75 research outputs found

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off

    Full text link
    This paper deals with the long time behavior of solutions to the spatially homogeneous Boltzmann equation. The interactions considered are the so-called (non cut-off and non mollified) hard potentials. We prove an exponential in time convergence towards the equilibrium, improving results of Villani from \cite{Vill1} where a polynomial decay to equilibrium is proven. The basis of the proof is the study of the linearized equation for which we prove a new spectral gap estimate in a L1L^1 space with a polynomial weight by taking advantage of the theory of enlargement of the functional space for the semigroup decay developed by Gualdani and al in \cite{GMM}. We then get our final result by combining this new spectral gap estimate with bilinear estimates on the collisional operator that we establish.Comment: 22 page

    Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions

    Full text link
    We prove the appearance of an explicit lower bound on the solution to the full Boltzmann equation in the torus for a broad family of collision kernels including in particular long-range interaction models, under the assumption of some uniform bounds on some hydrodynamic quantities. This lower bound is independent of time and space. When the collision kernel satisfies Grad's cutoff assumption, the lower bound is a global Maxwellian and its asymptotic behavior in velocity is optimal, whereas for non-cutoff collision kernels the lower bound we obtain decreases exponentially but faster than the Maxwellian. Our results cover solutions constructed in a spatially homogeneous setting, as well as small-time or close-to-equilibrium solutions to the full Boltzmann equation in the torus. The constants are explicit and depend on the a priori bounds on the solution.Comment: 37 page

    Quantitative uniform in time chaos propagation for Boltzmann collision processes

    Full text link
    This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by Kac \cite{Kac1956} this limit is based on the {\em chaos propagation}, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or long-range interactions), (2) prove and quantify this property \emph{uniformly in time}. This yields the first chaos propagation result for the spatially homogeneous Boltzmann equation for true (without cut-off) Maxwell molecules whose "Master equation" shares similarities with the one of a L\'evy process and the first {\em quantitative} chaos propagation result for the spatially homogeneous Boltzmann equation for hard spheres (improvement of the %non-contructive convergence result of Sznitman \cite{S1}). Moreover our chaos propagation results are the first uniform in time ones for Boltzmann collision processes (to our knowledge), which partly answers the important question raised by Kac of relating the long-time behavior of a particle system with the one of its mean-field limit, and we provide as a surprising application a new proof of the well-known result of gaussian limit of rescaled marginals of uniform measure on the NN-dimensional sphere as NN goes to infinity (more applications will be provided in a forthcoming work). Our results are based on a new method which reduces the question of chaos propagation to the one of proving a purely functional estimate on some generator operators ({\em consistency estimate}) together with fine stability estimates on the flow of the limiting non-linear equation ({\em stability estimates})

    Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff

    Get PDF
    In this paper we prove new constructive coercivity estimates for the Boltzmann collision operator without cutoff, that is for long-range interactions. In particular we give a generalized sufficient condition for the existence of a spectral gap which involves both the growth behavior of the collision kernel at large relative velocities and its singular behavior at grazing and frontal collisions. It provides in particular existence of a spectral gap and estimates on it for interactions deriving from the hard potentials \phi(r) = r^{-(s−1)}, s≄5s \ge 5 or the so-called moderately soft potentials \phi(r) = r^{−(s−1)}, 3<s<53 < s < 5, (without angular cutoff). In particular this paper recovers (by constructive means), improves and extends previous results of Pao [46]. We also obtain constructive coercivity estimates for the Landau collision operator for the optimal coercivity norm pointed out in [34] and we formulate a conjecture about a unified necessary and sufficient condition for the existence of a spectral gap for Boltzmann and Landau linearized collision operators.Comment: 29 page

    On some nonlinear and nonlocal effective equations in kinetic theory and nonlinear optics

    Get PDF
    This thesis deals with some nonlinear and nonlocal effective equations arising in kinetic theory and nonlinear optics. First, it is shown that the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys strong smoothing properties: In the case of power-law type particle interactions, we prove the Gevrey smoothing conjecture. For Debye-Yukawa type interactions, an analogous smoothing effect is shown. In both cases, the smoothing is exactly what one would expect from an analogy to certain heat equations of the form ∂tu=f(−Δ)u\partial_t u = f(-\Delta)u, with a suitable function ff, which grows at infinity, depending on the interaction potential. The results presented work in arbitrary dimensions, including also the one-dimensional Kac-Boltzmann equation. In the second part we study the entropy decay of certain solutions of the Kac master equation, a probabilistic model of a gas of interacting particles. It is shown that for initial conditions corresponding to NN particles in a thermal equilibrium and M≀NM\leq N particles out of equilibrium, the entropy relative to the thermal state decays exponentially to a fraction of the initial relative entropy, with a rate that is essentially independent of the number of particles. Finally, we investigate the existence of dispersion management solitons. Using variational techniques, we prove that there is a threshold for the existence of minimisers of a nonlocal variational problem, even with saturating nonlinearities, related to the dispersion management equation

    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off

    Get PDF
    We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the sin- gularities of the initial datum. Our proofs are based on a detailed study of the "regularity of the gain operator". An application to the long-time behavior is presented.Comment: 47 page
    • 

    corecore