
SEEAD: A Semantic-based Approach for
Automatic Binary Code De-obfuscation

Zhanyong Tang†, Lei Wang†, Kaiyuan Kuang†, Chao Xue†, Xiaoqing Gong†∗

Xiaojiang Chen†, Dingyi Fang†, Zheng Wang‡∗
†School of Information Science and Technology, Northwest University, P.R. China.

‡School of Computing and Communications, Lancaster University, UK

Abstract—Increasingly sophisticated code obfuscation tech-
niques are quickly adopted by malware developers to escape from
malware detection and to thwart the reverse engineering effort
of security analysts. State-of-the-art de-obfuscation approaches
rely on dynamic analysis, but face the challenge of low code
coverage as not all software execution paths and behavior will
be exposed at specific profiling runs. As a result, these approaches
often fail to discover hidden malicious patterns. This paper
introduces SEEAD, a novel and generic semantic-based de-
obfuscation system. When building SEEAD, we try to rely on
as few assumptions about the structure of the obfuscation tool
as possible, so that the system can keep peace with the fast
evolving code obfuscation techniques. To increase the code cov-
erage, SEEAD dynamically directs the target program to execute
different paths across different runs. This dynamic profiling
scheme is rife with taint and control dependence analysis to
reduce the search overhead, and a carefully designed protection
scheme to bring the program to an error free status should
any error happens during dynamic profile runs. As a result, the
increased code coverage enables us to uncover hidden malicious
behaviors that are not detected by traditional dynamic analysis
based de-obfuscation approaches. We evaluate SEEAD on a range
of benign and malicious obfuscated programs. Our experimental
results show that SEEAD is able to successfully recover the
original logic from obfuscated binaries.

Index Terms—Malware Analysis, De-obfuscation, Multiple Ex-
ecution Paths Exploration

I. INTRODUCTION

Code obfuscation [1] methods like control flow flattening,
garbage code insertion, instruction deformation, binary code
encryption and packing [2], and virtualization obfuscation [3],
are now commonplace in malware. These code obfuscation
techniques make it more difficult to uncover the true logic of
the program, giving security analyst an incredibly hard time.
Most existing de-obfuscation approaches [4], [5] only target
a limited set of specific obfuscation techniques. They work
under the assumption that security analysts have priori knowl-
edge of the structure of obfuscation tools (obfuscators) used
by the malware developer. This means that these approaches
require heavily human involvement (which often takes a lot of
time and effort) and can only be applied to known obfuscation
methods.

The work presented by Coogan et al. [7] is among the first
attempts to automate malware code de-obfuscation without

*Corresponding authors:
Xiaoqing Gong, Email address: gxq@nwu.edu.cn
Zheng Wang, Email address: z.wang@lancaster.ac.uk

human involvement. Their approach does not require security
analysts to manually analyze and identify the obfuscation
techniques used by the malware. As a result, the time spent
in malware analysis is reduced greatly. While promising,
Coogan’s method only can deal with malware that uses
virtulization-based obfuscation tools such as VMProtect [8]
and Virtualizer [9].

In this work, we aim to extend the reach of existing
malware de-obfuscation techniques. We present SEEAD, a
novel and generic automated code de-obfuscation system.
SEEAD is a semantic-based de-obfuscation approach. It makes
few assumptions about the structure of obfuscators. Therefore,
SEEAD can be applied to existing and unknown obfuscation
methods. SEEAD works by first identifying the semantically
relevant instructions with dynamic taint analysis and control
dependency analysis, and then simplifying the instruction
traces of the target binary with these analysis results. Because
the whole de-obfuscation process of SEEAD does not require
any human involvement, it significantly reduces the time spent
in malware analysis.

Similar to most de-obfuscation approaches [10], [11],
SEEAD also uses dynamic analysis to characterize the pro-
gram behavior. However, profiling based dynamic analysis
suffers from poor code coverage because the program execu-
tion path during profiling runs only represents the application
behavior for a given set of inputs. As a result, existing dynamic
analysis based de-obfuscation techniques can miss some of
the malware behaviors that are only triggered under specific
cases (e.g., when a particular file is present, or when a certain
command is received). Our approach to the problem is to
dynamically adjust the program control logic to direct the
program to execute different paths during different profiling
runs to increase the code coverage. Our carefully designed
recovery scheme ensures that the program can roll back to an
error free status if the logic change leads to invalid program
execution or corrupted data. To reduce the search space and
profiling overhead, we combine taint and control dependence
analysis to only change execution branches that dependent
on the program input and ignore those do not. As a result,
our scheme achieves higher code coverage with reasonable
overhead compared to the state-of-the-art dynamic analysis
based approaches. The increase code coverage allows us to
uncover more hidden malware behaviors.

We have evaluated SEEAD with a range of benign and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/83920784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multiple Execution Path

Exploration

Online Dynamic Analysis

E
x

e
c

u
te

d
 i

n
fo

rm
a

ti
o

n
 e

x
tr

a
c
ti

o
n

PC

PC

Instruction Call-list Tainted-listIndex

Instruction Call-list Tainted-listIndex

PC

PC

Control Dependency

Analysis

Taint Dynamic

analysis

Intermediate

Data

CFG and FCG

Construction

Optimization

Process
Optimized

instr traces,

CFG, FCG

Obfuscated

Binary File

Pre-Block Succ-Block Post-dom SetsIndex

Pre-Block Succ-Block Post-dom SetsIndex

Figure 1: Overview of SEEAD: The figure shows the framework of SEEAD, the components in yellow are the key functions of SEEAD, the components in
blue are the input and output of SEEAD. Others are some details produced during the de-obfuscation process.

malicious obfuscated binary programs. Experimental results
show that SEEAD is able to eliminate on average 76.8% of the
obfuscation instructions and 87.4% of obfuscation instructions
generated using virtualization-based obfuscation techniques.

The main contributions of this work are:
• We present SEEAD, a novel and generic semantic-based

automated code de-obfuscation system that can apply
to unknown obfuscation methods without any human
involvement;

• SEEAD is a low-cost solution but provides wider code
coverage compared to state-of-the-art dynamic analysis
based code de-obfuscation tools;

• Our evaluation performed on a range of benign and ma-
licious obfuscated binaries show that SEEAD is effective
at removing obfuscation instructions.

II. SEEAD OVERVIEW

SEEAD is a generic and semantic-based de-obfuscation
system. An overview of SEEAD is presented in Figure 1. The
input of SEEAD is the obfuscated binary file, the output are
the simplified instruction traces, CFG and FCG, which can be
easily analyzed and understood.

To perform the code de-obfuscation, SEEAD goes through
the following steps:

• Extract the executed information of the obfuscated file
based on the dynamic binary instrumentation tool.

• Identify the semantically relevant instructions with dy-
namic taint analysis and the control dependency analysis
in Section 4.

• Present a low-cost solution for exploring multiple exe-
cution paths in order to increase the code coverage in
Section 5.

• Perform the inter-block and intra-block optimization re-
spectively in Section 6, moreover, SEEAD constructs the
CFG and FCG for the optimized instruction traces.

In order to identify the semantically relevant instructions,
we need to extract the executed information (i.e., assembly

instruction traces, values of registers and memory) of the
obfuscated binary file. It is difficult for the common debug-
gers (e.g., Ollydbg [13], IDA Pro [14]) to handle packing
and obfuscated malware, because malware developers usually
use various anti-reverse engineering strategies to increase the
difficulty of malware analysis. In addition, the cost of analysis
is not very optimistic. Dynamic binary instrumentation tools
are effective against these anti-reverse engineering strategies.
Thus, we build SEEAD on the top of a dynamic binary
instrumentation tool called PIN.

III. SEMANTICALLY RELEVANT INSTRUCTION
IDENTIFICATION

In this paper, we use dynamic taint analysis to identify
values obtained through input operations and instructions
influenced by these input-tainted values directly and indirectly.
The computation only can capture the explicit information flow
from inputs to outputs of the program, but does not consider
the implicit information flow [15], it is possible that some
behaviors will be missed and the semantics of the program
will be changed. To this end, we combine with the explicit
data dependencies identified earlier to capture implicit as well
as explicit information flow from inputs to outputs.

A. Dynamic Taint analysis

Dynamic taint analysis [16] is widely applied to program
security analysis. The basic idea of dynamic taint analysis is
to mark the users’ sensitive data or untrusted input data as
the taint source and track the taint source’s propagation path
during the executed process.

Similar to prior work [17], SEEAD uses a one-bit tag (0
for “untaint” data and 1 for “taint” data) for each value in
memory or general registers in the taint propagation process. If
necessary, the one-bit tag can be easily extended to a multiple-
bit tag for each value.

At the beginning of the taint propagation process, all tags
are assigned to 0. Based on the taint propagation policy, taint

sources (e.g. data read from the network or standard input)
will be tagged with 1 as “taint”. As program executes, the
dynamic taint scheduler propagates the tag information from
one instruction to another. It does this by dynamically tracing
instructions with information flow. Some other data may be
tagged with 1 via information flow. Of course, ”taint” data
can become ”untaint” if its value is reassigned from some
safe data.

B. Control Dependency Analysis

Control dependency analysis is mainly used to capture
the implicit information flow during the program execution
process. For two instructions I and J of a program, J is said
to be control-dependent on I if the outcome of I determines
if J is executed. More formally, J is control dependent on
I only if there is a non-empty path from I to J such that J
post-dominates each instruction in this non-empty path except
I [18]. The computation of control dependencies has been
well-studied in the compiler literature [18].

Algorithm 1 Computing Control Dependencies

Input: An initial tainted instruction trace T
Output: The instruction trace T with control dependencies

between instructions identified
1: Construct an initial control flow graph G of trace T;
2: Compute the post-dominator relationships of G;
3: Use post-dominator relationships to compute explicit con-

trol dependencies:
4: (a)TaintC = the set of input-tainted conditional control

transfers; and
5: (b)DepIns = {x j ∃ C ∈ TaintC : x control dependent on

C};
6: while ∃ an indirect control transfer Ins dependent on some

x ∈ DepIns do
7: TaintBB ← basic block of Ins in G;
8: Mark TaintBB as dependent on the direct control trans-

fer in C that x is dependent on;
9: end while

We consider two types of control flows: explicit and im-
plicit. Explicit control flows are those conditional control
transfers where the predicate is explicitly reflected in the in-
struction of control transfer. Here, we can use post-dominators
to compute explicit control dependencies directly. Implicit
control flows are those indirect control transfers such as
‘jmp [eax]’ where the register eax is data-dependent on the
taint sources directly or indirectly. The control dependencies
computing algorithm we take is shown in Algorithm 1.

Figure 2 shows an example of two types of control flows:
explicit and implicit. The target of conditional control transfer
depends on which path is taken on L3, therefore, the instruc-
tion L4 and L6 are explicit control dependent on L3. Moreover,
the value of register ecx is data dependent on the conditional
jump L3, so the target of the indirect control transfer L7
also depends on which path is taken on L3, which is implicit
control dependencies.

Address Assembly Instruction

004012B4:

 jnz 004012BF

 mov ecx,0x2004012B8:

 jmp 004012C4004012BD:

004012BF: mov ecx,0x1

 jmp [edx+ecx *4]

 mov ebx,eax

 cmp ecx, eax

004012B2:

004012B6:

004012C4:

L1

L2

L3

L4

L5

L6

L7

Figure 2: An example of control dependencies: Instruction L4 and L6 are
explicit control dependent on L3. Instruction L7 is implicit control dependent
on L3.

IV. MULTIPLE EXECUTION PATHS EXPLORATION

Traditional dynamic analysis techniques usually only con-
sider a single execution path which typically represent partial
program behavior. This practice leads to low code coverage,
as some hidden malicious behavior may be missed. To address
this problem, previous works usually explore multiple execu-
tion paths which depend on some profiling information(e.g.
source code, testing information, etc.). However, in the case
of malware, we usually do not have access to these profiling
information. Moreover, even when the profiling information is
available, existing techniques incur higher overhead.

To this end, SEEAD presents a low-cost solution for mul-
tiple execution paths exploration. The basic idea is to force
the binary to execute requiring no profiling information that
We extended the analysis tool with the capability to explore
multiple execution paths. It is a great challenge as the search
space of all possible paths is usually very large for real
world binaries. We know that it is not necessary to obtain all
the predicates, because the branch outcomes are usually not
affected by any input. Therefore, we use the results of dynamic
taint analysis and control dependency analysis to reduce the
search space of the predicates. SEEAD only need to consider
the tainted branch blocks. The overhead of multiple execution
paths exploration will be reduced greatly.

A. Path Exploration

When a conditional branch occurs during the execution of
the program, if the current basic block is marked as a taint, we
will store the current process address space, then the program
will continue executing normally. When the process wishes to
terminate later, it replaces the current process address space
with the saved snapshot automatically. Here we need to modify
the outcome of the decision such that the process continues its
execution along the other branch. Of course, there are a lot of
branches in the program. In this case, the execution space is
explored by selecting next snapshot in a depth-first order. This
technique enables us to automatically extract a more complete
view of the program.

Here, we will show how to explore multiple execution paths
of a program in Figure 3. Assume that the block sequence of

Assembly Code

B2cmp [local.1],0x3C

jle short test.0040104A

B1
mov [local.1],eax

cmp [local.1],0x0

jle short test.00401060

 0: int x;

 1: x = read_input();

 2: if(x > 0)

 3: if(x > 60)

 4: printf(“Pass!”)

 5: exit(0);

Local.1 = 0x5B

exit

Print exit exit

Local.1>0

Local.1>60

B1:

B2: B3:

B4: B5:

Figure 3: An example of multiple execution paths exploration

the first execution as usual by an arbitrary input is B1, B2,
B4, the blocks saved in snapshot list are B2, B1. When the
current process wishes to terminate, we replace the current
process address space with the saved snapshot B2 firstly, and
then B1.

B. Exception Recovery Mechanism

As we all know, the process runs normally until it exits
normally or an exception happens. However, SEEAD does not
allow the process to terminate. Because the operating system
will remove the process-related entries and free its memory,
we would not recover the current image to a saved snapshot.
Moreover, The program input is merely to allow the execution
to preceed, not drive the execution along different paths. It is
possible to cause exceptions because of the incorrect input.
Thus, We adapt the exception recovery mechanism to prevent
any exceptions.

In SEEAD, the obfuscated binary program is first executed
as usual by providing arbitrary input. Its recovery mechanism
prevents the program from termination. For the program which
exit normally, we hook the system API function NtTermi-
nateProcess() of ntdll.dl library to monitor whether the process
wishes to terminate. Similarly, for the program crashes, we
hook the system API function KiUserExceptionDispatcher()
of ntdll.dll library. Whenever the process invokes the API, we
can know that a program exception occurs. In this case, if
there are unexplored paths left, we will revert the program’s
current image to a previous state.

V. OPTIMIZATION PROCESS

The optimization process is mainly divided into two parts:
inter-block and intra-block optimization. For the inter-block
optimization, we discard those blocks without taint marked
which are semantically irrelevant. For the intra-block opti-
mization, we make assumptions as few as possible about the
structure of obfuscators. Thus, we present a set of general but
simpler semantics-preserving transformations as following:

• Stack optimization. There are two cases: a useless push-
pop couple and an element A is pushed onto the stack
and then popped into an element B.

• Dead code removal: Dead code are the instructions
whose execution does not modify programs final states
or control flow. Every instruction of a block in which all
taints get overwritten before being used.

• Invalid instruction combination: Invalid instruction
combination is some instructions in the combination of
which functionally invalided or can cancel each other out.
(e.g., add eax, 0xF; sub eax, 0xF).

In order to better analyze and understand the logic of the
original program, we construct the CFG and FCG for the
optimized results.

CFG and FCG Construction: Construction of CFG and
FCG is a basic and highly challenging task for obfuscated
binaries, especially for the identification of indirect jump
targets and API identification. Since SEEAD is based on
dynamic analysis, the targets of indirect jump instructions are
precise address which we obtained after dynamic computation.
However, for API identification, there is no standard approach
in the literature.

As we all know, system calls play an crucial role in malware
detection. To some extent, API function sequence is a special
representation of malware behavior. Thus, in order to prevent
security analysts from extracting the API call sequence and
analyzing the program behavior, malware developers usually
use various API protection techniques to obfuscate system
calls. To construct FCG, we have to develop API identification
techniques against API obfuscation to reveal the information
of API calls (e.g., address of API calls and their details).

Common API obfuscation techniques can be roughly classi-
fied into import table encryption, Hook API and API rewriting.
The first two techniques are ineffective to dynamic analysis,
because the entry point of the API function can always be
traced in dynamic execution process. However, it is challeng-
ing to reveal API sequence from the program obfuscated by
API rewriting technique. API writing usually copies the first
few instructions of the API function to the user space to
execute, so we cannot easily identify the entry point of the
API function during the execution process. In this paper, we
combine code injection and API hook to monitor the API calls
and record their invocation information. Finally, we use these
collected information of API calls to construct CFG. Since
these two tare standard techniques, we omit their details.

VI. EFFECTIVENESS EVALUATION

A. Effectiveness Analysis

In this subsection, we demonstrate the effectiveness of
our de-obfuscation approach by elaborating on the security
analysts have only negligible probability of getting the same
results with our de-obfuscation approach.

Let tins denotes the average time of analyzing an instruc-
tion, let Nobf and Nsimp denote the instruction number of
the obfuscated program and the simplified traces respectively.
Ptime measures how much time we have been able to save
when analyzing an obfuscated program. It is defined as:

Ptime = 1− Nsimp × tins
Nobf × tins

=
Nobf −Nsimp

Nobf
(1)

For Nobf instructions of obfuscated program, if we want
to simplify them into Nsimp instructions, this yields a total of

Nobf !
(Nobf−Nsimp)!

combinations. The security analysts’ probability

Table I: Results for programs obfuscated with CF Obfuscator

Samples Original Obfuscated Simplified Total basic Input-taint Simplification Difference
trace size trace size trace size blocks basic blocks Score Score

bin search 166 221 108 21 19 0.511312 0.3494
bubble sort 316 641 263 22 6 0.589704 0.16772

huffman 4367 7226 833 59 31 0.884722 0.80925
matrix-mult 651 936 479 44 28 0.488248 0.26421

fibonacci 2930 2950 781 20 12 0.735254 0.73345
factorial 132 174 39 13 10 0.775862 0.70455

Table II: Results for programs obfuscated with MEMP

Samples Original Obfuscated Simplified Total basic Input-taint Simplification Difference
trace size trace size trace size blocks basic blocks Score Score

bin search 166 1325 549 100 70 0.58566 2.307229
bubble sort 316 4529 2054 123 96 0.546478 5.5

huffman 4367 34410 10532 170 125 0.693926 1.411724
matrix-mult 651 8230 3758 317 271 0.543378 4.772657

fibonacci 2930 2999 800 29 17 0.733244 0.72696
factorial 132 255 53 26 17 0.792157 0.59848

Table III: Results for programs obfuscated with VMprotect

Samples Original Obfuscated Simplified Total basic Input-taint Simplification Difference
trace size trace size trace size blocks basic blocks Score Score

bin search 166 859226 215148 314 220 0.749603 1295.072
bubble sort 316 2371635 501189 215 143 0.788674 1585.401

huffman 4367 5682255 1949412 355 328 0.65693 445.3962
matrix-mult 651 2762309 520705 327 251 0.811496 798.8541

fibonacci 2930 26549 2391 28 26 0.90994 0.18396
factorial 132 12611 1037 25 24 0.91777 6.856061

Table IV: Results for programs obfuscated with Code Virtualizer

Samples Original Obfuscated Simplified Total basic Input-taint Simplification Difference
trace size trace size trace size blocks basic blocks Score Score

bin search 166 163599 2819 356 52 0.982769 15.98193
bubble sort 316 605079 5872 322 25 0.990295 17.58228

huffman 4367 2553216 158286 369 114 0.938005 35.24594
matrix-mult 651 693674 50283 315 72 0.927512 76.23963

fibonacci 2930 24818 1647 283 62 0.933637 0.43788
factorial 132 12858 1596 271 96 0.875875 11.09091

of correctly getting these Nsimp instructions is (Nobf−Nsimp)!
Nobf !

.
For a 1536B (Nobf=751 instructions) obfuscated program, the
instructions can be simplified as 31 instructions after calcu-
lating of our de-obfuscation approach, the security analysts’
probability of getting the same results with our de-obfuscation
approach therefore is:

P [Analysis] =
(Nobf −Nsimp)!

Nobf !
=

(751− 31)!

751!
= 9.68−87

The time we have been able to save when analyzing this
obfuscated program is:

Ptime =
Nobf −Nsimp

Nobf
=

751− 31

751
= 95.872%

B. Experimental Results

We have implemented a prototype of SEEAD which is
implemented in PIN. It supports WIN32 executables. In this
section, we present the results of evaluating SEEAD with
six samples obfuscated by four obfuscation tools respectively
and demonstrate the effectiveness of our approach on multiple
execution paths exploration.

Existing virtualization de-obfuscation techniques first re-
verse engineer the structure of the virtual interpreter; calculate
all the byte code instructions based on this information; finally,
recover the logic embedded in the virtual interpreter. This
approach is very effective when the interpreter structure we
dealt with meets the certain needs. However, without the
assumption on known interpreter structure, it may not work
well.

VMprotect and Code Virtualizer are two representative ob-
fuscation tools that have been considered in previous work [7],
[5]. However, these researchers usually do not discuss these
non-virtualization obfuscations (e.g., control flow flattening,
instruction deformation, encryption, etc.) so we do not know
whether they are also able to handle the program obfuscated
by these non-virtulaization obfuscations. As far as we know,
none of existing approaches on de-obfuscation can be applied
to most obfuscation techniques. Thus, we present SEEAD
which is effective for most obfuscation techniques. In this
subsection, we demonstrate the power of SEEAD with four
common obfuscation tools: CF Obfuscator, MEMP [19],
Code Virtualizer (CV) [20] and VMprotect (VMP) [21]. CF

Table V: Evaluation of multiple execution paths exploration

Samples
CF Obfuscator MEMP

Branch Input-taint Dynamic SEEAD Branch Input-taint Dynamic SEEADblocks branch blocks analysis blocks branch blocks analysis
bin search 5 5 203 221 5 5 1301 1325
bubble sort 3 2 641 641 3 2 4529 4529

huffman 15 9 4383 7226 12 9 27325 34410
matrix mult 15 12 840 936 9 7 7119 8230

fibonacci 4 2 2943 2950 4 2 2992 2999
factorial 2 2 141 174 2 1 189 255

Obfuscator is a binary control flow flattening tool which
realized by control flow algorithm OBFWHKD [22]. MEPE
combines equivalent deformation, control flow obfuscation and
dynamic encryption and decryption. We present the results
of evaluating SEEAD with six programs which from [20].
Because the author do not discuss these non-virtulazation
obfuscations, we obfuscate these six programs with the CF
Obfuscator and MEMP.

Let Norig, Nobf and Nsimp denote the number of in-
structions for the original program, the obfuscated program
and the simplified traces respectively. The simplification score
measures how much obfuscation code we have been able to
eliminate. It is defined as:

Simplification Score =
Nobf −Nsimp

Nobf
(2)

The difference score measures the instruction number differ-
ence between the original program and the simplified traces.
It is defined as:

Difference Score =
|Norig −Nsimp|

Norig
(3)

The analysis results of programs obfuscated with these four
obfuscation tools are in Table I, Table II, Table III and Table IV
respectively. The first column shows the name of samples.
As shown in the next 3 columns, we report the number of
instructions for original program, obfuscated program and
simplified traces. The next two columns show the number of
total blocks and input-taint blocks respectively. Finally, we
present the simplification score and in the last two columns.

Figure 4 shows the comparison results of simplification
scores in all samples. The simplification score introduced by
MEMP is on average about 0.65, which means that SEEAD
is able to eliminate about 65% of obfuscation instructions
introduced by CF Obfuscator. The simplification score intro-
duced by CV is over 0.94 on average. The simplification scores
introduced by CF Obfuscator and VMP lie in the middle. They
are about 0.67 and 0.81 on average respectively.

Similarity, the comparison results of difference scores are
shown in Figure 5. The highest difference score is about 689
on average which is introduced by VMP, and the lowest score
is over 0.5 on average which is introduced by CF Obfuscator.
The difference scores introduced by MEMP and CV lie in the
middle. They are about 2.6 and 26 on average respectively.

Overall, these results are encouraging, especially for virtu-
alization obfuscations, as SEEAD only identifies those instruc-
tions that are semantically relevant with the original code, and

S
im

p
li

fi
c
a

ti
o

n
 S

c
o

re

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Obfuscated Samples

bin_search bubble_sort huffman matrix_mult fibonacci factorial

CF Obfuscator MEMP VMP CV

Figure 4: Comparison results of simplification scores

Obfuscated Samples

bin_search bubble_sort huffman matrix_mult fibonacci factorial

CF Obfuscator MEMP VMP CV

D
if

fe
re

n
c

e
 S

c
o

re

10
0

10
1

10
2

10
3

10
-1

Figure 5: Comparison results of difference Scores

discards those that are semantically irrelevant. Our evaluation
results show that we can straightforwardly reconstruct the
logic of original program and analyze them correctly with the
functionality we have traced.

We observed that most of the ”missed” instructions were
classified into two categories: on the one hand, instructions
which performed some preparation work like allocating mem-
ory or initializing data structures; on the other hand, instruc-
tions which performed some invalid actions that were semanti-

13-01 13-02 15-01 15-02 15-03 18-01 18-02 18-03 18-04 18-05

Packed Malware

0

10

20

30

40

50

60

70

80

90

N
u

m
e

r
o

f
A

P
I
C

a
ll

s
Packed Program

Dynamic Analysis

SeeAD

Figure 6: Comparison results of API calls

cally irrelevant such as garbage instructions, invalid instruction
combination. All of these instructions were identified by our
analysis.

We examined the results by hand, and found the reason for
the higher simplification scores is that all the test cases we
used are all toy programs. We believe that this paper is just
an initial step on developing an advanced and functionally
powerful de-obfuscation tool.

The results in Table I, Table II, Table III and Table IV
show that the extraordinary increase in the number of executed
instructions for these four obfuscator tools. For example,
bin search executes 166 instructions in the original program.
However, the number of executed instructions of the program
obfuscated by CF Obfuscator, MEMP, CV and VMP are 221,
1325, 163599 and 659226 respectively.

As we all know, traditional dynamic analysis typically
represents partial program behavior and the coverage heavily
relies on good inputs which may not be available. We compare
the results of SEEAD with traditional dynamic analysis and
demonstrate the effectiveness of our approach on multiple exe-
cution paths exploration. The comparison results are presented
in Table V. Columns 2-5 present the comparison results of the
program obfuscated by CF Obfuscator. Column 2 presents the
number of the branch blocks. The number of branch blocks
influenced by the input-tainted values is shown in column
3. We explore multiple execution paths according to these
input-taint branch blocks. Columns 4-5 present the instructions
that are covered by different approaches. Particularly, column
4 shows the number of instructions that are executed by
traditional dynamic analysis. Column 5 shows those extracted
by SEEAD. Similarly, columns 6-9 present the comparison
results of the program obfuscated by MEMP.

Figure 6 shows the comparison results between traditional
analysis and SEEAD. From the coverage data, we observed
that SEEAD could cover more instructions than dynamic
analysis, however, for our test cases, the increase in the number
of instructions was less. We examined the results by hand,
and found two reasons. First, we provided the good inputs for
the test cases in the dynamic analysis, so it can cover most

instructions. Second, the increase in the number of instructions
was closely related to the function of the obfuscated code.
In general,from the experimental results, we can ensure that
SEEAD can be used to handle most obfuscations without any
human involvement and at the same time increase the code
coverage. The effectiveness and efficiency of malware analysis
will be improved by SEEAD.

VII. DISCUSSION AND FUTURE WORK

Existing binary an be roughly classified into static [23],
dynamic [24], and symbolic analysis [10], [11]. However, all
of three techniques have their limitations. Now, we compare
these techniques in terms of code coverage, the capability
of handling packing and obfuscation and scalability. Static
analysis usually has good code coverage, and which is very
scalable. However, it is difficult for static analysis to handle
packing and obfuscated program, because some instructions
of the target binary are dynamic computing. For dynamic
analysis, it usually produces only partial program behavior
and the code coverage sometimes heavily relies on good inputs
which may not be available. For symbolic analysis, it is able
to construct inputs with the path conditions, but has difficulty
in handling packed or obfuscated binaries.

It is difficult for SEEAD to model multiple threads into a
single execution since their execution sequence is nondeter-
ministic. X-Force [25] adopts a simple and effective approach
to serialize the execution of threads. The calls to thread
creation library functions are replaced with direct function
calls to the starting functions of threads, which avoid creating
multiple threads and guarantees code coverage at the same
time. However, it is ineffective to analyze the behavior which
is sensitive to schedules. In the future we will explore handling
the real concurrent executions.

VIII. RELATED WORK

a) De-obfuscation mechanisms.: De-obfuscation is not
a new problem, thus, a number of solutions already exist.
Udupa et al. [26] discuss the deobfuscating code that has been
obfuscated by control flow flattening [27], which resembles
emulation-based obfuscation in some ways. Jones et al. [28]
describe a technique for specializing away interpretive code.
These works are based on static, which are ineffective against
complex obfuscated binaries, e.g., due to dynamic encryption
and decryption and and self-modifying code.

Sharif et al. represent an approach [5] for de-obfuscation, it
first reverse engineers the VM emulator, and then use the infor-
mation to work out individual byte code instructions. However,
the proposed approach may not work well when the emulator
uses techniques that do not fit these assumptions.There is
a semantic-based approach for de-obfuscation. Coogan et
al. [7] uses equational reasoning about assembly instruction
semantics to simplify the obfuscation code from execution
traces of virtualization obfuscated programs. It does not seem
strightforward to control the whole e-obfuscation process to
recover the logic of the program. Moreover, this paper does

not construct the CFG and FCG for better understanding the
de-obfuscated results.

b) Multiple Execution Paths Exploration.: Early ap-
proaches on multiple execution paths exploration usually rely
on profiling information to construct concrete program in-
puts [29], [30], such as source code, software testing and
debugging information. Unfortunately, in practice, such in-
formation is generally not available. Hence, for malware,
the assumption can be considered unrealistic. In particular,
the work in [12] requires concrete inputs firstly and then
mutate such inputs to explore different paths which incurs high
overhead.

There is an approach for multiple execution paths explo-
ration in [25] by forcing the branch outcomes to be reversed
to construct control flow graphs, However, partial paths they
explored are infeasible. Similar techniques are proposed to
expose hidden behavior in Android apps [31], [32]. These
techniques randomly determine each branch’s outcome, facing
the challenge of excessive infeasible.

IX. CONCLUSIONS

This paper has presented SEEAD, a novel, generic frame-
work for code de-obfuscation, targeting malware detection.
SEEAD employs dynamic taint analysis and control depen-
dency analysis to carefully direct the program execution path
across profiling runs to increase the code coverage. It then
simplifies the instruction traces of the target binary to perform
code de-obfuscation. SEEAD is fully automatic and requires
little human involvement. We evaluate SEEAD on a range
of benign and malicious obfuscated programs. Experimental
results show that SEEAD can successfully recover the original
logic from obfuscated binaries.

REFERENCES

[1] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” Security &
Privacy, IEEE, vol. 9, no. 3, pp. 49–51, 2011.

[3] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineer-
ing of malware emulators,” in Security and Privacy, 2009 30th IEEE
Symposium on. IEEE, 2009, pp. 94–109.

[4] R. Rolles, “Unpacking virtualization obfuscators,” in 3rd USENIX Work-
shop on Offensive Technologies.(WOOT), 2009.

[5] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code
extractor for packed executables,” in Proceedings of the 2007 ACM
workshop on Recurring malcode. ACM, 2007, pp. 46–53.

[6] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 275–284.

[7] “Vmprotect - new-generation software protection,”
http://www.vmprotect.ru/, Tech. Rep.

[8] “Code virtualizer: Total obfuscation against reverse engineering,” Oreans
Technologies, http://www.oreans.com/codevirtualizer.php, Tech. Rep.,
2008.

[9] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[10] V. Chipounov, V. Kuznetsov, and G. Candea, S2E: a platform for in-vivo
multi-path analysis of software systems. ACM, 2012, vol. 47, no. 4.

[11] O. Yuschuk, “Ollydbg 1.1: A 32-bit assembler level analysing debugger
for microsoft windows, june 2004.”

[12] “Ida pro: a windows, linux or mac os x hosted,” https://www.hex-
rays.com/products/ida/index.shtml, Tech. Rep.

[13] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Acm Sigplan
Notices, vol. 39, no. 11. ACM, 2004, pp. 85–96.

[14] P. Saxena, R. Sekar, and V. Puranik, “Efficient fine-grained binary
instrumentationwith applications to taint-tracking,” in Proceedings of the
6th annual IEEE/ACM international symposium on Code generation and
optimization. ACM, 2008, pp. 74–83.

[15] A. Lakhotia and E. U. Kumar, “Abstracting stack to detect obfuscated
calls in binaries,” in Source Code Analysis and Manipulation, 2004.
Fourth IEEE International Workshop on. IEEE, 2004, pp. 17–26.

[16] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Tech-
niques. Addison wesley, 1986.

[17] W. H. Fang Dingyi, Li Guanghui, “Research on deformation based
binary,” Journal of Sichuan University (Engineering Science Edition),
2014,1:003.

[18] “Obfuscated samples,” http://www.cs.arizona.edu/projects/lynx/Samples/,
Tech. Rep.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[20] J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. Pearson
Education, 2009.

[21] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” DTIC Document, Tech. Rep., 2006.

[22] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation
resilient binary code reuse through trace-oriented programming,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 487–498.

[23] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in Proceedings of
the 2014 USENIX Security Symposium, San Diego, CA (August 2014),
2014.

[24] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Reverse Engineering, 12th Working
Conference on. IEEE, 2005, pp. 10–pp.

[25] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Dependable Systems and Networks,
2001. DSN 2001. International Conference on. IEEE, 2001, pp. 193–
202.

[26] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and
automatic program generation. Peter Sestoft, 1993.

[27] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 272–281.

[28] S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas, “Pathexpander:
Architectural support for increasing the path coverage of dynamic
bug detection,” in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on. IEEE, 2006, pp. 38–52.

[29] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in Security and Privacy, 2007. SP’07. IEEE
Symposium on. IEEE, 2007, pp. 231–245.

[30] R. Johnson and A. Stavrou, “Forced-path execution for android applica-
tions on x86 platforms,” in Software Security and Reliability-Companion
(SERE-C), 2013 IEEE 7th International Conference on. IEEE, 2013,
pp. 188–197.

[31] Z. Wang, R. Johnson, R. Murmuria, and A. Stavrou, “Exposing security
risks for commercial mobile devices,” in Computer Network Security.
Springer, 2012, pp. 3–21.

	Introduction
	SeeAD Overview
	Semantically Relevant Instruction Identification
	Dynamic Taint analysis
	Control Dependency Analysis

	Multiple Execution Paths Exploration
	Path Exploration
	Exception Recovery Mechanism

	Optimization Process
	Effectiveness Evaluation
	Effectiveness Analysis
	Experimental Results

	Discussion and Future Work
	Related Work
	Conclusions
	References

