8,341 research outputs found

    The Impact of Active Domain Predicates on Guarded Existential Rules

    Get PDF
    It is realistic to assume that a database management system provides access to the active domain via built-in relations. Therefore, databases that include designated predicates that hold the active domain, which we call product databases, form a natural notion that deserves our attention. An important issue then is to look at the consequences of product databases for the expressiveness and complexity of central existential rule languages. We focus on guarded-based existential rules, and we investigate the impact of product databases on their expressive power and complexity. We show that the queries expressed via (frontier-)guarded rules gain in expressiveness, and in fact, they have the same expressive power as Datalog. On the other hand, there is no impact on the expressiveness of the queries specified via weakly-(frontier-)guarded rules since they are powerful enough to explicitly compute the predicates needed to access the active domain. We also observe that there is no impact on the complexity of the query languages in question

    The Impact of Active Domain Predicates on Guarded Existential Rules

    Get PDF
    We claim it is realistic to assume that a database management system provides access to the active domain via built-in relations. Therefore, product databases, i.e., databases that include designated predicates that hold the active domain, form a natural notion that deserves our attention. An important issue then is to look at the consequences of product databases for the expressiveness and complexity of central existential rule languages. We focus on guarded existential rules, and we investigate the impact of product databases on their expressive power and complexity. We show that the queries expressed via (frontier-)guarded rules gain in expressiveness, and in fact, they have the same expressive power as Datalog. On the other hand, there is no impact on the expressiveness of the queries specified via weakly-(frontier-)guarded rules since they are powerful enough to explicitly compute the predicates needed to access the active domain. We also observe that there is no impact on the complexity of the languages in question

    Context-Free Path Queries on RDF Graphs

    Full text link
    Navigational graph queries are an important class of queries that canextract implicit binary relations over the nodes of input graphs. Most of the navigational query languages used in the RDF community, e.g. property paths in W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the regular expressions. It is known that regular expressions have limited expressivity; for instance, some natural queries, like same generation-queries, are not expressible with regular expressions. To overcome this limitation, in this paper, we present cfSPARQL, an extension of SPARQL query language equipped with context-free grammars. The cfSPARQL language is strictly more expressive than property paths and nested expressions. The additional expressivity can be used for modelling graph similarities, graph summarization and ontology alignment. Despite the increasing expressivity, we show that cfSPARQL still enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page

    On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra

    Get PDF
    We study the expressive power of the Lara language - a recently proposed unified model for expressing relational and linear algebra operations - both in terms of traditional database query languages and some analytic tasks often performed in machine learning pipelines. We start by showing Lara to be expressive complete with respect to first-order logic with aggregation. Since Lara is parameterized by a set of user-defined functions which allow to transform values in tables, the exact expressive power of the language depends on how these functions are defined. We distinguish two main cases depending on the level of genericity queries are enforced to satisfy. Under strong genericity assumptions the language cannot express matrix convolution, a very important operation in current machine learning operations. This language is also local, and thus cannot express operations such as matrix inverse that exhibit a recursive behavior. For expressing convolution, one can relax the genericity requirement by adding an underlying linear order on the domain. This, however, destroys locality and turns the expressive power of the language much more difficult to understand. In particular, although under complexity assumptions the resulting language can still not express matrix inverse, a proof of this fact without such assumptions seems challenging to obtain

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts

    Nesting Depth of Operators in Graph Database Queries: Expressiveness Vs. Evaluation Complexity

    Get PDF
    Designing query languages for graph structured data is an active field of research, where expressiveness and efficient algorithms for query evaluation are conflicting goals. To better handle dynamically changing data, recent work has been done on designing query languages that can compare values stored in the graph database, without hard coding the values in the query. The main idea is to allow variables in the query and bind the variables to values when evaluating the query. For query languages that bind variables only once, query evaluation is usually NP-complete. There are query languages that allow binding inside the scope of Kleene star operators, which can themselves be in the scope of bindings and so on. Uncontrolled nesting of binding and iteration within one another results in query evaluation being PSPACE-complete. We define a way to syntactically control the nesting depth of iterated bindings, and study how this affects expressiveness and efficiency of query evaluation. The result is an infinite, syntactically defined hierarchy of expressions. We prove that the corresponding language hierarchy is strict. Given an expression in the hierarchy, we prove that it is undecidable to check if there is a language equivalent expression at lower levels. We prove that evaluating a query based on an expression at level i can be done in ÎŁi\Sigma_i in the polynomial time hierarchy. Satisfiability of quantified Boolean formulas can be reduced to query evaluation; we study the relationship between alternations in Boolean quantifiers and the depth of nesting of iterated bindings.Comment: Improvements from ICALP 2016 review comment

    Relative Expressive Power of Navigational Querying on Graphs

    Get PDF
    Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; and the diversity relation. All these operators map binary relations to binary relations. We compare the expressive power of all resulting languages. We do this not only for general path queries (queries where the result may be any binary relation) but also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For both cases, we present the complete Hasse diagram of relative expressiveness. In particular the Hasse diagram for boolean queries contains some nontrivial separations and a few surprising collapses.Comment: An extended abstract announcing the results of this paper was presented at the 14th International Conference on Database Theory, Uppsala, Sweden, March 201
    • 

    corecore