892 research outputs found

    Mean Square Exponential Stability of Stochastic Cohen-Grossberg Neural Networks with Unbounded Distributed Delays

    Get PDF
    This paper addresses the issue of mean square exponential stability of stochastic Cohen-Grossberg neural networks (SCGNN), whose state variables are described by stochastic nonlinear integrodifferential equations. With the help of Lyapunov function, stochastic analysis technique, and inequality techniques, some novel sufficient conditions on mean square exponential stability for SCGNN are given. Furthermore, we also establish some sufficient conditions for checking exponential stability for Cohen-Grossberg neural networks with unbounded distributed delays

    pth moment exponential stability of stochastic fuzzy Cohenā€“Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohenā€“Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohenā€“Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances

    Get PDF
    Robustness of neural networks has been a hot topic in recent years. This paper mainly studies the robustness of the global exponential stability of Cohen-Grossberg neural networks with a piecewise constant argument and stochastic disturbances, and discusses the problem of whether the Cohen-Grossberg neural networks can still maintain global exponential stability under the perturbation of the piecewise constant argument and stochastic disturbances. By using stochastic analysis theory and inequality techniques, the interval length of the piecewise constant argument and the upper bound of the noise intensity are derived by solving transcendental equations. In the end, we offer several examples to illustrate the efficacy of the findings

    Delay-Dependent Dynamics of Switched Cohen-Grossberg Neural Networks with Mixed Delays

    Get PDF
    This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications

    Delay-Dependent Dynamics of Switched Cohen-Grossberg Neural Networks with Mixed Delays

    Get PDF
    This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications

    Stability analysis of impulsive stochastic Cohenā€“Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohenā€“Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohenā€“Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Exponential Stability of Cohen-Grossberg Neural Networks with Impulse Time Window

    Get PDF
    This paper concerns the problem of exponential stability for a class of Cohen-Grossberg neural networks with impulse time window and time-varying delays. In our letter, the impulsive effects we considered can stochastically occur at a definitive time window and the impulsive controllers we considered can be nonlinear and even rely on the states of all the neurons. Hence, the impulses here can be more applicable and more general. By utilizing Lyapunov functional theory, inequality technique, and the analysis method, we obtain some novel and effective exponential stability criteria for the Cohen-Grossberg neural networks. These results generalize a few previous known results and numerical simulations are given to show the effectiveness of the derived results

    Anti-periodic solution for fuzzy Cohenā€“Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohenā€“Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results

    General criteria for asymptotic and exponential stabilities of neural network models with unbounded delays

    Get PDF
    For a family of differential equations with infinite delay, we give sufficient conditions for the global asymptotic, and global exponential stability of an equilibrium point. This family includes most of the delayed models of neural networks of Cohen-Grossberg type, with both bounded and unbounded distributed delay, for which general asymptotic and exponential stability criteria are derived. As illustrations, the results are applied to several concrete models studied in the literature, and a comparison of results is given.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT) - 2009-ISFL-1-209Universidade do Minho. Centro de MatemĆ”tica (CMAT

    Exponential stability of Cohen-Grossberg neural networks with multiple time-varying delays and distributed delays

    Get PDF
    Maybe because Cohen-Grossberg neural networks with multiple time-varying delays and distributed delays cannot be converted into the vector-matrix forms, the stability results of such networks are relatively few and the stability conditions in the linear matrix inequality forms have not been established. So this paper investigates the exponential stability of the networks and gives the sufficient condition in the linear matrix inequality forms. Two examples are provided to demonstrate the effectiveness of the theoretical results
    • ā€¦
    corecore