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1. Introduction

Cohen-Grossberg neural networks, proposed in 1983, have been applied in parallel memory and
optimization [1,2]. These applications depend on the stability of equilibrium points of Cohen-
Grossberg neural networks. In addition, from the perspective of the model structure, the model
of Cohen-Grossberg neural networks includes some famous neural networks such as cellular neural
networks and Hopfield neural networks as its special cases. So it is important to investigate the stability
of Cohen-Grossberg neural networks.

In implementation of neural networks, time delays are unavoidable because of various reasons such
as the finite switching speed of amplifiers. Usually, time-varying delays in models of delayed feedback
systems serve as a good approximation in many circuits having a small number of cells. Moreover,
neural networks usually have a spatial extent due to the presence of a multitude of parallel pathways
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with a variety of axon sizes and lengths, and hence there is a distribution of propagation delays over
a period of time. So time-varying delays and distributed delays should be incorporated in the models
of neural networks. In addition, it is worth noting that a time delay in the response of a neuron can
influence the stability of a network and deteriorate the dynamical performance creating oscillatory and
unstable characteristics [3]. Therefore, the stability and its related dynamic analysis have received
much attention for various types of delayed neural networks, for example, see [4–16] and references
therein.

As is well known, the stability condition in the linear matrix inequality forms contains some non-
system parameters to be determined and the stability conditions derived by matrix theory, the method
of variation of parameters and differential inequality technique completely depend on the system
parameters. So the stability condition in the linear matrix inequality forms is usually less conservative.
However, as far as our knowledge, perhaps because Cohen-Grossberg neural networks with multiple
delays cannot be transformed into the vector-matrix form, there is relatively little research on the
exponential stability of such neural networks and the stability condition in the linear matrix inequality
forms has not been obtained. Therefore, this paper aims at deriving the sufficient condition in the
linear matrix inequality forms for the exponential stability of Cohen-Grossberg neural networks with
multiple discrete time-varying delays and multiple distributed time-varying delays.

The innovations of this paper are listed in the following.
1) By using Lyapunov-Krasovskii functional and linear matrix inequality simultaneously, the

sufficient conditions in the linear matrix inequality forms are derived to ensure the exponential
stability of Cohen-Grossberg neural networks with multiple discrete time-varying delays and multiple
distributed time-varying delays.

2) It is confirmed that Lyapunov-Krasovskii functional and linear matrix inequality can be used
simultaneously to investigate the neural networks with multiple delays that cannot be transformed into
the vector-matrix form.

3) Two examples are provided to show that the sufficient condition established here is better than the
existing results derived by matrix theory [17], the method of variation of parameters and differential
inequality technique [18].

2. Preliminaries

In this paper, we consider the following Cohen-Grossberg neural networks with multiple time-
varying delays and distributed delays:

ẋi(t) = di(xi(t))
{
− ci(xi(t)) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t)))

+

n∑
j=1

∫ t

t−ρi j(t)
di jh j(x j(s))ds

}
, i = 1, · · · , n, (2.1)

in which ai j, bi j and di j are some constants, other functions satisfy the following assumption:
(A1) : For i, j = 1, · · · , n, ci(0) = fi(0) = gi(0) = hi(0) = σi j(0, 0) = 0 and there exist some constants

ci, di, di, f −i , f +
i , g

−
i , g

+
i , h

−
i , h

+
i , τ, ρ and τ̄ such that for t ≥ 0 and every x, y ∈ R,

0 ≤ τi j(t) ≤ τ, 0 ≤ ρi j(t) ≤ ρ, τ̇i j(t) ≤ τ̄ < 1, 0 < di ≤ di(x) ≤ d̄i,
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0 < ci ≤
ci(x) − ci(y)

x − y
=
|ci(x) − ci(y)|
|x − y|

, h−i ≤
hi(x) − hi(y)

x − y
≤ h+

i , x , y,

f −i ≤
fi(x) − fi(y)

x − y
≤ f +

i , g
−
i ≤

gi(x) − gi(y)
x − y

≤ g+
i , x , y.

The initial conditions associated with (2.1) are of the form: xi(s) = ξi(s), s ∈ [−max{τ, ρ}, 0], and
ξ = {(ξ1(s), · · · , ξ1(s))T : −max{τ, ρ} ≤ s ≤ 0} is C([−max{τ, ρ}, 0]; Rn)-valued function satisfying

||ξ||2 = sup
−max{τ, ρ}≤t≤0

‖ξ(t)‖2 < ∞,

in which C([−max{τ, ρ}, 0]; Rn) denotes the space of all continuous Rn-valued functions defined on
[−max{τ, ρ}, 0], ‖ · ‖ denotes the Euclidean norm. It is easy to see that by changing the functions of
system (2.1), system (2.1) can convert into the following neural networks studied in [17,18]:

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τ j(t))), (2.2)

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j(t))). (2.3)

3. Main results

Theorem 3.1. The origin of system (2.1) is globally exponentially stable provided that there exist some
positive constants p1, · · · , pn, ui1, · · · , uin (i = 1, 2, 3) such that

∆ =


∆1 U1F1 U2G1 U3H1

∗ −2U1 + A2 0 0
∗ ∗ −2U2 + 1

1−τ̄B2 0
∗ ∗ ∗ −2U3 + ρ2D2

 < 0, (3.1)

in which ∆ < 0 denotes that matrix ∆ is symmetric negative definite, ∗ means the symmetric terms of
the symmetric matrix ∆,

∆1 = −2PdC + P2d̄A1 + P2d̄B1 + P2d̄D1 − 2U1F2 − 2U2G2 − 2U3H2,

Ui = diag{ui1, · · · , uin}(i = 1, 2, 3),C = diag{c1, · · · , cn},

d̄ = diag{d̄1, · · · , d̄n}, d = diag{d1, · · · , dn}, P = diag{p1, · · · , pn},

A1 = diag{
n∑

j=1

|a1 j|, · · · ,

n∑
j=1

|an j|}, A2 = diag{
n∑

j=1

d̄ j|a j1|, · · · ,

n∑
j=1

d̄ j|a jn|},
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B1 = diag{
n∑

j=1

|b1 j|, · · · ,

n∑
j=1

|bn j|}, B2 = diag{
n∑

j=1

d̄ j|b j1|, · · · ,

n∑
j=1

d̄ j|b jn|},

D1 = diag{
n∑

j=1

|d1 j|, · · · ,

n∑
j=1

|dn j|},D2 = diag{
n∑

j=1

d̄ j|d j1|, · · · ,

n∑
j=1

d̄ j|d jn|},

F1 = diag{| f −1 + f +
1 |, · · · , | f

−
n + f +

n |}, F2 = diag{ f −1 f +
1 , · · · , f −n f +

n },

G1 = diag{|g−1 + g+
1 |, · · · , |g

−
n + g+

n |},G2 = diag{g−1 g+
1 , · · · , g

−
n g+

n },

H1 = diag{|h−1 + h+
1 |, · · · , |h

−
n + h+

n |},H2 = diag{h−1 h+
1 , · · · , h

−
n h+

n }.

Proof. It follows from (3.1) that there exists a positive constant λ such that ∆̃ < 0, in which �

∆̃ =


∆̃1 U1F1 U2G1 U3H1

∗ −2U1 + A2 0 0
∗ ∗ −2U2 + eλτ

1−τ̄B2 0
∗ ∗ ∗ −2U3 + ρ2eλρD2

 ,
∆̃1 = λP − 2PdC + P2d̄A1 + Pd̄B1 + Pd̄D1 − 2U1F2 − 2U2G2 − 2U3H2.

Lyapunov-Krasovskii functional V(t) is defined as follows:

V(t) = V1(t) + V2(t) + V3(t), (3.2)

in which

V1(t) = eλt
n∑

i=1

pix2
i (t),V2(t) =

n∑
i=1

n∑
j=1

∫ t

t−τi j(t)

eλ(s+τ)

1 − τ̄
d̄i|bi j|g2

j(x j(s))ds,

V3(t) =

∫ 0

−ρ

∫ t

t+s

n∑
i=1

n∑
j=1

d̄i|di j|ρeλ(θ+ρ)h2
j(x j(θ))dθds.

Along the trajectory of system (2.1), we obtain

V̇1(t) = λeλt
n∑

i=1

pix2
i (t) + eλt

n∑
i=1

{
− 2pixi(t)di(xi(t))ci(xi(t))

+

n∑
j=1

2pixi(t)di(xi(t))ai j f j(x j(t)) +

n∑
j=1

2pixi(t)di(xi(t))bi jg j(x j(t − τi j(t)))

+

n∑
j=1

2pixi(t)di(xi(t))di j

∫ t

t−ρi j(t)
h j(x j(s))ds

}
≤ eλt

n∑
i=1

{
λpix2

i (t) − 2pidicix
2
i (t) +

n∑
j=1

2pid̄i|ai j||xi(t) f j(x j(t))|

+

n∑
j=1

2pid̄i|bi j||xi(t)g j(x j(t − τi j(t)))| +
n∑

j=1

2pid̄i|di j||xi(t)
∫ t

t−ρi j(t)
h j(x j(s))ds|

}
AIMS Mathematics Volume 8, Issue 8, 19161–19171.
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≤ eλt
n∑

i=1

{
λpix2

i (t) − 2pidicix
2
i (t) +

n∑
j=1

d̄i|ai j|[p2
i x2

i (t) + f 2
j (x j(t))]

+

n∑
j=1

d̄i|bi j|[p2
i x2

i (t) + g2
j(x j(t − τi j(t)))] +

n∑
j=1

d̄i|di j|[p2
i x2

i (t) + (
∫ t

t−ρi j(t)
h j(x j(s))ds)2]

}
≤ eλt

n∑
i=1

{
λpix2

i (t) − 2pidicix
2
i (t) +

n∑
j=1

d̄i|ai j|[p2
i x2

i (t) + f 2
j (x j(t))]

+

n∑
j=1

d̄i|bi j|[p2
i x2

i (t) + g2
j(x j(t − τi j(t)))] +

n∑
j=1

d̄i|di j|[p2
i x2

i (t) + ρ

∫ t

t−ρ
h2

j(x j(s))ds]
}
, (3.3)

V̇2(t) =

n∑
i=1

n∑
j=1

{eλ(t+τ)

1 − τ̄
d̄i|bi j|g2

j(x j(t)) − (1 − τ̇i j(t))
eλ(t−τi j(t)+τ)

1 − τ̄
d̄i|bi j|g2

j(x j(t − τi j(t)))
}

≤

n∑
i=1

n∑
j=1

{eλ(t+τ)

1 − τ̄
d̄i|bi j|g2

j(x j(t)) − eλtd̄i|bi j|g2
j(x j(t − τi j(t)))

}
£ (3.4)

V̇3(t) =

n∑
i=1

n∑
j=1

d̄i|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) −
∫ 0

−ρ

eλ(t+s+ρ)h2
j(x j(t + s))ds

}
=

n∑
i=1

n∑
j=1

d̄i|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) −
∫ t

t−ρ
eλ(s+ρ)h2

j(x j(s))ds
}

≤

n∑
i=1

n∑
j=1

d̄i|di j|ρ
{
ρeλ(t+ρ)h2

j(x j(t)) − eλt
∫ t

t−ρ
h2

j(x j(s))ds
}
. (3.5)

At the same time, we can also obtain

0 ≤ −2
n∑

i=1

u1i[ fi(xi(t)) − f +
i xi(t)][ fi(xi(t)) − f −i xi(t)]

= −2
n∑

i=1

u1i[ f 2
i (xi(t)) − ( f +

i + f −i )xi(t) fi(xi(t)) + f +
i f −i x2

i (t)]

≤ −2
n∑

i=1

u1i f 2
i (xi(t)) + 2

n∑
i=1

u1i| f +
i + f −i ||xi(t)|| fi(xi(t))| − 2

n∑
i=1

u1i f +
i f −i x2

i (t)

= −2 f̃ T (x(t))U1 f̃ (x(t)) + 2 f̃ T (x(t))U1F1 x̃(t) − 2x̃T (t)U1F2 x̃(t), (3.6)

0 ≤ −2
n∑

i=1

u2i[gi(xi(t)) − g+
i xi(t)][gi(xi(t)) − g−i xi(t)]

≤ −2g̃T (x(t))U2g̃(x(t)) + 2g̃T (x(t))U2G1 x̃(t) − 2x̃T (t)U2G2 x̃(t) (3.7)

and
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0 ≤ −2
n∑

i=1

u3i[hi(xi(t)) − h+
i xi(t)][hi(xi(t)) − h−i xi(t)]

≤ −2h̃T (x(t))U3h̃(x(t)) + 2h̃T (x(t))U3H1 x̃(t) − 2x̃T (t)U3H2 x̃(t), (3.8)

in which
x̃(t) = (|x1(t)|, · · · , |xn(t)|)T , f̃ (x(t)) = (| f1(x1(t))|, · · · , | fn(xn(t))|)T ,

g̃(x(t)) = (|g1(x1(t))|, · · · , |gn(xn(t))|)T , h̃(x(t)) = (|h1(x1(t))|, · · · , |hn(xn(t))|)T .

So, from (3.3)–(3.8), we have

V̇(t) ≤ eλt
{
x̃T (t)

(
λP − 2PdC + P2d̄A1 + P2d̄B1 + P2d̄D1 − 2U1F2 − 2U2G2 − 2U3H2

)
x̃(t)

+ f̃ T (x(t))
(
− 2U1 + A2

)
f̃ (x(t)) + g̃T (x(t))

(
− 2U2 +

eλτ

1 − τ̄
B2

)
g̃(x(t)

+h̃T (x(t))
(
− 2U3 + ρ2eλρD2

)
h̃(x(t)) + 2x̃T (t)U1F1 f̃ (x(t))

+2x̃T (t)U2G1g̃(x(t)) + 2x̃T (t)U3H1h̃(x(t))
}

= eλtyT (t)∆̃y(t) < 0, (3.9)

in which y(t) = (x̃T (t), f̃ T (x(t)), g̃T (x(t)), h̃T (x(t)))T .

Integrating from 0 to t for (3.9) and using (3.2), we obtain

eλt min
1≤i≤n
{pi}‖x(t)‖2 ≤ V(t) ≤ V(0)

≤

{
max
1≤i≤n
{pi}‖x(0)‖2 +

n∑
i=1

n∑
j=1

∫ 0

−τ

eλ(s+τ)
d̄i|bi j|ḡ2

j

1 − τ̄
x2

j(s)ds

+

∫ 0

−ρ

∫ 0

s

n∑
i=1

n∑
j=1

d̄i|di j|ρeλ(θ+ρ)h̄2
j x

2
j(θ)dθds

}
≤

{
max
1≤i≤n
{pi} +

eλττ
1 − τ̄

max
1≤i≤n
{

n∑
j=1

d̄ j|b ji|ḡ2
i } + eλρρ3 max

1≤i≤n
{

n∑
j=1

d̄ j|d ji|h̄2
i }

}
‖ξ‖2,

which implies the origin of system (2.1) is exponentially stable, in which ḡ j = max{|g−j |, |g
+
j |}, h̄ j =

max{|h−j |, |h
+
j |}, j = 1, · · · , n.

For the systems (2.2) and (2.3), we obtain the following results from Theorem 3.1.

Corollary 3.1. The origin of system (2.2) is globally exponentially stable provided that there exist
some positive constants p1, · · · , pn, ui1, · · · , uin(i = 1, 2) such that

∆ =


∆1 U1F1 U2G1

∗ −2U1 + A2 0
∗ ∗ −2U2 + 1

1−τ̄B2

 < 0, (3.10)
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in which
∆1 = −2PC + P2A1 + P2B1 − 2U1F2 − 2U2G2,C = diag{c1, · · · , cn},

A2 = diag{
n∑

j=1

|a j1|, · · · ,

n∑
j=1

|a jn|}, B2 = diag{
n∑

j=1

|b j1|, · · · ,

n∑
j=1

|b jn|},

the other symbols are the same as Theorem 3.1.

Corollary 3.2. The origin of system (2.3) is globally exponentially stable provided that there exist
some positive constants p1, · · · , pn, u11, · · · , u1n such that

∆ =

(
∆1 U1F1

∗ −2U1 + A2 + 1
1−τ̄B2

)
< 0, (3.11)

in which
∆1 = −2PC + P2A1 + P2B1 − 2U1F2,C = diag{c1, · · · , cn},

A2 = diag{
n∑

j=1

|a j1|, · · · ,

n∑
j=1

|a jn|}, B2 = diag{
n∑

j=1

|b j1|, · · · ,

n∑
j=1

|b jn|},

the other symbols are the same as Theorem 3.1.

Remark 3.1. It is obvious that Corollaries 3.1 and 3.2 can be applicable to the networks (2.2)
and (2.3) studied in [17,18], since these networks are some special cases of system (2.1). Therefore,
Corollaries 3.1 and 3.2 can be seen as new stability criteria for the networks (2.2) and (2.3).

Remark 3.2. Based on the method of variation of parameters and differential inequality technique,
Theorem 2 in [18] shows that the origin of system (2.2) is globally exponentially stable provided that

α =
ξ||A||2 + η||B||2

c0
< 1,

in which ξ = max1≤i≤n{supxi,0
fi(xi)

xi
}, η = max1≤i≤n{supxi,0

gi(xi)
xi
}, c0 = min1≤i≤n{ci}, ||A||2 denotes the

square root of the largest eigenvalue of AT A. This stability condition completely depends on the
parameters of system (2.2) and the stability condition of Corollary 3.1 contains some non-system
parameters p1, · · · , pn, ui1, · · · , uin(i = 1, 2) to be determined. We demonstrate that Corollary 3.1 is
applicable to system (2.2) in Example 1 and Theorem 2 in [18] is not. So the stability condition of
Corollary 3.1 is better.

Remark 3.3. By using matrix theory and inequality analysis, Theorem 2.4 in [17] shows that zero
solution of system (2.3) is globally exponentially stable provided that ρ(K) < 1, in which ρ(K) denotes
spectral radius of matrix K = (ki j)n×n, ki j = c−1

i (|ai j| + |bi j|)α j, α j corresponds to max{| f −j |, | f
+
j |} in

this paper. Similarly, this stability condition also depends on the parameters of system (2.3) and the
stability condition of Corollary 3.2 contains some non-system parameters p1, · · · , pn, u11, · · · , u1n to be
determined. We demonstrate Corollary 3.2 is applicable to system (2.3) in Example 2 and Theorem 2.4
in [17] is not. So the stability condition of Corollary 3.2 is better.

AIMS Mathematics Volume 8, Issue 8, 19161–19171.
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4. Examples

Example 4.1. Consider system (2.2) with the following parameters and functions:

A = (ai j)4×4 =


1 −1 −1 1
−1 1 −1 −1
1 1 −1 1
−1 −1 −1 −1

 , B = (bi j)4×4 =


−1 1 −1 1
−1 −1 1 −1
1 −1 −1 −1
−1 −1 −1 1

 ,
C = diag{6, 6, 5, 5}, fi(xi) = tanh(xi), gi(xi) = 0.8tanh(xi), τi(t) = 0.2sint + 0.2, i = 1, 2, 3, 4.

We calculate that A1 = A2 = B1 = B2 = 4I, F1 = I,G1 = 0.8I, F2 = G2 = 0, τ̄ = 0.2, in which I
denotes identity matrix. By using MATLAB LMI Control Toolbox, we know when

P = diag{258.2100, 258.2100, 450.2626, 450.2626},
U1 = diag{324.4595, 324.4595, 317.0773, 317.0773},
U2 = diag{337.2718, 337.2718, 332.0326, 332.0326},

the condition of Corollary 3.1 is satisfied and so Corollary 3.1 is applicable to system (2.2). Figure 1
shows the solution trajectories of system (2.2) with the initial value (0.3; 0.2;−0.2;−0.3)T tend to 0.

On the other hand, we calculate ξ = 1, η = 0.8, ||A||2 =
√

8, ||B||2 =
√

7.4641, c0 = min1≤i≤4{ci} = 5
and α = 5.014

5 > 1 defined in Remark 3.2. Therefore, Theorem 2 in [18] is not applicable to system (2.2)
in this example.

Figure 1. The solution trajectories of system (2.2) with the initial value
(0.3; 0.2;−0.2;−0.3)T tend to 0.

Example 4.2. Consider system (2.3) with C = diag{5, 5, 5, 5}, fi(xi) = 0.5tanh(xi), τii(t) = 0.2sint +

0.2, τi j(t) = 0.2cost + 0.2, i , j, i, j = 1, 2, 3, 4, the matrices A and B are the same as Example 4.1.

We calculate that A1 = A2 = B1 = B2 = 4I, F1 = 0.5I, F2 = 0, τ̄ = 0.2. By using
MATLAB LMI Control Toolbox, we know when P = 76.1324I,U1 = 72.4840I, the condition of
Corollary 3.2 is satisfied. Figure 2 shows the solution trajectories of system (2.3) with the initial value
(0.3; 0.2;−0.2;−0.3)T tend to 0.
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On the other hand, we calculate αi = 0.5, ki j = 0.2(i = 1, 2, 3, 4) and ρ(K) = 1 defined in
Remark 3.3. Therefore, Theorem 2.4 in [17] is not applicable to system (2.3) in this example.

Figure 2. The solution trajectories of system (2.3) with the initial value
(0.3; 0.2;−0.2;−0.3)T tend to 0.

5. Conclusions

This paper has investigated the exponential stability of Cohen-Grossberg neural networks with
multiple discrete time-varying delays and multiple distributed time-varying delays. Maybe because
such networks cannot be converted into the vector-matrix forms, the stability results of the networks
are relatively few and the stability conditions in the linear matrix inequality forms have not been
established. By using Lyapunov-Krasovskii functional and linear matrix inequality simultaneously,
the sufficient conditions in the linear matrix inequality forms of ensuring the exponential stability are
derived. It is confirmed that Lyapunov-Krasovskii functional and linear matrix inequality can be used
simultaneously to investigate the neural networks with multiple delays that cannot be transformed into
the vector-matrix form.
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