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1. Introduction

Due to its parallel processing ability, high fault tolerance, adaptive ability, neural networks (NNs)
have considerable application prospects in signal processing, automatic control, and artificial
intelligence, which has gradually attracted great attention to NNs [1–4]. Research on NNs have
yielded multiple excellent results up to this point [5–16]. For instance, the literature [5–7] discuss
the stability of NNs, and [8, 9] are about the robustness analysis of NNs. The literature [11–14]
introduce the synchronization problems of NNs, which are fundamental to the application of NNs. The
Cohen-Grossberg neural network (CGNN) is an important continuous-time feedback neural network.
Analysis of the dynamic behavior of CGNNs was first started in 1983 [17], and further studied in [18].
The CGNN model includes well-known models from disciplines such as population biology and
neurobiology. Moreover, the CGNN is more general as it includes a Hopfield neural network (HNN)
and a cellular neural network (CNN) as its special cases [19–23]. The CGNN attracted wide attention
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when it was first proposed, and quickly became one of the hottest topics in the field of research
at that time. With the passage of time and in-depth research, the CGNN model has been further
improved and expanded, leading to numerous breakthrough achievements in various fields such as
stability and periodicity [24–31]. For example, the stability of NNs is studied in [24–26], the periodic
solution problem of NNs is mainly discussed in [27, 28], and the synchronization problem is explored
in [29–31].

Stochastic disturbances (SDs) in nervous systems often arise from the stochastic processes involved
in neural transmission. SDs can lead to unstable output results and even cause errors in NNs. Therefore,
it is necessary to consider the impact of SDs on the dynamic behavior of NNs. In recent years, many
results on the stability analysis of CGNNs with SDs have been proposed [32–34].

In the implementation of CGNNs, time delay phenomenon is almost unavoidable, which may lead
to instability or poor performance of CGNNs. Systems with piecewise constant argument (PCA)
are a generalization of time-delay systems. Cooke and Wiener introduced the notion of differential
equations for PCA (EQPCA) in [35]. The concept of EQPCA was extended in [36–39]. With the
development and continuous improvement of EQPCA, PCA systems have attracted the interests of
many researchers. Some new stability conditions of PCA systems were obtained in [40–43], and PCA
systems have been successfully applied in many fields, such as biomedicine, mechanical engineering,
physics, aerodynamic engineering, and other fields.

Successful applications of NNs greatly depend on understanding the intrinsic dynamic behavior
and characteristics of NNs. It is necessary to comprehensively and deeply analyze the dynamic
behavior of NNs. In the field of control theory, robustness is an essential topic of study. Many authors
have conducted in-depth investigations into the robustness of NNs in [8–10, 44–46]. The researchers
of [8] investigated the robustness of random disturbances and time delays on the global exponential
stability (GES) of recurrent neural networks (RNNs). The robustness of RNNs was described by
finding upper bounds for these parameters. Subsequently, Shen et al. studied the robustness of the
GES of nonlinear systems with time delays and random disturbances in [44]. The researchers of [9]
discussed robustness for connection weight matrices RNNs with time-varying delayed. The researchers
of [45] examined the robustness of hybrid stochastic NNs with neutral terms and time-varying delay.
The robustness of the GES of nonlinear systems with a deviation argument and SDs was primarily
investigated in [10], where the upper bound of the noise intensity and the interval length of deviating
function were estimated. Robustness of bidirectional associative memory neural network (BAMNN)
with neutral terms and time delays was studied in [46]. It is worth noting that there are many articles
on analyzing the stability of CGNNs, but few results on the robustness of CGNNs caused by PCA
and SDs.

Based on the above discussion, the aim of this article is to analyze the robustness of the GES of
CGNNs with PCA and SDs. In this case, the stability of perturbed CGNNs is generally affected by
the strengths of PCA and SDs. If PCA, SDs, or both are small enough, then the disturbed CGNN can
still be stable. However, if the interval length of the deviation function or noise intensity exceeds a
certain limit, the originally stable CGNN may become unstable. It would be interesting to determine
this “certain limit”. This paper applies stochastic analysis theory and inequality techniques to establish
robustness results of the GES of CGNNs in the presence of PCA and SDs, and directly quantifies the
PCA and SD levels of stable systems. That is, we estimate the upper bounds of PCA and SDs by
solving transcendental equations, and further characterize the robustness of CGNNs with PCA and
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SDs. The following are this paper’s primary works:
(1) This paper studies the robustness of the GES of CGNNs with PCA and SDs. The research

contents of literature [8, 9] are about the robustness of RNNs, and the CGNN studied in this paper is a
more general NN. However, the existing results of the robustness analysis for the GES of CGNNs are
not common. Therefore, it is crucial to study the robustness of CGNNs with PCA and SDs.

(2) In this paper, the effects of SDs and PCA on the stability of CGNNs are discussed. Robustness
results of CGNNs with PCA and SDs are derived by applying stochastic analysis theory and inequality
techniques, and the upper bounds of PCA and SDs are estimated by solving transcendental equations.

(3) The existence of the amplification function of CGNNs provides a challenge for exploring the
robustness of the GES for CGNNs in this paper. How to solve the influence of the amplification
function on the study of CGNNs is a problem. In previous studies, it is found that we can apply a
hypothetical condition to the amplification function. Therefore, the amplification functions are directly
replaced by the upper and lower bounds of the amplification function in the operation process of this
paper, so as to solve the influence of the amplification function on the CGNNs model.

Finally, based on our findings in this article, if both PCA and SDs are below the upper bounds
obtained here, the disturbed CGNNs will remain exponentially stable.

Here is how we structure the rest: Section 2 introduces the system and the preliminaries we need in
later. Section 3 to Section 4 give the main results, and we discuss the influence of SDs and PCA on the
GES of CGNNs. Finally, some numerical examples are given to prove the validity of the results.
Notations: Let R+ = [0,∞) and N = {1, 2, ...}, where Rn is defined as the n-dimensional Euclidean

space. Denote ||φ|| =
n∑

i=1
|φi| for a vector φ, and for a matrix K, ||K|| = max1≤ j≤n

∑n
i=1 |ki j|.

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions, i.e., the filtration is right continuous and contains all P-null sets. The scalar Brownian
motion ω(t) is defined in the probability space, and E stands for the mathematical expectation operator
about the probability measure P. Fix two real-value sequences {θi}, {ϑi}, i ∈ N, such that θi < θi+1,
θi < ϑi < θi+1 for all i ∈ N with θi −→ +∞ as i −→ +∞.

2. Model formulation and preliminaries

Consider the CGNN model:

ėi(t) = di(ei(t))[−ci(ei(t)) +

n∑
j=1

ki jg j(e j(t)) + ui], (2.1)

e(t0) = e0, i = 1, ..., n

where n refers to the number of units, t0 and e0 are the initial values of CGNN (2.1), e(t) =

(e1(t), ..., en(t))T is the state of the ith unit at time t, di(·) is an amplification function, ci(·) is an
appropriately behaved function that makes the solutions of CGNN (2.1) be bounded, gi(·) is an
activation function, ki j is the connection strength between cell i and j, and ui is a constant representing
the external input.

Assume e∗ = (e∗1, ..., e
∗
n) is an equilibrium point of CGNN (2.1), and we translate the equilibrium
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point to the orign. Let h(t) = e(t) − e∗, then the model (2.1) can be converted into:

ḣi(t) = ai(hi(t))[−bi(hi(t)) +

n∑
j=1

ki j f j(h j(t))], (2.2)

h(t0) = h0, i = 1, 2, ..., n

where h0 = e0−e∗,ai(hi(t)) = di(hi(t)+e∗i ), bi(hi(t)) = ci(hi(t)+e∗i )−ci(e∗i ), fi(hi(t)) = gi(hi(t)+e∗i )−gi(e∗i ).
The origin is obviously an equilibrium point of CGNN (2.2). Then, the stability of e∗ is the same as
the stability for the origin of (2.2).

Next, we give some assumptions:
Assumption 1. Functions fi(·) satisfy the Lipschitz condition

| fi(h) − fi(l)| ≤ Fi|h − l|,∀h, l ∈ R (2.3)

with f (0) = 0, i = 1, ...n, where Fi are known constants.
Assumption 2. The functions ai(·) are continuous and bounded, and there exist constants µ > 0 and
µ̄ > 0 such that

µ ≤ ai(h) ≤ µ̄,∀h ∈ R, i = 1, 2, ..., n.

Assumption 3. For bi(·), there exist constants Bi > 0, i = 1, 2, ..., n such that

bi(h) − bi(l)
h − l

≤ Bi,∀h, l ∈ R, h , l.

From Assumption 1, for any initial value t0, h0, CGNN (2.2) has a unique state h(t; t0, h0) on t ≥ t0.
Now we give the definition for the GES of (2.2).

Definition 1. CGNN (2.2) is globally exponentially stable if for ∀t0 ∈ R+, h0 ∈ Rn, t > t0, there are
positive constants α and ν such that

||h(t; t0, h0)|| ≤ α||h(t0)||exp(−ν(t − t0))

where h(t; t0, h0) is the state of CGNN (2.2).

3. Effects of random disturbances

Consider the SCGNN perturbed by SDs:

dli(t) ={ai(li(t))[−bi(li(t)) +

n∑
j=1

ki j f j(l j(t))]}dt + σli(t)dω(t), (3.1)

l(t0) =l0 = h0 ∈ Rn, i = 1, 2, ..., n

where ai(·), bi(·), fi(·), and ki j are same as in (2.2). σ is the noise intensity, and ω(t) is a scalar Brownian
motion defined in (Ω,F , {Ft}t≥0, P).

Obviously, if Assumption 1 holds, for ∀t0 ∈ R+, h0 ∈ Rn, SCGNN (3.1) has a unique state l(t; t0, h0)
on t > t0, and l = 0 is the equilibrium point of (3.1).
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Definition 2. [47] SCGNN (3.1) is almost surely globally exponentially stable (ASGES), if for ∀t0 ∈

R+, h0 ∈ Rn, the Lyapunov exponent

lim sup
t−→∞

(
ln |l(t; t0, h0)|

t
) < 0

almost surely.
SCGNN (3.1) is mean square globally exponentially stable (MSGES), if for ∀t0 ∈ R+, l0 ∈ Rn, the

Lyapunov exponent

lim sup
t−→∞

(
ln(E|l(t; t0, l0)|2)

t
) < 0

where l(t; t0, l0) is the state of SCGNN (3.1).

Remark 1. From Definition 2, it is clear that if SCGNN (3.1) is ASGES, then SCGNN (3.1) is MSGES,
but not the contrary. It is worth noting that when A1 is true and SCGNN (3.1) is MSGES, then
SCGNN (3.1) is also ASGES (see [47]).

Assumption 4.[
16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2)

]
α2/ν × exp

{
2∆

[
16∆(µ̄2||B||2 + µ̄2||K||2F2

+ 2(µ̄ − µ)2||K||2F2)
]}

+ 2α2 exp
{
− 2ν∆

}
< 1.

Theorem 1. Assume A1–A4 holds, and CGNN (2.2) is globally exponentially stable, SCGNN (3.1)
is MSGES and also ASGES if |σ| < σ̄, where σ̄ is a unique positive solution of the transcendental
equation [

16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2]α2/ν × exp
{
2∆

[
16∆(µ̄2||B||2

+ µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2]} + 2α2 exp
{
− 2ν∆

}
= 1 (3.2)

and 4 > ln(2α2)/2ν > 0.

Proof. Let h(t; t0, h0) ≡ h(t), l(t; t0, l0) ≡ l(t). From (2.2) and (3.1), for t ≥ t0,

hi(t) − li(t)

=

∫ t

t0

{
ai(hi(s))

[
− bi(hi(s)) +

n∑
j=1

ki j f j(h j(s))
]
− ai(li(s))

[
− bi(li(s))

+

n∑
j=1

ki j f j(l j(s))
]}

ds −
∫ t

t0
σli(s)dω(s).

When t ≤ t0 + 2∆, by the Cauchy-Schwarz inequality, A1 and the GES of (2.2),

E||h(t) − l(t)||2

≤2E
n∑

i=1

∣∣∣∣∣ ∫ t

t0

{
ai(hi(s))

[
− bi(hi(s)) +

n∑
j=1

ki j f j(h j(s))
]
− ai(li(s))

[
− bi(li(s))

AIMS Mathematics Volume 9, Issue 2, 3097–3125.



3102

+

n∑
j=1

ki j f j(l j(s))
]}

ds
∣∣∣∣∣2 + 2E

n∑
i=1

∣∣∣∣∣ ∫ t

t0
σli(s)dω(s)

∣∣∣∣∣2
=2E

n∑
i=1

∣∣∣∣∣ ∫ t

t0

{[
ai(li(s))bi(li(s)) − ai(hi(s))bi(hi(s))

]
+

n∑
j=1

ki j
[
ai(hi(s)) f j(h j(s))

− ai(li(s)) f j(l j(s))
]}

ds
∣∣∣∣∣2 + 2E

n∑
i=1

∣∣∣∣∣ ∫ t

t0
σli(s)dω(s)

∣∣∣∣∣2
≤2E

n∑
i=1

∣∣∣∣∣ ∫ t

t0

{[
µ̄bi(li(s)) − µbi(hi(s))

]
+

n∑
j=1

ki j
[
µ̄ f j(h j(s)) − µ f j(l j(s))

]}
ds

∣∣∣∣∣2
+ 2E

n∑
i=1

∫ t

t0
|σli(s)|2ds

≤2E
n∑

i=1

{ ∫ t

t0

[
µ̄Bi|li(s) − hi(s)| + (µ̄ − µ)Bi|hi(s)| +

n∑
j=1

|ki j|
(
µ̄F j|h j(s) − l j(s)|

+ (µ̄ − µ)F j|l j(s)|
)]

ds
}2

+ 2E
n∑

i=1

∫ t

t0
|σli(s)|2ds

≤16∆

[
µ̄2||B||2

∫ t

t0
E||h(s) − l(s)||2ds + (µ̄ − µ)2||B||2

∫ t

t0
E||h(s)||2ds + µ̄2||K||2F2

×

∫ t

t0
E||h(s) − l(s)||2ds + (µ̄ − µ)2||K||2F2

∫ t

t0
E||l(s)||2ds

]
+ 4σ2

∫ t

t0
E||h(s)

− l(s)||2ds + 4σ2
∫ t

t0
E||h(s)||2ds

≤16∆

[
(µ̄2||B||2 + µ̄2||K||2F2)

∫ t

t0
E||h(s) − l(s)||2ds + 2(µ̄ − µ)2||K||2F2

∫ t

t0
E||h(s)

− l(s)||2ds + 2(µ̄ − µ)2||K||2F2
∫ t

t0
E||h(s)||2ds + (µ̄ − µ)2||B||2

∫ t

t0
E||h(s)||2ds

]
+ 4σ2

∫ t

t0
E||h(s) − l(s)||2ds + 4σ2

∫ t

t0
E||h(s)||2ds

≤

[
16∆(µ̄2||B||2 + µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2

] ∫ t

t0
E||h(s) − l(s)||2ds

+

[
16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2

] ∫ t

t0
E||h(s)||2ds

≤

[
16∆(µ̄2||B||2 + µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2

] ∫ t

t0
E||h(s) − l(s)||2ds

+

[
8∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 2σ2

]
α2||h(t0)||2/ν.

When t0 + ∆ ≤ t ≤ t0 + 2∆, from the Gronwall inequality, we get

E||h(t) − l(t)||2
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≤

[
8∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 2σ2

]
α2||h(t0)||2/ν exp

{[
16∆(µ̄2||B||2

+ µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2](t − t0)
}

≤

[
8∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 2σ2

]
α2/ν exp

{
2∆

[
16∆(µ̄2||B||2

+ µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2]} sup
t0≤s≤t0+∆

E||l(s)||2 (3.3)

and from (3.3) and the GES of (2.2), we obtain

E||l(t)||2

≤

[
16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2

]
α2/ν exp

{
2∆

[
16∆(µ̄2||B||2 + µ̄2||K||2F2

+ 2(µ̄ − µ)2||K||2F2) + 4σ2]} sup
t0≤s≤t0+∆

E||l(s)||2 + 2α2||h(t0)||2 exp
{
− 2ν(t − t0)

}
≤

{[
16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2]α2/ν exp

{
2∆

[
16∆(µ̄2||B||2 + µ̄2||K||2F2

+ 2(µ̄ − µ)2||K||2F2) + 4σ2]} + 2α2 exp
{
− 2ν∆

}}
sup

t0≤s≤t0+∆

E||l(s)||2. (3.4)

Let Q(σ) =
[
16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2]α2/ν exp

{
2∆

[
16∆(µ̄2||B||2 + µ̄2||K||2F2 +

2(µ̄− µ)2||K||2F2) + 4σ2]} + 2α2 exp
{
− 2ν∆

}
. It is easy to deduce that Q(σ) is strictly increasing for σ.

According to A4, we get Q(0) < 1, so there must be a positive constant σ̄ such that Q(σ̄) = 1. That is,
there exists a positive constant σ ∈ (0, σ̄) such that Q(σ) < 1. Then, for |σ| ≤ σ̄, we get[

16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2]α2/ν exp
{
2∆

[
16∆(µ̄2||B||2

+ µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2]} + 2α2 exp
{
− 2ν∆

}
< 1.

Let

ϕ = − ln
{[

16∆(2(µ̄ − µ)2||K||2F2 + (µ̄ − µ)2||B||2) + 4σ2]α2/ν × exp
{
2∆

[
16∆(µ̄2||B||2

+ µ̄2||K||2F2 + 2(µ̄ − µ)2||K||2F2) + 4σ2]} + 2α2 exp
{
− 2ν∆

}}
/∆

so ϕ > 0, and from (3.4), we have

sup
t0+∆≤t≤t0+2∆

E||l(t)||2 ≤ exp(−ϕ∆)
(

sup
t0≤t≤t0+∆

E||l(t)||2
)
. (3.5)

From the existence and uniqueness of the state of SCGNN (3.1), for any $ = 1, ..., n, when t ≥
t0 + ($ − 1)∆,

l(t; t0, h0) = l(t; t0 + ($ − 1)∆, l(t0 + ($ − 1)∆; t0, h0)). (3.6)

From (3.5) and (3.6), we obtain

sup
t0+$∆≤t≤t0+($+1)∆

E||l(t)||2
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≤ exp(−ϕ∆) sup
t0+($−1)∆≤t≤t0+($−1)∆+∆

E||l(t; t0, h0)||2

≤ ...

≤ exp(−ϕ$∆) sup
t0≤t≤t0+∆

E||l(t; t0, h0)||2

= τexp(−ϕ$∆)

where τ = supt0≤t≤t0+∆ E||l(t; t0, h0)||2. Hence, for all t > t0 + ∆, there exists an integer $ > 0 such that
t0 +$∆ ≤ t ≤ t0 + ($ + 1)∆, and then

E||l(t; t0, h0)||2 ≤ τexp(−ϕt + ϕt0 + ϕ∆) = (τexp(ϕ∆))exp(−ϕ(t − t0)).

For t0 ≤ t ≤ t0 + ∆, the above formula also holds. So, SCGNN (3.1) is MSGES and also ASGES.
�

4. Effects of piecewise constant argument

Consider the model of CGNN with PCA:

l̇i(t) = ai(li(t))
[
− bi(li(t)) +

n∑
j=1

ki j f j(l j(t)) +

n∑
j=1

wi j f j(l j(%(t)))],

l(t0) = l0 = h0, i = 1, ..., n (4.1)

where %(t) = ϑk, when t ∈ [θk, θk+1], k ∈ N. %(t) is an identification function, ai(·), bi(·), ki j, f j(·) are as
the same as in (2.2).

Model (4.1) is a hybrid system. Fix k ∈ N, and on the interval [θk, θk+1), if θk ≤ t < ϑk holds for the
argument t, i.e., t < %(t), then (4.1) is an advanced system. Similarly, if ϑk ≤ t < θk+1, (4.1) is a delayed
system. System (4.1) is deviated if the argument is advanced or delayed.

For each initial conditions t0 and l0, (4.1) has a unique state l(t; t0, l0) and clearly has the trivial state
l = 0.

The model of the CGNN without PCA is as follows:

ḣi(t) = ai(hi(t))
[
− bi(hi(t)) +

n∑
j=1

ki j f j(h j(t)) +

n∑
j=1

wi j f j(h j(t))],

h(t0) = h0, i = 1, 2, ..., n. (4.2)

Assumption 5. There exists a constant θ > 0 such that θk+1 − θk ≤ θ, k ∈ N.
Assumption 6. θ[µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + θµ̄F||W |) exp(θ(µ̄||B|| + µ̄F||K||))] < 1.
Assumption 7.

α exp (−ν∆) + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + 2µ̄||W ||F]α/ν exp{2∆[µ̄||B|| + 2µ̄||K||F

+ 3µ̄||W ||F − µ||K||F]} < 1.

Lemma 1. Let A1–A5 hold, and l(t) be a solution of system (4.1). For all t ∈ R+, the inequality

||l(%(t))|| ≤ λ||l(t)|| (4.3)

holds, where λ =

{
1 − θ[µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + θµ̄F||W ||) exp(θ(µ̄||B|| + µ̄F||K||))]

}−1

.
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Proof. Fix k ∈ N, for any t ∈ [θk, θk+1), we have

li(t) =li(ϑk) +

∫ t

ϑk

ai(li(s))[−bi(li(s)) +

n∑
j=1

ki j f j(l j(s)) +

n∑
j=1

wi j f j(l j(ϑk))]ds.

From A1–A4, both sides take absolute values, and adding them together, we have

||l(t)|| ≤||l(ϑk)|| +
n∑

i=1

∣∣∣∣∣ ∫ t

ϑk

ai(li(s))[−bi(li(s)) +

n∑
j=1

ki j f j(l j(s)) +

n∑
j=1

wi j f j(l j(ϑk))]ds
∣∣∣∣∣

≤||l(ϑk)|| + µ̄||B||
∫ t

ϑk

||l(s)||ds + µ̄F||K||
∫ t

ϑk

||l(s)||ds + µ̄F||W ||
∫ t

ϑk

||l(ϑk)||ds

≤||l(ϑk)|| + (µ̄||B|| + µ̄F||K||)
∫ t

ϑk

||l(s)||ds + θµ̄||W ||F||l(ϑk)||

=(1 + θµ̄F||W ||)||l(ϑk)|| + (µ̄||B|| + µ̄F||K||)
∫ t

ϑk

||l(s)||ds

and from the Gronwall inequality, we obtain

||l(t)|| ≤ (1 + θµ̄F||W ||)||l(ϑk)|| exp{θ(µ̄||B|| + µ̄F||K||)}.

Similarly, for t ∈ [θk, θk+1), we have

||l(ϑk)|| ≤||l(t)|| + µ̄F||W ||
∫ t

ϑk

||l(ϑk)||ds + θ(µ̄||B|| + µ̄F||K||)||l(s)||.

That is,

||l(ϑk)|| ≤||l(t)|| + θ
[
µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + θµ̄F||W ||) exp{θ(µ̄||B||

+ µ̄F||K||)}
]
||l(ϑk)||.

For t ∈ [θk, θk+1),

||l(ϑk)| ≤
{
1 − θ[µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + θµ̄F||W |) exp(θ(µ̄||B||

+ µ̄F||K||))]
}−1
||l(t)||.

The above formula holds for all t ∈ R+ due to the arbitrariness of t and k.
�

We discuss the robustness for the GES of CGNNs with PCA in Theorem 2.

Theorem 2. Suppose A1–A7 hold, and the CGNN (4.2) is globally exponentially stable. CGNN (4.1)
is globally exponentially stable if θ < min(∆

2 , θ̄,
¯̄θ), where θ̄ is the unique positive solution x̂ of Eq (4.4):

α exp (−ν(∆ − x̂)) + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄||W ||F(1 − x̂(µ̄F||W || + (µ̄||B||

+ µ̄F||K||)(1 + x̂µ̄F||W ||) exp{x̂(µ̄||B|| + µ̄F||K||)}))]α/ν exp{2∆[µ̄||B|| + 2µ̄||K||F
+ 2µ̄||W ||F − µ||K||F + µ̄||W ||F(1 − x̂(µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + x̂µ̄F||W ||)
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× exp{x̂(µ̄||B|| + µ̄F||K||)}))]} = 1, (4.4)

and ¯̄θ is a unique positive solution x̌ of Eq (4.5)

x̌[µ̄F||W || + (µ̄||B|| + µ̄F||K||)(1 + x̌µ̄F||W ||) exp{(µ̄||B|| + µ̄F||K||)x̌}] = 1 (4.5)

and ∆ > ln(α)
ν
> 0.

Proof. For convenience, we write h(t; t0, h0) ≡ h(t), l(t; t0, l0) ≡ l(t).
Combined with (4.1), (4.2), and Lemma 1, ∀t ≥ t0 > 0,

||h(t) − l(t)||

≤

n∑
i=1

∣∣∣∣∣ ∫ t

t0

{(
ai(li(s))bi(li(s)) − ai(hi(s))bi(hi(s))

)
+

n∑
j=1

ki j
[
ai(hi(s)) f j(h j(s)) − ai(li(s)) f j(l j(s))

]
+

n∑
j=1

wi j
[
ai(hi(s)) f j(h j(s)) − ai(li(s)) f j(l j(%(s)))

]}
ds

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣ ∫ t

t0

{(
µ̄bi(li(s)) − µbi(hi(s))

)
+

n∑
j=1

ki j
[
µ̄ f j(h j(s)) − µ f j(l j(s))

]
+

n∑
j=1

wi j
[
µ̄ f j(h j(s))

− µ f j(l j(%(s)))
]}

ds
∣∣∣∣∣

≤

n∑
i=1

∫ t

t0

{
µ̄Bi|li(s) − hi(s)| + (µ̄ − µ)Bi|hi(s)| +

n∑
j=1

|ki j|µ̄F j|h j(s) − l j(s)| +
n∑

j=1

|ki j|(µ̄ − µ)F j|l j(s)|

+

n∑
j=1

|wi j|µ̄F j|h j(s) − l j(s)| +
n∑

j=1

|wi j|µ̄F j|l j(s)| +
n∑

j=1

|wi j|µ̄F j|l j(%(s))|
}
ds

≤(µ̄||B|| + µ̄||K||F + µ̄||W ||F)
∫ t

t0
||h(s) − l(s)||ds + (µ̄ − µ)||B||

∫ t

t0
||h(s)||ds

+ [(µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]
∫ t

t0
||l(s)||ds

≤[µ̄||B|| + 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]
∫ t

t0
||h(s) − l(s)||ds

+ [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]
∫ t

t0
||h(s)||ds.

In view of the GES of (4.2), for any t ≥ t0 ≥ 0,

||h(t) − l(t)||

≤[µ̄||B|| + 2µ̄||K||F + 2µ̄||W ||F − µ|K||F + µ̄λ||W ||F]
∫ t

t0
||h(s) − l(s)||ds + [(µ̄ − µ)||B||

+ (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α||h(t0)||/ν. (4.6)

Applying the Gronwall-Bellman lemma to (4.6), for t0 + θ ≤ t ≤ t0 + 2∆,

||h(t) − l(t)||
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≤[(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α||h(t0)||/ν × exp{2∆[µ̄||B||

+ 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]}

then

||l(t)||
≤||h(t)|| + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F] × α||h(t0)||/ν × exp{2∆[µ̄||B||

+ 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]}. (4.7)

Note that θ < min{∆2 , θ̄}, and from the GES of (4.2) and (4.7), for t0 − θ + ∆ ≤ t ≤ t0 − θ + 2∆, we
have

||l(t)||
≤α||h(t0)|| exp{−ν(t − t0)} + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α||h(t0)||/ν

× exp{2∆[µ̄||B|| + 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]}

≤

{
α exp{−ν(∆ − θ)} + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α/ν

× exp{2∆[µ̄||B|| + 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]}
}
||l0||.

Let P(θ) = α exp{−ν(∆ − θ)} + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α/ν exp{2∆[µ̄||B|| +
2µ̄||K||F +2µ̄||W ||F−µ||K||F + µ̄λ||W ||F]}, R(θ) = θ[µ̄F||W ||+ (µ̄||B||+ µ̄F||K||)(1+θµ̄F||W ||) exp{(µ̄||B||+
µ̄F||K||)θ}]. Obviously, R(θ) is strictly increasing for θ, so there must exist θ̄ such that R(θ̄) = 1. In
addition, P(θ) is also strictly increasing for θ, and from A7 we have P(0) < 1. Thus, there must be a
positive constant ¯̄θ such that P( ¯̄θ) = 1. Since P(θ) is also increasing for θ on the interval (0, θ̄), therefore,
we can know that P(θ) < 1 when θ < θ̄. That is, we know that P(θ) < 1 when θ < min{∆2 , θ̄,

¯̄θ}.
Letting

ι = − ln
{
α exp{−ν(∆ − θ)} + [(µ̄ − µ)||B|| + (µ̄ − µ)||K||F + µ̄||W ||F + µ̄λ||W ||F]α/ν

× exp{2∆[µ̄||B|| + 2µ̄||K||F + 2µ̄||W ||F − µ||K||F + µ̄λ||W ||F]}
}
/∆

we get

||l(t)|| ≤ exp{−ι∆}||l0||. (4.8)

Considering the uniqueness of the solution of CGNN (4.2), for a positive integer β, we have

l(t; t0, l0) = l(t; t0 + (β − 1)∆, l(t0 + (β − 1)∆; t0, l0)). (4.9)

Then, from (4.8) and (4.9), for t ≥ t0 − θ + β∆,

||l(t; t0, l0)||
≤ exp{−ι∆}||l(t0 + (β − 1)∆; t0, l0)||
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≤ ...

≤ exp{−βι∆}||l0||

and so, for any t > t0 − θ + ∆, there exists an integer β > 0 such that t0 − θ + (β− 1)∆ ≤ t ≤ t0 − θ + β∆,

||l(t; t0, l0)|| ≤ exp{−ι(t − t0)} exp{ι(∆ − θ)}||l0||. (4.10)

Clearly, (4.10) also holds for t0 ≤ t ≤ t0 − θ + ∆. That is, CGNN (4.1) is globally exponentially
stable.

�

Remark 2. Compared to other systems, systems with PCA are considered a hybrid system. Through
addressing the transcendental equation, we can derive an upper bound on the interval length of PCA.
If the interval length of PCA is less than min(∆/2, θ̄, ¯̄θ), then the perturbed CGNN can maintain a
stable state.

5. Effects of piecewise constant argument and random disturbances

Consider the impacts of both SDs and PCA together on the GES of CGNNs:

dli(t) ={ai(li(t))[−bi(li(t)) +

n∑
j=1

ki j f j(l j(t)) +

n∑
j=1

wi j f j(l j(%(t)))]}dt + σli(t)dω(t), (5.1)

l(t0) =l0, t ≥ t0 ≥ 0, i = 1, 2, ..., n

where %(t) = ϑk, when t ∈ [θk, θk+1], k ∈ N. %(t) is an identification function, σ is the noise intensity,
and ai(·), bi(·), ki j and f j(·) are as the same as in (2.2).

SPCGNN (5.1) is a hybrid system in a stochastic environment. Fix k ∈ N, and on the interval
[θk, θk+1), if θk ≤ t < ϑk holds for argument t, (5.1) is an advanced system. Similarly, if ϑk ≤ t < θk+1,
SPCGNN (5.1) is a delayed system.

SPCGNN (5.1) can be viewed as the perturbed system of the following model:

dhi(t) ={ai(hi(t))[−bi(hi(t)) +

n∑
j=1

ki j f j(h j(t)) +

n∑
j=1

wi j f j(h j(t))]}dt, (5.2)

h(t0) =h0 = l0, t ≥ t0 ≥ 0, i = 1, 2, ..., n.

It is evident that l = 0 is a trivial state of SPCGNN (5.1) and h = 0 is a trivial state of CGNN (5.2).
We suppose that SPCGNN (5.1) has a unique state l(t; t0, l0) for initial conditions t0 and l0 .

Now, the stability definition of SPCGNN (5.1) is described as follows.

Definition 3. SPCGNN (5.1) is MSGES if, for any t0 ∈ R+, l0 ∈ Rn, there exist constants α > 0 and
ν > 0 such that

E||l(t; t0, l0)||2 ≤ α||l0||
2exp(−ν(t − t0)),∀t ≥ t0 ≥ 0.

Assumption 8. 9θ2µ̄2F2||W ||2+9θ(3θµ̄2||B||2+3θµ̄2F2||K||2+σ2)(1+3θ2µ̄2F2||W ||2)×exp{3θ(3θµ̄2||B||2+

3θµ̄2F2||K||2 + σ2)} < 1.
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Assumption 9.

2α exp{−ν∆} + 4∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2 + 8µ̄2||W ||2F2)

]
α/ν

× exp{2∆[24∆(µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 8µ̄2||W ||2F2)]} < 1.

Lemma 2. Let A1–A6 hold, and let l(t) be a solution of SPCGNN (5.1). For all t ∈ R+, the inequality

E||l(%(t))||2 ≤ λ̄E||l(t)||2 (5.3)

holds, where λ̄ = 3
{
1 − [9θ2µ̄2F2||W ||2 + 9θ(3θµ̄2||B||2 + 3θµ̄2F2||K||2 + σ2)(1 +

3θ2µ̄2F2||W ||2) exp(3θ(3θµ̄2||B||2 + 3θµ̄2F2||K||2 + σ2))]
}−1

.

Proof. Fix t ∈ R+, k ∈ N such that t ∈ [θk, θk+1), %(t) = ϑk,

E||l(t)||2

≤3E||l(ϑk)||2 + 3θE
n∑

i=1

∫ t

ϑk

∣∣∣∣∣µ̄[ − bi(li(s)) +

n∑
j=1

ki j f j(l j(s)) +

n∑
j=1

wi j f j(l j(ϑk))
]∣∣∣∣∣2ds

+ 3E
n∑

i=1

∣∣∣∣∣ ∫ t

ϑk

σili(s)dω(s)
∣∣∣∣∣2

≤3E||l(ϑk)||2 + 9θµ̄2||B||2
∫ t

ϑk

E||l(s)||2ds + 9θµ̄2||K||2F2
∫ t

ϑk

E||l(s)||2ds

+ 9θ2µ̄||W ||2F2E||l(ϑk)||2 + 3σ2
∫ t

ϑk

E||l(s)||2ds

=3(1 + 3θ2µ̄2||W ||2F2)E||l(ϑk)||2 + 3(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)
∫ t

ϑk

E||l(s)||2ds. (5.4)

From the Gronwall-Bellman lemma, we have

E||l(t)||2 ≤3(1 + 3θ2µ̄2||W ||2F2)E||l(ϑk)||2 exp{3θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)}. (5.5)

Similary, for t ∈ [θk, θk+1), from (5.4), we have

E||l(ϑk)||2 ≤3E||l(t)||2 + 9θ2µ̄2||W ||2F2E||l(ϑk)||2 + 3(3θµ̄2||B||2 + 3θµ̄2||K||2F2

+ σ2)
∫ t

ϑk

E||l(s)||2ds

≤3E||l(t)||2 + 9θ2µ̄2||W ||2F2E||l(ϑk)||2 + 9θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)
× (1 + 3θ2µ̄2||W ||2F2) exp{3θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)}E||l(ϑk)||2

=3E||l(t)||2 + [9θ2µ̄2F2||W ||2 + 9θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)
× (1 + 3θ2µ̄2F2||W ||2) exp{3θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)}]E||l(ϑk)||2

=3E||l(t)||2 +$E||l(ϑk)||2,
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where $ = 9θ2µ̄2F2||W ||2 + 9θ(3θµ̄2||B||2 + 3θµ̄2||K||2F2 + σ2)(1 + 3θ2µ̄2F2||W ||2) exp{3θ(3θµ̄2||B||2 +

3θµ̄2||K||2F2 + σ2)}.
From A6, for t ∈ [θk, θk+1),

E||l(%(t))||2 ≤
3

1 −$
E||l(t)||2 = λ̄E||l(t)||2,

where λ̄ = 3
1−$ .

For all t ∈ R+, (5.3) holds due to the arbitrariness of t and k. �

Theorem 3. Let A1–A9 hold, and CGNN (5.2) be globally exponentially stable. SPCGNN (5.1) is
MSGES and also ASGES if |σ| < σ̄

√
2
, and θ < min(∆

2 , θ̄), where σ̄ is the unique positive solution ŵ of
Eq (5.6):

2α exp{−ν∆} + 4∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 8µ̄2||W ||2F2) + 4ŵ2]α/ν × exp{2∆[24∆(µ̄2||B||2 + µ̄2||K||2F2

+ 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 8µ̄2||W ||2F2) + 4ŵ2]} = 1 (5.6)

and θ̄ is the unique positive solution w̌ of Eq (5.7)

2α exp{−ν(∆ − w̌)} + 4∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2||W ||2F2 ¯̄λ) + 2σ2]α/ν × exp{2∆[24∆(µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2

+ (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2 ¯̄λ) + 2σ2]} = 1, (5.7)

where ¯̄λ = 3(1 − 9w̌2µ̄2F2||W ||2 − 9w̌(3w̌µ̄2||B||2 + 3w̌µ̄2||K||2F2 + σ2)(1 +

3w̌2µ̄2||W ||2F2) exp{3w̌(3w̌µ̄2||B||2 + 3w̌µ̄2F2||K||2 + σ2)})−1, and ∆ > ln(α)
ν
> 0.

Proof. For convenience, we write h(t; t0, h0) ≡ h(t) and l(t; t0, l0) ≡ l(t).
Combined with (5.1), (5.2), and Lemma 2, ∀t ≥ t0 > 0,

E||h(t) − l(t)||2

≤2E
n∑

i=1

∣∣∣∣∣ ∫ t

t0

{(
ai(li(s))bi(li(s)) − ai(hi(s))bi(hi(s))

)
+

n∑
j=1

ki j
(
ai(hi(s)) f j(h j(s)) − ai(li(s)) f j(l j(s))

)
+

n∑
j=1

wi j
(
ai(hi(s)) f j(h j(s)) − ai(li(s)) f j(l j(%(s)))

)}
ds

∣∣∣∣∣2 + 2E
n∑

i=1

∣∣∣∣∣ ∫ t

t0
σili(s)dω(s)

∣∣∣∣∣2
≤2E

n∑
i=1

{ ∫ t

t0

[
µ̄Bi|li(s) − hi(s)| + (µ̄ − µ)Bi|hi(s)| +

n∑
j=1

ki jµ̄F j|h j(s) − l j(s)| +
n∑

j=1

ki j(µ̄ − µ)F j|l j(s)|

+

n∑
j=1

wi jµ̄F j|h j(s) − l j(s)| +
n∑

j=1

wi j(µ̄F j|l j(s)| − µF j|l j(%(s))|)
]
ds

}2

+ 2E
n∑

i=1

∫ t

t0

∣∣∣σili(s)
∣∣∣2ds

≤12(t − t0)
[
µ̄2||B||2

∫ t

t0
E||h(s) − l(s)||2ds + (µ̄ − µ)2||B||2

∫ t

t0
E||h(s)||2ds + µ̄2||K||2F2

∫ t

t0
E||h(s)

− l(s)||2ds + (µ̄ − µ)2||K||2F2
∫ t

t0
E||l(s)||2ds + µ̄2||W ||2F2

∫ t

t0
E||h(s) − l(s)||2ds + 2µ̄||W ||2F2
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×

∫ t

t0
E||l(s)||2ds + 2µ̄2λ̄||W ||2F2

∫ t

t0
E||l(s)||2ds

]
+ 4σ2

∫ t

t0
E||h(s) − l(s)||2ds + 4σ2

∫ t

t0
E||h(s)||2ds

≤
[
12(t − t0)(µ̄2||B||2 + µ̄2||K||2F2 + µ̄2||W ||2F2) + 4σ2 + 12(t − t0)[(µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2λ̄||W ||2F2]
] ∫ t

t0
E||h(s) − l(s)||2ds +

[
12(t − t0)[(µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2λ̄||W ||2F2] + 12(t − t0)(µ̄ − µ)2||B||2 + 4σ2] ∫ t

t0
E||h(s)||2ds

≤[12(t − t0)(µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 2µ̄2λ̄||W ||2F2) + 4σ2]

×

∫ t

t0
E||h(s) − l(s)||2ds + [12(t − t0)((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2λ̄||W ||2F2) + 4σ2]α/ν||l0||
2(t − t0). (5.8)

By using the Gronwall-Bellman Lemma, for t0 + θ ≤ t ≤ t0 + 2∆, from (5.8) we get

E||h(t) − l(t)||2

≤2∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2 + 2µ̄2λ̄||W ||2F2) + 4σ2]α/ν||l0||

2

exp{2∆[24∆((µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 2µ̄2λ̄||W ||2F2)) + 4σ2]}.

Therefore, for t0 + θ ≤ t ≤ t0 + 2∆,

E||l(t)||2

≤2α||l0||
2 exp{−ν(t − t0)} + 4∆

[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2λ̄||W ||2F2) + 4σ2]α/ν||l0||
2 × exp{2∆[24∆((µ̄2||B||2 + µ̄2||K||2F2

+ 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 2µ̄2λ̄||W ||2F2)) + 4σ2]}

and thus, for t0 − θ + ∆ ≤ t ≤ t0 − θ + 2∆,

E||l(t)||2

≤2α||l0||
2 exp{−ν(∆ − θ)} + 4∆

[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2

+ 2µ̄2λ̄||W ||2F2) + 4σ2]α/ν||l0||
2 × exp{2∆[24∆((µ̄2||B||2 + µ̄2||K||2F2

+ 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 + 2µ̄2λ̄||W ||2F2)) + 4σ2]}.

Let M(σ, θ) = 2α exp{−ν(∆ − θ)} + 4∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2 +

2µ̄2λ̄||W ||2F2) + 4σ2]α/ν × exp{2∆[24∆((µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2 + (µ̄ − µ)2||K||2F2 +

2µ̄2λ̄||W ||2F2)) + 4σ2]}. From A9, we can get M(0, 0) < 1. Moreover, it is easy to know that M(σ, 0)
is strictly increasing for σ. So, there exists a positive constant σ̄ such that M(σ̄, 0) = 1. M(σ, θ)
is obviously strictly increasing for θ, so there exists a positive constant θ̄, and when θ < min{∆2 , θ̄},
|σ| < σ̄

√
2

such that M(σ, θ) < 1.
Letting

δ = − ln
{
2α||l0||

2 exp{−ν(∆ − θ)} + 4∆
[
24∆((µ̄ − µ)2||B||2 + (µ̄ − µ)2||K||2F2 + 2µ̄2||W ||2F2
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+ 2µ̄2λ̄||W ||2F2) + 4σ2]α/ν × exp{2∆[24∆((µ̄2||B||2 + µ̄2||K||2F2 + 3µ̄2||W ||2F2

+ (µ̄ − µ)2||K||2F2 + 2µ̄2λ̄||W ||2F2)) + 4σ2]}
}
/∆

we obtain

E||l(t)||2 ≤ exp{−δ∆}||l0||
2. (5.9)

From the uniqueness of the solution of SPCGNN (5.1), there exists a positive integer ε such that

l(t; t0, l0) = l(t; t0 + (ε − 1)∆, l(t0 + (ε − 1)∆; t0, l0)). (5.10)

Then, from (5.9) and (5.10), for t ≥ t0 − θ + ε∆,

E||l(t; t0, l0)||2

≤ exp{−δ∆}||l(t0 + (ε − 1)∆; t0, l0)||2

≤ ...

≤ exp{−εδ∆}||l0||
2. (5.11)

Thus, for any t > t0 − θ + ∆, there is an integer ε > 0 such that t0 − θ + (ε − 1)∆ ≤ t ≤ t0 − θ + ε∆,

E||l(t; t0, l0)||2 ≤ exp{−δ(t − t0)} exp{−δ(∆ − θ)}||l0||
2. (5.12)

Clearly, (5.12) also holds for t0 ≤ t ≤ t0 − θ + ∆. So, system (5.1) is MSGES and also is ASGES.
�

Remark 3. In Section 5, the discussed system is hybrid and the robustness of CGNNs with PCA and
SDs is considered. Based on the GES of CGNN (5.2), the perturbed SPCGNN (5.1) can stand MSGES
and ASGES when both values are below the obtained upper bounds.

Remark 4. We discuss the robustness of CGNNs with PCA and SDs in Theorem 3. The research topics
of literature [8, 9] are related to the robustness of RNNs. The system studied is a more general in this
paper. When the amplification function ai(li(t)) = 1 in a CGNN, the CGNN is converted to an RNN or
HNN, so the research results in this paper are generic. Similarly, we also characterize the robustness of
CGNNs by the upper bounds of the perturbation factors obtained by solving transcendental equations.
Aiming at the difficulties caused by the existence of the amplification function ai(li(t)), we solve the
influence of the amplification function on a CGNN by a hypothesis. Finally, the desired results are
obtained.

6. Numerical examples

The following section presents three instances to substantiate the obtained findings.
Example 1. Consider a two-dimensional SCGNN

dl1(t) =(1.5 + 0.5 sin(2l1(t)))[−0.005l1(t) + 0.004 f (l1(t)) + 0.002 f (l2(t))]dt + σl1(t)dω(t),
dl2(t) =(1.5 + 0.5 cos(4l2(t)))[−0.005l2(t) + 0.006 f (l1(t)) + 0.003 f (l2(t))]dt + σl2(t)dω(t) (6.1)
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where f (l) = tanh(l), σ is the noise intensity, and ω(t) is a scalar Brownian motion defined in the
probability space.

Consider the model of a CGNN without SDs:

dl1(t)
dt

=(1.5 + 0.5 sin(2l1(t)))[−0.005l1(t) + 0.004 f (l1(t)) + 0.002 f (l2(t))],

dl2(t)
dt

=(1.5 + 0.5 cos(4l2(t)))[−0.005l2(t) + 0.006 f (l1(t)) + 0.003 f (l2(t))]. (6.2)

It is easy to find that CGNN (7.2) is GES with α = 0.8 and ν = 0.5. Let 4 = 0.3 > ln(2α2)
2ν = 0.2468,

µ̄ = 2, µ = 1, and F = 1. Substituting them into (3.2), we get

1.28[0.00144 + 4σ2] × exp{0.00288 + 2.4σ2} + 1.28 exp{−0.3} = 1.

By solving the transcendental equation, we obtain the solution as σ̄ = 0.0974. From Theorem 1,
when |σ| < σ̄, SCGNN (7.1) is MSGES and also ASGES. The changing behavior of SCGNN (7.1) is
shown in Figure 1.
Example 2. Consider a two-dimensional CGNN with PCA

l̇1(t) =(1.5 + 0.5 sin(2l1(t)))[−0.005l1(t) + 0.005 f (l1(t)) + 0.003 f (l2(t))
+ 0.004 f (l1(%(t))) + 0.005 f (l2(%(t)))],

l̇2(t) =(1.5 + 0.5 cos(4l2(t)))[−0.005l2(t) + 0.005 f (l1(t)) + 0.005 f (l2(t))
+ 0.016 f (l1(%(t))) + 0.009 f (l2(%(t)))] (6.3)

where θk = k
16 , ϑk = 2k+1

32 , and %(t) = ϑk, if t ∈ [θk, θk+1), k ∈ N, f (l) = tanh(l).
Consider the CGNN without PCA as follows:

l̇1(t) =(1.5 + 0.5 sin(2l1(t)))[−0.005l1(t) + 0.005 f (l1(t)) + 0.003 f (l2(t))
+ 0.004 f (l1(t)) + 0.005 f (l2(t))],

l̇2(t) =(1.5 + 0.5 cos(4l2(t)))[−0.005l2(t) + 0.005 f (l1(t)) + 0.005 f (l2(t))
+ 0.0016 f (l1(t)) + 0.009 f (l2(t))]. (6.4)

It is easy to know that CGNN (7.4) is GES with α = 1.2 and ν = 0.9. Let 4 = 0.3 > ln(α)
ν

= 0.2025,
µ̄ = 2, µ = 1, and F = 1. Substituting them into (4.4) and (4.5), we get

1.2 exp{−0.9(0.3 − x̂)} + [0.06 + 0.04(1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂)))]
× 1.2/0.9 × exp{0.078 + 0.024[1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂))]} = 1,

x̌[0.04 + 0.04(1 + 0.04x̌) × exp(0.04x̌)] = 1.
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By solving the equation above, we obtain θ̄ = 0.0806, ¯̄θ = 8.6238. Thus, in line with Theorem 2,
when θ < min{42 , θ̄,

¯̄θ}, CGNN (7.3) is GES. Figure 2 depicts the transient states of (7.3).
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Figure 1. The states of (7.1) with σ = 0.08.
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Figure 2. The states of (7.3) with θk = { k
16 }.
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Example 3. Consider a one-dimensional CGNN

ḣ(t) = (1.5 + 0.5 sin(2h(t)))[−0.01h(t) + 0.03 f (h(t))] (6.5)

where f (l) = tanh(l). We can readily determine that CGNN (7.5) is GES with α = 1.2 and ν = 3 by
many of the current criteria.

The corresponding disturbed SPCGNN is given by

dl(t) =(1.5 + 0.5 sin(2l(t)))[−0.01l(t) + 0.01 f (l(t)) + 0.02 f l(%(t))]dt + σl(t)dω(t) (6.6)

where f (l) = tanh(l). When the mathematical parameters are put into (5.6), the result is

2.4 exp{−1.5} + 0.8(0.1944 + 4ŵ) exp{0.222 + 4ŵ2} = 1.

Thus, we have σ̄ = 0.218. Note that |σ| < σ̄
√

2
, which means that |σ| < 0.1541.

Combined with σ̄ = 0.218, substituting the other computing parameters into (5.7), we get

2.4 exp{−3(0.5 − w̌)} + [0.10937 + 0.09216[1 − 0.0144w̌2 − 9w̌(0.0024w̌ + 0.0757)(1 + 0.0048w̌2)
× exp{3w̌(0.0024w̌ + 0.0757)}]] × exp{0.1643 + 0.1152(1 − 0.0144w̌2 − 9w̌(0.024w̌

+ 0.0757)(1 + 0.0048w̌2 exp{3w̌(0.0024w̌ + 0.0757)}))} = 1.

Hence, it can be derived that θ̄ = 0.1166. Note that θ < min(42 , θ̄), and therefore θ < 0.1166.
Figure 3 depicts the transient states of (7.6) with σ̄ = 0.1 and {θk} = k

20 . This shows that the state
of (7.6) is MSGES and also ASGES.

Figure 4 displays the change in behavior of SPCGNN (7.6) with σ = 0.8 > σ̄
√

2
and {θk} = k

2 .
The unstable states of SPCGNN (7.6) are depicted in Figure 5 with σ = 0.8 and {θk} = k

20 . Figure 6
illustrates that system (7.6) is unstable with σ = 0.1 and {θk} = k

2 . Consequently, the CGNN can turn
unstable if the conditions in the theorems cannot be fulfilled.
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Figure 3. The states of (7.6) with σ = 0.1 and θk = { k
20 }.
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Figure 4. The states of (7.6) with σ = 0.8 and θk = { k
20 }.
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Figure 5. The states of (7.6) with σ = 0.8 and θk = { k
20 }.
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Figure 6. The states of (7.6) with σ = 0.1 and θk = { k2 }.

Example 4. When the amplification function ai(li(t)) = 1, the CGNN is converted to an RNN or HNN,
and then SCGNN (3.1) is converted to

dl1(t) =[−l1(t) − 2 f (l1(t)) + 2 f (l2(t))]dt + σl1(t)dω(t),
dl2(t) =[−l2(t) + 2 f (l1(t)) − 2 f (l2(t))]dt + σl2(t)dω(t) (6.7)

where f (l) = tanh(l), σ is the noise intensity, and ω(t) is a scalar Brownian motion.
Consider model (7.7) without SDs:

dl1(t)
dt

= − l1(t) − 2 f (l1(t)) + 2 f (l2(t)),

dl2(t)
dt

= − l2(t) + 2 f (l1(t)) − 2 f (l2(t)). (6.8)

It is easy to find that system (7.8) is GES with α = 0.8 and ν = 0.5. Let 4 = 0.3, µ̄ = µ = 1, and
F = 1. Substituting them into (3.2), we get

5.12σ2 × exp{48.96 + 2.4σ2} + 1.28 exp{−0.3} = 1.

By solving the transcendental equation, we obtain the solution as σ̄ = 2.3488 × 10−12. According
to Theorem 1, when |σ| < σ̄, SCGNN (7.7) is MSGES and also ASGES.

Remark 5. In Theorem 1 of reference [8], the author studied the robustness of RNNs with SDs. In
Example 4, when the amplification function ai(li(t)) = 1, the SCGNN is converted to an RNN or HNN,
and then SCGNN (3.1) is similar to the system of reference [8]. This shows that the results of this paper
are more general.
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Examples 5 and 6 are variations of Examples 2 and 3 when the amplification function ai(li(t)) = 1
in the CGNN.
Example 5. Consider the following model with PCA

l̇1(t) = − 0.005l1(t) + 0.004 f (l1(t)) + 0.006 f (l2(t)) + 0.009 f (l1(%(t))) + 0.008 f (l2(%(t))),
l̇2(t) = − 0.005l2(t) + 0.002 f (l1(t)) + 0.012 f (l2(t)) + 0.005 f (l1(%(t))) + 0.004 f (l2(%(t))) (6.9)

where %(t) = ϑk, if t ∈ [θk, θk+1), k ∈ N, and θk = k
16 , ϑk = 2k+1

32 , f (l) = tanh(l).
Consider model (7.9) without PCA as follows:

l̇1(t) = − 0.005l1(t) + 0.004 f (l1(t)) + 0.006 f (l2(t)) + 0.009 f (l1(t)) + 0.008 f (l2(t)),
l̇2(t) = − 0.005l2(t) + 0.002 f (l1(t)) + 0.012 f (l2(t)) + 0.005 f (l1(t)) + 0.004 f (l2(t))]. (6.10)

It is known that (7.10) is GES with α = 1.2 and ν = 0.9. Let 4 = 0.3, µ̄ = µ = 1, and F = 1.
Substituting them into (4.4) and (4.5), we get

1.2 exp{−0.9(0.3 − x̂)} + [0.02 + 0.02(1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂)))]
× 1.2/0.9 × exp{0.036 + 0.012[1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂))]} = 1,

x̌[0.04 + 0.04(1 + 0.04x̌) × exp(0.04x̌)] = 1.

By solving the equations above, we obtain θ̄ = 0.0335, ¯̄θ = 8.6238. From Theorem 2, when
θ < min{42 , θ̄,

¯̄θ}, system (7.9) is GES.
Example 6. Consider the system

ḣ(t) = −0.01h(t) + 0.03 f (h(t)) (6.11)

where f (l) = tanh(l). We can readily determine that (7.11) is GES with α = 1.2 and ν = 3 by many of
the current criteria.

The corresponding disturbed system is given by

dl(t) =[−0.01l(t) + 0.01 f (l(t)) + 0.02 f l(%(t))]dt + σl(t)dω(t) (6.12)

where f (l) = tanh(l). When the mathematical parameters are put into (5.6), we have

2.4 exp{−1.5} + 0.8(0.048 + 4ŵ) exp{0.0552 + 4ŵ2} = 1.

Thus, we have σ̄ = 0.2925. Note that |σ| < σ̄
√

2
, which means that |σ| < 0.2068.

Combined with σ̄ = 0.2925, substituting the other computing parameters into (5.7), we get

2.4 exp{−3(0.5 − w̌)} + [0.14457 + 0.002304[1 − 0.0144w̌2 − 9w̌(0.0024w̌ + 0.0757)(1 + 0.0048w̌2)
× exp{3w̌(0.0024w̌ + 0.0757)}]] × exp{0.1879 + 0.0288(1 − 0.0144w̌2 − 9w̌(0.024w̌

+ 0.0757)(1 + 0.0048w̌2 exp{3w̌(0.0024w̌ + 0.0757)}))} = 1.
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Hence, it can be derived that θ̄ = 0.1318. Note that θ < min(42 , θ̄), and therefore θ < 0.1318. From
Theorem 3, (7.12) is MSGES and also ASGES.

Examples 7 and 8 are four-dimensional numerical examples of Theorems 1 and 2.
Example 7. Consider the four-dimensional SCGNN

dl1(t) =(1.5 + 0.5 sin(4l1(t)))[−0.02l1(t) + 0.01 f (l1(t)) + 0.003 f (l2(t))
+ 0.001 f (l3(t)) + 0.005 f (l4(t))]dt + σl1(t)dω(t),

dl2(t) =(1.5 + 0.5 cos(6l2(t)))[−0.01l2(t) + 0.012 f (l1(t)) + 0.02 f (l2(t))
+ 0.018 f (l3(t)) + 0.024 f (l4(t))]dt + σl2(t)dω(t),

dl3(t) =(1.5 + 0.5 sin(5l3(t)))[−0.01l3(t) + 0.003 f (l1(t)) + 0.012 f (l2(t))
+ 0.007 f (l3(t)) + 0.002 f (l4(t))]dt + σl3(t)dω(t),

dl4(t) =(1.5 + 0.5 cos(2l4(t)))[−0.02l4(t) + 0.015 f (l1(t)) + 0.014 f (l2(t))
+ 0.004 f (l3(t)) + 0.001 f (l4(t))]dt + σl4(t)dω(t) (6.13)

where f (l) = tanh(l), σ is the noise intensity, and ω(t) is a scalar Brownian motion.
Consider the model of a CGNN without SDs:

dl1(t)
dt

=(1.5 + 0.5 sin(4l1(t)))[−0.02l1(t) + 0.01 f (l1(t)) + 0.003 f (l2(t))

+ 0.001 f (l3(t)) + 0.005 f (l4(t))],
dl2(t)

dt
=(1.5 + 0.5 cos(6l2(t)))[−0.01l2(t) + 0.012 f (l1(t)) + 0.02 f (l2(t))

+ 0.018 f (l3(t)) + 0.024 f (l4(t))],
dl3(t)

dt
=(1.5 + 0.5 sin(5l3(t)))[−0.01l3(t) + 0.003 f (l1(t)) + 0.012 f (l2(t))

+ 0.007 f (l3(t)) + 0.002 f (l4(t))],
dl4(t)

dt
=(1.5 + 0.5 cos(2l4(t)))[−0.02l4(t) + 0.015 f (l1(t)) + 0.014 f (l2(t))

+ 0.004 f (l3(t)) + 0.001 f (l4(t))]. (6.14)

It is easily find that CGNN (7.14) is GES with α = 0.8 and ν = 0.5. Let 4 = 0.3, µ̄ = 2, µ = 1, and
F = 1. Substituting them into (3.2), we get

1.28 exp{−0.3} + 1.28[0.03264 + 4σ2] × exp{0.06912 + 2.4σ2} = 1.

By solving the transcendental equation, we obtain the solution as σ̄ = 0.0353. From Theorem 1,
when |σ| < σ̄, SCGNN (7.13) is MSGES and also ASGES. The changing behavior of SCGNN (7.13)
is shown in Figure 7.
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Figure 7. The states of SCGNN (7.13) with σ = 0.02.

Example 8. Consider the four-dimensional CGNN with PCA

l̇1(t) =(1.5 + 0.5 sin(3l1(t)))[−0.03l1(t) + 0.022 f (l1(t)) + 0.012 f (l2(t)) + 0.008 f (l3(t)) + 0.02 f (l4(t))
+ 0.003 f (l1(%(t))) + 0.002 f (l2(%(t))) + 0.01 f (l3(%(t))) + 0.003 f (l4(%(t)))],

l̇2(t) =(1.5 + 0.5 cos(2l2(t)))[−0.02l2(t) + 0.01 f (l1(t)) + 0.006 f (l2(t)) + 0.003 f (l3(t)) + 0.016 f (l4(t))
+ 0.005 f (l1(%(t))) + 0.018 f (l2(%(t))) + 0.007 f (l3(%(t))) + 0.014 f (l4(%(t)))],

l̇3(t) =(1.5 + 0.5 sin(4l3(t)))[−0.01l3(t) + 0.081 f (l1(t)) + 0.012 f (l2(t)) + 0.015 f (l3(t)) + 0.004 f (l4(t))
+ 0.014 f (l1(%(t))) + 0.015 f (l2(%(t))) + 0.015 f (l3(%(t))) + 0.02 f (l4(%(t)))],

l̇4(t) =(1.5 + 0.5 sin(3l4(t)))[−0.02l4(t) + 0.02 f (l1(t)) + 0.01 f (l2(t)) + 0.015 f (l3(t)) + 0.006 f (l4(t))
+ 0.016 f (l1(%(t))) + 0.012 f (l2(%(t))) + 0.018 f (l3(%(t))) + 0.003 f (l4(%(t)))] (6.15)

where θk = k
16 , ϑk = 2k+1

32 , and %(t) = ϑk, if t ∈ [θk, θk+1), k ∈ N, f (l) = tanh(l).
Consider the CGNN without PCA as follows:

l̇1(t) =(1.5 + 0.5 sin(3l1(t)))[−0.03l1(t) + 0.022 f (l1(t)) + 0.012 f (l2(t)) + 0.008 f (l3(t)) + 0.02 f (l4(t))]
+ 0.003 f (l1(t)) + 0.002 f (l2(t)) + 0.01 f (l3(t)) + 0.003 f (l4(t))],

l̇2(t) =(1.5 + 0.5 cos(2l2(t)))[−0.02l2(t) + 0.01 f (l1(t)) + 0.006 f (l2(t)) + 0.003 f (l3(t)) + 0.016 f (l4(t))]
+ 0.005 f (l1(t)) + 0.018 f (l2(t)) + 0.007 f (l3(t)) + 0.014 f (l4(t))],

l̇3(t) =(1.5 + 0.5 sin(4l3(t)))[−0.01l3(t) + 0.008 f (l1(t)) + 0.012 f (l2(t)) + 0.015 f (l3(t)) + 0.004 f (l4(t))]
+ 0.014 f (l1(t)) + 0.015 f (l2(t)) + 0.015 f (l3(t)) + 0.02 f (l4(t))],

l̇4(t) =(1.5 + 0.5 sin(3l4(t)))[−0.02l4(t) + 0.02 f (l1(t)) + 0.01 f (l2(t)) + 0.015 f (l3(t)) + 0.006 f (l4(t))]
+ 0.016 f (l1(t)) + 0.012 f (l2(t)) + 0.018 f (l3(t)) + 0.003 f (l4(t))]. (6.16)
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It is easy to know that CGNN (7.16) is GES with α = 1.2 and ν = 0.9. Let 4 = 0.3, µ̄ = 2, µ = 1,
and F = 1. Substituting them into (4.4) and (4.5), we get

1.2 exp{−0.9(0.3 − x̂)} + [0.24 + 0.1(1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂)))]
× 1.2/0.9 × exp{0.324 + 0.06[1 − x̂(0.04 + 0.04(1 + 0.04x̂) × exp(0.04x̂))]} = 1,

x̌[0.1 + 0.28(1 + 0.1x̌) × exp(0.28x̌)] = 1.

By figuring out the equations above, we obtain θ̄ = 1.1937, ¯̄θ = 1.6291. Thus, according to
Theorem 2, when θ < min{42 , θ̄,

¯̄θ}, CGNN (7.15) is GES. Figure 8 depicts the transient states of (7.15).

Figure 8. The states of (7.15) with θk = { k
10 }.

7. Conclusions

The main content in this article is about the robustness analysis of CGNNs with PCA and SDs. For
an originally stable CGNN, we discuss the problem that how much the PCA and noise intensity the
CGNN can withstand to be globally exponentially stable in the presence of PCA and SDs. We apply
inequality techniques and stochastic analysis theory to obtain the upper bounds of PCA and SDs that
the CGNN can withstand without losing stability by solving transcendental equations. It provides a
theoretical basis for the designs and applications of CGNNs. Future work can explore the influence
of delay and parameter uncertainty or other factors on the robustness of CGNNs, and the finite-time
stability of CGNNs with PCA and SDs can also be considered to obtain richer results.
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