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This paper addresses the issue of mean square exponential stability of stochastic Cohen-
Grossberg neural networks (SCGNN), whose state variables are described by stochastic nonlinear
integrodifferential equations. With the help of Lyapunov function, stochastic analysis technique,
and inequality techniques, some novel sufficient conditions on mean square exponential stability
for SCGNN are given. Furthermore, we also establish some sufficient conditions for checking
exponential stability for Cohen-Grossberg neural networks with unbounded distributed delays.

1. Introduction

Consider the Cohen-Grossberg neural networks (CGNN) described by a system of ordinary
differential equations

ẋi(t) = −ai(xi(t))
⎡
⎣b̂i(xi(t)) −

n∑
j=1

cijfj
(
xj(t)

)
⎤
⎦, (1.1)

where t ≥ 0, n ≥ 2; n corresponds to the number of units in a neural network; xi(t)
denotes the potential (or voltage) of cell i at time t; fj(·) denotes a non-linear output function
between cell i and j; ai(·) > 0 represents an amplification function; b̂i(·) represents an
appropriately behaved function; the n×n connectionmatrixC = (cij)n×n denotes the strengths
of connectivity between cells, and if the output from neuron j excites (resp., inhibits) neuron
i, then cij ≥ 0 (resp., cij ≤ 0).
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During hardware implementation, time delays do exist due to finite switching speed
of the amplifiers and communication time and, thus, it is important to incorporate delays in
the neural networks. Just take the delayed cellular neural network as an example, which had
been successfully applied to solve some moving image processing problem [1]. For model
(1.1), Ye et al. [2] introduced delays by considering the following delay differential equations:

ẋi(t) = −ai(xi(t))
⎡
⎣b̂i(xi(t)) −

n∑
j=1

cijfj
(
xj(t)

) −
K∑
k=1

n∑
j=1

dkijfj
(
xj(t − τk)

)
⎤
⎦, i = 1, . . . , n. (1.2)

Guo and Huang [3] generalized model (1.1) as the following delay differential equations:

ẋi = −ai(xi)
⎡
⎣b̂i(xi) −

n∑
j=1

dijfj
(
xj
(
t − τij

))
+ Ii

⎤
⎦. (1.3)

Some other more detailed justifications for introducing delays into model equations of neural
networks can be found in [4, 5] and references therein.

The delays in all above mentioned papers have been largely restricted to be discrete.
As is well known, the use of constant fixed delays in models of delayed feedback provides
of a good approximation in simple circuits consisting of a small number of cells. However,
neural networks usually have a spatial extent due to the presence of a multitude of parallel
pathways with a variety of axon sizes and lengths. Thus there will be a distribution of
conduction velocities along these pathways and a distribution of propagation delays. In
these circumstances, the signal propagation is not instantaneous and cannot be modeled with
discrete delays and amore appropriate way is to incorporate continuously distributed delays.
For instance, in [6], Tank and Hopfield designed an analog neural circuit with distributed
delays, which can solve a general problem of recognizing patterns in a time-dependent signal.
A more satisfactory hypothesis is that to incorporate continuously distributed delays, we
refer to [7–11]. Then model (1.3) can be modified as a system of integro-differential equations
of the form

dxi(t)
dt

= ai(xi(t))

⎡
⎣−b̃i(xi(t)) +

n∑
j=1

cij f̃j
(
xj(t)

)
+

n∑
j=1

dij g̃j

(∫ t
−∞

Kij(t − s)xj(s)ds
)

+ Ii

⎤
⎦,

(1.4)

with initial values given by ui(s) = ψi(s) for s ∈ (−∞, 0], where each ψi(·) is bounded and
continuous on (−∞, 0].

In the past few years, the dynamical behaviors of stochastic neural networks have
emerged as a new subject of research mainly for two reasons: (i) in real nervous systems
and in the implementation of artificial neural networks, synaptic transmission is a noisy
process brought on by random fluctuations from the release of neurotransmitters and other
probabilistic causes, hence, noise is unavoidable and should be taken into consideration
in modeling [12–14]; (ii) it has been realized that a neural network could be stabilized or
destabilized by certain stochastic effects [15–17]. Although systems are often perturbed by
various types of environmental “noise” [12–14, 18], it turns out that one of the reasonable
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interpretation for the “noise” perturbation is the so-called white noise dω(t)/dt, where ω(t)
is the Brownian motion process, also called as Wiener process [17, 19]. More detailed mecha-
nism of the stochastic effects on the interaction of neurons can be found in [19]. However,
because the Brownian motion ω(t) is nowhere differentiable, the derivative of Brownian
motion dω(t)/dt cannot be defined in the ordinary way, the stability analysis for stochastic
neural networks is difficult. In [12], through constructing a novel Lyapunov-Krasovskii
functional, Zhu and Cao obtain several novel sufficient conditions to ensure the exponential
stability of the trivial solution in the mean square. In [13], using linear matrix inequality
(LMI) approach, Zhu et al. investigated the asymptotical mean square stability of Cohen-
Grossberg neural networks with random delay, In [14], by utilizing Poincaré inequality, Pan
and Zhong derived some sufficient conditions to check the almost sure exponential stability
and mean square exponential stability of stochastic reaction-diffusion Cohen-Grossberg
neural networks. In [20], Wang et al. developed a linear matrix inequality (LMI) approach
to study the stability of SCGNN with mixed delays. To the best of the authors’ knowledge,
the convergence dynamics of stochastic Cohen-Grossberg neural networks with unbounded
distributed delays have not been studied yet, and still remain as a challenging task.

Keeping this in mind, in this paper, we consider the SCGNN described by the
following stochastic nonlinear integro-differential equations:

dxi(t) = ai(xi(t))

⎡
⎣−b̃i(xi(t)) +

n∑
j=1

cij f̃j
(
xj(t)

)
+

n∑
j=1

dij g̃j

(∫ t
−∞

Kij(t − s)xj(s)ds
)

+ Ii

⎤
⎦dt

+
n∑
j=1

σij
(
xj(t)

)
dωj(t),

(1.5)

where σ(t) = (σij(t))n×n is the diffusion coefficient matrix and ω(t) = (ω1(t), . . . , ωn(t))
T is

an n-dimensional Brownian motion defined on a complete probability space (Ω,F,P) with a
natural filtration {Ft}t≥0 (i.e., Ft = σ{w(s) : 0 ≤ s ≤ t}).

Obviously, model (1.5) is quite general and it includes several well-known neural
networks models as its special cases such as Hopfield neural networks, cellular neural
networks, and bidirectional association memory neural networks [21, 22].

The remainder of this paper is organized as follows. In Section 2, the basic notations
and assumptions are introduced. In Section 3, some criteria are proposed to determine
mean square exponential stability for (1.5). Furthermore, we also establish some sufficient
conditions for checking exponential stability for Cohen-Grossberg neural networks with
unbounded distributed delays in this section. In Section 4, an illustrative examples is given.
We conclude this paper in Section 5.

2. Preliminaries

Noting that a vector x = (x1, . . . , xn)
T ∈ Rn usually can be equipped with the common norms

‖x‖ as

‖x‖ =

(
n∑
i=1

|xi|2
)1/2

. (2.1)
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For the sake of convenience, some of the standing definitions and assumptions are formulated
below.

Definition 2.1 (see [17]). The trivial solution of (1.5) is said to be mean square exponentially
stable if there is a pair of positive constants λ and G such that

E‖x(t; t0, x0)‖ < G‖x0‖e−λ(t−t0), on t ≥ t0 (2.2)

for all x0 ∈ Rn, where λ also called as convergence rate.
One also assumes that

(H1) there exist positive constants Lj, Gj , j = 1, . . . , n, such that

∣∣∣f̃j(u) − f̃j(v)
∣∣∣ ≤ Lj |u − v|, ∀u, v ∈ R,

∣∣g̃j(u) − g̃j(v)
∣∣ ≤ Gj |u − v|, ∀u, v ∈ R;

(2.3)

(H2) There exist positive constants bj , such that

(u − v)
[
b̃j(u) − b̃j(v)

]
≥ bj(u − v)2, ∀u, v ∈ R; (2.4)

(H3) There exist positive constants αi, αi, such that

αi ≤ ai(xi(t)) ≤ αi; (2.5)

(H4) Assume σij(x∗
j ) = 0 (x∗ = (x∗

1, . . . , x
∗
n)
T to be determined later), and there exist

positive constantsMi,j , i, j = 1, . . . , n, such that

∣∣σij(u) − σij(v)
∣∣ ≤Mij |u − v|, ∀u, v ∈ R. (2.6)

Remark 2.2. The activation functions are typically assumed to be continuous, bounded,
differentiable, and monotonically increasing, such as the functions of sigmoid type; these
conditions are no longer needed in this paper. For example, when neural networks are
designed for solving optimization problems in the presence of constraints (linear, quadratic,
or more general programming problems), unbounded activations modelled by diode-like
exponential-type functions are needed to impose constraints satisfaction [3]. In this paper,
the activation functions fi(·), gi(·) also including some kinds of typical functions widely used
in the circuit designs, such as nondifferentiable piecewise linear output functions of the form
f(u) = (1/2)(|u − 1| − |u + 1|), nonmonotonically increasing functions of the form Gaussian
and inverse Gaussian functions, see [4, 5, 23] and references therein.
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Using variable substitution, (t − s) 	→ s′, we get

∫ t
−∞

Kij(t − s)xj(s)ds =
∫∞

0
Kij

(
s′
)
xj
(
t − s′)ds′, (2.7)

therefore, system (1.5) for convenience can be put in the form

dxi(t) = ai(xi(t))

⎡
⎣−b̃i(xi(t)) +

n∑
j=1

cij f̃j
(
xj(t)

)
+

n∑
j=1

dij g̃j

(∫∞

0
Kij(s)xj(t − s)ds

)
+ Ii

⎤
⎦dt

+
n∑
j=1

σij
(
xj(t)

)
dωj(t).

(2.8)

As usual, the initial conditions for system (2.8) are x(t) = ϕ(t), −∞ < t ≤ 0, ϕ ∈ L2
F0
((−∞, 0],

Rn), here L2
F0
((−∞, 0], Rn) is the family of all F0-measurable Rn-valued random variables

satisfying that E{sup−∞≤s≤0|ϕ(s)|2} <∞.

The conditions (H1) and (H4) imply that (2.8) has a unique global solution on t ≥ 0
for the initial conditions[17].

If V ∈ C1,2(R × Rn;R+), define an operator LV associated with (2.8) as

LV (t, x) = Vt(t, x) −
n∑
i=1

∂V (t, x)
∂xn

ai(xi(t))

×
⎡
⎣−b̃i(xi(t)) +

n∑
j=1

cij f̃j
(
xj(t)

)
+

n∑
j=1

dij g̃j

(∫∞

0
Kij(s)xj(t − s)ds

)
+ Ii

⎤
⎦

+
1
2
trace

[
σTVxx(t, x)σ

]
,

(2.9)

where Vt(t, x) = ∂V (t, x)/∂t, Vxx(t, x) = (∂2V (t, x)/∂xi∂xj)n×n.
We always assume that the delay kernels Kij , i, j = 1, . . . , n to be real-valued

nonnegative functions defined on [0,∞) and satisfy

∫∞

0
Kij(s)ds = 1,

∫∞

0
Kij(s)eμsds <∞, (2.10)

for some positive constant μ. A typical example of such delay kernel function is given by
Kij(s) = (sr/r!)γr+1ij e−γij s for s ∈ [0,∞), where γij ∈ [0,∞), r ∈ {0, 1, . . . , n}. These kernels
have been used in [6, 9, 24] for various stability investigations on neural network models. In
[24], these kernels are called as the Gamma Memory Filter.
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3. Main Results

A point x∗ = (x∗
1, . . . , x

∗
n)
T in Rn is called to be an equilibrium (or trivial solution) of system

(1.4) if this point x∗ satisfies the following:

−b̃i
(
x∗
i

)
+

n∑
j=1

cij f̃j
(
x∗
j

)
+

n∑
j=1

dij g̃j
(
x∗
j

)
+ Ii = 0. (3.1)

Different from the bounded activation function case where the existence of an equilibrium
point is always guaranteed [25], for unbounded activations, it may happen that there is no
equilibrium point [26]. In fact, we have the following theorem.

Theorem 3.1. Under the assumptions (H1), (H2), if there exist a positive diagonal matrix Q =
diag(q1, . . . , qn), such that

Ξi = pqibi −
⎡
⎣qi

n∑
j=1

∣∣cij
∣∣Lj +

n∑
j=1

qj
∣∣cji

∣∣Li + qi
n∑
j=1

∣∣dij
∣∣Gj +

n∑
j=1

qj
∣∣dji

∣∣Gi

⎤
⎦ > 0, (3.2)

then for every input I = (I1, . . . , In)
T , system (1.4) has a unique equilibrium x∗ = (x∗

1, . . . , x
∗
n)
T .

Proof of Theorem 3.1. A point x∗ = (x∗
1, . . . , x

∗
n)
T is said to be an equilibrium of system (1.5) if

this point x∗ satisfies the following:

−b̃i
(
x∗
i

)
+

n∑
j=1

cij f̃j
(
x∗
j

)
+

n∑
j=1

dij g̃j
(
x∗
j

)
+ Ii = 0. (3.3)

Let

Hi(x) = −b̃i(xi) +
n∑
j=1

cij f̃j
(
xj
)
+

n∑
j=1

dij g̃j
(
xj
)
+ Ii,

H(x) = (H1(x), . . . ,Hn(x))T .

(3.4)

Similar to the proofs of Theorems 1, 2, and 3 of [25], one can get thatH is injective on Rn, and
lim‖y‖→∞‖H(y)‖ → ∞. Then, H is homeomorphism on Rn, therefore, H has a unique root
on Rn. This completes the proof.

Obviously, the following inequality (3.5) impling the inequality (3.2) holds if the
assumptions (H1), (H2), (H4) are true, then system (2.8) admits an equilibrium solution
x(t) ≡ x∗. We have the following theorems on the stochastic stability of the unique
equilibrium x∗ = (x∗

1, . . . , x
∗
n)
T .
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Theorem 3.2. Under the assumptions (H1)−(H4), if there exist a positive diagonal matrix Q =
diag(q1, . . . , qn), such that

2qiαibi > qiαi
n∑
j=1

∣∣cij
∣∣Lj +

n∑
j=1

qjαj
∣∣cji

∣∣Li + qiαi
n∑
j=1

∣∣dij
∣∣Gj +

n∑
j=1

qjαj
∣∣dji

∣∣Gi +
n∑
j=1

qjαj
∣∣Mji

∣∣2,

(3.5)

then the trivial solution of system (2.8) is mean square exponentially stable.

Proof of Theorem 3.2. Let yi(t) = xi(t) − x∗
i , φi(t) = ϕi(t) − x∗

i , y(t) = (y1(t), . . . , yn(t))
T , φ(t) =

(φ1(t), . . . , φn(t))
T , using (3.3), model (2.8) take the following form:

dyi(t) = −ai
(
yi(t)

)
⎡
⎣b̂i

(
yi(t)

) −
n∑
j=1

cijfj
(
yj(t)

) −
n∑
j=1

dijgj

(∫∞

0
Kij(s)yj(t − s)ds

)⎤
⎦dt

+
n∑
j=1

σ̂ij
(
yj(t)

)
dωj(t),

(3.6)

with the initial condition y(t) = φ(t), t ∈ (−∞, 0], where ai(yi(t)) = ai(xi(t) + x∗
i ), b̂i(yi(t)) =

b̃i(xi(t)) − b̃i(x∗
i ), fj(yj(t)) = f̃j(xj(t)) − f̃j(x∗

j ), fj(yj(t)) = g̃j(xj(t)) − g̃j(x∗
j ), and σ̂ij(yj(t)) =

σij(xj(t)) − σij(x∗
j ).

Then the assumptions (H1), (H3), (H4) can be transformed as follows:

(H ′
1) fj(0) = gj(0) = 0 and there exist positive constants Lj, Gj , j = 1, . . . , n, such that

∣∣fj(u) − fj(v)
∣∣ ≤ Lj |u − v|, ∀u, v ∈ R,

∣∣gj(u) − gj(v)
∣∣ ≤ Gj |u − v|, ∀u, v ∈ R;

(3.7)

(H ′
3) There exist positive constants bj , such that

yj(t)b̂j
(
yj(t)

) ≥ bjy2
j (t); (3.8)

(H ′
4) σ̂ij(0) = 0 and there exist positive constantsMi,j , i, j = 1, . . . , n, such that

∣∣σ̂ij(u) − σ̂ij(v)
∣∣ ≤Mij |u − v|, ∀u, v ∈ R. (3.9)
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From assumptions (2.10) and (3.5), we pick a constant λ: 0 < λ < μ satisfying the following
requirements:

∫∞

0
Kji(s)eλssds <∞, (3.10)

2qiαibi > 2λqi + qiαi
n∑
j=1

∣∣cij
∣∣Lj +

n∑
j=1

qjαj
∣∣cji

∣∣Li + qiαi
n∑
j=1

∣∣dij
∣∣Gj

∫∞

0
Kij(s)eλsds

+
n∑
j=1

qjαj
∣∣dji

∣∣Gi

∫∞

0
Kji(s)eλsds +

n∑
j=1

qjαj
∣∣Mji

∣∣2.
(3.11)

Define the following Lyapunov functional

V (t, x(t)) = V1 + V2 = e2λt
n∑
i=1

qi|xi(t)|2

+
n∑
i=1

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0

[
Kij(s)eλs

(∫ t
t−s
e2λξ

∣∣xj(ξ)
∣∣2dξ

)]
ds.

(3.12)

As V at most has one point y = 0 where it is not differentiable, we can calculate Vy, Vyy by
instead using Dini derivative. Obviously, calculate the operator LV1 associated with (3.6) as
follows:

LV 1 = 2λe2λt
n∑
i=1

qi
∣∣yi(t)

∣∣2dt + 2e2λt
n∑
i=1

qiyi(t)dyi(t)

= e2λt
{

n∑
i=1

2λqi
∣∣yi(t)

∣∣2 −
n∑
i=1

pqiyi(t)ai
(
yi(t)

)

×
⎡
⎣b̂i

(
yi(t)

) −
n∑
j=1

cijfj
(
yj(t)

) −
n∑
j=1

dijgj

(∫∞

0
Kij(s)yj(t − s)ds

)⎤
⎦

+
n∑
i=1

qi
n∑
j=1

M2
ijy

2
j (t)

⎫
⎬
⎭dt

≤ e2λt
⎧
⎨
⎩

n∑
i=1

2λqi
∣∣yi(t)

∣∣2 −
n∑
i=1

qiαi2bi
∣∣yi(t)

∣∣2 +
n∑
i=1

n∑
j=1

qiαi2
∣∣cij

∣∣Lj
∣∣yi(t)

∣∣∣∣yj(t)
∣∣

+
n∑
i=1

n∑
j=1

qiαi

∫∞

0
Kij(s)2

∣∣dij
∣∣Gj

∣∣yi(t)yj(t − s)
∣∣ds

+
n∑
i=1

n∑
j=1

qiαiM
2
ijy

2
j (t)

⎫
⎬
⎭dt

(
using conditions

(
H ′

1

)
, (H2),

(
H ′

3
)
,
(
H ′

4

))
.

(3.13)
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On the other hand, by directly applying the elementary inequality 2ab ≤ a2 + b2, we have

LV1 ≤ e2λt
{

n∑
i=1

2λqi
∣∣yi(t)

∣∣2 −
n∑
i=1

qiαi2bi
∣∣yi(t)

∣∣2

+
n∑
i=1

n∑
j=1

qiαi
∣∣cij

∣∣Lj
(∣∣yi(t)

∣∣2 + ∣∣yj(t)
∣∣2)

+
n∑
i=1

n∑
j=1

qiαi

∫∞

0
Kij(s)

∣∣dij
∣∣Gj

(∣∣yi(t)
∣∣2 + ∣∣yj(t − s)

∣∣2)ds

+
n∑
i=1

n∑
j=1

qiαiM
2
ijy

2
j (t)

⎫
⎬
⎭dt

= −e2λt
n∑
i=1

∣∣yi(t)
∣∣2
⎧
⎨
⎩2qiαibi − 2λqi −

n∑
j=1

qiαi
∣∣cij

∣∣Lj −
n∑
j=1

qjαj
∣∣cji

∣∣Li

−
n∑
j=1

qjαjM
2
ji −

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0
Kij(s)eλsds

⎫
⎬
⎭dt

+ e2λt
⎡
⎣

n∑
i=1

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0
Kij(s)

∣∣yj(t − s)
∣∣2ds

⎤
⎦dt.

(3.14)

At the same time, calculate the operator LV2 associated with (3.6) as follows:

LV2 =
n∑
i=1

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0
Kij(s)eλs

[
e2λt

∣∣yj(t)
∣∣2 − e2λ(t−s)∣∣yj(t − s)

∣∣2]dsdt

≤ e2λt
⎡
⎣

n∑
i=1

n∑
j=1

qjαj
∣∣dji

∣∣Gi

∣∣yi(t)
∣∣2
∫∞

0
Kji(s)eλsds

⎤
⎦dt

− e2λt
⎡
⎣

n∑
i=1

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0
Kij(s)

∣∣yj(t − s)
∣∣2ds

⎤
⎦dt.

(3.15)

From (3.14) and (3.15), it is easy to get

LV ≤ −e2λt
n∑
i=1

∣∣yi(t)
∣∣2
⎧
⎨
⎩2qiαibi − 2λqi − qiαi

n∑
j=1

∣∣cij
∣∣Lj −

n∑
j=1

qjαj
∣∣cji

∣∣Li

− qiαi
n∑
j=1

∣∣dij
∣∣Gj

∫∞

0
Kij(s)eλsds −

n∑
j=1

qjαj
∣∣dji

∣∣Gi

×
∫∞

0
Kji(s)eλsds −

n∑
j=1

qjαj
∣∣Mji

∣∣2
⎫
⎬
⎭dt.

(3.16)
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Using the Itô formula, for δ > 0, from inequality (3.11) and inequality (3.16), we have

V
(
δ, y(δ)

) ≤ V (0, y(0)) + p
∫δ
0

n∑
i=1

n∑
j=1

qie
pλt
∣∣yi(t)σ̂ij

(
yj(t)

)∣∣dwj(t). (3.17)

On the other hand, we observe that

V
(
0, y(0)

)
=

n∑
i=1

qi
∣∣yi(0)

∣∣2 +
n∑
i=1

n∑
j=1

qiαi
∣∣dij

∣∣Gj

∫∞

0

[
Kij(s)eλs

(∫0

−s
e2λξ

∣∣xj(ξ)
∣∣2dξ

)]
ds

≤
n∑
i=1

qi

⎡
⎣1 +

n∑
j=1

qj

qi
αj
∣∣dji

∣∣Gi

∫∞

0
Kji(s)eλssds

⎤
⎦ sup

−∞≤s≤0

{∣∣yi(s)
∣∣2}.

(3.18)

From inequality (3.10), we have

αj
∣∣dji

∣∣Gi

∫∞

0
Kji(s)eλssds <∞. (3.19)

Hence, V (0, y(0)) is bounded. According to stochastic analysis theory [17], we get

E

(∫δ
0
Vy
(
t, y(t)

)
σ̂
(
y(t)

)
dw(t)

)
= 0. (3.20)

Take expectation on both sides of (3.17) yields

E
(
V
(
δ, y(δ)

)) ≤ E(V (0, y(0))) <∞. (3.21)

That is to say

epλδ
n∑
i=1

qiE
(∣∣yi(t)

∣∣p) ≤ E(V (δ, y(δ))) <∞. (3.22)

Therefore, there exist a positive constant G, such that

E
∥∥y(t; t0, y0

)∥∥ < G∥∥y0
∥∥e−2λt, on t ≥ 0, (3.23)

then the trivial solution of system (3.6) is mean square exponentially stable that is to say,
the trivial solution of system (2.8) is mean square exponentially stable. This completes the
proof.

Furthermore, if we remove noise from the system, then system (2.8) turns out to be
system (1.4), the derived conditions for exponential stability of system (1.4) can be viewed
as byproducts of our results from general SRNN. For convenience of reading, we provide the
definition of the exponential stability.
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Definition 3.3. The trivial solution of CGNN model (1.4) is said to be globally exponentially
stable if there exist positive constants G, λ, which are independent of the initial values of the
system, such that

∥∥x(t, (0, ϕ))∥∥ ≤ G∥∥φ∥∥e−λt, for t > 0. (3.24)

Where, the initial values take the following continuous function

xi(t) = ϕi(t), −∞ ≤ t ≤ 0,

∥∥φ∥∥ =

[
n∑
i=1

(
sup

−∞≤t≤0

∣∣ϕi(t)
∣∣2
)]1/2

.
(3.25)

We have the following Corollary 3.4 for system (1.4). As the main idea come from
Theorem 3.2, so the proof is trivial, we omit it.

Corollary 3.4. Under the assumptions (H1), (H2), (H3), if there exist a positive diagonal matrix
Q = diag(q1, . . . , qn), such that

2qiαibi > qiαi
n∑
j=1

∣∣cij
∣∣Lj +

n∑
j=1
qjαj

∣∣cji
∣∣Li + qiαi

n∑
j=1

∣∣dij
∣∣Gj +

n∑
j=1
qjαj

∣∣dji
∣∣Gi, (3.26)

then the trivial solution of system (1.5) is globally exponentially stable.

Remark 3.5. To the best of our knowledge, few authors have considered exponential stability
for recurrent neural networks with unbounded distributed delays. We can find paper [27]
in this direction. However, it is assumed in [27] that kij(·) satisfies: (i)

∫∞
0 Kij(s)ds = 1; (ii)∫∞

0 Kij(s)eμsds = 1; (iii)
∫∞
0 sKij(s)ds < ∞. Obviously, these requirements are strong, and our

paper relax assumptions on kij(·). In fact, using assumptions (2.10) instead of assumptions
(i), (ii), (iii), and choosing the same Lyapunov functionals in Theorem 3.2 of this paper, one
can get the same results as those in [27].

Remark 3.6. We notice that Wang et al. developed a linear matrix inequality (LMI) approach
to study the stability of SCGNNwith mixed delays and obtained some novel results in a very
recent paper [20], where the consideredmodel including both discrete and distributed delays.
Yet the distributed delays are bounded. In fact, a neural network model with unbounded
distributed delay is more general than that with discrete and bounded distributed delays,
this is because the distributed delay becomes a discrete delay when the delay kernel is a δ
function at a certain time.

Remark 3.7. The results in this paper show that, the convergence criteria on SGNN
with unbounded distributed delays are independent of delays, but are dependent of the
magnitude of noise, and therefore, noisy fluctuations should be regarded adequately when
design SGNN.

Remark 3.8. Comparing our results with the previous results derived in the literature for the
usual continuously distributed delays CNNwithout stochastic perturbation, by Corollary 3.4,
we can find that the corresponding main results obtained in [8–10] are trivial.
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4. Illustrative Examples

In this section, an example is presented to demonstrate the correctness and effectiveness of
the main obtained results in this paper.

Example 4.1. Consider the following stochastic neural networks with distributed delays:

dx1(t) = a1(x1(t))
{
−5x1(t) + 1

5
f1(x1(t)) +

2
5
f2(x2(t))

+
4
5
g1

(∫∞

0
K11(s)x1(t − s)ds

)
+
1
5
g2

(∫∞

0
K12(s)x2(t − s)ds

)}
dt

+
1
10
x1(t)dw1(t) +

1
10
x2(t)dw2(t),

dx2(t) = a2(x2(t))
{
−6x2(t) + 3

5
f1(x1(t)) − f2(x2(t)) + g1

(∫∞

0
K21(s)x1(t − s)ds

)

+
2
5
g2

(∫∞

0
K22(s)x2(t − s)ds

)}
dt

+
1
10
x1(t)dw1(t) +

1
10
x2(t)dw2(t), t ≥ 0.

(4.1)

Figure 1 shows the schematic of the entire delayed neural network, where the nonlinear
neuron transfer function (S) is constructed by using the voltage operational amplifiers. The
time delay is achieved by using a digital signal processor (DSP) with an analog-to-digital
converter (ADC) and a digital-to-analog converter (DAC). In the experiment, the circuit of
time delay consists of a TMS320F2812 device and a DAC7724 device. Here, white noise is
generated by signal generator Agient E8257D.

In the example, let

a1(x1(t)) = 3 + sinx1(t), a2(x2(t)) = 4 + cosx1(t),

K(s) =

(
2e−2s 4e−4s

3e−3s 5e−5s

)
,

(4.2)

and fi(u) = tan h(u), gi(u) = (1/2)(|u − 1| − |u + 1|). Notice that each delay kernel Kij(·)
satisfies (2.10), and each fj(·), gj(·), σij(·) satisfies assumptions (H1), (H4). In the example, let
p = 3, qi = 1, by simple computation, one can easily get that

20 > 16.49, 36 > 24.89. (4.3)

It follows from Corollary 3.4 that system (4.1) is mean square exponentially stable.
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Figure 1: An analog circuit implementing of system (4.1).

5. Conclusions

In this paper, we studied a nonlinear continuous-time stochastic Cohen-Grossberg neural
networks (SCGNN)with unbounded distributed delays. Without assuming the smoothness,
monotonicity and boundedness of the activation functions, by applying Lyapunov functional
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method, stochastic analysis technique, and inequality techniques, some novel sufficient
conditions on mean square exponential stability for SCGNN are given. Furthermore, as the
byproducts of our main results, we also establish some sufficient conditions for checking
exponential stability for Cohen-Grossberg neural networks with unbounded distributed
delays. The significant of this paper does offer a wider selection on the networks parameters
in order to achieve some necessary convergence in practice.
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