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Abstract. It is realistic to assume that a database management system provides access to the active
domain via built-in relations. Therefore, databases that include designated predicates that hold the
active domain, which we call product databases, form a natural notion that deserves our attention. An
important issue then is to look at the consequences of product databases for the expressiveness and
complexity of central existential rule languages. We focuson guarded-based existential rules, and
we investigate the impact of product databases on their expressive power and complexity. We show
that the queries expressed via (frontier-)guarded rules gain in expressiveness, and in fact, they have
the same expressive power as Datalog. On the other hand, there is no impact on the expressiveness of
the queries specified via weakly-(frontier-)guarded rulessince they are powerful enough to explicitly
compute the predicates needed to access the active domain. We also observe that there is no impact
on the complexity of the query languages in question.
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1. Introduction

Rule-based languages lie at the core of databases and knowledge representation. In database applica-
tions they are usually employed as query languages that go beyond standard SQL, while in knowledge
representation are used for declarative problem solving, and, more recently, to model and reason about
ontological knowledge. Therefore, rule-based languages can be used in at least two different ways: as
query languages and as ontology languages.

In the database setting, a rule-based query is expressed as apair of the form(Σ, Ans), whereΣ is a
set of rules encoding the actual query, whileAns is the so-called goal predicate that collects the answer
to the query. For example, if we want to compute the transitive closure of a graphG = (V,E), which is
encoded in a database in the usual way, thenΣ consists of

E(x, y) → T (x, y) E(x, y), T (y, z) → T (x, z) T (x, y) → Ans(x, y),

where the first rule copies all the edges ofG into the binary predicateT , the second rule recursively
computes the transitive closure ofG, while the third rule, which is the output rule, simply copies the
binary predicateT into the output predicateAns.

On the other hand, in the ontological setting, a databaseD and a set of rulesΣ are used to specify
implicit domain knowledge – the pair(D,Σ) is calledknowledge base– while user queries, typically
expressed as standard conjunctive queries, are evaluated over a knowledge base. For example, the knowl-
edge base(D,Σ), whereD = {Person(“Alice” )} andΣ consists of the rules

Person(x) → ∃y HasMother(x, y) HasMother(x, y) → Person(y),

states that Alice is a person, while each person has a mother who is also a person. Now, the query
whether Alice has a mother who is also a person can be easily expressed using the conjunctive query

q = ∃x(HasMother(“Alice” , x) ∧ Person(x)),

which is clearly entailed by(D,Σ). Alternatively, the set of rulesΣ and the conjunctive queryq can
be conceived as the components of one composite query, called ontology-mediated query, which will be
then evaluated over the databaseD. So, ontology-mediated queries are in fact pairs of the form(Σ, q),
whereΣ is a set of rules expressed in a certain ontology language, and q is a conjunctive query [1].1

From the above discussion, it is apparent that rule-based languages form the building block of sev-
eral database and ontology-mediated query languages that can be found in the literature. An important
issue for a query language (either a database or an ontology-mediated query language) is to understand
its expressive power, and in particular, its expressiveness relative to other query languages.Relative ex-
pressivenessconsiders if, given two query languagesL1 andL2, every query formulated inL1 can be
expressed by means ofL2 (and vice versa). This helps the user to choose, among a plethora of different

1In general, ontology-mediated queries are defined for arbitrary ontology languages, which can be seen as fragments of first-
order logic, and arbitrary database query languages. However, in this work, we focus on rule-based ontology languages,and
database queries definable via conjunctive queries.
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query languages, the one that is more appropriate for the application in question. The goal of this work
is to perform such an expressivity analysis for central query languages based on existential rules.

Existential rules(a.k.a.tuple-generating dependenciesor Datalog± rules) are first-order sentences of
the form∀x̄∀ȳ

(

φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

, whereφ andψ are conjunctions of atoms – usually, for brevity,
we omit the universal quantification, and use comma instead of “∧” for conjoining atoms. Intuitively,
such a rule states that the existence of certain tuples in a database implies the existence of some other tu-
ples in the same database. It is widely known that the query languages based on arbitrary existential rules,
without posing any syntactic restriction, are undecidable; see, e.g., [2, 3]. This has led to a flurry of ac-
tivity for identifying expressive fragments of existential rules that give rise to decidable query languages.
One of the key paradigms that has been thoroughly studied is guardedness [3, 4]. In a nutshell, the exis-
tential rule given above is guarded (resp., frontier-guarded) if φ has an atom that contains ( or “guards”)
all the variables in̄x ∪ ȳ (resp.,x̄). More refined languages based on weak-(frontier-)guardedness also
exist. All these languages form the so-called guarded family of existential rules.

The relative expressiveness of the languages in the guardedfamily of existential rules has been re-
cently investigated in [5]. However, the thorough analysisperformed in [5] has made no assumption on
the input databases over which the queries will be evaluated. We claim it is realistic to assume that a
database management system gives us free access to the active domain, that is, the set of constant values
occurring in the underlying database, via built-in relations (e.g., lookup or reference tables). In other
words, we assume that a database system has a mechanism for checking whether a given tuple of values
consists only of constants in the active domain. In more formal terms, this means that the underlying
database is what we call aproduct database, that is, a database that includes designated predicates that
hold the active domain; in fact, those predicates gives us access to the cartesian product of the active
domain, and hence the name “product database”. The questionthat comes up is whether the relative ex-
pressiveness of the languages in the guarded family of existential rules is affected when we concentrate
on product databases. We show that:

• The query languages based on (frontier-)guarded existential rules gain in expressiveness, and, in
fact, they have the same expressive power as Datalog.

• There is no impact on the expressive power of the query languages that are based on weakly-
(frontier-)guarded existential rules, since they are powerful enough to explicitly compute the rela-
tions needed to access the active domain.

At this point, since the query languages based on (frontier-)guarded existential rules over product
databases have the same expressive power as plain Datalog, one may ask why those languages are useful
or relevant. Recall that a Datalog query is a query of the form(Σ, Ans), whereΣ is a set of rules of
the formφ(x̄, ȳ) → R(x̄), i.e., existential rules with a single-atom existential-free head, whileAns is
the output predicate. Therefore, the above question simplyasks the following: what is the advantage of
allowing existentially quantified variables to appear in the head of a rule? This question has already been
addressed in the context of querying RDF data, where a refinednotion of expressive power, calledpro-
gram expressive power, has been introduced [6]. The key idea underlying this new notion of expressive
power is to encode the set of conjunctive queries that can be made true over all databases via afixedset
of rules (a.k.a. program, hence the name “program expressive power”). We show that:

• Assuming product databases, the query languages based on (frontier-)guarded existential rules are
strictly more expressive than Datalog w.r.t. the program expressive power.
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We also consider the complexity of the query languages in question, and we observe that:

• Even if we focus on product databases, the existing query evaluation algorithms can be applied,
and we get the same complexity results as in the case of arbitrary (non-product) databases.

Finally, we discuss how the above results can be used in orderto define novel classes of existential
rules that give rise to query languages that are equally expressive to Datalog, data tractable, and closed
under union. The latter is a crucial property that enables a modular style of writing queries.

Although the employed techniques for establishing our results are rather standard, which build on
existing ones that can be found in the literature, the obtained results are conceptually interesting (e.g.,
assuming product databases, (frontier-)guardedness gives rise to query languages that are equally expres-
sive to Datalog). Our analysis sheds light on the expressivity of the guarded-based query languages in
question, and complements the recent investigation performed in [5]. In the above summarization of our
results, the term query language refers to both database andontology-mediated query languages. Since
the former is a special case of the latter2, in the sequel we focus on ontology-mediated queries.

2. A First Glimpse on Product Databases

The goal of this section is to illustrate, via a meaningful example, that product databases have an impact
on the expressiveness of frontier-guarded ontology-mediated queries, which in turn allows us to write
complex queries in a more convenient and flexible way. Suppose we are developing a system for man-
aging a response to a natural disaster. The ultimate goal of the system is to collect information about
volunteers and their qualifications, and then use this information to coordinative various relief activities.

The Database

Suppose that the database of such a system contains a binary relationTeam that stores an assignment of
volunteers to teams. For example, the atom

Team(“Alpha” , “Ann” )

means that Ann belongs to the team called Alpha. The databasealso includes a binary relation called
ExperienceIn, which relates persons to tasks in which they have experience. For instance, the atom

ExperienceIn(“John”, “perform CPR”)

states that John has experience in performing CPR. We also have a binary relationhasTraining with
the obvious meaning; for example,

hasTraining(“John”, “race driver”)

means that John has been trained to drive a race car. In addition, the database contains a unary relation
ProDriverQualification that stores qualifications that involve driving at professional level; e.g.,

ProDriverQualification(“bus license”)

2Indeed, the query(Σ, Ans) is actually the ontology-mediated query(Σ, Ans(x1, . . . , xn)), wheren is the arity ofAns.
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states that bus license is a qualification to drive at professional level. We further assume that some
tasks that can be performed by volunteers are grouped into more complex procedures. For instance, the
response to a water leak could consist of performing four tasks in the following order: load equipment,
drive truck, perform repairs and clean up. This is stated in the database of the system using the atoms:

ProcedureTaskFirst(“water leak”, “load equipment”)

ProcedureTaskOrder(“water leak”, “load equipment”, “drive truck”)

ProcedureTaskOrder(“water leak”, “drive truck”, “perform repairs”)

ProcedureTaskOrder(“water leak”, “perform repairs”, “clean up”)

ProcedureTaskLast(“water leak”, “clean up”).

Intuitively, ProcedureTaskFirst(p, t) andProcedureTaskLast(p, t′) state thatt andt′ are the first
and the last tasks to be performed in the procedurep. An atom of the formProcedureTaskOrder(p, t, t′)
means that in the procedurep the taskt′ follows the taskt.

The Ontology

We know that some intensional knowledge, not explicitly stored in the database described above, also
holds. More precisely, we know that if a personp has experience in some taskt, thenp is qualified to
performt. This can be formally expressed via the rule

σ1 = ExperienceIn(Pn,Tk) → QualifiedFor(Pn,Tk).

Moreover, we know that if a personp has been trained to be a professional driver, thenp is qualified to
drive an ambulance. This can be expressed as

σ2 = hasTraining(Pn, T ), ProDriverQualification(T ) →

QualifiedFor(Pn, “drive ambulance”).

In addition, if a personp is experienced in delivering heavy goods, thenp must have some training that
leads to a truck license. This is expressed via the rule

σ3 = ExperienceIn(Pn, “delivery heavy goods”) →

∃T hasTraining(Pn , T ), TruckLicense(T ).

Finally, truck license leads to a professional driving license, which can be expressed as

σ4 = TruckLicense(T ) → ProDriverQualification(T ).

Observe that our ontologyΣ = {σ1, . . . , σ4} consists of guarded existential rules.

The Database Query

In our disaster management scenario we are interested in checking whether a team is qualified to perform
every task of a certain procedure. More precisely, we want tocollect in a binary relationTeamQualified
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all pairs(t, p) of a team and a procedure such that: for every taskj of the procedurep, the teamt has a
memberm that is qualified forj. Recall that an ontology-mediated query is a pair of an ontology and
a database query. Therefore, we need to express the above query as a database queryq, which, together
with the ontologyΣ defined above, will give rise to the ontology-mediated query(Σ, q). Unfortunately,
things are a bit more complicated than they seem. In particular, the queryq is inherently recursive, and
thus is not expressible as a conjunctive query. However, it can be easily expressed as the Datalog query
(Π, TeamQualified), where the programΠ consists of the rules:

ProcedureTaskFirst(Pc,Tk),

ρ1 = Team(Tm ,Pn),

QualifiedFor(Pn,Tk) → QualifiedUntil(Tm,Pc,Tk)

ProcedureTaskOrder(Pc,Tk ′,Tk),

ρ2 = Team(Tm ,Pn),

QualifiedUntil(Tm,Pn,Tk ′) → QualifiedUntil(Tm ,Pc,Tk)

ρ3 = ProcedureTaskLast(Pc,Tk),

QualifiedUntil(Tm,Pc,Tk) → TeamQualified(Tm ,Pc).

The fact that our queryq is expressible as a recursive Datalog query is of little use since the ontology-
mediated query(Σ, q) does not comply with the formal definition of ontology-mediated queries where
q must be a first-order query, and thus does not fall in a decidable guarded-based ontology-mediated
query language. Hence, the crucial question that comes up iswhether we can construct a query(Σ′, q′)
that is equivalent to(Σ, q), while Σ is a set of (frontier-)guarded existential rules andq is a conjunctive
query. One may think that this can be achieved by adding the Datalog rules ofΠ in the ontologyΣ, i.e.,
Σ′ = Σ ∪ Π, and letq be the atomic conjunctive queryTeamQualified(x, y). Although the obtained
query (Σ′, q′) is equivalent to(Σ, q), it is inherently unguarded, and it can be shown that cannot be
expressed as a frontier-guarded ontology-mediated query.However, by adopting the natural assumption
that our database is a product database, which gives us access to the active domain via relations of the
form Domk, for k > 0, that hold all thek-tuples of constants occurring in the active domain, we can
replace the rulesρ1, ρ2 ∈ Σ′ with the guarded rules

ProcedureTaskFirst(Pc,Tk),

ρ′1 = Team(Tm ,Pn),

QualifiedFor(Pn,Tk)

Dom4(Tm,Pc,Tk ,Pn) → QualifiedUntil(Tm ,Pc,Tk)

ProcedureTaskOrder(Pc,Tk ′,Tk),

ρ′2 = Team(Tm ,Pn),

QualifiedUntil(Tm ,Pn,Tk ′),

Dom5(Tm,Pc,Tk ,Tk ′,Pn) → QualifiedUntil(Tm ,Pc,Tk)
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without changing the meaning of the query(Σ′, q′). Hence, the assumption that the database is a product
database allows us to rewrite the query(Σ, q) into an equivalent guarded ontology-mediated query.

3. Ontology Mediated-Query Languages

Instances and Queries. Let C, N andV be pairwise disjoint countably infinite sets ofconstants,
(labeled)nulls andvariables(used in queries and dependencies), respectively. AschemaS is a finite set
of relation symbols (or predicates) with associated arity.We writeR/n to denote thatR has arityn. A
term is either a constant, null or variable. AnatomoverS is an expressionR(t̄), whereR is a relation
symbol inS of arity n > 0 andt̄ is ann-tuple of terms. Afact is an atom whose arguments consist only
of constants. AninstanceoverS is a (possibly infinite) set of atoms overS that contain constants and
nulls, while adatabaseoverS is a finite set of facts overS. Theactive domainof an instanceI, denoted
adom(I), is the set of all terms occurring inI.

A query over S is a mappingq that maps every databaseD over S to a set ofanswersq(D) ⊆
adom(D)n, wheren ≥ 0 is thearity of q. The usual way of specifying queries is by means of (fragments
of) first-order logic. Such a central fragment is the class ofconjunctive queries. Aconjunctive query(CQ)
q overS is a conjunction of atoms of the form∃ȳ φ(x̄, ȳ), wherex̄∪ ȳ are variables ofV, that uses only
predicates fromS. The free variables of a CQ are calledanswer variables. The evaluation of CQs over
instances is defined in terms of homomorphisms. Ahomomorphismfrom a set of atomsA to a set of
atomsA′ is a partial functionh : C ∪N ∪V → C ∪N ∪V such that: (i)t ∈ C impliesh(t) = t, i.e.,
is the identity onC, and (ii)R(t1, . . . , tn) ∈ A impliesh(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ A′.
Theevaluationof q over anS-instanceI, denotedq(I), is the set of all tuplesh(x̄) of constants such that
h is a homomorphism fromq to I. Each schemaS and CQq = ∃ȳ φ(x1, . . . , xn, ȳ) give rise to then-ary
queryqφ,S defined by setting, for every databaseD overS, qφ,S(D) = {c̄ ∈ adom(D)n | c̄ ∈ q(D)}.
Let CQ be the class of all queries definable by some CQ.

Tgds for Specifying Ontologies.An ontology language is a fragment of first-order logic. In this work,
we focus on ontology languages that are based on tuple-generating dependencies. Atuple-generating
dependency(tgd) is a first-order sentence of the form

∀x̄∀ȳ
(

φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

,

where bothφ andψ are conjunctions of atoms without nulls and constants. For simplicity, we write this
tgd asφ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma instead of “∧” for conjoining atoms. We callφ andψ the
bodyandheadof the tgd, respectively; for a tgdσ, we writebody(σ) andhead(σ) for the body and the
head ofσ, respectively. Letsch(Σ) be the set of predicates occurring in a set of tgdsΣ. An instanceI
satisfiesthe above tgd if: For every homomorphismh from φ(x̄, ȳ) to I, there is a homomorphismh′

that extendsh, i.e.,h′ ⊇ h, from ψ(x̄, z̄) to I. I satisfies a setΣ of tgds, denotedI |= Σ, if I satisfies
every tgd inΣ. LetTGD be the class of all (finite) sets of tgds.

Ontology-Mediated Queries. An ontology-mediated queryis a triple(S,Σ, q), whereS is a schema,
calleddata schema, Σ ∈ TGD, q ∈ CQ, andq is overS ∪ sch(Σ).3 Notice that the data schemaS is
included in the specification of an ontology-mediated queryin order to make clear that the query is over
S, i.e., it ranges overS-databases. The semantics of such a query is defined in terms of certain answers.

3In fact, ontology-mediated queries can be defined for arbitrary ontology and query languages.
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Let (S,Σ, q) be an ontology-mediated query, wheren is the arity ofq. Theanswerto q with respect to a
databaseD overS andΣ is the set of tuples

certq,Σ(D) =
⋂

I⊇D,I|=Σ

{c̄ ∈ adom(D)n | c̄ ∈ q(I)}.

At this point, it is important to recall thatcertq,Σ(D) coincides with the evaluation ofq over the
canonical instance ofD andΣ that can be constructed by applying the chase procedure [3, 7, 8, 9].
Roughly speaking, the chase adds new atoms toD as dictated byΣ until the final result satisfiesΣ, while
the existentially quantified variables are satisfied by inventing fresh null values. The formal definition
of the chase procedure follows. LetI be an instance andσ = φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) a tgd. We say that
σ is applicablewith respect toI if there exists a homomorphismh from body(σ) to I. In this case,the
result of applyingσ over I with h is the instanceJ = I ∪ h′(head(σ)), whereh′ is an extension ofh
that maps each variablez ∈ z̄ to a fresh null value not occurring inI. For such a single chase step we

write I
σ,h
−−→ J . Let us assume now thatI is an instance andΣ a finite set of tgds. Achase sequence for

I underΣ is a (finite or infinite) sequence:

I0
σ0,h0

−−−→ I1
σ1,h1

−−−→ I2 . . .

of chase steps such that: (1)I0 = I; (2) For eachi ≥ 0, σi ∈ Σ; and (3)
⋃

i≥0 Ii |= Σ. Notice that
in case the above chase sequence is infinite, then it must be also fair, that is, whenever a tgdσ ∈ Σ
is applicable with respect toIi with homomorphismhi, then there existsh′ ⊇ hi andk > i such that
h′(head(σ)) ⊆ Ik. In other words, a fair chase sequence guarantees that all tgds that are applicable will
eventually be applied. We call

⋃

i≥0 Ii the resultof this chase sequence, which always exists. Although
the result of a chase sequence is not necessarily unique (up to isomorphism), each such result is equally
useful for our purposes since isuniversal, that is, it can be homomorphically embedded into every other
result. Therefore, we denote bychase(I,Σ) theresult of an arbitrary chase sequence forI underΣ.

Given an ontology-mediated query(S,Σ, q), it is well-known thatcert q,Σ(D) = q(chase(D,Σ)),
for everyS-databaseD. In other words, to compute the answer toq with respect toD andΣ, we simply
need to evaluateq over the instancechase(D,Σ). Notice that this does not provide an effective algorithm
for computingcert q,Σ(D) since the instancechase(D,Σ) is, in general, infinite.

Ontology-Mediated Query Languages.Every ontology-mediated queryQ = (S,Σ, q) can be inter-
preted as a queryqQ overS by settingqQ(D) = cert q,Σ(D), for everyS-databaseD. Thus, we obtain
a new query language, denoted(TGD,CQ), defined as the class of queriesqQ, whereQ is an ontology-
mediated query. However,(TGD,CQ) is undecidable since, given a databaseD overS, Σ ∈ TGD, ann-
ary queryq ∈ CQ overS∪sch(Σ), and a tuplēc ∈ C

n, the problem of deciding whetherc̄ ∈ certq,Σ(D)
is undecidable; see, e.g., [2, 3]. This has led to a flurry of activity for identifying decidable syntactic re-
strictions. Such a restriction defines a subclassC of tgds, i.e.,C ⊆ TGD, which in turn gives rise to the
query language(C,CQ). Such a query language is calledontology-mediated query language. Here we
focus on ontology-mediated query languages that are based on the notion of guardedness:

(Frontier-)Guarded Tgds:A tgd is guardedif its body contains an atom, calledguard, that contains all
the body-variables [3]. LetG be the class of all finite sets of guarded tgds. A key extensionof guarded
tgds is the class offrontier-guardedtgds, where the guard contains only the frontier variables,i.e., the
body-variables that appear in the head [4]. LetFG be the class of all finite sets of frontier-guarded tgds.
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Weak Versions:BothG andFG have a weak version: Weakly-guarded [3] and weakly-frontier-guarded [4],
respectively. These are highly expressive classes of tgds obtained by relaxing the underlying condition
so that only those variables that may unify with null values during the chase are taken into account. In
order to formalize these classes of tgds we need some additional terminology.

A positionR[i] identifies thei-th attribute of a predicateR. Given a schemaS, the set of positions
of S is the set{R[i] | R/n ∈ S andi ∈ {1, . . . , n}}. Given a setΣ of tgds, the set ofaffected positions
of sch(Σ), denotedaffected(Σ), is inductively defined as follows: (1) If there existsσ ∈ Σ such that at
positionπ an existentially quantified variable occurs, thenπ ∈ affected(Σ); and (2) If there existsσ ∈ Σ
and a variableV in body(σ) only at positions ofaffected(Σ), andV appears inhead(σ) at position
π, thenπ ∈ affected(Σ). A tgd σ is weakly-guarded with respect toΣ if its body contains an atom,
calledweak-guard, that contains all the body-variables that appear only at positions ofaffected(Σ). The
setΣ is weakly-guardedif eachσ ∈ Σ is weakly-guarded with respect toΣ. The class of weakly-
frontier-guarded sets of tgds is defined analogously, but considering only the body-variables that appear
also in the head of a tgd. We writeWG (resp.,WFG) for the class of all finite weakly-guarded (resp.,
weakly-frontier-guarded) sets of tgds.

4. Product Databases

Recall that product databases provide access to the active domain via designated built-in predicates.
Before proceeding to the next section, where we look at the impact of product databases on the expressive
power of the ontology-mediated query languages in question, let us make the notion of product databases
more precise.

A databaseD is said to beα-product, whereα is a finite set of positive integers, if it includes a
designated predicateDomi/i, for eachi ∈ α, that holds all thei-tuples of constants inadom(D), or,
in other words, the restriction ofD over the predicateDomi is precisely the set of facts{Domi(t̄) | t̄ ∈
adom(D)i}. Given a non-product databaseD, we denote byDα theα-product databaseD ∪ {Domi(t̄) |
t̄ ∈ adom(D)i}i∈α. An ontology-mediated query over a product databaseis an ontology-mediated
query (S,Σ, q) such thatS contains the predicatesDomi1 , . . . , Domik , for some set of positive integers
α = {i1, . . . , ik}, while none of those predicates appears in the head of a tgd ofΣ. The latter condition
is posed since the predicatesDomi1 , . . . , Domik are conceived as built-in read-only predicates, and thus,
we cannot modify their content. Such a query ranges only overS-databases that areα-product. We write
(C,CQ)× for the class of(C,CQ) queries over a product database.

Example 4.1. Consider the queryQtrans = ({E},Σ, Ans(x, y)), whereΣ is the set:

E(x, y) → T (x, y)

E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y),

which computes the transitive closure of the binary predicate E. It is easy to see that the above query
can be equivalently rewritten as a guarded ontology-mediated query over a product database, i.e., as a
(G,CQ)× query. More precisely,Qtrans can be written asQ′

trans
= ({E, Dom3},Σ′, Ans(x, y)), where
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Σ′ is the set of tgds:

E(x, y) → T (x, y)

Dom3(x, y, z), E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y).

Clearly, for every{E}-databaseD,Qtrans (D) = Q′
trans

(D{3}).

5. The Impact of Product Databases

We are now ready to investigate the impact of product databases on the relative expressiveness of the
guarded-based ontology-mediated query languages in question. But let us first fix some auxiliary ter-
minology. Two ontology-mediated queriesQ1 = (S1,Σ1, q1) andQ2 = (S2,Σ2, q2) over a product
database, withαi = {j | Domj ∈ Si}, for eachi ∈ {1, 2}, arecomparable relative to schemaS if
S = S1 \ {Domi | i ∈ α1} = S2 \ {Domi | i ∈ α2}. Such comparable queries areequivalent, written
Q1 ≡ Q2, if, for every databaseD overS, certq1,Σ1

(Dα1) = certq2,Σ2
(Dα2). It is important to say that

the above definitions immediately apply even if we consider queries that are not over a product database.
An ontology-mediated query languageQ2 is at least as expressive asthe ontology-mediated query lan-
guageQ1, writtenQ1 � Q2, if, for every queryQ1 ∈ Q1 there exists a queryQ2 ∈ Q2 such thatQ1

andQ2 are comparable (relative to some schema) andQ1 ≡ Q2. Q2 is strictly more expressive than
Q1, writtenQ1 ≺ Q2, if Q1 � Q2 6� Q1. Finally,Q1 andQ2 have the same expressive power, written
Q1 = Q2, if Q1 � Q2 � Q1.

In our analysis we also consider Datalog. It is widely accepted that Datalog is one of the most
important database query languages that can be found in the database literature (see, e.g., [10]), and thus
it is essential to understand how the ontology-mediated query languages in question compare to it when
we focus on product databases. As already said in Section 1, aDatalog program is a set of single-head
tgds without existentially quantified variables, while a Datalog query overS of the form (Σ, Ans/n),
whereΣ is a Datalog program andAns is the output predicate, can be seen as the ontology-mediated
query(S,Σ, Ans(x1, . . . , xn)). We writeDAT for the class of queries definable via some Datalog query.
We show the following:

Theorem 5.1. It holds that,

(G,CQ) ≺ (FG,CQ) ≺ (G,CQ)× = (FG,CQ)× = DAT ≺

(WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.

The key message of the above result is that the ontology-mediated query languages that are based on
(frontier-)guarded existential rules gain in expressiveness when we focus on product databases; in fact,
they have the same expressive power as Datalog. However, there is no impact on the expressive power
of the ontology-mediated query languages that are based on weakly-(frontier-)guarded existential rules.
The rest of this section is devoted to establish the above result. This is done by establishing a series of
technical lemmas that all together imply Theorem 5.1. Henceforth, we assume that, given an ontology-
mediated query(S,Σ, q), none of the predicates ofS occur in the head of a tgd ofΣ. This assumption
can be made without loss of generality since, for eachR ∈ S that appears in the head of tgd ofΣ, we can
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Figure 1. The graph from the proof of Lemma 5.2.

add toΣ the auxiliary copy tgdR(x1, . . . , xn) → R⋆(x1, . . . , xn), and then replace each occurrence of
R in Σ andq with R⋆.

We first establish that frontier-guarded ontology-mediated queries are strictly more expressive than
guarded ontology-mediated queries. Although this is generally known, it is not explicitly shown in some
previous work. For the sake of completeness, we provide a proof sketch for this fact, leaving the details
as an exercise. Our argument is based on the notion of guardedbisimulation, a fundamental tool in the
study of guarded logics. In particular, the existence of a guarded bisimulation implies indistinguishability
by sentences that fall in guarded fixpoint logic, an extension of the guarded fragment of first-order logic
with fixpoint operators; for more details, see [11, 12]. Thisimplies that(G,BACQ), whereBACQ is
the class of queries definable by some Boolean atomic CQ, thatis, an atomic CQ without free variables,
is preserved under guarded bisimulation. In other words, given twoS-databasesD andD′, if they are
guarded bisimilar, thenQ(D) 6= ∅ iff Q(D′) 6= ∅, for everyS-queryQ ∈ (G,BACQ).

Lemma 5.2. (G,CQ) ≺ (FG,CQ).

Proof:
We need to exhibit a query that can be expressed as a(FG,CQ) query but not as a(G,CQ) query, which in
turn shows that(FG,CQ) 6� (G,CQ); the other direction holds trivially sinceG ⊆ FG. Such a query is the
one that asks whether a labeled directed graphG = (N,E, λ, µ), whereλ : N → {start , internal , end}
andµ : E → {R,S}, contains a directedR-pathP from a start node to an end node via internal nodes,
while each node ofP is part of a directedS-triangle. In other words, we ask if the graphG contains a
subgraph as the one depicted in Figure 1. The graphG is naturally encoded in anS-databaseD, where
S = {Start/1, Internal/1, End/1, R/2, S/2}. In fact,D is the database:

{R(v,w) | (v,w) ∈ E andµ(v,w) = R} ∪ {S(v,w) | (v,w) ∈ E andµ(v,w) = S}

∪ {Start(v) | v ∈ N andλ(v) = start} ∪ {Internal(v) | v ∈ N andλ(v) = internal}

∪ {End(v) | v ∈ N andλ(v) = end}.

Our query can be expressed as the(FG,CQ) queryQ = (S,Σ, Yes()), whereΣ consists of:

S(x, x1), S(x1, x2), S(x2, x) → TriangleS(x)

Start(x) → Mark(x)

Mark(x), TriangleS(x), R(x, y), Internal(y) → Mark(y)

Mark(x), TriangleS(x), R(x, y), End(y), TriangleS(y) → Yes().

It remains to show thatQ cannot be expressed as a(G,CQ) query. To this end, we first show thatQ,
and in particular the “triangle checks”, cannot be expressed as a(G,BACQ) query; recall thatBACQ
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Figure 2. The guarded bisimilarS-databases from the proof of Lemma 5.2.

is the class of queries definable by some Boolean atomic CQ. Towards a contradiction, assume that the
queryQ′ = (S,Σ′, q′) ∈ (G,BACQ) is equivalent toQ. Thus, assuming thatD1 andD2 are theS-
databases depicted in Figure 2,Q′(D1) 6= ∅ andQ′(D2) = ∅. However, it can be shown thatD1

andD2 are guarded bisimilar. Since(G,BACQ) is preserved under guarded bisimulation, we conclude
thatQ′(D1) = ∅ andQ′(D2) 6= ∅, which is a contradiction. Consequently,Q cannot be expressed
as a(G,BACQ) query. Now, it is not difficult to argue thatQ cannot be expressed as a(G,CQ) query.
Intuitively, theunboundednumber of “triangle checks” must necessarily be performed by a CQ, which
means that we need to express via a CQ an inherently recursivequery. But this contradicts the fact that a
(finite) first-order query, let alone a conjunctive query, cannot express a recursive query. ⊓⊔

We proceed to show that Datalog queries are strictly more expressive than frontier-guarded ontology-
mediated queries. Towards this end, we are going to exploit the fact that(FG,ACQ) � DAT, where
ACQ is the class of queries definable by some atomic CQ [5].4 This means that, given a queryQ =
(S,Σ,∃ȳ Ans(x̄, ȳ)) ∈ (FG,ACQ), there exists a procedureΞ that translatesΣ into a Datalog program
such thatQ and the query(Ξ(Σ), Ans) ∈ DAT overS are equivalent. We show that:

Lemma 5.3. (FG,CQ) ≺ DAT.

Proof:
We first show that(FG,CQ) � DAT. LetQ = (S,Σ, q) ∈ (FG,CQ), with q = ∃ȳ φ(x1, . . . , xn, ȳ). Q
can be equivalently rewritten as a(TGD,ACQ) query. More precisely,Q is equivalent to the query

Q′ = (S,ΣP ⋆ ∪ Σ ∪ {σq}, Ans(x1, . . . , xn)),

whereΣP ⋆ consists of the tgds:

R(x1, . . . , xn) → P (xi), for eachR ∈ S andi ∈ {1, . . . , n}

P (x1), . . . , P (xn) → P ⋆(x1, . . . , xn),

with P/1 andP ⋆/n being auxiliary predicates not inS ∪ sch(Σ), andσq is the tgd

P ⋆(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn).

4A similar result can be found in [13].
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In particular,ΣP ⋆ defines the predicateP ⋆ that holds all then-tuples over constants of the active domain,
which then can be used inσq that converts the CQq into a frontier-guarded tgd. Notice thatQ′ is not
a query over a product database, which means we do not have access to the built-in predicateDomn.
Therefore, in order to convertq into a frontier-guarded tgd, we need to explicitly construct all then-
tuples over the active domain and store them in the auxiliarypredicateP ⋆. Although the set of tgds
Σ′ = ΣP ⋆ ∪ Σ ∪ {σq} is not frontier-guarded, it has a very special form that allows us to rewrite it into
a Datalog program by applying the translationΞ. Observe thatΣ′ admits a stratification, where the first
stratum is the setΣP ⋆ , while the second stratum is the frontier-guarded setΣ ∪ {σq}. This implies that
Q′ is equivalent to the Datalog query(ΣP ⋆ ∪ Ξ(Σ ∪ {σq}), Ans) overS, and the claim follows.

It remains to show thatDAT 6� (FG,CQ). To this end, it suffices to construct a Datalog queryQ over
a schemaS such that, for every queryQ′ ∈ (FG,CQ) overS, there exists anS-databaseD such that,
Q(D) 6= Q′(D). We claim that such a Datalog query isQtrans given in Example 4.1, which computes the
transitive closure of the binary relationE. Towards a contradiction, assume thatQtrans can be expressed
as a(FG,CQ) query(S,Σ, q). Observe that frontier-guarded tgds are not able to put together in an atom,
during the construction of the chase instance, two databaseconstants that do not already coexist in a
database atom. In particular, given a databaseD and a setΣ ∈ FG, if there is no atom inD that contains
the constantsc, d ∈ adom(D), then there is no atom inchase(D,Σ) that containsc andd. Therefore,
q is able to compute the transitive closure of the binary relation E. But this contradicts the fact that a
(finite) conjunctive query cannot compute the transitive closure of a binary relation. ⊓⊔

We now show that product databases have an impact on the expressiveness of the ontology-mediated
query languages based on (frontier-)guarded tgds. In fact,these languages become equally expressive to
Datalog when we focus on product databases.

Lemma 5.4. (G,CQ)× = (FG,CQ)× = DAT

Proof:
First observe that(FG,CQ)× = (FG,ACQ)×; recall thatACQ is the class of queries definable by some
atomic CQ. More precisely, a query(S,Σ, q) ∈ (FG,CQ)×, with q = ∃ȳ φ(x1, . . . , xn, ȳ), is equivalent
to the(FG,ACQ)× query

(S,Σ ∪ {σq}, Ans(x1, . . . , xn)),

whereσq is the tgd

Domn(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn),

which implies that(FG,CQ)× � (FG,ACQ)×; the other direction holds trivially. Therefore, to prove
our claim, it suffices to show that

(G,CQ)×
(1)

� (FG,ACQ)×
(2)

� DAT
(3)

� (G,CQ)×.

For showing (1), we observe that the construction given above for rewriting a(FG,CQ)× query into a
(FG,ACQ)× query can be used in order to rewrite a(G,CQ)× query into a(FG,ACQ)× query. For
showing (2), we can apply the procedureΞ mentioned above, which transforms a(FG,ACQ) query into
an equivalentDAT query. Finally, (3) follows from the fact that a Datalog ruleρ can be converted into a
guarded tgd by adding in the body ofρ the atomDom|x̄|(x̄), wherex̄ are the variables inρ. ⊓⊔
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The next lemma shows that weakly-guarded sets of tgds give rise to an ontology-mediated query
language that is strictly more expressive than Datalog.

Lemma 5.5. DAT ≺ (WG,CQ)

Proof:
The fact thatDAT � (WG,CQ) holds trivially since a set of Datalog rules is a weakly-guarded set of
tgds. In particular, a Datalog query(Σ, Ans/n) overS is equivalent to the query(S,Σ, Ans(x1, . . . , xn)),
whereΣ is trivially weakly-guarded since there are no existentially quantified variables, which in turn
implies that the set of affected positions ofsch(Σ) is empty. It remains to show that(WG,CQ) 6� DAT.
To this end, we employ a complexity-theoretic argument. It is well-known that the (decision version of
the) problem of evaluating a Datalog query is feasible in polynomial time in data complexity, while for
(WG,CQ) is complete for EXPTIME [3]. Thus, (WG,CQ) � DAT implies that PTIME = EXPTIME,
which is a contradiction. Therefore,(WG,CQ) 6� DAT. ⊓⊔

We finally show that there is no impact on the expressiveness of the ontology-mediated query lan-
guages that are based on weakly-(frontier-)guarded sets oftgds. As we shall see, the main reason for this
outcome is the fact that these languages are powerful enoughto compute the predicates needed to access
the active domain.

Lemma 5.6. (WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.

Proof:
It is well-known that(WG,CQ) = (WFG,CQ); (WG,CQ) � (WFG,CQ) holds trivially sinceWG ⊆
WFG, while (WFG,CQ) � (WG,CQ) has been shown in [5]. It remains to show(WG,CQ) =
(WG,CQ)× and(WFG,CQ) = (WFG,CQ)×.

The(�) direction is trivial. The other direction holds sinceWG andWFG have the power to explicitly
define a predicateP k/k, wherek > 0, that holds all thek-tuples of constants in the active domain.
More precisely, a(WG,CQ)× (resp.,(WFG,CQ)×) queryQ = (S,Σ, q), with α = {j | Domj ∈ S}, is
equivalent to the(WG,CQ) (resp.,(WFG,CQ)) queryQ′ = (S′,Σ′, q′), whereS′ = S\{Domk | k ∈ α},
Σ′ is obtained fromΣ by replacing each predicateDomk with P k and adding the set of tgds:

R(x1, . . . , xn) → P 1(x1), . . . , P
1(xn), for eachR ∈ S

′

P 1(x1), . . . , P
1(xk) → P k(x1, . . . , xk), for eachk ∈ α,

and finallyq′ is obtained fromq by replacing each predicateDomk with P k. ⊓⊔

It is now easy to verify that Lemmas 5.2, 5.3, 5.4, 5.5 and 5.6 imply Theorem 5.1.

6. Is the Existential Quantification Needed?

Theorem 5.1 shows that the query languages based on (frontier-)guarded existential rules over product
databases have the same expressive power as plain Datalog. Thus, at this point, one may claim that the
existentially quantified variables in the head of a rule are not really needed. However, in applications
where we need to decouple the actual database query from the ontology, the existential quantification is
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essential; such an application, in the context of querying RDF data, is described in [6]. The goal of this
section is to formally show the above intuitive claim. To this end, we adopt a refined notion of expressive
power, calledprogram expressive power, introduced in [6].

For a fixed setΣ of tgds, we define its program expressive power relative to a schemaS, denoted
PepS(Σ), as the set of triples(D, q, c̄), whereD is a productS-database,q(x̄) is a CQ, c̄ ∈ C

|x̄|,
and c̄ ∈ cert q,Σ(D). In fact, PepS(Σ) collects the set of tuples̄c overC that can be inferred from a
productS-database via an OMQ of the form(S,Σ, ·). Now, for an ontology-mediated query language
Q = (C,CQ)×, whereC ⊆ TGD, we define its program expressive power as the set

Pep(Q) = {PepS(Σ) | S is a schema,Σ ∈ C}.

Roughly,Pep(Q) is a family of sets of triples, where each of its members encodes the program expressive
power of a set of tgds inC relative to some schema. Given two ontology-mediated querylanguagesQ1

andQ2, we writeQ1 �Pep Q2 if Pep(Q1) ⊆ Pep(Q2). Finally, we say thatQ2 is strictly more expressive
(w.r.t. the program expressive power)thanQ1, writtenQ1 ≺Pep Q2, if Q1 �Pep Q2 andQ2 6�Pep Q1.

We are now ready to illustrate the usefulness of the existentially quantified variables by showing
that the ontology-mediated query language based on guardedtgds is more expressive than the language
based on existential-free tgds, known in the literature asfull tgds; we writeFULL for the the class of all
finite sets of full tgds. Let us clarify that we compare(G,CQ)× with (FULL,CQ)× instead ofDAT for
compatibility reasons, since the notion of program expressive power is defined for ontology-mediated
query languages of the form(C,CQ), whereC ⊆ TGD. It holds that:

Theorem 6.1. (FULL,CQ)× ≺Pep (G,CQ)×.

Proof:
It is clear thatPep((FULL,CQ)×) ⊆ Pep((G,CQ)×) since each(FULL,CQ)× query can be converted
into an equivalent(G,CQ)× query by guarding all the variables occurring in the body of afull tgd using
a domain predicate of appropriate arity; thus,(FULL,CQ)× �Pep (G,CQ)×. It remains to show that
(G,CQ)× 6�Pep (FULL,CQ)×, or, equivalently,Pep((G,CQ)×) 6⊆ Pep((FULL,CQ)×).

Let S = {P}, and consider theS-databaseD = {P (c)}. Consider also the setΣ consisting of the
guarded tgd

P (x) → ∃y R(x, y).

Let q1 andq2 be the (Boolean) conjunctive queries

∃x∃y R(x, y) and ∃x∃y(R(x, y) ∧ P (y)),

respectively. Clearly,() ∈ certq1,Σ(D) and() 6∈ certq2,Σ(D), where() denotes the empty tuple. Hence,
(D, q1, ()) ∈ PepS(Σ) and(D, q2, ()) 6∈ PepS(Σ), which in turn implies thatPep((G,CQ)×) contains a
set of triplesT such that(D, q1, ()) ∈ T and(D, q2, ()) 6∈ T . We claim thatT 6∈ Pep((FULL,CQ)×),
and thus,Pep((G,CQ)×) 6⊆ Pep((FULL,CQ)×), as needed.

It is not difficult to see thatfor everysetΣ′ of full tgds,() ∈ certq1,Σ′(D) implies() ∈ certq2,Σ′(D).
Thus, the triples(D, q1, ()) and(D, q2, ()) necessarily coexist inPepS(Σ

′), for every setΣ′ ∈ FULL,
which in turn implies thatT 6∈ Pep((FULL,CQ)×), and the claim follows. ⊓⊔
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ClassC Data Complexity Bounded Arity Combined Complexity

G PTIME EXPTIME 2EXPTIME

FG PTIME 2EXPTIME 2EXPTIME

WG EXPTIME EXPTIME 2EXPTIME

WFG EXPTIME 2EXPTIME 2EXPTIME

Table 1. Complexity of EVAL ((C,CQ)×); all the results are completeness results.

7. Complexity of Query Evaluation

The question that remains to be answered is whether product databases have an impact on the complexity
of the query evaluation problem under the guarded-based ontology-mediated query languages in ques-
tion. As is customary when studying the computational complexity of the evaluation problem for a query
language, we consider its associated decision problem. We denote this problem by EVAL (Q), whereQ
is an ontology-mediated query language, and its definition follows:

INPUT : QueryQ = (S,Σ, q(x̄)) ∈ Q, S-databaseD, and tuplēt ∈ C
|x̄|.

QUESTION: Doest̄ ∈ certq,Σ(D)?

It is important to clarify that when we focus on ontology-mediated queries over a product database,
then the input database to the evaluation problem is a product database. In other words, if we focus on
the problem EVAL ((C,CQ)×), whereC is a class of tgds, and the input query is(S,Σ, q), then the input
database is anα-product database, whereα = {i | Domi ∈ S}.

The complexity of EVAL ((C,CQ)), whereC ∈ {G,FG,WG,WFG}, is well-understood; for(G,CQ)
and(WG,CQ) it has been investigated in [3], while for(FG,CQ) and(WFG,CQ) in [14]. It is clear that
the algorithms devised in [3, 14] for the guarded-based ontology-mediated query languages in question
treat product databases in the same way as non-product databases, or, in other words, they are oblivious
to the fact that an input database is product. Therefore, we can conclude that, even if we focus on product
databases, the existing algorithms can be applied and get the same complexity results for query evaluation
as in the case where we consider arbitrary (non-product) databases; these results are summarized in
Table 1. Recall that the data complexity is calculated by considering only the database as part of the
input, while in the combined complexity both the query and the database are part of the input. We also
consider the important case where the arity of the schema is bounded by an integer constant.

7.1. The Bounded Arity Case Revisited

In Table 1, the bounded arity column refers to the case where all predicates in the given query, including
the predicates of the formDomk, wherek > 0, are of bounded arity. However, bounding the arity
of the Domk predicates is not our intention. Observe that in the proof ofLemma 5.4, where we show
(G,CQ)× = (FG,CQ)× = DAT, the predicates of the formDomk are used (i) to convert a CQ into a
frontier-guarded tgd, and (ii) to convert a Datalog rule into a guarded tgd. More precisely, in the first
case we use aDomk atom to guard the answer variables of a CQ, while in the secondcase to guard the
variables in the body of a Datalog rule. Therefore, in both cases, we need to guard via aDomk atom
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an unbounded number of variables, even if the arity of the schema is bounded, and thusk must be
unbounded. From the above discussion, it is clear that the interesting case to consider in our complexity
analysis is not when all predicates of the underlying schemaare of bounded arity, but when all predicates
except the domain predicates are of bounded arity. Clearly,in case of(FG,CQ)× and(WFG,CQ)×, the
complexity of query evaluation is 2EXPTIME-complete, since the problem is 2EXPTIME-hard even if
all predicates (including the domain predicates) have bounded arity. However, the picture is foggy in
the case of(G,CQ)× and(WG,CQ)× since the existing results imply a 2EXPTIME upper bound and an
EXPTIME lower bound. Interestingly, as we discuss below, the complexity of query evaluation remains
the same, i.e., EXPTIME-complete, even if the domain predicates have unbounded arity.

Theorem 7.1. EVAL ((WG,CQ)×) is EXPTIME-complete if the arity of the schema, excluding the pred-
icates of the formDomk, wherek > 0, is bounded by an integer constant.

The lower bound follows from the fact EVAL ((WG,CQ)) is EXPTIME-hard when the arity of the
schema is bounded [3]. The upper bound relies on a result that, although being implicit in [3], it has
not been explicitly stated before. Thebody-predicatesof an ontology-mediated query(S,Σ, q) are the
predicates that do not appear in the head of a tgd ofΣ. It holds that:

Proposition 7.2. EVAL ((WG,CQ)×) is in EXPTIME if the arity of the schema, excluding the body-
predicates, is bounded by an integer constant.

The above result simply states that even if we allow the body-predicates to have unbounded arity,
while all the other predicates of the schema are of bounded arity, the complexity of EVAL ((WG,CQ)×)
remains the same as in the case where all the predicates of theschema have bounded arity. Since the
predicates of the formDomk, for k > 0, is a subset of the body-predicates of an ontology-mediatedquery
over a product database, it is clear that Proposition 7.2 implies Theorem 7.1.

As said, although Proposition 7.2 has not been explicitly stated before, it is implicit in [3], where
the complexity of query evaluation for(WG,CQ) is investigated. In fact, we can apply the alternating
algorithm devised in [3] for showing that EVAL ((WG,CQ)) is in EXPTIME if the arity of the schema
(including the body-predicates) is bounded by an integer constant. In what follows, we briefly recall the
main ingredients of the alternating algorithm in [3], and discuss how we get the desired upper bound.

A setΣ ∈ WG can be effectively transformed into a setΣ′ ∈ WG such that all the tgds ofΣ′ are
single-head [3]. Henceforth, for technical clarity, we focus on tgds with just one atom in the head. Let

D be a database, andΣ a set of tgds. Fix a chase sequenceD = I0
σ0,h0

−−−→ I1
σ1,h1

−−−→ I2 . . . for D under
Σ. The instancechase(D,Σ) can be naturally represented as a labeled directed graphG = (N,E, λ)
as follows: (1) for each atomR(t̄) ∈ chase(D,Σ), there existsv ∈ N such thatλ(v) = R(t̄); (2) for

eachi ≥ 0, with Ii
σi,hi

−−−→ Ii+1, and for each atomR(t̄) ∈ hi(body(σi)), there exists(v, u) ∈ E such
thatλ(v) = R(t̄) and{λ(u)} = Ii+1 \ Ii; and (3) there are no other nodes and edges inG. Theguarded
chase forestof D andΣ, denotedgcf(D,Σ), is the forest obtained fromG by keeping only the nodes
associated with weak-guards, and their children; for more details, we refer the reader to [3].

Consider a query(S,Σ, q) ∈ (WG,CQ), a databaseD overS, and a tuplēt of constants. Clearly,
t̄ ∈ cert q,Σ(D) iff there exists a homomorphism that mapsq(t̄) to gcf(D,Σ). Observe that if such a
homomorphismh exists, then ingcf(D,Σ) there exist paths starting from nodes labeled with database
atoms and ending at nodes labeled with the atoms ofh(q(t̄)). The alternating algorithm in [3] first guesses
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the homomorphismh from q(t̄) to gcf(D,Σ), and then constructs in parallel universal computations the
paths fromD to h(q(t̄)) (if they exist). During this alternating process, the algorithm exploits a key
result established in [3], that is, the subtree ofgcf(D,Σ) rooted at some atomR(ū) is determined by the
so-called cloud ofR(ū) (modulo renaming of nulls) [3, Theorem 5.16]. Thecloudof R(ū) with respect
to D andΣ, denotedcloud(R(ū),D,Σ), is defined as{S(v̄) ∈ chase(D,Σ) | v̄ ⊆ (adom(D) ∪ ū)},
i.e., the atoms in the result of the chase with constants fromD and terms from̄u. This result allows the
algorithm to build the relevant paths ofgcf(D,Σ) fromD to h(q(t̄)). Roughly, an atomR(ū) on a path
can be generated by considering only its parent atomS(v̄) and the cloud ofS(v̄) with respect toD and
Σ. Whenever a new atom is generated, the algorithm nondeterministically guesses its cloud, and verify
in a parallel universal computation that indeed belongs to the result of the chase.

From the above informal description, we conclude that the space needed at each step of the computa-
tion of the alternating algorithm is actually the size of thecloud of an atom. By applying a simple combi-
natorial argument, it is easy to show that the size of a cloud is at most(|S|+|sch(Σ)|)·(|adom (D)|+w)w ,
wherew is the maximum arity over all predicates ofS ∪ sch(Σ). Therefore, if we assume that all the
predicates of the schema have bounded arity, which means that w is a constant, then the size of a cloud
is polynomial. Since alternating polynomial space coincides with deterministic exponential time, we im-
mediately get the EXPTIME upper bound in the case of bounded arity. Now, letB be the body-predicates
of (S,Σ, q). It is clear that, for every atomR(ū) ∈ chase(D,Σ), the restriction ofcloud(R(ū),D,Σ)
on the predicates ofB is actuallyD, and thus of polynomial size, even if the predicates ofB have un-
bounded arity. This implies that, even if we allow body-predicates of unbounded arity, the size of a cloud
remains polynomial. Therefore, the alternating algorithmdevised in [3] can be applied in order to get
the EXPTIME upper bound stated in Proposition 7.2.

Body-Predicates vs. Data Schema

As already discussed in Section 5 (see the paragraph after Theorem 5.1), we can assume that, given an
ontology-mediated query(S,Σ, q), none of the predicates ofS occur in the head of a tgd ofΣ. Therefore,
according to this assumption, the predicates of the data schema are body-predicates. In view of this fact,
one may claim that Proposition 7.2 holds even if we allow the data schema to have unbounded arity. How-
ever, this is not true since in this case already EVAL ((G,CQ)) is 2EXPTIME-hard. Since the predicates
of the data schema may appear in the head of a tgd, it is straightforward to reduce EVAL ((G,CQ)) where
all the predicates of the schema have unbounded arity to EVAL ((G,CQ)) where only the data schema has
unbounded arity; given an arbitrary query(S,Σ, q) ∈ (G,CQ) simply take the query(S′,Σ, q), where
S
′ = S ∪ sch(Σ), i.e., all the predicates are part of the data schema, and thus can have unbounded arity.

The reason why we assume that none of the predicates ofS occur in the head of a tgd ofΣ is because
we add inΣ the tgdR(x1, . . . , xn) → R⋆(x1, . . . , xn), for eachR ∈ S that appears in the head of a
tgd, and then replace each occurrence of the predicateR in Σ andq with R⋆. Hence, if we allow the
predicates of the data schema to have unbounded arity, then,after adding the auxiliary copy rules in
Σ and renaming the relevant predicatesR to R⋆, several predicates of unbounded arity, which are not
body-predicates, occur inΣ. This immediately increases the size of the cloud of an atom,which becomes
exponential. Since alternating exponential space coincides with deterministic double-exponential time,
the alternating algorithm described above provides a 2EXPTIME upper bound for EVAL ((WG,CQ)×)
when the data schema has unbounded arity, while all the otherpredicates are of bounded arity.
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A Note on Succinctness

The next question that comes up concerns the succinctness ofthe obtained query languages after consid-
ering product databases. This challenging problem goes beyond the scope of this work, and is something
that we are currently investigating. Nevertheless, we would like to present a result, which can be seen as
a strong indication that frontier-guardedness allows us tobuild more succinct queries. More precisely, an
interesting consequence of Theorem 7.1 is that, although(FG,CQ)× and(G,CQ)× are equally expres-
sive, there is no a polynomial time arity-preserving translation from the former to the latter; the same
holds for the weak versions of those languages. It is easy to show that:

Proposition 7.3. There existsQ ∈ (FG,CQ)× (resp.,(WFG,CQ)×) that is not equivalent to any query
Q′ ∈ (G,CQ)× (resp.,(WG,CQ)×) that can be constructed in polynomial time.

Proof:
Towards a contradiction, assume that for everyQ ∈ (FG,CQ)× (resp.,(WFG,CQ)×) we can construct
in polynomial time a queryQ′ ∈ (G,CQ)× (resp.,(WG,CQ)×) that is equivalent toQ. This implies
that we can reduce in polynomial time a 2EXPTIME-hard problem into a problem that is feasible in
EXPTIME (the latter holds by Theorem 7.1). Therefore, EXPTIME coincides with 2EXPTIME, which is
a contradiction since EXPTIME ( 2EXPTIME. ⊓⊔

8. The Language Perspective

As discussed above (see the proof of Lemma 5.3), one of the crucial limitations of (frontier-)guarded tgds
is the fact that are not powerful enough to compute the transitive closure of a binary relation. Actually,
the technical reason for this is the fact that (frontier-)guarded tgds are not able to put together in an atom,
during the construction of the chase instance, two databaseconstants that do not already coexist in a
database atom. This has recently motivated the definition oftwo refined classes of tgds, callednearly
(frontier-)guarded, which allow for non(-frontier)-guarded rules as long as, for each body-variableV ,
at least one occurrence ofV occurs at a non-affected position [5]. Formally, a setΣ of tgds is nearly
(frontier-)guarded if, for eachσ ∈ Σ, the following holds: (i)σ is (frontier-)guarded or, (ii) for each
variableV occurring inbody(σ), at least once occurrence ofV appears at a positionπ 6∈ affected(Σ). Let
NG (resp.,NFG) be the class of all finite nearly guarded (resp., nearly frontier-guarded) sets of tgds. By
exploiting the expressive power analysis performed in [5],we can easily show that the ontology-mediated
query languages based on nearly (frontier-)guarded sets oftgds are equally expressive to Datalog. This
fact, together with Lemmas 5.2 and 5.3, immediately impliesthat

(G,CQ) ≺ (FG,CQ) ≺ (NG,CQ) = (NFG,CQ) = DAT.

It is also important to say the evaluation problem for both(NG,CQ) and(NFG,CQ) remains tractable in
data complexity; implicit in [5].

From the above discussion, it is clear that(NG,CQ) and(NFG,CQ) are central ontology-mediated
query languages, which can be used in the place of Datalog without losing in expressive power. In fact,
(NG,CQ) and(NFG,CQ) allow us to write more intuitive and compact queries than Datalog due to the
existential quantification in rule-heads; recall the discussion on program expressive power in Section 6.
Nevertheless, by adopting(NG,CQ) and(NFG,CQ), we lose one of the key advantages of Datalog, that
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is, the fact that we can write queries in a modular way. More precisely, given two Datalog programsΣ1

andΣ2,Σ1∪Σ2 is also a Datalog program, i.e., Datalog is closed under union, which is a key property for
a rule-based query language that enables a modular style of writing queries.5 Unfortunately, as illustrated
by the following example, this not true for nearly (frontier-)guardedness since its definition relies on the
(global) notion of affected position, which takes into account the whole set of tgds.

Example 8.1. Consider the two sets of tgds:

Σ1 = {P (x, y), P (y, z) → P (x, z)} Σ2 = {P (x, y) → ∃z P (y, z)}.

It is straightforward to verify that bothΣ1 andΣ2 are nearly guarded; in fact,Σ2 is guarded. However,
Σ1 ∪ Σ2 is not nearly-guarded. Actually,Σ1 ∪ Σ2 is not even weakly-frontier-guarded. The reason for
this is becauseP [1], P [2] ∈ affected(Σ1 ∪ Σ2).

The question that comes up is whether we can define classes of tgds that: (i) syntactically generalize
(frontier-)guarded tgds, (ii) are closed under union, and (iii) give rise to data tractable ontology-mediated
query languages that are equally expressive to Datalog. Interestingly, we can exploit the results of Sec-
tion 5 in order to define such classes of tgds, which are actually based on the notion of marked tgds.

Marked Tgds and Ontology-Mediated Queries.A marked tgdis a pair(σ,M), whereσ is a tgd, and
M is a set of variables, calledmarked variables, occurring in the body ofσ. The idea is to force the
marked variables to be satisfied by constants and not nulls. Formally, an instanceI satisfiesthe marked
tgd (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), {v1, . . . , vn}), where{v1, . . . , vn} ⊆ x̄ ∪ ȳ, if: For every homomorphismh
from φ(x̄, ȳ) to I such that{h(v1), . . . , h(vn)} ⊂ C, there is a homomorphismh′ that extendsh, i.e.,
h′ ⊇ h, from ψ(x̄, z̄) to I. I satisfies a setΣ of marked tgds, denotedI |=C Σ, if I satisfies every
marked tgd inΣ. Notice that the only difference between the classical notion of entailment (|=) and our
new notion of entailment (|=C) is the fact the body of a marked tgd is satisfied by an instanceI, via a
homomorphismh, only if the marked variables are mapped viah to constants occurring inI.

It is now quite natural to consider ontology-mediated queries based on marked tgds. Let(S,Σ, q) be
an ontology-mediated query, whereΣ is a set of marked tgds, andn is the arity ofq. Theanswerto q
with respect to a databaseD overS andΣ is the set of tuples

certCq,Σ(D) =
⋂

I⊇D,I|=CΣ

{c̄ ∈ adom(D)n | c̄ ∈ q(I)}.

We use the superscriptC in order to make explicit that we employ our new notion of entailment (|=C).
Let us clarify that in case of plain tgds, which are actually marked tgds with an empty set of marked
variables,cert q,Σ(D) andcertCq,Σ(D) coincide.

Recall that for an ontology-mediated query(S,Σ, q), whereΣ is a set of (plain) tgds,certq,Σ(D) =
q(chase(D,Σ)), for everyS-databaseD. An analogous result can be shown for ontology-mediated
queries that are based on marked tgds. To this end, we employ aslightly modified version of the chase
procedure, which is obtained by adapting the notion of applicability of a tgd. LetI be an instance and
σ = (φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄), {v1, . . . , vn}) a marked tgd. We say thatσ is applicablewith respect to
I if there exists a homomorphismh from φ(x̄, ȳ) to I such thath(vi) ∈ C, for eachi ∈ {1, . . . , n}.

5This is also true for (frontier-)guarded tgds.
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By employing this notion of applicability, we can naturallydefine the chase for an instanceI under a
setΣ of marked tgds, denotedC-chase(I,Σ). It is then not difficult to show the following: Given an
ontology-mediated query(S,Σ, q), whereΣ is a set of marked tgds,certCq,Σ(D) = q(C-chase(D,Σ)),
for everyS-databaseD.

At this point, we would like to stress that marked tgds are similar in spirit toDL-safe rulesintroduced
in [15]. The goal of [15] was to combine description logics (DLs) and Datalog in such a way that the
decidability of key reasoning tasks, e.g., satisfiability and query answering, is preserved. This is achieved
by forcing the Datalog rules to be DL-safe, which means that each variablex in a rule is required to occur
in a non-DL-atom, or, in other words, at least one occurrenceof x should appear in an atom of the form
R(t̄), whereR is a predicate that is not mentioned by the DL axioms. The factthat a Datalog rule is DL-
safe essentially says that it suffices to instantiate the variables occurring in the rule with existing database
constants. Consequently, both DL-safe rules and marked tgds provide a mechanism for ensuring that the
variables occurring in a rule can be safely instantiated with existing database constants.

(Frontier-)Guarded Marked Tgds. We proceed to defined (frontier-)guarded marked tgds, whichare
actually the formalisms that we are looking for. A marked tgd(σ,M) is guarded(resp.,frontier-guarded)
if the following holds: (i)σ is guarded (resp., frontier-guarded), or (ii)M is the set of variables occurring
in the body (resp., frontier) ofσ. Let GM (resp.,FGM) the classes of all finite sets of guarded (resp.,
frontier-guarded) marked tgds. Observe that a (frontier-)guarded tgdσ can be straightforwardly rewritten
as the (frontier-)guarded marked tgd(σ,∅). Moreover, bothGM andFGM are, by definition, closed
under union. Finally, it is an easy exercise to show that the ontology-mediated query languages(GM,CQ)
and(FGM,CQ) are data tractable and equally expressive to Datalog. The idea is to rewrite a query in
(G,CQ)× (resp.,(FG,CQ)×) into a query(GM,CQ) (resp.,(FGM,CQ)) by converting the atoms of the
form Domn(x1, . . . , xn) into sets of marked variables{x1, . . . , xn} and vice versa.

Theorem 8.2. The following holds:

1. EVAL ((C,CQ)), whereC ∈ {GM,FGM}, is PTIME-complete in data complexity.

2. (GM,CQ) = (FGM,CQ) = DAT.

9. Conclusions

It is realistic to assume that a database management system provides access to the active domain via
built-in relations, or, in more formal terms, to assume thatqueries are evaluated over product databases.
Interestingly, the query languages that are based on (frontier-)guarded existential rules gain in expres-
siveness when we focus on product databases; in fact, they have the same expressive power as Datalog.
On the other hand, there is no impact on the expressive power of the query languages based on weakly-
(frontier-)guarded existential rules, since they are powerful enough to explicitly compute the predicates
needed to access the active domain. We also observe that there is no impact on the computational com-
plexity of the query languages in question. Finally, our expressive power results under the assumption of
product databases, helped to define novel classes of tgds that give rise to query languages that are equally
expressive to Datalog, data tractable, and closed under union. Recall that the latter property is crucial for
a query language, which allows us to write queries in a modular way.
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