3 research outputs found

    SEEAD:A Semantic-based Approach for Automatic Binary Code De-obfuscation

    Get PDF
    Increasingly sophisticated code obfuscation techniques are quickly adopted by malware developers to escape from malware detection and to thwart the reverse engineering effort of security analysts. State-of-the-art de-obfuscation approaches rely on dynamic analysis, but face the challenge of low code coverage as not all software execution paths and behavior will be exposed at specific profiling runs. As a result, these approaches often fail to discover hidden malicious patterns. This paper introduces SEEAD, a novel and generic semantic-based de-obfuscation system. When building SEEAD, we try to rely on as few assumptions about the structure of the obfuscation tool as possible, so that the system can keep pace with the fast evolving code obfuscation techniques. To increase the code coverage, SEEAD dynamically directs the target program to execute different paths across different runs. This dynamic profiling scheme is rife with taint and control dependence analysis to reduce the search overhead, and a carefully designed protection scheme to bring the program to an error free status should any error happens during dynamic profile runs. As a result, the increased code coverage enables us to uncover hidden malicious behaviors that are not detected by traditional dynamic analysis based de-obfuscation approaches. We evaluate SEEAD on a range of benign and malicious obfuscated programs. Our experimental results show that SEEAD is able to successfully recover the original logic from obfuscated binaries

    Risk assessment for mobile systems through a multilayered hierarchical Bayesian network.

    Get PDF
    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire syste
    corecore