the satisfaction relation is given in Table 2.
Note that the clauses for �, −−�, and �−− make use of the graph composition @E , and that this is

8 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

specific to (G, E).
Let JφK = {G | G �E φ}, for every proposition φ. This defines an interpretation function

J−K : Formulae −→ P(Sg(G)). Again, this is all relative to (G, E) and V, and we suppress these in
the notation for JφK when they are clear from the context. With this definition, it is easy to check
that the following properties hold for all φ, ψ, and ξ:

Jφ ∧ ψK ⊆ JξK iff JφK ⊆ Jψ → ξK

Jφ� ψK ⊆ JξK iff JφK ⊆ Jψ−−� ξK iff JψK ⊆ Jφ�−− ξK .
These relationships underpin the adjointness relations for the implications →, −−� and �−−. We
explore generalizations of this form of interpretation in Section 8.

Fix a scaffold (G, E), and consider an instance of the satisfaction relation of the form (G, E), G �E
φ1 � φ2, where G is a subgraph of G. This means that G can be decomposed into subgraphs G1

and G2, that is G = G1 @E G2, such that G1 satisfies φ1 and G2 satisfies φ2. The asymmetry of
the composition operator, with edges from the component G1 of G to the component G2, means
that it is reasonable to regard G1 as ‘layered over’ G2, with respect to the ambient structure
(G, E). This leads to the following logical characterization of what it means for one subgraph to
be layered over another.

Let G be a subgraph of a given scaffold (G, E). If (G, E), G �E >�>, then we can also express
the fact that G is layered (with respect to (G, E)) as a logical formula. Note that G is layered if
and only if there are G1 and G2 with G = G1 @E G2. If G1 and G2 are any two such witnesses,
then we say that G1 is layered over G2.

This definition allows there to be more than one layering of a particular subgraph over others
within one ambient scaffold. For example, suppose that V (G) = {v1, v2, v3}, V (Gi) = {vi} for
i = 1, 2, 3, E consists of an edge from v1 to v2 and an edge from v1 to v3, and E(G) = E . In this
case, we have both G1 @E G2 and G1 @E G3 defined.

Let (G, E) be an arbitrary scaffold, and let G1 and G2 be a particular pair of subgraphs. Let
φ1 be an atomic proposition valued such that (G, E), G �E φ1 iff V (G) = V (G1), and let φ2 be an
atomic proposition valued such that (G, E), G �E φ2 iff V (G) = V (G2), for all subgraphs G of G.
Then Jφ1 � φ2K ⊆ J¬(φ2 � φ1)K because of the contra-commutativity of @.

4. Algebraic Structures and Interpretations

The algebraic semantics of LGL has much in common with the approaches taken in [33, 4,
17, 18, 41, 20]. For brevity, where possible, we use the same name for mathematical structures
and their carrier sets. If ◦ is any (partial), binary operation with an infix notation, then, for
any element x of the corresponding carrier set, we write − ◦ x and x ◦ − for the evident unary
operations formed by fixing one argument with the particular element x.

A layered algebra is a structure (A,∧,¬,>,�,−−�,�−−), where A is the carrier set. The letters
A,B,C are used to range over the elements of A. The operations ∧, ¬, and > are required to
define a Boolean algebra on A, and are the standard notations for meet (binary infimum), Boolean
complement, and > (the global supremum), respectively, with the operations ∨, → and ⊥ defined
in the usual way. The partial order ≤ on A is defined as usual by: A ≤ B iff A = A ∧ B, for all
A,B ∈ A.

The evident variant of the logic with intuitionistic additives would be defined by replacing the
requirement that the operations ∧, ¬, and > define a Boolean algebra on A with the requirement
that a set of operations ∧, ∨, >, ⊥, and → form a Heyting algebra on A.

The symbols �, −−�, and �−− stand for binary operations. These operations are required to
satisfy the following axioms, for all A,A′, B,B′, C:

• If A ≤ A′ and B ≤ B′, then A�B ≤ A′ �B′;
• A�B ≤ C iff B ≤ A−−�C iff A ≤ B�−−C.

These properties can be stated equivalently in category-theoretic language, as follows:

• The operation � is a bifunctor;
• A−−�− is right-adjoint to the functor A�− for all A ∈ A;

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 9

• A�−−− is right-adjoint to the functor −�A for all A ∈ A.

This gives a pair of distinguished monoidal closed structures on the poset (regarded as a category).
Adapting terminology from [17, 18], a layered magma is a structure (M, •) with a partial binary

operation • on a carrier set M. The operation is said to be contra-commutative if, for all m,n ∈M,
if m • n is defined then n •m is undefined.

Proposition 4.1. Every scaffold (G, E) gives rise to a layered magma M(G, E). In this case, the
distinguished operation • is contra-commutative.

Proof. The carrier set ofM(G, E) is taken to be Sg(G). The distinguished operation is defined by
G • H ' G@H, for all G,H ∈ Sg(G). The contra-commutativity property for the operation @
was noted in Proposition 2.3. �

Proposition 4.2. Every layered magma M generates a layered algebra A(M).

Proof. The carrier set of A(M) is taken to be the powerset of the carrier of M. The bifunctor �
is defined for all subsets A and B of M by A � B = {a • b | a ∈ A , b ∈ B , a • b is defined}.
Since powersets are always complete Boolean algebras, the rest of the structure is immediate; in
particular, the existence of the adjoint functors A−−�− and A�−−− for all A ∈M. �

In particular,

A−−�B = {m ∈M | ∀a ∈ A, if m • a is defined, then m • a ∈ B}
A�−−B = {m ∈M | ∀a ∈ A, if a •m is defined, then a •m ∈ B} ,

for all subsets A and B of M.
A valuation (for the logical language of Section 3) is a function V : Atoms −→ A, where A is a

layered algebra. Every valuation in A extends uniquely to an interpretation J−K : Formulae −→ A
in the standard way, that is, by taking it to respect the connectives of the language. In particular,
we have Jφ� ψK = JφK � JψK, Jφ−−�ψK = JφK−−�JψK, and Jφ�−−ψK = JφK �−−JψK.

It follows from Propositions 4.1 and 4.2 that we may interpret the logical language on both
graphs and layered magmas: for a layered magma, M, and valuation V : Formulae −→ A(M)
we can consider J−K : Formulae −→ A(M); for a scaffold (G, E) and valuation V : Formulae −→
A(M(G, E)), one has an interpretation J−K : Formulae −→ A(M(G, E)).

In the case of the interpretation on graphs, we recover the satisfaction definition of Section 3,
using the same valuation to define both: for every subgraph G of the given ambient graph G, and
every formula φ, we have that (G, E), G �E φ iff G ∈ JφK, agreeing with our earlier notation.

5. Bi-layering and Stacking

The notion of layering from above encapsulates an idea of irreversible connectivity from one
zone (layer) to another. However, there are many situations in which zones are recognized as
distinct, but one wants connectivity in both directions whilst recognizing the connections in each
direction as different. In order to study such examples, we now introduce a new graph composition
operator.

Let G be a graph and let 〈E ,F〉 be an ordered pair of finite sets of edges such that E and F are

disjoint. The bi-composition operator, @̂E,F , is a partial, binary operator on the set Sg(G). We
omit the subscripts on the operator where the distinguished sets of edges E and F are unambiguous.
The ambient graph G will always be clear from the context. For all G1, G2 ∈ Sg(G), the expression

G1 @̂G2 is defined just when both G1 @E G2 and G2 @F G1 are both defined. When G1 @̂G2 is
defined, it is given by the vertex and edge sets

V (G1 @̂G2) = V (G1) ∪ V (G2) and E(G1 @̂G2) = E(G1) ∪ E(G2) ∪ ((E ∪ F) ∩ G[G1, G2]) .

We have a bi-scaffold (G, 〈E ,F〉) if there is at least one pair of sub-graphs (G1, G2) such that

G1 @̂G2 is defined.

10 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Example 5.1. This example extends that of Example 2.1. Let 1 ≤ k ≤ m,n, G1, G2 and E be as
before, but in addition require that m ≥ 2k. Consider the set T = {(wi, v2i) | 1 ≤ i ≤ k}, and let F
be the set of directed edges given by T . Then G1 @̂E,F G2 is defined, where G is defined by the same

vertex and edge sets as G1 @̂E,F G2. Figure 5 illustrates this example, again with m = 5, n = 4.

V1	

V2	

V3	

V4	

V5	

W1	

W2	

W3	
W4	

V1	

V2	

V3	

V4	

V5	

W1	

W2	

W3	
W4	

Figure 5. Bi-Layer Construction of Example 5.1

The operator @̂ is not necessarily associative (up to Kleene-equality) because of the definedness
conditions on the operator.

Example 5.2. Let V (Gi) = {vi} for i = 1, 2, 3. Consider the sets of edges defined by the sets
of ordered pairs E = {(v1, v2), (v1, v3)}, F = {(v2, v1), (v3, v2)}. Let V (G) = {v1, v2, v3} and

E(G) = E ∪ F . Then (G1 @̂E,F G2) @̂E,F G3 is defined, but G1 @̂E,F (G2 @̂E,F G3) is not.

Let G1, G2 be subgraphs of some bi-scaffold (G, 〈E ,F〉). If G1 @E G2 and G2 @F G1 are defined,

then G1 @̂G2 is bi-layered with respect to (G, 〈E ,F〉).
For a fixed graph G, and disjoint edge sets E , F observe that if E = ∅ or F = ∅ then there

are no bi-layered subgraphs and (G, 〈E ,F〉) is not a bi-scaffold. There are also many examples in
which both (G, E) and (G,F) are scaffolds but (G, 〈E ,F〉) is not a bi-scaffold.

Example 5.3. Let V (G) = {v1, v2, v3, v4}. Let E = {(v1, v2), (v3, v1)} and F = {(v3, v4)}, and let
E(G) = E ∪F . Let Gi be the single vertex vi for each i = 1, 2, 3, 4. Then G1 @E G2 and G3 @F G4

are both defined, but there are no subgraphs G,H of G with G @̂E,F H defined.

So far we have studied only the construction and decomposition of layered structures with
exactly two layers. However, layered structures occurring in examples often consist of more than

two layers. Unfortunately, the failure of associativity of both @ and @̂ constrains their applicability
when it comes to describing situations with multiple layers. The following proposition highlights
these constraints, motivating the need for the n-ary composite immediately after it. Such a
composite allows instances of multiple layers to be explored.

Proposition 5.4. Let (G, 〈E ,F〉) be a bi-scaffold, and G1, G2 be subgraphs of G. Then:

(1) Both (G, E) and (G,F) are scaffolds;

(2) The bi-composition operator @̂E,F is contra-commutative; that is, if G1 @̂E,F G2 is defined,

then G2 @̂E,F G1 is not;

(3) G1 @̂E,F G1 is undefined;
(4) (G, 〈F , E〉) is a bi-scaffold;

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 11

(5) G1 @̂E,F G2 ' G2 @̂F,E G1.

Let n > 1, let G be a graph and E1, . . . , En−1 be non-empty sets of edges of G. Let the
strong composition @(G1, . . . , Gn) of any subgraphs G1, . . . , Gn of G be defined just when V (Gi)∩
V (Gj) = ∅ for all i 6= j and Ei ⊆ G(Gi, Gi+1) for all i; when it is defined, let

V (@(G1, . . . , Gn)) =
⋃

1≤i≤n

V (Gi) and

E(@(G1, . . . , Gn)) =

 ⋃
1≤i≤n

E(Gi)

 ∪
 ⋃

1≤i≤n−1

Ei

 .

In the case n = 1, it is convenient to define G = @(G). Note that what is being defined here
is an n-ary partial operator. We refer to such n-ary composites as (layered) stacks. Where the
distinguished sets of edges need to be made clear, we use an infix notation of the form

G1 @E1 G2 @E2 . . .@En−2
Gn−1 @En−1

Gn.

Examples of stacks arise in [36, 19, 37].

Proposition 5.5. Let G be a graph, let all Gi below be non-empty subgraphs of G, and all Ei be
non-empty sets of edges of G.

1. Let G1 @E1 . . .@En−1
Gn be defined. Then Gk @Ek . . .@Em−1

Gm is defined, where 1 ≤ k ≤
m ≤ n. That is, if an n-ary strong composite is defined with respect to a sequence of n− 1
edge sets, then the evident (1 +m− k)-ary strong composite is defined for any consecutive
subsequence. In particular, this holds for m = k + 1, so that Gk @Ek Gk+1 is defined.
Moreover,

(2)
G1 @E1 . . .@En−1

Gn =

(Gk0 @E1 . . .@Ek1−1
Gk1) @Ek1

. . .@Ekz−1
(Gkz @Ekz+1

. . .@Ekz+1−1
Gkz+1

)

for all 1 = k0 ≤ k1 ≤ . . . ≤ kz ≤ kz+1 = n and 0 ≤ z ≤ n such that the right-hand-
side ‘partitions’ the sequence from the left-hand-side into consecutive subsequences (each
expression in brackets). Each of the bracketed expressions Gki @Eki+1

. . .@Eki+1−1
Gki+1

on the right-hand-side is intended to be a (1 + ki+1 − ki)-ary composite.
2. Let 1 = k0 ≤ k1 ≤ . . . ≤ kz ≤ kz+1 = n, where 0 ≤ z ≤ n. Let V (G1), . . . , V (Gn) be a

pairwise disjoint family of vertices, and E1, . . . , En−1 be a pairwise disjoint family of non-
empty sets of edges. If the composite Gki @Eki

. . .@Eki+1−1
Gki+1 is defined for all even

0 ≤ i ≤ z, and ki < ki+1 = ki + 1 and Eki ⊆ G(Gki , Gki+1) for all odd 0 ≤ i ≤ z, then
G1 @E1 . . .@En−1

Gn is defined, and Equation (2) holds.

3. If G1 @E1 G2 is defined, then G1 @E1 G2 is defined, and

G1 @E1 G2 = G1 @E1 G2 .

4. Let G1, G2, G3 be subgraphs of G. If G1 @E1 G2 @E2 G3 is defined, then G1 @E1(G2 @E2 G3)

and (G1 @E1 G2) @E2 G3 are both defined, and

G1 @E1 G2 @E2 G3 = G1 @E1(G2 @E2 G3) = (G1 @E1 G2) @E2 G3 .

Proof. All points of the proposition are more-or-less immediate consequences of the definitions.
Only the first point is explained in more detail below:

1. Suppose that G1 @E1 . . .@En−1
Gn is defined. Let Gk @Ek . . .@Em−1

Gm with 1 ≤ k ≤
m ≤ n be a composition of a consecutive subsequence, and note that this must be defined. All
of the conditions are satisfied in order for the composite of the right-hand-side of Equation (2)
to be defined. Suppose that 1 = k0 ≤ k1 ≤ . . . ≤ kz ≤ kz+1 = n, where 0 ≤ z ≤ n. As
above, Gki @Eki+1

. . .@Eki+1−1
Gki+1 is defined for all 0 ≤ i ≤ z. Furthermore, all of the edges of

Eki+1 begin in Gki @Eki+1
. . .@Eki+1−1

Gki+1
and end in Gki+1 @Eki+1+1

. . .@Eki+2−1
Gki+2

, so the

composite on the right-hand-side of Equation 2 is defined. The union of the graphs and edge-sets

12 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

defined by the composite on the left-hand-side of Equation (2) is then evidently identical to the
union of the graphs and edge-sets defined by the composite on the right-hand-side. �

In a similar way, we can also consider the formation of bi-layered stacks via n-ary partial
composition operations. Let G be a graph and E1, . . . , En−1,F1, . . . ,Fn−1 be non-empty sets of

edges of G. Let the strong bi-composition @̂(G1, . . . , Gn) of any subgraphs G1, . . . , Gn of G be
defined just when V (Gi) ∩ V (Gj) = ∅ for all i 6= j, and Ei ⊆ G(Gi, Gi+1) and Fi ⊆ G(Gi+1, Gi)
for all i; when it is defined, let

V (@̂(G1, . . . , Gn)) =
⋃

1≤i≤n

V (Gi) and

E(@̂(G1, . . . , Gn)) =

 ⋃
1≤i≤n

E(Gi)

 ∪
 ⋃

1≤i≤n−1

Ei ∪ Fi

 .

The infix notation G1 @̂E1,F1
G2 @̂E2,F2

. . . @̂En−2,Fn−2
Gn−1 @̂En−1,Fn−1

Gn is also useful.

Proposition 5.6. Consider a sequence of subgraphs G1, . . . , Gn of G, and sequences of edges
E1, . . . , En−1 and F1, . . .Fn−1 of G. If Ei ∩ Fj = ∅, for all 1 ≤ i, j < n, then

G1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn ' (G1 @E1 . . .@En−1
Gn) ∪ (Gn @Fn−1

. . .@F1
G1)

where ∪ is the usual union of graphs.

Proof. If the composites on either side are defined, then they have the same sets of edges and
vertices, and so are equal. The strong bi-composition on the left-hand-side is defined precisely
when both of the strong compositions on the right-hand-side are defined. �

Proposition 5.7. A bi-layered graph is a special case of a bi-layered stack.

Proof. The proof is an immediate corollary of Propositions 5.5(3) and 5.6. �

Stacks with n > 2 layers seem to be strong compositions in an essential way, rather than just
iterated binary compositions. An iterated binary composition would not capture the notion of
sequential edge sets joining layers; rather, it could lead to a large collection of inter-connected
subgraphs with little discernible structure.

One can give logical characterizations of the notions of stacking and bi-layering explored in
this section that generalize the logical characterization of Section 3. This is discussed in the next
section and also leads to interesting results based on logical satisfaction with respect to differing
edge sets.

6. Logical Characterizations of Bi-layering and Stacking

One can define a notion of graph-interpretation of logical formulae for the same language LGL,

but now using the bi-composition operator @̂E,F to give a magma on the set of subgraphs of a
given bi-scaffold (G, 〈E ,F〉). This now makes LGL into a language for describing properties of
bi-layered graphs under the new interpretation.

For a given valuation V : Atoms −→ P(Sg(G)), let the resulting interpretation be J−KE,F :
Formulae −→ P(Sg(G)) and the resulting satisfaction relation be �E,F . The specification of the

new satisfaction relation has the same form as that given in Table 2, but uses the operator @̂E,F
in place of @E . For example,

(G, 〈E ,F〉), G �E,F φ� ψ iff there exist G1, G2 such that G = G1 @̂E,F G2

and (G, 〈E ,F〉), G1 �E,F φ and (G, 〈E ,F〉), G2 �E,F ψ .

Also note that, for atomic propositions φ and ψ, (G, 〈E ,F〉), G �E,F φ � ψ iff (G, 〈F , E〉), G �F,E
ψ � φ.

Let J−KE and �E be the interpretation and satisfaction relation on the magma with composition

@E , and let J−KF and �F similarly correspond to @F .

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 13

The logical characterization for bi-layering is similar to that for layering: a subgraph G is
bi-layered with respect to the chosen edges sets E and F of G if (G, 〈E ,F〉), G �E,F >�>.

If G is bi-layered with respect to E and F , then it is layered with respect to both E and F : if
(G, 〈E ,F〉), G �E,F >�>, then (G, E), G �E >�> and (G,F), G �F >�>.

Example 6.1. Consider a graph G with precisely two vertices v, w and two edges e, f from v to
w. Let E = {e} and F = {f}. Then, considered as a subgraph of itself, (G, E), G �E > � > and
(G,F), G �F >�>, but (G, 〈E ,F〉), G 6�E,F >�>.

This shows that there are examples of formulae φ of interest with JφKE * JφKE,F , for particular
choices of ambient structure. The following proposition, which is an immediate consequence of
the definitions, illustrates important aspects of the relationships between the interpretations:

Proposition 6.2. For all φ and ψ, the following hold:

(1) If JφKE,F ⊆ JφKE and JψKE,F ⊆ JψKE , then Jφ� ψKE,F ⊆ Jφ� ψKE ;
(2) If JφKE,F ⊆ JφKE and JψKE ⊆ JψKE,F , then Jφ−−�ψKE ⊆ Jφ−−�ψKE,F ;
(3) If JφKE ⊆ JφKE,F and JψKE,F ⊆ JψKE , then Jφ−−�ψKE,F ⊆ Jφ−−�ψKE .

The contravariance in the second and third parts of the above proposition and examples such
as that immediately below means that, even if the valuation of atomic propositions is identical for
each of the interpretations J−KE , J−KF and J−KE,F , the relationship between those interpretations
is not simple. This is further illustrated by the following example, in which there is a formula ψ
with JψKE,F * JψKE .

Example 6.3. Let G be the same as in Example 6.1. Let G be the subgraph of G with V (G) =
{v}. Let φ be the atomic proposition ‘contains vertex w’: more precisely, let the valuation (for
all three interpretations J−KE , J−KF , J−KE,F) have V(φ) = {H ∈ Sg(G) | w ∈ V (H)}. Then

(G, 〈E ,F〉), G �E,F φ−−�⊥, because there are no H with G @̂E,F H defined and (G, 〈E ,F〉), H �E,F
φ. However, (G, E), G �E φ−−�⊥ can be refuted by taking H with (G, E), H �E φ to be the subgraph
with V (H) = {w}.

We now define another logical language, SGL, that is suited to describing properties of stacks.
The connectives of SGL are the same as those of LGL, except that �, −−� and �−− are replaced
by

• a family of n-ary connectives �n, indexed by integers n ≥ 2, and
• a family of n-ary connectives −−�n,m indexed by integers n ≥ 2 and 1 ≤ m < n.

A formula with principal connective −−�n,m can be eliminated by constructing a formula �n in
which the hypotheses for −−�n,m occur in the mth place in �n. Thus this set-up allows for the
formation of new propositions

�n(φ1, . . . , φn) and −−�n,m(φ1, . . . , φn)

given any sequence of propositions φ1, . . . , φn. Note that this defines a new set, FormulaeS, of
logical formulae.

Define a new logical calculus SGLH by: taking axioms to apply to formulae of the language
SGL; taking the rules of LGLH and removing the rules containing the connectives �, −−� and
�−−; adding the three rules shown in Table 3. In rule (13s), n ≥ 1 and η lies at the mth argument
of �n+1(φ1, . . . , η, . . . , φn). In rule (14s), n ≥ 1 and the ith argument of �n+1(ξ1, . . . , η, . . . , ξn)
is ξi if 1 ≤ i < m, η if i = m, and ξi−1 if m < i ≤ n.

A multi-layered algebra is a structure

A = (A,∧,¬,>, (�n)n≥2, (−−�n,m)n≥2,1≤m<n)

such that:

• A = (A,∧,¬,>) defines a Boolean algebra (with ∨, ⊥, → and partial order ≤ definable in
the usual way);

• For each n ≥ 2 the operator �n is n-ary, and order-preserving;
• For each n ≥ 2 and 1 ≤ m < n, the operator −−�n,m is n-ary;

14 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

(12s)
ψ1 ` φ1 . . . ψn ` φn

�n(ψ1, . . . , ψn) ` �n(φ1, . . . , φn)

(13s)
�n+1 (φ1, . . . , η, . . . , φn) ` ψ
η ` −−�n+1,m(φ1, . . . , φn, ψ)

(14s)
η ` −−�n+1,m(φ1, . . . , φn, ψ) ξ1 ` φ1 . . . ξn ` φn

�n+1(ξ1, . . . , η, . . . , ξn) ` ψ

Table 3. Multiplicative Rules for SGLH

• For each n ≥ 2 and 1 ≤ m < n,

�n(A1, . . . , An) ≤ An+1 iff Am ≤ −−�n,m(A1, . . . , Am−1, Am, . . . , An+1)

for all A1, . . . , An+1 ∈ A.

Note that for all A1, . . . , An ∈ A there is an order-preserving function

�n(A1, . . . , Am−1,−, Am+1, . . . , An) : A −→ A.
The conditions demand that the assignment

An+1 7→ −−�n,m(A1, . . . , Am−1, Am+1, . . . , An+1)

defines a right-adjoint to each functor �n(A1, . . . , Am−1,−, Am+1, . . . , An).
Define a multi-magma to be a structure (M, (•n)n≥2) with a carrier set M , and a partial, n-ary

operation •n on M for each integer n ≥ 2.
Let G be a given graph. Let E1, E2, . . . be a pairwise disjoint sequence of sets of edges of G. Let

M be the set of sub-graphs of G. For each n ≥ 2 and each sequence of graphs G1, . . . , Gn, define

•n(G1, . . . , Gn) ' G1 @E1 . . .@En−1
Gn.

Note that this is intended to be undefined if the right-hand-side is undefined, and that this is the
case if any of E1, . . . , En−1 are empty. Thus strong-composition with respect to E1, E2, . . . on G
gives a multi-magma. Similarly, one can define a multi-magma based on the strong bi-composition.

Proposition 6.4. Each multi-magma M gives rise to a multi-layered algebra on the power-set of
the carrier of M .

Proof. The construction is an easy generalization of the earlier, strictly binary case: define

�n(A1, . . . , An) = {•n(a1, . . . , an) | ∀1 ≤ i ≤ n. ai ∈ Ai}
for all n ≥ 2 and A1, . . . , An ⊆ M . Each operation �n is order-preserving and the adjointness
conditions hold because of the completeness of the Boolean algebra on the power-set. �

A valuation of atomic propositions in a layered algebra is a function V : Atoms −→ A, as
before. This then extends, suppressing subscripts, to an interpretation J−K : FormulaeS −→ A of
all propositions in the standard way; in particular,

• J�n(φ1, . . . , φn)K = �n(Jφ1K, . . . , JφnK) and
• J−−�n,m(φ1, . . . , φn)K = −−�n,m(Jφ1K, . . . , JφnK).

The interpretation is sound — the proof is omitted as it is a trivial generalization of the
soundness proof for the layered case given in Section 8. In particular, the order-preservation and
adjointness conditions on multi-layered algebras take care of the rules (12s), (13s) and (14s).

Note that these sound interpretations apply to algebras that arise from multi-magmas as in
Proposition 6.4; that is, in the case where M = P(Sg(G)), for some ambient graph G. Therefore,
they apply to those that arise from the strong composition and bi-composition operators on graphs.
In other words, formulae may be interpreted as sets of sub-graphs of G following the prescription
above.

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 15

	 	
v1	

v2	

vn	 wn	

w2	

w1	

Figure 6. The Multi-layered Stack of Example 6.5

Example 6.5. Let V (G) = {vi | 1 ≤ i ≤ n} ∪ {wi | 1 ≤ i ≤ n}. Let ei be an edge from vi to
vi+1, and Ei = {ei} for all 1 ≤ i < n. Let fi be an edge from wi+1 to wi, and Fi = {fi} for all
1 ≤ i < n. Let ci be an edge from vi to wi, and Ci = {ci} for all 1 ≤ i ≤ n. Let Ei = Fi = ∅ for
i ≥ n. Let Ci = ∅ for i > n. Let E(G) =

⋃
i≥1 Ci ∪ Ei ∪ Fi.

Consider the interpretation on the layered algebra induced by strong bi-composition of sub-
graphs of G with respect to the sequences E1, . . . and F1, For 1 ≤ i ≤ n, let φi be valued so that
G ∈ JφiK = V(φi) iff V (G) = {vi, wi} and there is no edge from vi to wi in G, for any sub-graph
G. Let ψ be valued so that G ∈ JψK = V(ψ) iff there is no path in G from v1 to w1. Then,
suppressing all ambient graph and edge-set annotations, and presuming the evident definition of �
for this variation of the language,

G1 � −−�n−1,m(φ2, . . . , φn, ψ)

expresses the fact that if G1 is stacked with layers G2, . . . , Gn, then no path from v1 to w1 is
introduced. This is illustrated in Figure 6.

In the context of security examples, this can be used to specify the non-introduction of a
back-channel upon the introduction of new layers to a system.

7. Dynamics and Examples

The notion of layering that we have developed has many natural applications in complex systems
modelling. One particularly appealing area of application lies in security, with others in a variety
of network settings. We now formalize the three very simple, but illustrative, examples introduced
in Section 1.

The presentation of these ideas depends on having a simple language of actions and an associated
polymodal process or action logic, along the lines of Hennessy–Milner logic [27] or dynamic logic
(e.g., [25]). Indeed, the bunched modal process logic introduced in [13, 11, 14, 12] would be a
suitable candidate. Rather than develop the technical details of such a logic here, we just suppose
we have action modalities 〈a〉 and [a] whose meaning, informally for now, we describe below. The
key requirement for our examples is that actions manipulate (i.e., consume, create, and move)
resources, which are placed at locations.

We now extend LGL to a new logic LGLr in order to incorporate the above notion of resources
at locations. This extension is based on an assignment of a of a set of resources R to the vertices
of the graph G. That is, each r ∈ R is situated at a vertex of G. We denote such assignments

16 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

(G, E), G[R] �E > for all G[R]

(G, E), G[R] �E ⊥ for no G[R]

(G, E), G[R] �E p iff G[R] ∈ V(p)

(G, E), G[R] �E φ ∧ ψ iff (G, E), G[R] �E φ and (G, E), G[R] �E ψ

(G, E), G[R] �E φ ∨ ψ iff (G, E), G[R] �E φ or (G, E), G[R] �E ψ

(G, E), G[R] �E φ→ ψ iff (G, E), G[R] �E φ implies (G, E), G[R] �E ψ

(G, E), G[R] �E φ1 � φ2 iff for some G1, G2 and R1, R2 such that
G = G1 @E G2 and R = R1 ◦R2,
(G, E), G1[R1] �E φ1 and (G, E), G2[R2] �E φ2

(G, E), G[R] �E φ−−�ψ iff for all H[S] such that G@E H ↓ and R ◦ S ↓,
(G, E), H[S] �E φ implies (G, E), (G@E H)[R ◦ S] �E ψ

(G, E), G[R] �E φ�−−ψ iff for all H[S] such that H @E G↓ and R ◦ S ↓,
(G, E), H[S] �E φ implies (G, E), (H @E G)[R ◦ S] �E ψ

(G, E), G[R] �E 〈a〉φ iff for some well-formed assignment G[R′]

such that G[R]
a−→ G[R′],

(G, E), G[R′] �E φ

(G, E), G[R] �E [a]φ iff for all well-formed assignments G[R′]

such that G[R]
a−→ G[R′],

(G, E), G[R′] �E φ

Table 4. The Satisfaction Relation for LGLr

as G[R] where we think of G as the (directed) graph of locations in a system model. Resources
should also carry sufficient structure to allow some basic operations on resource elements. In
[35, 41, 40, 13, 11, 14, 12] resources are required to form pre-ordered partial monoids, such as the
natural numbers (N,≤,+, 0), and we use this approach here. Let (R,=, ◦, e) be a resource monoid,
where R is a collection of sets of resources and ◦ : R×R → R is a commutative and associative
binary operation, such as set union. Proposition 7.1, which is a minor adaptation of a result found
in [12], illustrates that assignments of resources can be composed and that the algebraic semantics
can be easily extended.

Proposition 7.1. Consider @ and ◦. Both are binary operations with @ non-commutative and
non-associative while ◦ is commutative and associative. A non-commutative, non-associative op-
eration can be defined.

Proof. We have @ : G × G → G and ◦ : R × R → R. Define • : (G × R) × (G × R) → (G × R)
as (G1, R1) • (G2, R2) = (G1 @G2, R1 ◦ R2). It is clear that • is both non-commutative and
non-associative. �

The satisfaction relation for LGLr is shown in Table 4 (with the evident variations for bi-
layering). Using Proposition 7.1 and the notion of valuation from Section 4, V now assigns atoms
to sets of subgraphs of G that have assignments from R.

Note that, in this simple set-up, actions simply manipulate the resources that are located at the
vertices of the graph and that there is no manipulation of the structure of the graph G itself. This

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 17

formulation has no effect on the semantics of the other (propositional) connectives that we have
previously established. This simple set-up is sufficient to handle the examples that we consider
in this section, but richer classes of actions might also be considered. We abstract away from
resources in Examples 7.1 and 7.2 and therefore omit the resource assignments as they are not
required. The notion is, however, crucial in presenting Example 7.3.

7.1. Example: Email Clients and Servers. Consider the sending of an email message from
one client to another, as depicted in Figure 7. From the users’ perspective, the message is sent (via
the action send, in the Client Layer) from Client 1 to Client 2. In fact, the message is sent over
the internet (in the IP Layer) from an outgoing server (Server 1) to an incoming server (Server 2)
as a collection of packets.

{ } …

Client 1 Client 2

Server 1 Server 2

send

send packets

Client Layer

IP Layer

Figure 7. Email Clients and Servers in the IP Stack

Associated with Clients 1 and 2 and Servers 1 and 2, respectively, are correctness conditions
φ1 and φ2 and ψ1 and ψ2. In the Client Layer, if φ1 holds, then Client 1 is able to send an
email message to Client 2. Assuming φ2 holds, Client 2 displays the message. From the users’
perspectives, interacting with the clients, this is all that is observed. What actually happens — at
our present level of abstraction, at least, simplifying to a single action the process of communication
with the server and splitting the message into packets — is, given that φ1 holds, an action split
sends the message to Server 1 along an edge in the edge set E , in the IP Layer. More generally, the
full IP stack can be characterized in our terms using the notion of stack as defined in Section 5.

Then, provided ψ1 holds, Server 1 sends the constituent packets of the message over the internet
to Server 2. Call this action, which interleaves the packets with other traffic, interleave (this
is synonymous with the send packets action in Figure 7). An action combine (simplifying as
above) then sends the reassembled email message to Client 2 along an edge in F .

Thus, let G1 be the graph of the Client Layer and let G2 be the graph of the IP Layer, so that

G = G = G1 @̂E,F G2. If χ1 and χ2 describe the remaining properties, or state, of the Client and
IP Layers, respectively, then we have

(G, 〈E ,F〉), G1 �E,F θ1,(3)

where θ1 = (φ1 ∧ 〈send〉φ2) ∧ χ1, and

(G, 〈E ,F〉), G2 �E,F θ2,(4)

where θ2 = (ψ1∧〈interleave〉ψ2)∧χ2. The φs and ψs describe the (somewhat simplified) specific
properties of the transmission of the message and the χs describe the remaining properties (or
states) of the layers. In these instances of the satisfaction relation, �E,F , we have, for simplicity,
suppressed mention of components of the state other than the (location) graph component, al-
though formally other components are required to support the φs and ψs. A transition system on
states is also formally required to support the modal operators: this could either be done in an ad
hoc way, following the textual specifications above, or better in a process calculus. Importantly,
note that none of the actions considered here modifies the graph in any way. These conventions
apply to all subsequent uses of satisfaction relations.

18 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Now consider the transmission of the message — more precisely, the resources that constitute
the message — between layers. Here the use of scaffolds seems essential. To see this, we consider
some properties of split and combine that must hold. For example, we need the semantics of
split, which moves resources between the upper and lower layers, to reflect structure of layers
and to establish the necessary correctness condition. Similarly for combine. Thus we have

(G, E), G �E 〈split〉ψ1 ∧ (θ1 � θ2)(5)

and

(G,F), G �F 〈combine〉φ2 ∧ (θ2 � θ1).(6)

Notice here that in the judgement 5 we have the subformula θ1 � θ2 and that in the judgement
6 we have the subformula θ2 � θ1, reflecting the fact that the former refers to the layering, with
respect to the edge set E , of G1 over G2 and the latter refers to the layering, with respect to the
edge set F , of G2 over G1. We make use here not only of the multiplicative connectives that are
directly associated with the structure of the individual layers and their combination, but also of
the (usual) additives in order to describe properties of the whole graph including the inter-layer
edges. In the judgements 5 and 6, we have properties of the whole graph, the former picking out
the transmission of the message from the sending client to outgoing server (via the layering with
respect to E) and the latter picking out the transmission from incoming server to the receiving
client (via the layering with respect to F). We can then write

(G, 〈E ,F〉), G �E,F 〈split〉ψ1 ∧ 〈combine〉φ2 ∧ (θ1 � θ2).

Rather than using a family of satisfaction relations as above, an alternative logical language for
this example could use a single satisfaction relation and families of multiplicative connectives that
are explicitly indexed by their defining distinguished edge sets, for example, E and F . However,
this alternative would not generalize easily to allow for examples in which the ambient graph G is
modified by actions.

7.2. Example: Avoiding the Security Barrier. Consider the example illustrated in Figure 8,
which corresponds to a well-known photograph of such a situation (see, for example, Schneier’s
blog [45]). Here we see a security barrier that controls access along a road that connects two other
roads (the outside and the inside, say). The problem, of course, is that in the absence of a fence,
the barrier does not effectively control access to the inside because it is possible for vehicles to
swerve around it.

!
! outside!road!

inside!road!

security!barrier!

missing!fence!

route!of!vehicle!

Figure 8. Pictorial Representation of the Security Barrier Photograph [45]

This situation, which is much simpler than the IP example, can also be described quite neatly
in our logic of layered graphs. Consider the graph, G, of locations that underlies this model. The
graph can be seen as having two layers, the Routes Layer, giving the paths that a vehicle can take,
and the Security Architecture Layer. In this example, depicted in Figure 9, the edges between the
two layers merely identify the out and in locations in each layer. Associated with being on the
inside is a property φtoken of possessing the access control token (such as an identity card) that

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 19

 out

in

out

in

Security Architecture
Layer

Routes Layer

Figure 9. Security Barrier Locations Graph

is required to pass the barrier. Thus, in the Security Architecture Layer, with graph G1, it is the
case that a vehicle can pass inside, then it will possess the necessary access control token:

(G, 〈E ,F〉), G1 �E,F 〈pass〉φin → φtoken.(7)

In the Routes Layer, however, it is possible to swerve past the barrier, and thereby be inside,
without being in possession of the token:

(G, 〈E ,F〉), G2 �E,F 〈swerve〉φin → ¬φtoken.(8)

Thus the existence of the weak link is characterized by the formula

(G, 〈E ,F〉), G1 @̂E,F G2 �E,F (〈pass〉φin → φtoken) � (〈swerve〉φin → ¬φtoken),(9)

which has a component in which both the inside can be accessed and the access control is under-
mined.

Note that in this example the layers represent only distinct conceptual aspects of a real system,
with inter-layer links representing the shared substrate of the system. In contrast, in the IP
example, a system is constructed that realizes both the conceptual layers as separate entities, and
also the connections between them.

7.3. Example: Data Security Breach via Mobile Devices. Let R denote some set of data
resources assigned to the vertices of a graph as described above. Let r denote an element of R,
and let φ be a property such that φ(r) holds at the vertex of G, where r is assigned by G[R].

Consider an organization whose information network is partitioned into General and Secure
sub-networks. The organization’s intention is that no data be permitted to pass between the
General and Secure Networks. In the presence of mobile storage devices (such as a USB memory
sticks), this intended property can be difficult to maintain. In this example, we use our logical
account of layering to give a characterization of this situation, which can be captured using a graph
made up of two layers, a Network Layer and a Mobile Storage Layer. This example illustrates the
use of the implication −−�.

Associated with the system is the resource r that represents secure data within the Network
Layer. Let G1 denote the Network Layer, GG denote the General Network and GS denote the
Secure Network so G1 = GG∪GS . Let G2 denote the Mobile Storage Layer and suppose G is such

that G = G1 @̂E,F G2. Associated with the Mobile Storage Layer are actions copy, download, and
upload. The action copy takes data r from one location in G2 and copies it to another location
(assuming the data is held on some sort of mobile storage device), while download and upload

copy data along edges of E and F respectively.
For any resource, the Network Layer uses local compliance properties. The property χS de-

scribes compliance with a policy allowing the resource to be in GS and χG asserts that if a resource
is not permitted in GG, then it is not in GG. That is, secure data is never present at any node of
GG.

In the Mobile Storage Layer, there are Locations (vertices) 1 and 2 that allow individuals to
download and upload data from and to the Network Layer. The copy action occurs along links

20 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Mobile Storage Layer

Network Layer

General Network Secure Network

Terminal 1 Terminal 2 Terminal 3 Terminal 4

Position 1 Position 2

Figure 10. Data Segregation and Mobile Storage Graph

within the Mobile Storage Layer. A security breach arises when an individual with sufficient
security privileges downloads data from the Secure Network to Location 2, copies (e.g., using a
USB memory stick) the data to Location 1, and then uploads it to the General Network. Let R
represent the set of data resources associated to a vertex in the Secure Network and let R2 be R
extended with a copy of r at Location 2, downloaded from GS .

The Mobile Storage Layer also uses a local compliance property: θ describes compliance with
a policy allowing a resource to be in G2. Therefore, in order to copy successfully secure data r
within G2, we must have that

(G, 〈E ,F〉), G2[R2] �E,F 〈copy〉 θ(r) .(10)

The failure of data segregation is highlighted when considering how the required security prop-
erties can be satisfied by the layered structure. Suppose that

(G, 〈E ,F〉), (G1 @E,F G2)[R] �E,F 〈download〉 (χS(r) � θ(r))(11)

and

(G, 〈E ,F〉), (G1 @E,F G2)[R2] �E,F 〈copy〉 〈upload〉 ((¬χG(r)) � θ(r)) .(12)

Property 11 represents the situation in which secure data is copied onto a mobile storage device
within the Mobile Storage Layer. This situation satisfies all required properties of the Mobile
Storage Layer, along with the condition χS(r), which describes compliance with the policy allowing
r to be in GS . Property 12 says that secure data might be copied within the Mobile Storage Layer
before being uploaded into the General Network, which would no longer comply with χG. In this
situation, the ability to copy r in F and upload it to GG will lead to an assignment of r within
GG when it should be the case that (G, 〈E ,F〉), G1[R′] 2 χG(r), where R′ is the assignment of
resources in GG that results from the copy and upload.

The following relation describes how a failure of compliance with χG arises from the ability to
copy and upload a resource that has been downloaded from GS :

(13)
(G, 〈E ,F〉), (G1 @E,F G2)[R2] �E,F 〈download〉 (χS(r) � θ(r))∧

〈copy〉 〈upload〉 ((¬χG(r)) � θ(r)) .

Note that we assume here that (11) continues to hold for assignment R2 at G2 (recall that R2

simply adds a copy of r at Location 2).

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 21

Now, note that (G, 〈E ,F〉), G1[R] �E,F χG(r). However,

(G, 〈E ,F〉), G1[R2] �E,F θ(r)−−�
(〈download〉 (χS(r) � θ(r)) ∧ 〈copy〉 〈upload〉 ((¬χG(r)) � θ(r)))(14)

demonstrating that the security policy χG can be violated as result of the introduction of a new
layer; in particular, as witnessed in (13), which is obtained by unpacking the satisfaction of the
−−� formula in (14), using (G, 〈E ,F〉), G2[R2] �E,F θ(r).

This example makes use of the −−� implication. Had we instead considered the Mobile Storage
Layer to be layered over the Network Layer, then the example would have been constructed using
the �−− operator, with all other details being analogous.

8. Soundness and Completeness

Consider the notion of interpretation of formulae of LGL on an arbitrary layered algebra A as
set out in Section 4. We now show that the rules of the calculus LGLH set out in Section 3 are
sound with respect to this interpretation. The soundness of the interpretations on layered magmas
and scaffolds are immediate corollaries, given the results of Propositions 4.1 and 4.2.

Theorem 8.1. The rules of LGLH are sound on layered algebras: for any layered algebra A,
for any interpretation J−K : Formulae −→ A, and for any propositions φ and ψ, if φ ` ψ then
JφK ≤ JψK.

Proof. The proof of this result is a standard induction on the structure of derivations, with the
key points being: that A is a Boolean algebra, which takes care of axioms 1–4 and rules 5–11 of
Table 1; that � on A is a bifunctor, which handles rule 12; that −−� and �−− on A are respective
adjoints to the (single-argument) functors induced by �, which deals with rules 13–16. �

We now consider completeness of the given calculus with respect to layered algebras.

Proposition 8.2. The following properties hold for all propositions φ, ψ, η:

(1) η ` φ ∧ ψ if and only if η ` φ and η ` ψ;
(2) η ` φ−−�ψ if and only if, for all ξ, if ξ ` φ then η � ξ ` ψ;
(3) η ` φ�−−ψ if and only if, for all ξ, if ξ ` φ then ξ � η ` ψ.

The proof of each is by immediate application of the axioms and rules, and is omitted.

Lemma 8.3. There is a layered algebra T and an interpretation J−KT : Formulae −→ A such
that, for all propositions φ and ψ, if φ 0 ψ then JφKT � JψKT .

Proof. We construct a layered algebra T = (T ,∧,¬,>,�,−−�,�−−) as follows:

• Let T be a set of equivalence classes of propositions with respect to the relation of prov-
ability; elements of T are written dφe , dψe etc.; note that dφe = dψe if and only if φ ` ψ
and ψ ` φ, for any φ and ψ; transitivity of the equivalence comes from Proposition 3.1;

• Define a binary relation ≤ on T by dφe ≤ dψe iff φ ` ψ;
• Define the element > = d>e;
• Define the complementation operation by ¬dφe = dφ→ ⊥e;
• Define the conjunction operation by dφe ∧ dψe = dφ ∧ ψe;
• Define the monoidal composition by dφe� dψe = dφ� ψe;
• Define the operation −−� by dφe−−� dψe = dφ−−�ψe;
• Define the operation �−− by dφe�−−dψe = dφ�−−ψe.

The order ≤ is a partial order, with transitivity coming from Proposition 3.1. The remaining
checks that the operations are well-defined and that this structure is indeed a layered algebra are
of a standard kind. In particular, they use the axioms and rules of Table 1, the properties of
Proposition 8.2 and Proposition 3.1.

Define a valuation V : Atoms −→ T = dφe by V(φ) = dφe. Using the operations above, this
valuation extends to an interpretation that satisfies the property JφKT = dφe on all formulae φ. If
φ 0 ψ then dφe � dψe by construction, and so JφKT � JψKT . �

22 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

The completeness theorem (for layered algebras) is an immediate corollary to the above term
model construction.

Theorem 8.4. For any propositions φ and ψ of LGL, if JφK ≤ JψK for all interpretations J−K in
all layered algebras, then φ ` ψ in LGLH.

Further discussions of the use of algebraic structures for (commutative) bunched logic can be
found in [41, 20]. The issue of completeness for boolean variants of BI with respect to monoidal
models is complicated, and we do not study completeness for LGLH with respect to layered
magmas here.

9. Some Proof Theory

Proofs in BI can be presented in a variety of formal calculi [35, 40, 41, 7] — as a Hilbert system,
as a sequent calculus [21], as a natural deduction system [38], and as a display calculus [3].

We now examine various calculi for proofs in LGL. We have already presented a Hilbert
system LGLH. In this section, we first give a natural deduction calculus, LGLND, and then give
a sequent calculus, LGLSC. These presentations follow those of similar systems by, for example,
Lambek [30, 31, 32, 33], Girard [22] and Pym [39, 40]. We also give a display calculus, LGLDC,
following techniques laid out by Brotherston and Calcagno [7, 8]. This calculus, which has notably
better meta-theoretical properties than either the natural deduction or sequent calculi, allows an
appropriate cut-elimination result to be obtained.

The calculi LGLND and LGLSC both allow for the derivation of judgements of the form Γ ` φ,
where Γ is a context (a structured collection of propositions) and φ is a single proposition. For both
LGLND and LGLSC the appropriate notion of context for logical judgements is that of bunch, as
described in [35]. We reserve Γ, ∆, Θ for bunches. Bunches are generated by the grammar

Γ := ∅ | φ | Γ; Γ | Γ,Γ

where ∅ is the empty context and φ is any proposition. The symbol ‘;’ is the additive context
former, and the symbol ‘,’ is the multiplicative context former.

We use the notation Γ(∆) to indicate a bunch with a distinguished sub-bunch ∆, that is, a
particular sub-tree. We write Γ[∆′/∆] or Γ(∆′) for the bunch formed by substituting a bunch ∆′

for the sub-bunch ∆ in Γ. Brackets are also used to disambiguate the tree structure of bunches.
The context-formers have structural properties that match those of the logical conjunctions to
which they correspond. There should be exchange, associativity, weakening and contraction rules
for the additive context former. The multiplicative context former is not required to have any of
these properties. This is in contrast to the situation in bunched logic where it is commutative and
associative [35]. In order to capture the structural properties, we define an equivalence relation ≡
on bunches. This is done by first of all imposing unit, commutativity and associativity relations as
follows: ∅; Γ ≡ Γ, Γ; ∆ ≡ ∆; Γ, and Γ; (∆; Θ) ≡ (Γ; ∆); Θ. We then close this off to a congruence
relation in the standard way: if Γ ≡ ∆ and ∆ ≡ Θ, then Γ ≡ Θ holds; if ∆ ≡ ∆′, then
Γ(∆′) ≡ Γ(∆). Our formulation here does not use a multiplicative unit bunch.

The natural deduction calculus LGLND is specified by the rules given in Table 5. The sequent
calculus LGLSC is specified by the rules given in Table 6.

We now introduce the display calculus LGLDC. First, we make a small change to the language,
so that ¬φ is no longer identified with φ → ⊥. However, any such pair of propositions will turn
out to be logically equivalent. Display calculi use structured collections of propositions called
structures that generalize bunches. We use the letters Γ,∆,Θ for structures. Structures are
constructed using additive and multiplicative structural connectives. The grammar of structures
is as follows:

Γ := ∅ | φ | #Γ | Γ; Γ | Γ,Γ | Γ−−•Γ | Γ •−−Γ.

A consecution is an ordered pair of structures, written in the form Γ ` ∆. We say that Γ is the
antecedent and ∆ is the consequent.

Table 7 indicates the division of structure formers into additives and multiplicatives, and their
intended logical meaning — this depends upon whether they appear in an antecedent or consequent

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 23

(Id)
φ ` φ

Γ ` ¬¬φ
Γ ` φ

(RAA)

(E)
Γ ` φ
∆ ` φ

(Γ ≡ ∆)
Γ(∆; ∆) ` φ

Γ(∆) ` φ
(C)

(W)
Γ(∆) ` φ

Γ(∆; ∆′) ` φ
Γ ` ⊥

∆(Γ) ` φ
(⊥E)

(>I)
∅ ` >

Γ(>) ` φ ∆ ` >
Γ(∆) ` φ

(>E)

(∧I)
Γ ` φ ∆ ` ψ

Γ; ∆ ` φ ∧ ψ
∆ ` φ ∧ ψ Γ(φ;ψ) ` ξ

Γ(∆) ` ξ
(∧E)

(∨I)
Γ ` φi

Γ ` φ1 ∨ φ2
(i = 1, 2)

Γ ` φ ∨ ψ ∆(φ) ` ξ ∆(ψ) ` ξ
∆(Γ) ` ξ

(∨E)

(→ I)
Γ;φ ` ψ

Γ ` φ→ ψ

Γ ` φ→ ψ ∆ ` φ
Γ; ∆ ` ψ

(→ E)

(�I)
Γ ` φ ∆ ` ψ

Γ,∆ ` φ� ψ

∆ ` φ� ψ Γ(φ, ψ) ` ξ
Γ(∆) ` ξ

(�E)

(−−� I)
Γ, φ ` ψ

Γ ` φ−−�ψ

Γ ` φ−−�ψ ∆ ` φ
Γ,∆ ` ψ

(−−�E)

(�−− I)
φ,Γ ` ψ

Γ ` φ�−−ψ
Γ ` φ�−−ψ ∆ ` φ

∆,Γ ` ψ
(�−−E)

Table 5. Natural Deduction System LGLND

part of a consecution (as explained below). Note that there is no multiplicative unit (truth) or
negation, but that there are two multiplicative implications.

A substructure or part of a structure Γ is a subtree of the syntax tree for Γ such that all leaves
are propositions. For any structure Γ, each substructure is classified as either a positive part or a
negative part, according to the following recursive definition:

• Γ is a positive part of Γ,
• if ∆ is a negative (respectively, positive) part of Γ, then it is a positive (respectively,

negative) part of #Γ,
• if ∆ is a negative (positive) part of exactly one of Γ1 or Γ2, then it is a negative (positive)

part of Γ1; Γ2 and Γ1,Γ2,
• if ∆ is a part of exactly one of Γ1 or Γ2, and if ∆ is a negative (positive) part of Γ1 or a

positive (negative) part of Γ2, then it is a positive (negative) part of Γ1 •−−Γ2 and Γ1−−•Γ2.

A substructure Θ occurring in exactly one of Γ or ∆ is said to be an antecedent (respectively,
consequent) part of a consecution Γ ` ∆ if it a positive (respectively, negative) part of Γ or a
negative (respectively, positive) part of ∆.

Where the meaning of a structure connective is undefined (according to Table 7) in a part, that
connective is not allowed to occur as the principal connective in such a part of any consecution.

24 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

(Id)
φ ` φ

Γ ` ¬¬φ
Γ ` φ

(RAA)

(E)
Γ ` φ
∆ ` φ

(Γ ≡ ∆)
Γ(∆; ∆) ` φ

Γ(∆) ` φ
(C)

(W)
Γ(∆) ` φ

Γ(∆; ∆′) ` φ
Γ ` φ ∆(φ) ` ξ

∆(Γ) ` ξ
(Cut)

(⊥L)
Γ(⊥) ` φ

(>L)
Γ(∅) ` φ
Γ(>) ` φ ∅ ` >

(>R)

(∧L)
Γ(φ;ψ) ` ξ

Γ(φ ∧ ψ) ` ξ
Γ ` φ ∆ ` ψ

Γ; ∆ ` φ ∧ ψ
(∧R)

(∨L)
Γ(φ) ` ξ Γ(ψ) ` ξ

Γ(ψ ∨ ψ) ` ξ
(i = 1, 2)

Γ ` φi
Γ ` φ1 ∨ φ2

(∨R)

(→ L)
∆ ` φ Γ(ψ) ` ξ

Γ(∆;φ→ ψ) ` ξ
Γ;φ ` ψ

Γ ` φ→ ψ
(→ R)

(�L)
Γ(φ, ψ) ` ξ

Γ(φ� ψ) ` ξ
Γ ` φ ∆ ` ψ

Γ,∆ ` φ� ψ
(�R)

(−−�L)
Γ ` φ ∆(ψ) ` ξ
∆(φ−−�ψ,Γ) ` ξ

Γ, φ ` ψ
Γ ` φ−−�ψ

(−−�R)

(�−−L)
Γ ` φ ∆(ψ) ` ξ

∆(Γ, φ�−−ψ) ` ξ
φ,Γ ` ψ

Γ ` φ�−−ψ
(�−−R)

Table 6. Sequent Calculus LGLSC

Connective Additive/Multiplicative Antecedent Consequent
∅ A truth falsity
A negation negation
; A conjunction disjunction
, M conjunction undefined
−−• M undefined implication (right, −−�)
•−− M undefined implication (left, �−−)

Table 7. Diplay Calculus Structure Connectives

We call this the structure-position condition. This restriction is enforced by the derivation system
for consecutions set out below.

Let 〈〉D be a binary relation on consecutions. Let ≡D be the equivalence relation given
by the reflexive, symmetric, transitive closure of 〈〉D . The relation ≡D is called a display

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 25

equivalence if: for any antecedent part Θ of Γ ` ∆, it is possible to construct a structure Λ such
that Γ ` ∆ ≡D Θ ` Λ, and for any consequent part Θ of Γ ` ∆, it is possible to construct a
structure Λ such that Γ ` ∆ ≡D Λ ` Θ.

The binary relation 〈〉D for the present calculus is defined by a set of axioms known as display
postulates. Instances of the relation defined by the display postulates take the form C 〈〉D C ′,
where C and C ′ are consecutions. The display postulates are shown in Table 8.

Γ; ∆ ` Θ 〈〉D Γ ` #∆; Θ 〈〉D ∆; Γ ` Θ Γ,∆ ` Θ 〈〉D Γ ` ∆−−•Θ

Γ ` ∆; Θ 〈〉D Γ; #∆ ` Θ 〈〉D Γ ` Θ; ∆ ∆,Γ ` Θ 〈〉D Γ ` ∆ •−−Θ

Γ ` ∆ 〈〉D #∆ ` #Γ 〈〉D ##Γ ` ∆

Table 8. Display Postulates for LGLDC

The display calculus, LGLDC, is given by the following: the set of formulae and formulae
connectives of LGL; the set of structures and structure connectives as defined above; the set of
display postulates (given in Table 8) that generate the relation ≡D ; the set of identity rules,
logical rules and structural rules given in Table 9. (Recall that p appearing in (Id) is an atomic
propositional formula.) The rules (TR), (⊥L), (WL) and (WR) have implicit side-conditions that
the structure-position condition must be maintained. The rule (Cut) is called the Elimination
Rule (ER) in [3]. This system generates a set of derivable consecutions within the set of all
consecutions.

The following theorem shows that LGLDC is indeed a display calculus.

Theorem 9.1. The equivalence ≡D is a display equivalence.

This proof is essentially immediate (although formally by induction) using the rules in Table 8
to shuffle structure and structure connectives across the consecution symbol `, and noting that
the antecedent/consequent polarity of the displayed part is invariant. The non-commutativity
and non-associativity make no substantial difference to the proof in [7], given our choice of display
postulates.

Theorem 9.2 (Identity Theorem). The consecution φ ` φ is derivable for all propositions φ.

The proof is by induction on the structure of φ, and follows that in [7]. Again, the set-up of
the rules means that non-commutativity (and non-associativity) of the multiplicatives makes only
a trivial change to the proof.

Corollary 9.3. The consecutions ¬φ ` φ→ ⊥ and φ→ ⊥ ` ¬φ and ¬¬φ ` φ are derivable.

Thus the connective ¬ is a classical negation. The proof of each is a short derivation using the
Identity Theorem.

Theorem 9.4. The Cut rule of LGLDC is admissible.

Proof. It suffices to verify that Belnap’s conditions (C1–C8) hold [3]. This is done in detail in
the commutative case in [8]. Conditions (C1–C7) are treated identically for LGLDC, and we omit
detailed discussion of them. This leaves the final condition:

• (C8) Eliminability of matching principal formulae. If there are inferences I1 and I2 with
conclusions Γ ` φ and φ ` ∆ respectively, and φ is principal in both inferences, then Γ ` ∆
is one of Γ ` φ or φ ` ∆, or there is a derivation of Γ ` ∆ using I1 and I2 in which every
instance of Cut has a cut-formula which is a proper subformula of φ.

Verification: If φ is atomic then Γ = ∆ = φ, and the result holds trivially. The other
cases are all quite standard (following [8] again) and are those in which the cut-formula φ
is introduced by the final rules of I1 and I2.

26 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Identity Rules

(Id)
p ` p

(Cut)
Γ ` φ φ ` ∆

Γ ` ∆

(≡D)
Γ′ ` ∆′

Γ ` ∆
(Γ ` ∆ ≡D Γ′ ` ∆′)

Logical Rules

(>L)
∅ ` Γ

> ` Γ Γ ` >
(>R)

(⊥L)
⊥ ` Γ

Γ ` ∅
Γ ` ⊥

(⊥R)

(∧L)
φ ;ψ ` Γ

φ ∧ ψ ` Γ

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ

(∧R)

(∨L)
φ ` Γ ψ ` Γ

φ ∨ ψ ` Γ

Γ ` φ ;ψ

Γ ` φ ∨ ψ
(∨R)

(→ L)
Γ ` φ ψ ` ∆

φ→ ψ ` #Γ ; ∆

Γ ;φ ` ψ
Γ ` φ→ ψ

(→ R)

(¬L)
#φ ` Γ

¬φ ` Γ

Γ ` #φ

Γ ` ¬φ
(¬R)

(�L)
φ, ψ ` Γ

φ� ψ ` Γ

Γ ` φ ∆ ` ψ
Γ,∆ ` φ� ψ

(�R)

(−−�L)
Γ ` φ ψ ` ∆

φ−−�ψ ` Γ−−•∆

Γ, φ ` ψ
Γ ` φ−−�ψ

(−−�R)

(�−−L)
Γ ` φ ψ ` ∆

φ�−−ψ ` Γ •−−∆

φ,Γ ` ψ
Γ ` φ�−−ψ

(�−−R)

Structural Rules

(WL)
Γ ` ∆

Γ ; Γ′ ` ∆

Γ ` ∆

Γ ` ∆ ; ∆′
(WR)

(CL)
Γ ; Γ ` ∆

Γ ` ∆

Γ ` ∆ ; ∆

Γ ` ∆
(CR)

(AL)
Γ ; (Θ ; Λ) ` ∆
===========
(Γ ; Θ) ; Λ ` ∆

Γ ` ∆ ; (Θ ; Λ)
===========
Γ ` (∆ ; Θ) ; Λ

(AR)

(∅L)
∅ ; Γ ` ∆
=======

Γ ` ∆

Γ ` ∆ ; ∅
=======

Γ ` ∆
(∅R)

Table 9. Rules of LGLDC

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 27

By way of illustration, we give the case of the right multiplicative implication. A
derivation of the form

Γ, φ ` ψ
(−−�R)

Γ ` φ−−�ψ

∆ ` φ ψ ` Θ
(−−�L)

φ−−�ψ ` ∆−−•Θ
(Cut)

Γ ` ∆−−•Θ

can be replaced by a derivation

∆ ` φ

Γ, φ ` ψ ψ ` Θ
(Cut)

Γ, φ ` Θ
(≡D)

φ ` Γ •−−Θ
(Cut)

∆ ` Γ •−−Θ
(≡D)

Γ,∆ ` Θ
(≡D)

Γ ` ∆−−•Θ

that uses only cuts on proper sub-formulae of the original cut-formula φ−−�ψ. Note
that it is the left structural implication connective •−− that is used to do the temporary
symbol shuffling in this case. This display calculus appears to need both multiplicative
implications, not just one or the other.

�

We now relate the four different logical calculi.

Theorem 9.5. The following four statements hold:

A. Each axiom of LGLH is derivable in LGLND;
B. Each rule of LGLH is derivable in LGLND;
C. Each rule of LGLND is derivable in LGLSC;
D. Each rule of LGLSC is derivable in LGLDC.

Proof. We consider the four statements A–D in turn.
Statements A and B. These facts are well-known for Boolean BI, and the proofs here are almost

identical.
Statement C. Again, the proof here is essentially standard; the non-commutativity and non-

associativity of multiplicatives make no real difference as the relation ≡ and the rule (E) are
weakened in the same way for both calculi, and (following careful design) the other rules do not
make use of these properties. For an example of one rule, consider the (−−�E) rule of LGLND.
The following proof-figure in LGLSC derives the conclusion of (−−�E) from its premisses:

Γ ` φ−−�ψ

∆ ` φ
(Id)

ψ ` ψ
(−−�L)

φ−−�ψ,∆ ` ψ
(Cut).

Γ,∆ ` ψ
Statement D. First, observe that all bunches are structures, so that bunches appearing in

LGLSC rules are meaningful in LGLDC rules. We then consider each rule in turn. Some of these
cases require repeated use of (≡D) because the display calculus has the rule stated in a ‘shallow’
way, where the sequent calculus has it stated in a ‘deep’ way. In each such case the evident
associated induction is omitted. The cases are as follows:

• The (Id) rule of LGLSC is derivable by the Identity Theorem;
• (RAA) is derivable by Corollary 9.3 and (Cut) of LGLDC;
• (∧R) of LGLSC is derivable using (WL) and (∧R) of LGLDC;
• (∨R) of LGLSC is derivable using (WR) and (∨R) of LGLDC;
• (>R), (→ R), (−−�R), (�−−R) and (�R) of LGLSC; are each derivable using the corre-

sponding rule of LGLDC;

28 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Φφ = φ = Ψφ

Φ∅ = > Φ#Γ = ¬ΨΓ ΦΓ;∆ = ΦΓ ∧ Φ∆

ΦΓ,∆ = ΦΓ � Φ∆ ΦΓ •−−∆ undefined ΦΓ−−•∆ undefined

Ψ∅ = ⊥ Ψ#Γ = ¬ΦΓ ΨΓ;∆ = ΨΓ ∨Ψ∆

ΨΓ,∆ undefined ΨΓ •−−∆ = ΦΓ �−−Ψ∆ ΨΓ−−•∆ = ΦΓ−−� Ψ∆

Table 10. Antecedent and Consequent Formulae

• (⊥L), (>L), ∧L, (∨L), (�L), (Cut) (→ L), (−−�L), (�−−L) of LGLSC are derivable using
(≡D) repeatedly and the corresponding rule of LGLDC;

• (C) is derivable using (≡D) repeatedly and (CL);
• (W) is derivable using (≡D) repeatedly and (WL);
• (E) is derivable, since if Γ and ∆ are equivalent bunches, Γ ≡ ∆, and Γ ` φ in LGLSC,

then a finite number of applications of (≡D), (AL) and (∅L) can be used to derive ∆ ` φ.

�

Let Γ be any structure. Define, where possible, the antecedent formula, ΦΓ, and consequent
formula, ΨΓ, by simultaneous recursion on the structure of Γ as in Table 10.

Theorem 9.6. Let
(Γj ` ∆j)j∈J

Γ′ ` ∆′
be a rule of LGLDC, where J is a finite index set. If J is empty,

then for any instance of Γ′ ` ∆′ we have that ΦΓ′ ` Ψ∆′ is an instance of an axiom of LGLH. If

J is non-empty and ΦΓj
and Ψ∆j

are defined for all j ∈ J , then
(ΦΓj

` Ψ∆j
)j∈J

ΦΓ′ ` Ψ∆′
is derivable in

LGLH.

Proof. We consider cases of rules of LGLDC.

• (Id), (>R), (⊥L) are instances of the case where J is empty, and follow from 1, 2, 3 of
LGLH, respectively.

• (>L), (⊥R), (∧L), (∨R), (¬L), (¬R), (�L), (�R) are translated so that the conclusion

is the same as the premiss, and the rule
φ ` φ
φ ` φ

is derivable in LGLH.

• (∧R), (∨L), (→ R), (−−�R), (�−−R), (WL), (WR) translate directly to (instances of) Rules
5, 7, 9, 13, 15, 11, 8 of LGLH, respectively.

• (∨R), (→ L), (CL), (CR), (AL), (AR), (∅L) and (∅R) are standard derivations in Hilbert
calculi for bunched systems, not requiring the use of rules dealing with multiplicative
connectives, and are omitted.

• (Cut) translates directly.
• (−−�L) follows because the derivation below is possible in LGLH

φ−−�ψ ` φ−−�ψ η ` φ
14

(φ−−�ψ) � η ` ψ ψ ` θ
(Cut)

(φ−−�ψ) � η ` θ
13,

φ−−�ψ ` η−−� θ

for any φ, ψ, η, θ, and the (�−−L) case is similar.
• (≡D) is generated from the display identities; each of the display identities is easily verified

to translate into a derivable rule of LGLH; therefore, by induction on the minimum number
of identities required to establish the particular instance of ≡D used in the (≡D) instance,
the result holds in this case.

A SUBSTRUCTURAL LOGIC FOR LAYERED GRAPHS 29

�

10. Discussion

In this paper we considered, informally, just a simple notion of action in order to explore our
examples, one can readily propose to formulate a Hennessy–Milner-style version of LGL, just as
the bunched modal logic MBI [13, 11, 12] is a Hennessy–Milner-style version of the bunched logic
BI [35]. The logic MBI employs a judgement L,R,E � φ, which can be understood as ‘property
φ holds of process E executing relative to resources R at locations L’. In the proposed logic, L
would be a graph of the kind discussed in this paper, having vertices labelled with resources.

As well as providing a setting for a thorough analysis of examples much richer than the two
considered above, such a framework might provide a basis for exploring logical characterizations
of the structural properties of layered graphs (i.e., a modal ‘correspondence theory’ of layering).
Examples of properties might include the layering structure itself and distribution properties of
resources around the location graphs. An alternative development would be to extend LGL in
the style of dynamic logic [25, 26].

The examples presented make use of resources moving around locations. It would also be
interesting to explore situations where the underlying graph architecture is altered. There are
again many ready examples of such situations in security.

References

[1] A.R. Anderson and N.D. Belnap. Entailment: the Logic of Relevance and Necessity, volume I. Princeton
University Press, 1975.

[2] A.R. Anderson, J.M. Dunn, and N.D. Belnap. Entailment: the Logic of Relevance and Necessity, volume II.

Princeton University Press, 1992.
[3] N.D. Belnap. Display logic. Journal of Philosophical Logic, 11:375–414, 1982.

[4] G.M. Bierman. What is a categorical model of intuitionistic linear logic? In Proceedings of Second International

Conference on Typed λ-calculi and Applications, volume 902 of Lecture Notes in Computer Science, pages 78–
93. Springer-Verlag, Berlin, 1995.

[5] Ken Binmore. Playing for Real. Oxford University Press, 2007.

[6] P. Bródka, K. Skibicki, P. Kazienko, and K. Musia l. A degree centrality in multi-layered social network. In Int.
Conference on Computational Aspects of Social Networks, 2011.

[7] James Brotherston. Bunched logics displayed. Studia Logica: Special Issue on Recent Developments related to
Residuated Lattices and Substructural Logics, 100(6):1223–1254, 2012.

[8] James Brotherston and Cristiano Calcagno. Classical BI: Its semantics and proof theory. Logical methods in

Computer Science, 6(3:3):1–42, 2010.
[9] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In ICALP: Automata, Languages,

and Programming, 29th International Colloquium, volume 2380 of LNCS, pages 597–610, 2002.

[10] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere. modal logics for mobile ambients. In Proceedings
of the 27th ACM Symposium on Principles of Programming Languages, pages 365–377, 2000.

[11] M. Collinson, B. Monahan, and D. Pym. A logical and computational theory of located resource. Journal of

Logic and Computation, 19(b):1207–1244, 2009.
[12] M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Modelling. College Publica-

tions, 2012.

[13] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Mathematical Structures
in Computer Science, 19:959–1027, 2009. doi:10.1017/S0960129509990077.

[14] Matthew Collinson, Brian Monahan, and David Pym. Semantics for structured systems modelling and simu-
lation. In Proc. Simutools 2010. ACM Digital Library, ISBN 78-963-9799-87-5, 2010.

[15] Bruno Courcelle. The expression of graph properties and graph transformations in monadic second-order logic.

Graph grammars and computing by graph transformations, 1:313–400, 1997.
[16] A. Dawar, P. Gardner, and G. Ghelli. Expressiveness and complexity of graph logic. Information and Compu-

tation, 205:236–310, 2007.

[17] K. Došen. Sequent systems and groupoid models I. Studia Logica, 47:353–385, 1988.
[18] K. Došen. Sequent systems and groupoid models II. Studia Logica, 48:41–65, 1989.

[19] A. Fiat, D. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competitive algorithms for layered

graph traversal. SIAM Journal on Computing, 28(2):447–462, 1998.
[20] D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux. Mathematical Structures

in Computer Science, 15:1033–1088, 2005.

[21] G. Gentzen. Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39:176–210, 405–431,
1934.

[22] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

30 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

[23] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-constrained minimum spanning
tree problem. Computers and Operations Res., 35(2):600–613, 2008.

[24] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-constrained minimum span-

ning tree problems as steiner tree problems over layered graphs. Mathematical Programming, pages 1–26,
2010.

[25] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Volume

II, pages 497–604. Dordrecht: D. Reidel, 1984.
[26] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.

[27] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM,
32(1):137–161, 1985.

[28] S.S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In 28th ACM-SIGPLAN

Symposium on Principles of Programming Languages, London, pages 14–26. Association for Computing Ma-
chinery, 2001.

[29] M. Kurant and P. Thiran. Layered complex networks. Physical Review Letters, 96:138701(4), 2006.

[30] J. Lambek. Deductive Systems and Categories I. J. Math. Systems Theory, 2:278–318, 1968.
[31] J. Lambek. Deductive Systems and Categories II. Springer LNM, 86:76–122, 1969.

[32] J. Lambek. Deductive Systems and Categories III. Springer LNM, 274:57–82, 1972.

[33] J. Lambek. From categorical grammar to bilinear logic. In P. Schroeder-Heister and K. Došen, editors, Sub-
structural Logics, pages 207–237. Oxford University Press, 1993.

[34] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[35] P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–244,
June 1999.

[36] C. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computing Science,

84(1):127–150, 1991.
[37] A. Paz. A theory of decomposition into prime factors of layered interconnection networks. Discrete Applied

Mathematics, 159(7):628–646, 2011.
[38] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almquist and Wiksell, Stockholm, 1965.

[39] David Pym. On Bunched Predicate Logic. In Proc. 14th Symposium on Logic in Computer Science, pages

183–192. IEEE Computer Society Press, 1999.
[40] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of Applied Logic

Series. Kluwer Academic Publishers, 2002. Errata and Remarks maintained at publisher’s website and at:

http://www.cantab.net/users/david.pym/BI-monograph-errata.pdf.
[41] D.J. Pym, P.W. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics of BI. Theoretical

Computer Science, 315(1):257–305, 2004.

[42] S. Read. Relevant Logic: A Philosophical Examination of Inference. Basil Blackwell, 1988.
[43] G. Restall. An Introduction to Substructural Logics. Routledge, 1999.

[44] John Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the Seventeenth

Annual IEEE Symposium on Logic in Computer Science, Copenhagen, Denmark, July 22-25, 2002, pages
55–74. IEEE Computer Society Press, 2002.

[45] B. Schneier. Schneier on Security: A blog covering security and security technology, February 2005. http:

//www.schneier.com/blog/archives/2005/02/the_weakest_lin.html.

[46] J. Wang, P. De Wilde, and H. Wang. Topological analysis of a two coupled evolving networks model for business

systems. Expert Systems with Applicns., 36:9548–9556, 2009.

Matthew Collinson, University of Aberdeen
E-mail address: matthew.collinson@abdn.ac.uk

Kevin McDonald, University of Aberdeen
E-mail address: kevin.mcdonald@abdn.ac.uk

David Pym, UCL

E-mail address: d.pym@ucl.ac.uk

