787 research outputs found

    Expressive power of unary counters

    Full text link

    FO2(<,+1,~) on data trees, data tree automata and branching vector addition systems

    Get PDF
    A data tree is an unranked ordered tree where each node carries a label from a finite alphabet and a datum from some infinite domain. We consider the two variable first order logic FO2(<,+1,~) over data trees. Here +1 refers to the child and the next sibling relations while < refers to the descendant and following sibling relations. Moreover, ~ is a binary predicate testing data equality. We exhibit an automata model, denoted DAD# that is more expressive than FO2(<,+1,~) but such that emptiness of DAD# and satisfiability of FO2(<,+1,~) are inter-reducible. This is proved via a model of counter tree automata, denoted EBVASS, that extends Branching Vector Addition Systems with States (BVASS) with extra features for merging counters. We show that, as decision problems, reachability for EBVASS, satisfiability of FO2(<,+1,~) and emptiness of DAD# are equivalent

    History-Register Automata

    Get PDF
    Programs with dynamic allocation are able to create and use an unbounded number of fresh resources, such as references, objects, files, etc. We propose History-Register Automata (HRA), a new automata-theoretic formalism for modelling such programs. HRAs extend the expressiveness of previous approaches and bring us to the limits of decidability for reachability checks. The distinctive feature of our machines is their use of unbounded memory sets (histories) where input symbols can be selectively stored and compared with symbols to follow. In addition, stored symbols can be consumed or deleted by reset. We show that the combination of consumption and reset capabilities renders the automata powerful enough to imitate counter machines, and yields closure under all regular operations apart from complementation. We moreover examine weaker notions of HRAs which strike different balances between expressiveness and effectiveness.Comment: LMCS (improved version of FoSSaCS

    Expressivity Within Second-Order Transitive-Closure Logic

    Get PDF
    Second-order transitive-closure logic, SO(TC), is an expressive declarative language that captures the complexity class PSPACE. Already its monadic fragment, MSO(TC), allows the expression of various NP-hard and even PSPACE-hard problems in a natural and elegant manner. As SO(TC) offers an attractive framework for expressing properties in terms of declaratively specified computations, it is interesting to understand the expressivity of different features of the language. This paper focuses on the fragment MSO(TC), as well on the purely existential fragment SO(2TC)(exists); in 2TC, the TC operator binds only tuples of relation variables. We establish that, with respect to expressive power, SO(2TC)(exists) collapses to existential first-order logic. In addition we study the relationship of MSO(TC) to an extension of MSO(TC) with counting features (CMSO(TC)) as well as to order-invariant MSO. We show that the expressive powers of CMSO(TC) and MSO(TC) coincide. Moreover we establish that, over unary vocabularies, MSO(TC) strictly subsumes order-invariant MSO

    The Computational Power of Beeps

    Full text link
    In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. We then show the bound tight with a matching upper bound. Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state optimality to gain efficiency. We then turn our attention to more general classes of problems by proving that once you have enough states to solve leader election with a given error bound, you have (within constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with a constant number of unary input tapes: allowing you to solve a large and expressive set of problems. These results identify a key simplicity threshold beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International Symposium on Distributed Computing (DISC 2015

    Counter Machines and Distributed Automata: A Story about Exchanging Space and Time

    Full text link
    We prove the equivalence of two classes of counter machines and one class of distributed automata. Our counter machines operate on finite words, which they read from left to right while incrementing or decrementing a fixed number of counters. The two classes differ in the extra features they offer: one allows to copy counter values, whereas the other allows to compute copyless sums of counters. Our distributed automata, on the other hand, operate on directed path graphs that represent words. All nodes of a path synchronously execute the same finite-state machine, whose state diagram must be acyclic except for self-loops, and each node receives as input the state of its direct predecessor. These devices form a subclass of linear-time one-way cellular automata.Comment: 15 pages (+ 13 pages of appendices), 5 figures; To appear in the proceedings of AUTOMATA 2018

    Interval-based Synthesis

    Get PDF
    We introduce the synthesis problem for Halpern and Shoham's modal logic of intervals extended with an equivalence relation over time points, abbreviated HSeq. In analogy to the case of monadic second-order logic of one successor, the considered synthesis problem receives as input an HSeq formula phi and a finite set Sigma of propositional variables and temporal requests, and it establishes whether or not, for all possible evaluations of elements in Sigma in every interval structure, there exists an evaluation of the remaining propositional variables and temporal requests such that the resulting structure is a model for phi. We focus our attention on decidability of the synthesis problem for some meaningful fragments of HSeq, whose modalities are drawn from the set A (meets), Abar (met by), B (begins), Bbar (begun by), interpreted over finite linear orders and natural numbers. We prove that the fragment ABBbareq is decidable (non-primitive recursive hard), while the fragment AAbarBBbar turns out to be undecidable. In addition, we show that even the synthesis problem for ABBbar becomes undecidable if we replace finite linear orders by natural numbers.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    • 

    corecore