
Expressivity Within Second-Order
Transitive-Closure Logic
Flavio Ferrarotti
Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

https://orcid.org/0000-0003-2278-8233

Jan Van den Bussche
Hasselt University, Hasselt, Belgium
jan.vandenbussche@uhasselt.be

https://orcid.org/0000-0003-0072-3252

Jonni Virtema
Hasselt University, Hasselt, Belgium
jonni.virtema@uhasselt.be

https://orcid.org/0000-0002-1582-3718

Abstract
Second-order transitive-closure logic, SO(TC), is an expressive declarative language that captures
the complexity class PSPACE. Already its monadic fragment, MSO(TC), allows the expression of
various NP-hard and even PSPACE-hard problems in a natural and elegant manner. As SO(TC)
offers an attractive framework for expressing properties in terms of declaratively specified compu-
tations, it is interesting to understand the expressivity of different features of the language. This
paper focuses on the fragment MSO(TC), as well on the purely existential fragment SO(2TC)(∃);
in 2TC, the TC operator binds only tuples of relation variables. We establish that, with respect
to expressive power, SO(2TC)(∃) collapses to existential first-order logic. In addition we study
the relationship of MSO(TC) to an extension of MSO(TC) with counting features (CMSO(TC))
as well as to order-invariant MSO. We show that the expressive powers of CMSO(TC) and
MSO(TC) coincide. Moreover we establish that, over unary vocabularies, MSO(TC) strictly
subsumes order-invariant MSO.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Expressive power, Higher order logics, Descriptive complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.22

Funding The research reported in this paper results from the joint project Higher-Order Logics
and Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the Research
Foundation Flanders (FWO: [G0G6516N]).

1 Introduction

Second-order transitive-closure logic, SO(TC), is an expressive declarative language that
captures the complexity class PSPACE [21]. It extends second-order logic with a transit-
ive closure operator over relations of relations, i.e., over super relations among relational
structures. The super relations are defined by means of second-order logic formulae with
free relation variables. Already its monadic fragment, MSO(TC), allows the expression
of NP-complete problems in a natural and elegant manner. Consider, for instance, the
well known Hamiltonian cycle query over the standard vocabulary of graphs, which is not
expressible in monadic second-order logic [13].

© Flavio Ferrarotti, Jan Van den Bussche, and Jonni Virtema;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:flavio.ferrarotti@scch.at
https://orcid.org/0000-0003-2278-8233
mailto:jan.vandenbussche@uhasselt.be
https://orcid.org/0000-0003-0072-3252
mailto:jonni.virtema@uhasselt.be
https://orcid.org/0000-0002-1582-3718
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Expressivity Within Second-Order Transitive-Closure Logic

I Example 1. A graph G = (V,E) has a Hamiltonian cycle if the following holds:
a. There is a relation R such that (Z, z, Z ′, z′) ∈ R iff Z ′ = Z ∪{z′}, z′ /∈ Z, and (z, z′) ∈ E.
b. The tuple ({x}, x, V, y) is in the transitive closure of R, for some x, y ∈ V s.t. (y, x) ∈ E.
In the language of MSO(TC) this can be written as follows:

∃XY xy
(
X(x) ∧ ∀z(z 6= x→ ¬X(x)) ∧ ∀z(Y (z)) ∧ E(y, x) ∧ [TCZ,z,Z′,z′ϕ](X,x, Y, y)

)
,

where ϕ := ¬Z(z′) ∧ ∀x
(
Z ′(x)↔ (Z(x) ∨ z′ = x)

)
∧ E(z, z′).

Even some well-known PSPACE-complete problems such as deciding whether a given quanti-
fied Boolean formula QBF is valid [27] can be expressed in MSO(TC) (see Section 3).

In general, SO(TC) offers an attractive framework for expressing properties in terms of
declaratively specified computations at a high level of abstraction. There are many examples
of graph computation problems that involve complex conditions such as graph colouring [4],
topological subgraph discovery [19], recognition of hypercube graphs [18], and many others
(see [9, 16, 17]). Such graph algorithms are difficult to specify, even by means of rigorous
methods such as Abstract State Machines (ASMs) [10], B [2] or Event-B [3], because the
algorithms require the definition of characterising conditions for particular subgraphs that
lead to expressions beyond first-order logic. Therefore, for the sake of easily comprehensible
and at the same time fully formal high-level specifications, it is reasonable to explore languages
such as SO(TC). Let us see an example that further supports these observations.

I Example 2. Self-similarity of complex networks [37] (aka scale invariance) has practical
applications in diverse areas such as the world-wide web [14], social networks [20], and
biological networks [32]. Given a network represented as a finite graph G, it is relevant
to determine whether G can be built starting from some graph pattern Gp by recursively
replacing nodes in the pattern by new, “smaller scale”, copies of Gb. If this holds, then we
say that G is self-similar.

Formally, a graph G is self-similar w.r.t. a graph pattern Gp of size k, if there is a
sequence of graphs G0, G1, . . . , Gn such that G0 = Gp, Gn = G and, for every pair (Gi, Gi+1)
of consecutive graphs in the sequence, there is a partition {P1, . . . , Pk} of the set of nodes of
Gi+1 which satisfies the following:
a. For every j = 1, . . . , k, the sub-graph induced by Pj in Gi+1 is isomorphic to Gi.
b. There is a graph Gt isomorphic to Gp with set of nodes Vt = {a1, . . . , ak} for some

a1 ∈ P1, . . . , ak ∈ Pk and set of edges

Et = {(ai, aj) | there is an edge (x, y) of Gi+1 such that Pi(x) and Pj(y)}.

c. For very 1 ≤ i < j ≤ k, the closed neighborhoods NGi+1 [Pi] and NGi+1 [Pj] of Pi and Pj

in Gi+1, respectively, are isomorphic.
It is straightforward to write this definition of self-similarity in SO(TC), for we can clearly
write a second-order logic formula which defines such a super relation R on graphs and then
simply check whether the pair of graphs (G,Gp) is in the transitive closure of R.

Highly expressive query languages are gaining relevance in areas such as knowledge
representation (KR), rigorous methods and provers. There are several examples of highly
expressive query languages related to applications in KR. See for instance the monadically
defined queries in [36], the Monadic Disjunctive SNP queries in [5] or the guarded queries
in [11]. See also [33] where a query language with transitive closure for graph databases is
considered. All of them can be considered fragments of Datalog. Regarding rigorous methods,
the TLA+ language [28] is able to deal with higher-order formulations, and tools such as the

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:3

TLA+ Proof System1 and the TLA+ Model-Checker (TLC)2 can handle them (provided a
finite universe of values for TLC). Provers such as Coq3 and Isabelle4 can already handle
some high-order expression. Moreover, the success with solvers for the Boolean satisfiability
problem (SAT) has encouraged researchers to target larger classes of problems, including
PSPACE-complete problems, such as satisfiability of Quantified Boolean formulas (QBF).
Note the competitive evaluations of QBF solvers (QBFEVAL) held in 2016 and 2017 and
recent publications on QBF solvers such as [8, 31, 22] among several others.

We thus think it is timely to study which features of highly expressive query languages
affect their expressive power. In this sense, SO(TC) provides a good theoretical base since,
apart from been a highly expressive query language (recall that it captures PSPACE), it
enables natural and precise high-level definitions of complex practical problems, mainly due to
its ability to express properties in terms of declaratively specified computations. While second-
order logic extended with the standard partial fixed-point operator, as well as first-order
logic closed under taking partial fixed-points and under an operator for non-deterministic
choice, also capture the class of PSPACE queries over arbitrary finite structure [34], relevant
computation problems such as that in Example 2 are clearly more difficult to specify in these
logics. The same applies to the extension of first-order logic with the partial fixed-point
operator, which is furthermore subsumed by SO(TC) since it captures PSPACE only on the
class of ordered finite structures [1]. Note that SO(TC) coupled with hereditary finite sets
and set terms, could be considered as a kind of declarative version of Blass, Gurevich, and
Shelah (BGS) model of abstract state machine [7], which is a powerful language in which all
computable queries to relational databases can be expressed [6].

Our results can be summarized as follows.
1. We investigate to what extent universal quantification and negation are important to the

expressive power of SO(TC). Specifically, we consider the case where TC-operators are
applied only to second-order variables. Of course, a second-order variable can simulate a
first-order variable, since we can express already in first-order logic (FO) that a set is a
singleton. This, however, requires universal quantification.
We define a “purely existential” fragment of SO(TC), SO(2TC)(∃), as the fragment
without universal quantifiers and in which TC-operators occur only positively and bind
only tuples of relation variables. We show that the expressive power of this fragment
collapses to that of existential FO.
For SO alone, this collapse is rather obvious and was already remarked by Rosen in
the introduction of his paper [35]. Our result generalizes this collapse to include TC
operators, where it is no longer obvious.

2. We investigate the expressive power of the monadic fragment, MSO(TC). On strings,
this logic is equivalent to the complexity class NLIN. Already on unordered structures,
however, we show that MSO(TC) can express counting terms and numeric predicates
in NLOGSPACE. In particular, MSO(TC) can express queries not expressible in the
fixpoint logic FO(LFP). We also discuss the fascinating open question whether the
converse holds as well.

3. We compare the expressive power of MSO(TC) to that of order-invariant MSO. Specific-
ally, we show that MSO(TC) can express queries not expressible in order-invariant MSO;
over monadic vocabularies, we show that order-invariant MSO is subsumed by MSO(TC).
Again, what happens over higher-arity relations is an interesting open question.

1 https://tla.msr-inria.inria.fr/tlaps
2 https://lamport.azurewebsites.net/tla/tlc.html
3 https://coq.inria.fr/
4 https://isabelle.in.tum.de/

CSL 2018

https://tla.msr-inria.inria.fr/tlaps
https://lamport.azurewebsites.net/tla/tlc.html
https://coq.inria.fr/
https://isabelle.in.tum.de/

22:4 Expressivity Within Second-Order Transitive-Closure Logic

This paper is organized as follows. In Section 2 definitions and basic notions related to
SO(TC) are given. In Section 3 the complexity of model checking is studied. Section 4 is
dedicated to establishing the collapse of SO(2TC)(∃) to existential first-order logic. Sections
5 and 6 concentrate on the relationships between MSO(TC) and the counting extension
CMSO(TC) and order-invariant MSO, respectively. We conclude with a discussion of open
questions in Section 7.

2 Preliminaries

We assume that the reader is familiar with finite model theory, see e.g., [15] for a good
reference. For a tuple ~a of elements, we denote by ~a[i] the ith element of the tuple. We
recall from the literature, the syntax and semantics of first-order (FO) and second-order
(SO) logic, as well as their extensions with the transitive closure operator (TC). We assume
a sufficient supply of first-order and second-order variables. The natural number ar(R) ∈ N,
is the arity of the second-order variable X. By variable, we mean either a first-order or
second-order variable. Variables χ and χ′ have the same sort if either both χ and χ′ are
first-order variables, or both are second-order variables of the same arity. Tuples ~χ and ~χ′ of
variables have the same sort, if the lengths of ~χ and ~χ′ are the same and, for each i, the sort
of ~χ[i] is the same as the sort of ~χ[i].

I Definition 3. The formulas of SO(TC) are defined by the following grammar:

ϕ ::= x = y | X(x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Y ϕ | [TC ~X, ~X′ϕ](~Y , ~Y ′),

where X and Y are second-order variables, k = ar(X), x, y, x1, . . . , xk are first-order variables,
~X and ~X ′ are disjoint tuples of variables of the same sort, and ~Y and ~Y ′ are also tuples of
variables of that same sort (but not necessarily disjoint).

The set of free variables of a formula ϕ, denoted by FV(ϕ) is defined as usual. For the TC
operator, we define

FV([TC ~X, ~X′ϕ](~Y , ~Y ′)) := (FV(ϕ)− (~X ∪ ~X ′)) ∪ ~Y ∪ ~Y ′.

Above in the right side, in order to avoid cumbersome notation, we use ~X, ~X ′, ~Y and ~Y ′ to
denote the sets of variables occurring in the tuples.

A vocabulary is a finite set of variables. A (finite) structure A over a vocabulary τ is a pair
(A, I), where A is a finite nonempty set called the domain of A, and I is an interpretation
of τ on A. By this we mean that whenever x ∈ τ is a first-order variable, then I(x) ∈ A,
and whenever X ∈ τ is a second-order variable of arity m, then I(X) ⊆ Am. In this article,
structures are always finite. We denote I(X) also by XA. For a variable X and a suitable
value R for that variable, A[R/X] denotes the structure over τ ∪ {X} equal to A except that
X is mapped to R. We extend the notation also to tuples of variables and values, A[~X/~R], in
the obvious manner. We say that a vocabulary τ is appropriate for a formula ϕ if FV(ϕ) ⊆ τ .

I Definition 4. Let A be a structure over τ and ϕ an SO(TC)-formula such that τ is
appropriate for ϕ. The satisfaction of ϕ by A, denoted by A |= ϕ, is defined as follows. We
only give the cases for second-order quantifiers and transitive closure operator; the remaining
cases are defined as usual.

For second-order variable X: A |= ∃Xϕ iff A[R/X] |= ϕ, for some R ⊆ Aar(X).

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:5

For the case of the TC-operator, consider a formula ψ of the form [TC ~X, ~X′ϕ](~Y , ~Y ′) and
let A = (A, I). Define J ~X to be the following set

{J(~X) | J is an interpretation of ~X on A} = {J(~X ′) | J is an interpretation of ~X ′ on A}

and consider the binary relation B on J ~X defined as follows:

B := {(~R, ~R′) ∈ J ~X × J ~X | A[~R/ ~X, ~R′/ ~X ′] |= ϕ}.

We set A |= ψ to hold if (I(~Y), I(~Y ′)) belongs to the transitive closure of B. Recall that,
for a binary relation B on any set J , the transitive closure of B is defined by

TC(B) :={(a, b) ∈ J × J | ∃n > 0 and e0, . . . , en ∈ J
such that a = e0, b = en, and (ei, ei+1) ∈ B for all i < n}.

By TCm we denote the variant of TC in which the quantification of n above is restricted to
natural numbers ≤ m. That is, TCm(B) consists of pairs (~a,~b) such that ~b is reachable from
~a by B in at most m steps. Moreover, by 2TC and 2TCm we denote the syntactic restrictions
of TC and TCm of the form

[TC ~X, ~X′ϕ](~Y , ~Y ′) and [TCm
~X, ~X′

ϕ](~Y , ~Y ′),

where ~X, ~X ′, ~Y , ~Y ′ are tuples of second-order variables (i.e. without first-order variables).
The logic SO(2TC) then denotes the extension of second-order logic with 2TC-operator.
Analogously, by FO(1TC), we denote the extension of first-order logic with applications of
such transitive-closure operators that bind only first-order variables.5

3 Complexity of MSO(TC)

The descriptive complexity of different logics with the transitive closure operator has been
thoroughly studied by Immerman. Let SO(arity k)(TC) denote the fragment of SO(TC) in
which second-order variables are all of arity ≤ k.

I Theorem 5 ([23, 24]).
On finite ordered structures, first-order transitive-closure logic FO(1TC) captures non-
deterministic logarithmic space NLOGSPACE.
On strings (word structures), SO(arity k)(TC) captures the complexity class NSPACE(nk).

See also the discussion in the conclusion section.
By the above theorem, MSO(TC) captures nondeterministic linear space NLIN over

strings. Deciding whether a given quantified Boolean formula is valid (QBF) is a well-known
PSPACE-complete problem [27]. Observe that there are PSPACE-complete problems already
in NLIN; in fact QBF is such a problem. Thus, we can conclude the following. The inclusion
in PSPACE is clear.

I Proposition 6. Data complexity of model checking of MSO(TC) is PSPACE-complete.

We next turn to combined complexity of model checking. By the above proposition,
this is at least PSPACE-hard. However, the straightforward algorithm for model checking
MSO(TC) clearly has polynomial-space combined complexity. We thus conclude:

5 In the literature FO(1TC) is often denoted by FO(TC).

CSL 2018

22:6 Expressivity Within Second-Order Transitive-Closure Logic

I Proposition 7. Combined complexity of model checking of MSO(TC) is PSPACE-complete.

For combined complexity, we can actually sharpen the PSPACE-hardness; already a very
simple fragment of MSO(TC) is PSPACE-complete.

Specifically, we give a reduction from the corridor tiling problem, which is a well-
known PSPACE-complete problem. Instance of the corridor tiling problem is a tuple
P = (T,H, V,~b,~t, n), where n ∈ N is a positive natural number, T = {1, . . . , k}, for some
k ∈ N, is a finite set of tiles, H,V ⊆ T ×T are horizontal and vertical constraints, and ~b,~t are
n-tuples of tiles from T . A corridor tiling for P is a function f : {1, . . . , n}× {1 . . . ,m} → T ,
for some m ∈ N, such that(

f(1, 1), . . . f(n, 1)
)

= ~b and
(
f(1,m), . . . f(n,m)

)
= ~t,(

f(i, j), f(i+ i, j)
)
∈ H, for i < n and j ≤ m,(

f(i, j), f(i, j + 1)
)
∈ V , for i ≤ n and j < m.

The corridor tiling problem is the following PSPACE-complete decision problem [12]:
Input: An instance P = (T,H, V,~b,~t, n) of the corridor tiling problem.
Output: Does there exist a corridor tiling for P?

Let monadic 2TC[∀FO] denote the fragment of MSO(2TC) of the form [TC ~X, ~X′ϕ](~Y , ~Y ′),
where ϕ is a formula of universal first-order logic (i.e., ϕ is of the form ∀~xψ, where ψ is a
quantifier-free formula of first-order logic).

I Theorem 8. Combined complexity of model checking for monadic 2TC[∀FO] is PSPACE-
complete.

Proof. Inclusion to PSPACE follows from the corresponding result for MSO(TC). In order
to prove hardness, we give a reduction from corridor tiling. Let P = (T,H, V,~b,~t, n) be an
instance of the corridor tiling problem and set k := |T |. Let τ = {s,X1, . . . Xk, Y1, . . . , Yk}
be a vocabulary, where s is a binary second-order variable and X1, . . . Xk, Y1, . . . , Yk are
monadic second-order variables. Let AP denote the structure over τ such that A = {1, . . . , n},
I(s) is the canonical successor relation on A, and, for each i ≤ k, I(Xi) = {j ∈ A | ~b[j] = i}
and I(Yi) = {j ∈ A | ~t[j] = i}. Define

ϕH := ∀xy
(
s(x, y)→

∨
(i,j)∈H

Z ′i(x) ∧ Z ′j(y)
)
, ϕV := ∀x

∨
(i,j)∈V

Zi(x) ∧ Z ′j(x)

ϕT := ∀x
∨
i∈T

(
Z ′i(x) ∧

∧
j∈T,i 6=j

¬Z ′j(x)
)
,

where ~Z and ~Z ′ are k-tuples of distinct monadic second-order variables not in τ . We then
define ϕP := TC~Z, ~Z′ [ϕT ∧ ϕH ∧ ϕV](~X, ~Y). We claim that AP |= ϕP if and only if there
exists a corridor tiling for P , from which the claim follows. J

4 Existential positive SO(2TC) collapses to EFO

Let SO(2TC)[∃] denote the syntactic fragment of SO(2TC) in which existential quantifiers
and the TC-operator occur only positively, that is, in scope of even number of negations. In
this section, we show that the expressive power of SO(2TC)[∃] collapses to that of existential
first-order logic ∃FO. In this section, TC-operators are applied only to tuples of second-order
variables. As already discussed in the introduction, this restriction is vital: the formula
[TCx,x′R(x, x′)∨x = x′](y, y′) expresses reachability in directed graphs, which is not definable
even in the full first-order logic.

To facilitate our proofs we start by introducing some helpful terminology.

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:7

I Definition 9. Let #»a and #»

b be tuples of the same length and I a set of natural numbers.
The difference diff(#»a ,

#»

b) of the tuples #»a and #»

b is defined as follows

diff(#»a ,
#»

b) := {i | #»a [i] 6= #»

b [i]}.

The similarity sim(#»a ,
#»

b) of tuples #»a and #»

b is defined as follows

sim(#»a ,
#»

b) := {i | #»a [i] = #»

b [i]}.

We say that the tuples #»a and #»

b are pairwise compatible if the sets { #»a [i] | i ∈ diff(#»a ,
#»

b)}
and { #»

b [i] | i ∈ diff(#»a ,
#»

b)} are disjoint. The tuples #»a and #»

b are pairwise compatible outside
I if { #»a [i] | i ∈ diff(#»a ,

#»

b), i /∈ I} and { #»

b [i] | i ∈ diff(#»a ,
#»

b), i /∈ I} are disjoint. The tuples #»a

and #»

b are pairwise I-compatible if #»a and #»

b are pairwise compatible and sim(#»a ,
#»

b) = I.

I Definition 10. Let σ ⊆ τ be vocabularies, A a τ -structure, and #»a a tuple of elements of
A. The (quantifier-free) σ-type of #»a in A is the set of those quantifier free FO(σ)-formulae
ϕ(#»x) such that A[#»a/ #»x] |= ϕ.

The following lemma establishes that 2TC-operators that are applied to ∃FO-formulas
can be equivalently expressed by the finite 2TCm-operator.

I Lemma 11. Every formula ϕ of the form [TC ~X, ~X′θ](~Y , ~Y ′), where θ ∈ ∃FO and ~X, ~X ′,
~Y , ~Y ′ are tuples of second-order variables, is equivalent with the formula [TCk

~X, ~X′
θ](~Y , ~Y ′),

for some k ∈ N.

Proof. Let θ = ∃x1 . . . ∃xnψ, where ψ is quantifier-free, and let τ denote the vocabulary of
ϕ. We will show that for large enough k and for all τ -structures A

A |= [TC ~X, ~X′θ](~Y , ~Y ′) iff A |= [TCk
~X, ~X′

θ](~Y , ~Y ′).

From here on we consider τ and ϕ fixed; especially, by a constant, we mean a number that is
independent of the model A; that is, it may depend on τ and ϕ.

It suffices to show the left-to-right direction as the converse direction holds trivially for
all k. Assume that A |= [TC ~X, ~X′θ](~Y , ~Y ′). By the semantics of TC there exists a natural

number k0 and tuples of relations ~B0, . . . , ~Bk0 on A such that ~B0 = ~Y A, ~Bk0 = ~Y ′
A
, and

A[~Bi/ ~X, ~Bi+1/ ~X ′] |= θ, for 0 ≤ i < k0. (1)

It suffices to establish that, if k0 is large enough, then there exists two natural numbers h
and h′, 0 ≤ h ≤ h+ 3 ≤ h′ ≤ k0, and an interpretation ~H for ~X such that

A[~Bh/ ~X, ~H/ ~X ′] |= θ and A[~H/ ~X, ~Bh′/ ~X ′] |= θ.

For each i < k0, let Ai := A[~Bi/ ~X, ~Bi+1/ ~X ′] and let σ denote the vocabulary of Ai. By
the semantics of the existential quantifier, (1) is equivalent to saying that

Ai[#»ai/x1, . . . , xn] |= ψ, for 0 ≤ i < k0, (2)

for some n-tuples #»a0, . . .
»ak0−1 from A. We will prove the following claim.

CSL 2018

22:8 Expressivity Within Second-Order Transitive-Closure Logic

Claim. There exists an index set I and n+ 2 mutually pairwise I-compatible sequences in
#»a1, . . .

»ak0−1 that have a common σ-type provided that k0 is a large enough constant.

Proof of the claim. Let #»c 0 = (#»c0
0, #»c1

0, . . . , #»ct
0) denote the longest (not necessarily consec-

utive) subsequence of #»a1, . . .
»ak0−1 that have a common σ-type. Since there are only finitely

many σ-types, t can be made as large as needed by making k0 a large enough constant.
We will next show that there exists n+ 2 mutually pairwise I-compatible sequences in

#»c 0 for some I (provided that t is large enough). Set SIM0 := ∅. In the construction below
we maintain the following properties for 0 ≤ i ≤ n:

For each j ∈ SIMi and for each tuple #»a and #»

b in #»c i it holds that #»a [j] = #»

b [j].
The length of #»c i is as long a constant as we want it to be.

For l < n, let #»

b l
0, . . . ,

#»

b l
tl
be a maximal collection (in length) of mutually pairwise SIMl-

compatible sequences from #»c l. If tl ≥ n+ 1 we are done. Otherwise note that, since each #»

b l
j

is an n-tuple, the number of different points that may occur in #»

b l
0, . . . ,

#»

b l
tl
is ≤ n2 + n. By

an inductive argument we may assume that the length of #»c l is as large a constant as we want,
and thus we may conclude that there exists an index i /∈ SIMl and an element dl such that
there are as many as we want tuples #»c l

j in #»c l such that #»c l
j [i] = dl. Set SIMl+1 := SIMl∪{i}

and let #»c l+1 be the sequence of exactly those #»a ∈ #»c l such that #»a [i] = dl. Notice that the
length of #»c l+1 is as large a constant as we want it to be.

Finally, the case l = n. Note that SIMn = {0, . . . , n−1} and #»c n is a sequence of n-tuples;
in fact all tuples in #»c n are identical. Thus, if the length of #»c n is at least n + 2, the first
n+ 2 sequences of #»c n constitute a mutually pairwise SIMn-compatible sequence of length
n + 2. It is now straightforward but tedious to check how large k0 has to be so that the
length of #»c n is at least n+ 2; thus the claim holds. J

Now let #»a i0 , . . . ,
#»a in+1 , 0 < i0 < · · · < in+1, be mutually pairwise I-compatible sequences

from #»a 1, . . .
#»a k0−1 with a common σ-type provided by the Claim. Let 1 ≤ j ≤ n+ 1 be an

index such that #»a i0−1 and #»a ij
are pairwise compatible outside I and sim(#»a i0−1,

#»a ij
) ⊆ I.

It is straightforward to check that such a j always exists, for if #»a i0−1 and #»a ij′ are not
pairwise compatible outside I or sim(#»a i0−1,

#»a i′
j
) 6⊆ I, there exists some indices m,m′ /∈ I

such that #»a i0−1[m] = #»a ij′ [m
′], and for each such #»a ij′ the value of the related #»a ij′ [m

′] has
to be unique as #»a i1 , . . . ,

#»a in+1 are mutually pairwise I-compatible. Now j must exist since
the length of #»a i1 , . . . ,

#»a in+1 is n+ 1 while the length of #»a i0−1 is only n.
Consider the models Ai0−1 = A[~Bi0−1/ ~X, ~Bi0/

~X ′] and Aij
= A[~Bij

/ ~X, ~Bij+i
/ ~X ′] and

recall that

Ai0−1[#»a i0−1/x1, . . . , xn] |= ψ and Aij
[#»a ij

/x1, . . . , xn] |= ψ.

We claim that there exists a sequence ~B of relations on A such that

A[~Bi0−1/ ~X, ~B/ ~X ′,
#»a i0−1/x1, . . . , xn] |= ψ and A[~B/ ~X, ~Bij+i

/ ~X ′, #»a ij
/x1, . . . , xn] |= ψ. (3)

and thus that A[~Bi0−1/ ~X, ~B/ ~X ′] |= θ and A[~B/ ~X, ~Bij+i
/ ~X ′] |= θ. From this the claim of

the theorem follows for k = k0.
It now suffices to show that such a ~B exists. The idea is that ~B looks exactly like ~Bi0

with respect to points in #»a i0−1 and like ~Bij with respect to points #»a ij . Formally ~B is defined
as follows. For every relation ~B[m] and tuple #»a ∈ Aar(~B[m])

if #»a is completely included in neither #»a i0−1 nor #»a ij
then we set #»a /∈ ~B[m],

if #»a is completely included in #»a i0−1 then we set #»a ∈ ~B[m] iff #»a ∈ ~Bi0 [m],
if #»a is completely included in #»a ij

then we set #»a ∈ ~B[m] iff #»a ∈ ~Bij
[m].

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:9

Note that if #»a = (a1, . . . , am) is completely included in both #»a i0−1 and #»a ij then there
exists indices j1, . . . jm ∈ I such that, for 1 ≤ l ≤ m, al = #»a ij

[jl] = #»a i0 [jl]. The former
equality follows, with indices in I, since #»a i0−1 and #»a ij

are pairwise compatible outside I and
sim(#»a i0−1,

#»a ij) ⊆ I. The latter equality follows since #»a i0 and #»a ij are pairwise I-compatible.
Since #»a i0 and #»a ij

have the same σ-type #»a ∈ ~Bi0 [m] iff #»a ∈ ~Bij
[m], for all m, and thus ~B is

well-defined. It is now immediate that (3) holds. J

I Lemma 12. For every formula of vocabulary τ of the form ∃Xθ or [TC ~X, ~X′θ](~Y , ~Y ′),
where θ ∈ ∃FO and ~X, ~X ′, ~Y , ~Y ′ are tuples of relation variables, there exists an equivalent
formula ϕ ∈ ∃FO of vocabulary τ .

Proof. Consider first the formula ∃Xθ (this collapse was remarked, but not proven, by
Rosen in the introduction of his paper [35]). Define n := ar(X) and let k be the number of
occurrences of X in θ. The idea behind our translation is that the quantification of X can
be equivalently replaced by a quantification of an n-ary relation of size ≤ k; this can be then
expressed in ∃FO by quantifying k many n-tuples (content of the finite relation).

Let θ∅ denote the formula obtained from θ by replacing every occurrence of the relation
variable X of the form X(~x) in θ by the formula ∃x(x 6= x). Define

γ := ∃ #»x 1 . . . ∃ #»x k(θ∅ ∨ θ′),

where, for each i, ∃ #»x i is a shorthand for ∃x1,i . . . ∃xn,i and θ′ is the formula obtained from
θ by substituting each occurrence of the relation variable X of the form X(#»x) in θ by∨

1≤i≤k(#»x = #»x i). It is straightforward to check that γ is an ∃FO-formula of vocabulary τ
equivalent with ∃Xθ.

Consider then the formula ϕ = [TC ~X, ~X′θ](~Y , ~Y ′). In order to simplify the presentation,
we stipulate that ~X and ~X ′ are of length one, that is, variables X and X ′, respectively; the
generalisation of the proof for arbitrary tuples of second-order variables is straightforward.
By Lemma 11, we obtain k ∈ N such that ϕ and ϕ′ := [TCk

X,X′θ](Y, Y ′) are equivalent.
The following formulas are defined via substitution; by θ(A/B) we denote the formula

obtained from θ by substituting each occurrence of the symbol B by the symbol A.
θend

0 := θ(Y/X, Y ′/X ′) and θend
i := θ(Xi/X, Y

′/X ′), for 1 ≤ i < k,
θmove

1 := θ(Y/X,X1/X
′) and θmove

i := θ(Xi−1/X,Xi/X
′), for 2 ≤ i < k.

Let ψ denote the following formula of existential second-order logic

∃X1 . . . ∃Xk−1
∨

0≤n<k

(θend
n ∧

∧
1≤i≤n

θmove
i).

It is immediate that ϕ′ and ψ are equivalent. Note that ψ is of the form ∃X1 . . . ∃Xk−1ψ
′,

where ψ′ is an ∃FO-formula. By repetitively applying the first case of this lemma to
subformulas of ψ, we eventually obtain an equivalent ∃FO-formula over τ as required. J

The following theorem now follows by applying Lemma 12 repetitively bottom up.

I Theorem 13. The expressive powers of SO(2TC)[∃] and ∃FO coincide.

5 MSO(TC) and counting

We define a counting extension of MSO(TC) and show that the extension does not add
expressive power to the logic. In this way, we demonstrate that quite a bit of queries involving
counting can be expressed already in MSO(TC).

CSL 2018

22:10 Expressivity Within Second-Order Transitive-Closure Logic

5.1 Syntax and semantics of CMSO(TC)
We assume a sufficient supply of counter variables or simply counters, which are a new sort
of variables. We use the Greek letters µ and ν (with subscripts) to denote counter variables.
The notion of a vocabulary is extended so that it may also contain counters. A structure
A over a vocabulary τ is defined to be a pair (A, I) as before, where I now also maps the
counters in τ to elements of {0, . . . , n}, where n is the cardinality of A.

We also assume a sufficient supply of numeric predicates. Intuitively numeric predicates are
relations over natural numbers such as the tables of multiplication and addition. Technically,
we use an approach similar to generalised quantifiers; a k-ary numeric predicate is a class
Qp ⊆ Nk+1 of k + 1-tuples of natural numbers. For a numeric predicate Qp, we use p as
a symbol referring to the predicate. For simplicity, we often call p also numeric predicate.
Note that when evaluating a k-ary numeric predicate p(µ1, . . . , µk) on a finite structure A,
we let the numeric predicate Qp access also the cardinality of the structure in question, and
thus Qp consists of k + 1-tuples and not k-tuples. This convention allows us, for example, to
regard the modular sum a+ b ≡ c (modn), where n refers to the cardinality of the structure,
as a 3-ary numeric predicate.

We consider only those numeric predicates which can be decided in NLOGSPACE. Since,
on finite ordered structures, first-order transitive closure logic captures NLOGSPACE, this
boils down to being definable in first-order transitive closure logic when the counter variables
are interpreted as points in an ordered structure representing an initial segment of natural
numbers (see Definition 16 and Proposition 17 below for precise formulations). Note that
the equality of numeric variables is also a 2-ary NLOGSPACE predicate.

I Definition 14. The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:
Let ϕ be a formula, µ a counter, and x a first-order variable. Then µ = #{x | ϕ} is also
a formula. The set of its free variables is defined to be (FV(ϕ)− {x}) ∪ {µ}.
If ϕ is a formula and µ a counter then also ∃µϕ is a formula with set of free variables
FV(ϕ)− {µ}.
Let µ1, . . . , µk be counters and let p be a k-ary numeric predicate. Then p(µ1, . . . , µk) is
a formula with the set of free variables {µ1, . . . , µk}.
The scope of the transitive-closure operator is widened to apply as well to counters.
Formally, in a formula of the form [TC ~X, ~X′ϕ](~Y , ~Y ′), the variables in ~X, ~X ′, ~Y , and ~Y ′

may also include counters. We still require that the tuples ~X, ~X ′, ~Y , and ~Y ′ have the
same sort, i.e., if a counter appears in some position in one of these tuples then a counter
must appear in that position in each of the tuples.

I Definition 15. The satisfaction relation, A |= ψ, for CMSO(TC) formulas ψ and structures
A = (A, I) over a vocabulary appropriate for ψ is defined in the same way as for MSO(TC)
with the following additional clauses.

Let ψ be of the form ∃µϕ, where µ is a counter, and let n denote the cardinality of A.
Then A |= ψ iff there exists a number i ∈ {0, . . . , n} such that A[i/µ] |= ϕ.
Let ψ be of the form µ = #{x | ϕ}. Then A |= ψ iff I(µ) equals the cardinality of the set
{a ∈ A | A[a/x] |= ϕ}.
Let ψ be of the form p(µ1, . . . , µk), where µ1, . . . , µk are counters and p is a k-ary numeric
predicate. Then A |= p(µ1, . . . , µk) iff

(
|A|, I(µ1), . . . , I(µk)

)
∈ Qp.

I Definition 16. A k-ary numeric predicate Qp is decidable in NLOGSPACE if the mem-
bership (n0, . . . , nk) ∈ Qp can be decided by a nondeterministic Turing machine that uses
logarithmic space when the numbers n0, . . . , nk are given in unary. Note that this is equivalent
to linear space when n0, . . . , nk are given in binary.

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:11

From now on we restrict our attention to numeric predicates that are decidable in
NLOGSPACE. The following proposition follows directly from a result of Immerman (The-
orem 5) that, on ordered structures, FO(1TC) captures NLOGSPACE.

I Proposition 17. For every k-ary numeric predicate Qp decidable in NLOGSPACE there
exists a formula ϕp of FO(1TC) over {s, x1, . . . , xk}, where s is a binary second-order variable
and x1, . . . , xk are first-order variables, s.t. for all appropriate structures A for p(µ1, . . . , µk)

A |= p(µ1, . . . , µk) iff
(
|A|, I(µ1), . . . , I(µk)

)
∈ Qp iff (B, J) |= ϕp,

where B = {0, 1, . . . , |A|}, J(s) is the successor relation of B, and J(xi) = I(µi), for
1 ≤ i ≤ k.

5.2 CMSO(TC) collapses to MSO(TC)
Let τ be a vocabulary with counters. Let τ∗ denote the vocabulary without counters obtained
from τ by viewing each counter variable of τ as a set variable. Let A = (A, I) be a structure
over τ , and let B = (A, J) be a structure over τ∗ with the same domain as A. We say that B
simulates A if for every counter µ in τ , the set J(µ) has cardinality I(µ), and J(X) = I(X),
for each first-order or second-order variable X ∈ τ . Let ϕ be a CMSO(TC)-formula over τ
and ψ an MSO(TC) formula over τ∗. We say that ψ simulates ϕ if whenever B simulates A,
we have that A |= ϕ if and only if B |= ψ.

Let ϕ(x) and ψ(y) be formulae of some logic. The Härtig quantifier is defined as follows:

A |= Hxy(ϕ(x), ψ(y))⇔ the sets {a ∈ A | A[a/x] |= ϕ} and {b ∈ A | A[b/y] |= ψ}
have the same cardinality

I Proposition 18. The Härtig quantifier can be expressed in MSO(TC).

Proof. Consider a structure (A, I) and monadic second-order variables X, Y , X ′ and Y ′. Let
ψdecrement denote an FO-formula expressing that I(X ′) = I(X) \ {a} and I(Y ′) = I(Y) \ {b},
for some a ∈ I(X) and b ∈ I(Y). Define

ψec := ∃X∅
((
∀x¬X∅(x)

)
∧ [TCX,Y,X′,Y ′ψdecrement](Z,Z ′, X∅, X∅)

)
.

It is straightforward to check that ψec holds in (A, I) if and only if |I(Z)| = |I(Z ′)|. Therefore
Hxy(ϕ(x), ψ(y)) is equivalent with the formula

∃Z∃Z ′
(
∀x(ϕ(x)↔ Z(x)) ∧ ∀y(ψ(y)↔ Z ′(y)) ∧ ψec

)
,

assuming that Z, Z ′ are variable symbols that occur in neither ϕ nor ψ. J

I Lemma 19. Let τ = {s, x1, . . . , xn} and σ = {X1, . . . , Xn} be vocabularies, where s is a
binary second-order variable, x1, . . . , xn are first-order variables, and X1, . . . , Xn are monadic
second-order variables. For every FO(1TC)-formula ϕ over τ there exists an MSO(TC)-
formula ϕ+ over σ such that

(A, I) |= ϕ ⇔ (B, J) |= ϕ+,

for every (A, I) and (B, J) such that (A, I) is a structure over vocabulary τ , where A =
{0, . . . ,m}, for some m ∈ N, and I(s) is the canonical successor relation on A, and (B, J)
is a structure over vocabulary σ such that |B| = m and |J(Xi)| = I(xi), for 1 ≤ i ≤ n.

CSL 2018

22:12 Expressivity Within Second-Order Transitive-Closure Logic

Proof. We define the translation + recursively as follows. In the translation, we introduce for
each first-order variable xi a monadic second-order variable Xi by using the corresponding
capital letter with the same index. Consequently, in tuples of variables, identities between the
variables are maintained. The idea of the translation is that natural numbers i are simulated
by sets of cardinality i. Identities between first-order variables are then simulated with the
help of the Härtig quantifier, which, by Proposition 18, is definable in MSO(TC).

For ψ of the form xi = xj , define ψ+ := Hxy
(
Xi(x), Xj(y)

)
.

For ψ of the form s(xi, xj), define ψ+ := ∃z
(
¬Xi(z) ∧Hxy

(
Xi(x) ∨ x = z,Xj(y)

))
.

For ψ of the form ¬ϕ and (ϕ ∧ θ), define ψ+ as ¬ϕ+ and (ϕ+ ∧ θ+), respectively.
For ψ of the form ∃xiϕ, define ψ+ := ∃Xiϕ

+, where Xi is a monadic second-order
variable.
For ψ of the form [TC~x, ~x′ϕ](~y, ~y′), define ψ+ := [TC ~X, ~X′ϕ

+](~Y , ~Y ′), where ~X, ~X ′, ~Y ,
and ~Y ′ are tuples of monadic second-order variables that correspond to the tuples ~x, ~x′,
~y, and ~y′ of first-order variables.

The correctness of the translation follows by a simple inductive argument. J

With the help of the previous lemma, we are now ready to show how CMSO(TC)-formulas
can be simulated in MSO(TC).

I Theorem 20. Every CMSO(TC)-formula can be simulated by an MSO(TC)-formula.

Proof. Let τ be a vocabulary with counters and τ∗ the vocabulary without counters obtained
from τ by viewing each counter as a set variable. We define recursively a translation ∗ that
maps CMSO(TC)-formulas over vocabulary τ to MSO(TC)-formulas over τ∗.

For ψ of the form xi = xj , define ψ∗ := xi = xj .
For ψ of the form X(x1, . . . , xn), define ψ∗ := X(x1, . . . , xn).
For an NLOGSPACE numeric predicate Qp and ψ be of the form p(µ1, . . . , µk), define
ψ∗ as ϕ+

p (µ1/X1, . . . , µk/Xk), where + is the translation defined in Lemma 19 and ϕp

the defining formula of Qp obtained from Proposition 17.
For ψ of the form µ = #{x | ϕ}, define ψ∗ as the MSO(TC)-formula Hxy(ϕ∗, µ(y)).
For ψ of the form ¬ϕ and (ϕ ∧ θ), define ψ∗ as ¬ϕ∗ and (ϕ∗ ∧ θ∗), respectively.
For ψ of the form ∃xiϕ, ∃µiϕ, and ∃Xiϕ, define ψ∗ as ∃xiϕ

∗, ∃µiϕ
∗, and ∃Xiϕ

∗. Re-
member that, on the right, µi is treated a as a monadic second-order variable.
For ψ of the form [TC ~X, ~X′ϕ](~Y , ~Y ′), define ψ∗ := [TC ~X, ~X′ϕ

∗](~Y , ~Y ′).
We claim that, for every CMSO(TC)-formula ψ over τ , ψ∗ is an MSO(TC)-formula over τ∗
that simulates ψ. Correctness of the simulation follows by induction using Lemma 19 and
Proposition 17.

We show the case for the numeric predicates. Let A = (A, I) be a τ -structure and
A∗ a τ∗-structure that simulates A. Let Qp be a k-ary NLOGSPACE numeric predicate,
µ1, . . . , µk counters from τ , and ϕp the defining FO(1TC)-formula of Qp given by Proposition
17. Then, by Proposition 17,

A |= p(µ1, . . . , µk) iff (B, J) |= ϕp,

where B = {0, 1, . . . , |A|}, J(s) is the successor relation of B, and J(xi) = I(µi), for 1 ≤ i ≤ k.
Let + denote the translation from FO(1TC) to MSO(TC) defined in Lemma 19. Then, by
Lemma 19, it follows that (B, J) |= ϕp iff A |= ϕ+

p . J

In the next example, we introduce notation for some MSO(TC)-definable numeric predicates
that are used in the following sections.

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:13

I Example 21. Let k be a natural number, X,Y, Z,X1, . . . , Xn monadic second-order
variables, and A = (A, I) an appropriate structure. The following numeric predicates are
clearly NLOGSPACE-definable and thus, by Theorem 20, definable in MSO(TC):

A |= size(X, k) iff |I(X)| = k,
A |= ×(X,Y, Z) iff |I(X)| × |I(Y)| = |I(Z)|,
A |= +(X1, . . . , Xn, Y) iff |I(X1)|+ · · ·+ |I(Xn)| = |I(Y)|.

6 Order-invariant MSO

Order-invariance plays an important role in finite model theory. In descriptive complexity
theory many characterisation rely on the existence of a linear order. However the particular
order in a given stricture is often not important. Related to applications in computer science,
it is often possible to access an ordering of the structure that is not controllable and thus a
use of the ordering should be such that change in the ordering should not make a difference.
Consequently, in both cases order can be used, but in a way that the described properties
are order-invariant.

Let τ≤ := τ ∪ {≤} be a finite vocabulary, where ≤ is a binary relation symbol. A formula
ϕ ∈ MSO over τ≤ is order-invariant, if for every τ -structure A and expansions A′ and A∗

of A to the vocabulary τ≤, in which ≤A′ and ≤A∗ are linear orders of A, we have that
A′ |= ϕ if and only if A∗ |= ϕ. A class C of τ -structures is definable in order-invariant MSO
if and only if the class {(A,≤) | A ∈ C and ≤ is a linear order of A} is definable by some
order-invariant MSO-formula.

We call a vocabulary τ a unary vocabulary if it consists of only monadic second-order
variables. In this section we establish that on unary vocabularies MSO(TC) is strictly more
expressive than order-invariant MSO. The separation holds already for the empty vocabulary.

6.1 Separation on empty vocabulary

First note that over vocabulary {≤} there exists only one structure, up to isomorphism,
of size k, for each k ∈ N , in which ≤ is interpreted as a linear order of the domain.
Consequently, every MSO-formula of vocabulary {≤} is order-invariant. Also note that, in
fact, {≤}-structures interpreted as word models correspond to finite strings over some fixed
unary alphabet. Thus, via Büchi’s theorem, we obtain that, over the empty vocabulary,
order-invariant MSO captures essentially regular languages over unary alphabets. Hence,
to separate MSO(TC) from order-invariant MSO over the empty vocabulary, it suffices to
observe that not all NLOGSPACE properties of unary strings are regular (recall Theorem 5
and Lemma 19). The following example gives a concrete example of the separation.

I Example 22. Consider the class C = {A | |A| is a prime number} of ∅-structures. Clearly
the language of prime length words over some unary alphabet is not regular and thus it
follows via Büchi’s theorem that C is not definable in order-invariant MSO. However the
following formula of MSO(TC) defines C. We use MSO(TC)-definable numeric predicates
introduced in Example 21.

∃X∀Y ∀Z
(
∀x(X(x)) ∧ (size(Y, 1) ∨ size(Z, 1) ∨ ¬ × (Y,Z,X))

)
∧ ∃x∃y ¬x = y.

I Corollary 23. For any vocabulary τ , there exists a class C of τ -structures such that C is
definable in MSO(TC) but it is not definable in order-invariant MSO.

CSL 2018

22:14 Expressivity Within Second-Order Transitive-Closure Logic

6.2 Inclusion on unary vocabularies
We will show that every class of structures over a unary vocabulary τ that is definable in
order-invariant MSO is also definable in MSO(TC).

I Definition 24. For a finite word w of some finite alphabet Σ = {a1 . . . , ak}, a Parikh
vector p(w) of w is the k-tuple (|w|a1 ,|w|ak

) where |w|ai denotes the number of ais in
w. A Parikh image P (L) of a language L is the set {p(w) | w ∈ L} of Parikh vectors of the
words in the language.

A subset S of Nk is a linear set if S = {~v0 +
∑m

i=1 ai~vi | a1, . . . , am ∈ N} for some offset
~v0 ∈ Nk and generators ~v1, . . . , ~vm ∈ Nk.

I Theorem 25 (Parikh’s theorem, [30]). For every regular language L its Parikh image P (L)
is a finite union of linear sets.

We use the following improved version of Parikh’s theorem:

I Theorem 26 ([26]). For every regular language L over alphabet of size k its Parikh image
P (L) is a finite union of linear sets with at most k generators.

I Definition 27. Let τ = {X1, . . . , Xk} be a finite unary vocabulary and let Y1, . . . , Y2k

denote the Boolean combinations of the variables in τ in some fixed order. For every structure
A = (A, I) over τ , we extend the scope of I to include also Y1, . . . , Y2k in the obvious manner.
The Parikh vector p(A) of A is the 2k-tuple

(
|I(Y1)|, . . . , |I(Y2k)|

)
. A Parikh image P (C) of

a class of τ -structures C is the set {p(A) | A ∈ C}.

I Theorem 28. Over finite unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

Proof. Strictness follows directly from Corollary 23 and thus it suffices to establish inclusion.
Let τ = {X1, . . . , Xk} be a finite unary vocabulary and ϕ an order-invariant MSO-formula
of vocabulary τ≤. Let C be the class of τ structures that ϕ defines. We will show that C is
definable in MSO(TC). Set n := 2k and let Y1, . . . , Yn denote the Boolean combinations of
the variables in τ in some fixed order; we regard these combinations also as fresh monadic
second-order variables and set σ := {Y1, . . . , Yn}. For each Xi, let χi denote the disjunction
of those variables Yj in which Xi occurs positively. Let C≤ denote the class of τ≤-structures
that ϕ defines. We may view C≤ also as a language L over the alphabet σ and as the class
Lw of σ≤-structures corresponding to the word models of the language L. Let ϕ∗ denote the
order-invariant MSO-formula over σ≤ obtained from ϕ by substituting each variable Xi by
the formula χi. Since ϕ∗ clearly defines Lw, by Büchi’s Theorem, L is regular. Consequently,
by the improved version of Parikh’s Theorem (Theorem 26), the Parikh image P(L) of L is a
finite union of linear sets with at most n generators.

Observe that if two τ -structures have the same Parikh image, the structures are isomorphic.
Thus C is invariant under Parikh images. Hence C is uniquely characterised by its Parikh
image P(C), which, since P(L) = P(C), is a finite union of linear sets with at most n
generators.

Claim. For every linear set A ⊆ Nn, where n = 2k, there exists a formula ϕA of MSO(TC)
of vocabulary τ = {X1, . . . Xk} such that ϕA defines the class of τ -structures that have A as
their Parikh image.

With the help of the above claim, the theorem follows in a straightforward manner.
Let A1, . . . , Am be a finite collection of linear sets such that P(C) = A1 ∪ · · · ∪ Am and
let ϕA1 , . . . , ϕAm

be the related MSO(TC)-formulas of vocabulary τ provided by the claim.
Clearly ψ := ϕA1 ∨ · · · ∨ ϕAm defines C.

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:15

Proof of the Claim. Let A ⊆ Nn be a linear set with n generators, i.e.,

A = {~v0 +
n∑

j=1
aj~vj | a1, . . . , an ∈ N}, for some ~v0, ~v1, . . . , ~vn ∈ Nn.

For each tuple ~v ∈ Nn and n-tuple of monadic second-order variables ~Z, let size(~Z,~v) denote
the FO-formula stating that, for each i, the size of the extension of ~Z[i] is ~v[i]. For 0 ≤ i ≤ n,
we introduce fresh distinct n-tuples of monadic variable symbols ~Zi and define

ϕgen :=
∧

0≤i≤n

size(~Zi, ~vi).

Let ~R1, . . . ~Rn be fresh distinct n-tuples of monadic second-order variables and let S1, . . . , Sn

be fresh distinct monadic second-order variables. Define

ϕ∗A := ∃~Z0 . . . ~Zn
~R1 . . . ~RnS1 . . . Sn ϕgen∧∧

1≤i,j≤n

×(~Zi[j], Si, ~Ri[j]) ∧
∧

1≤i≤n

+(~Z0[i], ~R1[i], . . . , ~Rn[i], Yi), (4)

where × and + refer to the MSO(TC)-formulas defined in Example 21. Finally define
ϕA := ∃Y1 . . . Yn ϕBC ∧ ϕ∗A, where ϕBC is an FO-formula stating that, for each i, the
extension of Yi is the extension of the Boolean combination of the variables in τ that Yi

represents. A τ -structure B satisfies ϕA if and only if the Parikh image of B is A. J

J

7 Conclusion

There are quite a number of interesting challenging questions regarding the expressive power
within second-order transitive-closure logic.
1. We have shown that MSO(TC) can do counting, and thus can certainly express some

queries not expressible in fixpoint logic FO(LFP). A natural question is whether MSO(TC)
can also be separated from the counting extension of FO(LFP). Note that MSO(TC) can
express numerical predicates in NLOGSPACE, while counting fixpoint logic can express
numerical predicates in PTIME. Thus, over the empty vocabulary, the question seems
related to a famous open problem from complexity theory. Note however, that it is not
even clear that MSO(TC) can only express numerical predicates in NLOGSPACE. Over
graphs, the answer is probably affirmative as the CFI query can probably be expressed in
MSO(TC).

2. The converse question, whether there is a fixpoint logic query not expressible in MSO(TC),
is fascinating. On ordered structures, this would show that there are problems in PTIME
that are not in NLIN, which is open (we only know that the two classes are different
[29]). On unordered structures, however, we actually conjecture that the query about a
binary relation (transition system) R and two nodes a and b, that asks whether a and b
are bisimilar w.r.t. R, is not expressible in MSO(TC).

3. In stating Theorem 5 we recalled that SO(arity k)(TC) captures the complexity class
NSPACE(nk), on strings. What about ordered structures in general? Using the standard
adjacency matrix encoding of a relational structure as a string [25], it follows that on
ordered structures over vocabularies with maximal arity a, SO(arity k · a)(TC) can express

CSL 2018

22:16 Expressivity Within Second-Order Transitive-Closure Logic

all queries in NSPACE(nk). Can we show that this blowup in arity is necessary? For
example, can we show that MSO(TC) does not capture NLIN over ordered graphs (binary
relations)?

4. In the previous section we have clarified the relationship between MSO(TC) and order-
invariant MSO, over unary vocabularies. What about higher arities?

References

1 Serge Abiteboul and Victor Vianu. Fixpoint extensions of first-order logic and datalog-like
languages. In Proceedings of the Fourth Annual Symposium on Logic in Computer Science
(LICS ’89), Pacific Grove, California, USA, June 5-8, 1989, pages 71–79. IEEE Computer
Society, 1989. doi:10.1109/LICS.1989.39160.

2 Jean-Raymond Abrial. The B-book - Assigning programs to meanings. Cambridge Univer-
sity Press, 2005.

3 Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

4 Faisal N. Abu-Khzam and Michael A. Langston. Graph coloring and the immersion order.
In Computing and Combinatorics, 9th Annual International Conference (COCOON 2003),
pages 394–403, 2003.

5 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive Datalog, CSP, and MMSNP. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’13,
pages 213–224, New York, NY, USA, 2013. ACM. doi:10.1145/2463664.2465223.

6 Andreas Blass, Yuri Gurevich, and Jan Van den Bussche. Abstract state machines and
computationally complete query languages. Information and Computation, 174(1):20–36,
2002. doi:10.1006/inco.2001.3067.

7 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Annals
of Pure and Applied Logic, 100(1):141–187, 1999. doi:10.1016/S0168-0072(99)00005-6.

8 Joshua Blinkhorn and Olaf Beyersdorff. Shortening QBF proofs with dependency schemes.
In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing
– SAT 2017, pages 263–280, Cham, 2017. Springer International Publishing.

9 Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics.
Springer, 2002.

10 E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, 2003.

11 Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. Reasonable highly expressive
query languages - IJCAI-15 distinguished paper (honorary mention). In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 2826–2832. AAAI Press, 2015.

12 Bogdan S Chlebus. Domino-tiling games. J. Comput. Syst. Sci., 32(3):374–392, 1986.
doi:10.1016/0022-0000(86)90036-X.

13 Bruno Courcelle. The monadic second-order logic of graphs VIII: orientations. Ann. Pure
Appl. Logic, 72(2):103–143, 1995. doi:10.1016/0168-0072(95)94698-V.

14 Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar, and
Andrew Tomkins. Self-similarity in the web. ACM Trans. Internet Technol., 2(3):205–223,
2002.

15 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathemat-
ical Logic. Springer, 1995.

http://dx.doi.org/10.1109/LICS.1989.39160
http://dx.doi.org/10.1145/2463664.2465223
http://dx.doi.org/10.1006/inco.2001.3067
http://dx.doi.org/10.1016/S0168-0072(99)00005-6
http://dx.doi.org/10.1016/0022-0000(86)90036-X
http://dx.doi.org/10.1016/0168-0072(95)94698-V

F. Ferrarotti, J. Van den Bussche, and J. Virtema 22:17

16 Flavio Ferrarotti. Expressibility of Higher-Order Logics on Relational Databases: Proper
Hierarchies. PhD thesis, Massey University, Wellington, New Zealand, 2008. URL: http:
//hdl.handle.net/10179/799.

17 Flavio Ferrarotti, Senén González, and José Maria Turull Torres. On fragments of higher
order logics that on finite structures collapse to second order. In Juliette Kennedy and
Ruy J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation -
24th International Workshop, WoLLIC 2017, London, UK, July 18-21, 2017, Proceed-
ings, volume 10388 of Lecture Notes in Computer Science, pages 125–139. Springer, 2017.
doi:10.1007/978-3-662-55386-2_9.

18 Flavio Ferrarotti, Wei Ren, and Jose Maria Turull Torres. Expressing properties in
second- and third-order logic: hypercube graphs and SATQBF. Logic Journal of the IGPL,
22(2):355–386, 2014. doi:10.1093/jigpal/jzt025.

19 Martin Grohe, Kenichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC 2011), pages 479–488. ACM, 2011.

20 R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas. Self-similar community
structure in a network of human interactions. Phys. Rev. E, 68:065103, Dec 2003.

21 David Harel and David Peleg. On static logics, dynamic logics, and complexity classes.
Information and Control, 60(1-3):86–102, 1984. doi:10.1016/S0019-9958(84)80023-6.

22 Marijn J. H. Heule, Martina Seidl, and Armin Biere. Solution validation and extrac-
tion for QBF preprocessing. J. Autom. Reasoning, 58(1):97–125, 2017. doi:10.1007/
s10817-016-9390-4.

23 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–
778, aug 1987. doi:10.1137/0216051.

24 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, 1988. doi:10.1137/0217058.

25 Neil Immerman. Descriptive Complexity. Springer, 1998.
26 E. Kopczynski and A. W. To. Parikh images of grammars: Complexity and applications.

In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages 80–89, July
2010. doi:10.1109/LICS.2010.21.

27 Richard Ladner. The computational complexity of provability in systems of modal propos-
itional logic. SIAM J. Comput., 6:467–480, 1977.

28 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

29 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
30 Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. doi:10.1145/

321356.321364.
31 Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for QBF. In

Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing –
SAT 2017, pages 298–313, Cham, 2017. Springer International Publishing.

32 Albert Réka. Scale-free networks in cell biology. Journal of Cell Science, 118(21):4947–4957,
2005.

33 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
In 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015,
Brussels, Belgium, pages 177–194, 2015. doi:10.4230/LIPIcs.ICDT.2015.177.

34 David Richerby. Logical characterizations of PSPACE. In Jerzy Marcinkowski and Andrzej
Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 2004, 13th
Annual Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings,
volume 3210 of Lecture Notes in Computer Science, pages 370–384. Springer, 2004. doi:
10.1007/978-3-540-30124-0_29.

CSL 2018

http://hdl.handle.net/10179/799
http://hdl.handle.net/10179/799
http://dx.doi.org/10.1007/978-3-662-55386-2_9
http://dx.doi.org/10.1093/jigpal/jzt025
http://dx.doi.org/10.1016/S0019-9958(84)80023-6
http://dx.doi.org/10.1007/s10817-016-9390-4
http://dx.doi.org/10.1007/s10817-016-9390-4
http://dx.doi.org/10.1137/0216051
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1109/LICS.2010.21
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.177
http://dx.doi.org/10.1007/978-3-540-30124-0_29
http://dx.doi.org/10.1007/978-3-540-30124-0_29

22:18 Expressivity Within Second-Order Transitive-Closure Logic

35 E. Rosen. An existential fragment of second order logic. Archive for Mathematical Logic,
38(4–5):217–234, 1999.

36 Sebastian Rudolph and Markus Krötzsch. Flag & check: Data access with monadically
defined queries. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’13, pages 151–162, New York, NY, USA, 2013.
ACM. doi:10.1145/2463664.2465227.

37 Chaoming Song, Shlomo Havlin, and Hernán A. Makse. Self-similarity of complex networks.
Nature, 433:392–395, 2005.

http://dx.doi.org/10.1145/2463664.2465227

	Introduction
	Preliminaries
	Complexity of MSO(TC)
	Existential positive SO(2TC) collapses to EFO
	MSO(TC) and counting
	Syntax and semantics of CMSO(TC)
	CMSO(TC) collapses to MSO(TC)

	Order-invariant MSO
	Separation on empty vocabulary
	Inclusion on unary vocabularies

	Conclusion

