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Abstract

This thesis deals with some nonlinear and nonlocal effective equations arising in kinetic
theory and nonlinear optics.

First, it is shown that the homogeneous non-cutoff Boltzmann equation for Max-
wellian molecules enjoys strong smoothing properties: In the case of power-law type
particle interactions, we prove the Gevrey smoothing conjecture. For Debye-Yukawa
type interactions, an analogous smoothing effect is shown. In both cases, the smoothing
is exactly what one would expect from an analogy to certain heat equations of the form
∂t u = f (−∆)u, with a suitable function f , which grows at infinity, depending on the
interaction potential. The results presented work in arbitrary dimensions, including
also the one-dimensional Kac-Boltzmann equation.

In the second part we study the entropy decay of certain solutions of the Kac
master equation, a probabilistic model of a gas of interacting particles. It is shown
that for initial conditions corresponding to N particles in a thermal equilibrium and
M ≤ N particles out of equilibrium, the entropy relative to the thermal state decays
exponentially to a fraction of the initial relative entropy, with a rate that is essentially
independent of the number of particles.

Finally, we investigate the existence of dispersion management solitons. Using
variational techniques, we prove that there is a threshold for the existence of minimisers
of a nonlocal variational problem, even with saturating nonlinearities, related to the
dispersion management equation.
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CHAPTER0
Introduction

The goal of this thesis is to study the properties of solutions to effective equations from
kinetic theory and non-linear fibre optics. These equations are usually obtained as
approximations of the fundamental physical equations in a suitable limit.

The first of these equations is the Boltzmann equation, describing the evolution
of a dilute gas of particles that interact by colliding with one another. Devised by
Ludwig Boltzmann in 1872, it has given rise to important developments in statistical
physics, probability theory and analysis. But even today, due to its enormous richness
and complexity, many questions regarding the Boltzmann equation have still not been
answered with full mathematical rigour.

An alternative approach due to Mark Kac, based purely upon probabilistic assump-
tions, has proved to be very effective in the study of convergence of the microscopic
dynamics to an effective equation describing the dynamics on a mesoscopic scale (Kac-
Boltzmann equation). It is also useful in the study of convergence to equilibrium,
especially when one is interested in the rate of convergence. Including an interac-
tion with thermal reservoirs may lead to a better understanding of non-equilibrium
stationary states.

The second effective equation considered in this thesis is the dispersion management
(DM) equation. Dispersion, the spreading of initially well-localised wave packets,
limits the maximal bandwidth of optical communication systems. The dispersion
management technique, based on a strong local variation of the dispersion along the
cable, has been successfully applied in optical fibre cables to reliably send vast amounts
of data over large distances, for instance through transatlantic cables. The equation
is nonlinear and highly nonlocal and contains only strongly oscillating terms, which
makes the analysis rather challenging.

The results presented in Part I are based upon a collaboration with Prof. Dr. Jean-
Marie Barbaroux (Aix-Marseille Univ et Université de Toulon) and Prof. Dr. Dirk
Hundertmark (KIT), as well as Dr. Semjon Vugalter (KIT). The contents of Chapter 3,
Appendix C, and parts of Chapter 2 have been published in
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� J.-M. Barbaroux, D. Hundertmark, T. Ried, and S. Vugalter, Gevrey smooth-
ing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac
equations without cutoff for Maxwellian molecules. Archive for Rational Mech-
anics and Analysis 225 (2017), 601–661. MR 3665667. Zbl 06759780.

The contents of Chapter 4, Appendix D, and parts of Chapter 2 have been published in

� J.-M. Barbaroux, D. Hundertmark, T. Ried, and S. Vugalter, Strong smooth-
ing for the non-cutoff homogeneous Boltzmann equation for Maxwellian mo-
lecules with Debye-Yukawa type interaction. Kinetic and Related Models 10
(2017), 901–924. MR 3622094. Zbl 06694337.

Part II is the result of a collaboration with Prof. Federico Bonetto, Ph.D. (Georgia
Institute of Technology), Alissa Geisinger, M.Sc. (Eberhard Karls Universität Tübin-
gen), and Prof. Dr. Michael Loss (Georgia Institute of Technology), while the author
was on a research stay at Georgia Tech. The contents of Chapters 7 and 8 have been
submitted to a peer-reviewed journal, with a manuscript available on arXiv,

� F. Bonetto, A. Geisinger, M. Loss, and T. Ried, Entropy decay for the Kac
evolution. Preprint arXiv 1707.09584.

Part III is based on a collaboration with Prof. Dr. Dirk Hundertmark (KIT),
Prof. Young-Ran Lee, Ph.D. (Sogang University), and Prof. Vadim Zharnitsky, Ph.D.
(University of Illinois at Urbana-Champaign). The contents of Chapter 10 have been
published in

� D. Hundertmark, Y.-R. Lee, T. Ried, and V. Zharnitsky, Dispersion man-
aged solitons in the presence of saturated nonlinearity. Physica D: Nonlinear
Phenomena 356–357 (2017), 65–69. MR 3689774.

The contents of Chapter 11 have been published in

� D. Hundertmark, Y.-R. Lee, T. Ried, and V. Zharnitsky, Solitary waves
in nonlocal NLS with dispersion averaged saturated nonlinearities. Journal of
Differential Equations (2017), doi:10.1016/j.jde.2017.08.028.

https://doi.org/10.1007/s00205-017-1101-8
https://doi.org/10.1007/s00205-017-1101-8
http://www.ams.org/mathscinet-getitem?mr=3665667
https://zbmath.org/?q=an:06759780
https://doi.org/10.3934/krm.2017036
http://www.ams.org/mathscinet-getitem?mr=3622094
https://zbmath.org/?q=an:06694337
https://arxiv.org/abs/1707.09584
https://doi.org/10.1016/j.physd.2017.06.004
https://doi.org/10.1016/j.physd.2017.06.004
http://www.ams.org/mathscinet-getitem?mr=3689774
https://doi.org/10.1016/j.jde.2017.08.028
https://doi.org/10.1016/j.jde.2017.08.028
https://doi.org/10.1016/j.jde.2017.08.028


Part I

The Boltzmann Equation
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CHAPTER 1
Introduction

The Boltzmann equation [Bol72] is one of the most important equations in the kinetic
theory of gases. It describes the time evolution of the probability distribution function
f : R ×Ωx × R

d
v → [0,∞), (t, x, v) 7→ f (t, x, v) on the phase space Ωx × R

d
v , where

Ωx ⊂ R
d
x . If no external forces are acting on the particles, it is given by

∂t f + v · ∇x f = Q( f , f ) (1.1)

supplemented by suitable boundary conditions on ∂Ωx .
The Boltzmann collision operatorQ models the influence of the collisions between

particles on the density f , and will be discussed in more detail in the following
section. The left hand side of the inhomogeneous Boltzmann equation (1.1), including
the classical transport operator v · ∇x , describes the streaming of particles between
collisions.

For simplicity, we shall assume that the gas is spatially homogeneous, i.e., f (t, x, v) =
f (t, v), and comment on the inhomogeneous case in Chapter 5.

Our goal is to study the regularity of weak solutions of the Cauchy problem{
∂t f = Q( f , f )
f |t=0 = f0

(1.2)

for the fully nonlinear homogeneous Boltzmann equation in d ≥ 2 dimensions, with
physically reasonable initial data f0. Our results also hold for the homogeneous Kac
equation [Kac59], which can be thought of a one-dimensional version of the Boltzmann
equation. It has its origin in the Kac model, a probabilistic sketch of true physical
collisions, and will be discussed in more detail in Part II.

The next section introduces the Boltzmann collision operator as derived by Boltz-

mann [Bol72], together with the main assumptions on the interactions between
particles undergoing collisions. Most of the material is taken from [Vil02], with
some details on the collision kernel from [Cer88].

5



6 CHAPTER 1. INTRODUCTION

1.1 The Boltzmann collision operator

The collision operatorQ takes into account the change in the particles’ velocities due
to scattering. In a dilute gas, the scattering process can be assumed to involve only two
particles at a time (binary collisions). That is, the density of the gas is low enough so
that interactions of more than two particles at once are negligible.

It is further assumed that the collisions between the identical particles are elastic,
i.e., momentum and kinetic energy are conserved in the collision process. If v ′ and
v ′∗ denote the velocities of the two particles before a collision happens, and v, v∗ the
velocities after the collision, then

v ′ + v ′∗ = v + v∗ (momentum conservation)

|v ′ |2 + |v ′∗ |2 = |v |2 + |v∗ |2. (energy conservation)

A convenient way of parametrising the solutions to the above conservation laws is
given by the σ-representation (centre-of-mass coordinates), which parametrises the pre-
collisional velocities in terms of the post-collisional velocities by a direction σ ∈ Sd−1,

v ′ =
v + v∗

2
+
|v − v∗ |

2
σ, v ′∗ =

v + v∗
2
−
|v − v∗ |

2
σ,

see Figure 1.1.

v−v∗
|v−v∗ |

vv∗
θ

v′

v′∗

σ

Figure 1.1: Geometry of the collision process in the σ-representation.

The collisions are further assumed to be localised in space and time, in the sense that
they occur on a much smaller time and space scale than the typical scales in the model,
and are assumed to be micro-reversible. Micro-reversibility means that the microscopic
dynamics are time-reversible, or, put differently (interpreted probabilistically), that the
probability of a pair of velocities (v ′, v ′∗) being changed to (v, v∗) in a collision is the
same as the probability of (v, v∗) being changed to (v ′, v ′∗).

Under the molecular chaos assumption (Boltzmann’s Stoßzahlansatz)1, which states
that prior to a collision the velocities of the two colliding particles are uncorrelated,

1we will not discuss the far-reaching consequences of this assumption here, but refer to the review
article [Vil02] and references therein.
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the Boltzmann collision operator Q takes the form

Q( f , f ) =
∫
Rd

∫
Sd−1

B (|v − v∗ |, cos θ)
(
f (v ′∗) f (v ′) − f (v∗) f (v)

)
dσdv∗, (1.3)

where cos θ = v−v∗
|v−v∗ | · σ. Notice that the quadratic nature of Q results from the fact

that collisions are binary, while the chaos assumption is reflected by the dependence
of Q on the tensor product f ⊗ f . The non-negative function B , whose precise form
depends on the potential by which the particles interact, is called the collision kernel.

This describes the general form of the Boltzmann collision operator in d ≥ 2
dimensions. Our results also apply to the Kac equation in d = 1 dimension, where

Q( f , f ) = K ( f , f ) =
∫
R

∫ π
2

−
π
2

b1(θ)
(
f (w ′∗) f (w ′) − f (w∗) f (w)

)
dθdw∗, (1.4)

with collision kernel b1 ≥ 0. The pre- and post-collisional velocities are related by(
w ′
w ′∗

)
=

(
cos θ − sin θ
sin θ cos θ

) (
w
w∗

)
, for θ ∈ [− π2 ,

π
2 ],

that is, energy is conserved. Notice however, that momentum is no longer conserved
in this model (otherwise the scattering would be trivial. . . ).

The Kac model and its relation to the Kac-Boltzmann equation

∂t f = K ( f , f )

will be described in more detail in Part II.

A few details on the collision kernel

In this section we briefly review the classical scattering of two particles (in a non-
rigorous manner), which yields the precise dependence of the collision kernel B on the
relative velocity |v − v∗ | and the deviation angle cos θ = v−v∗

|v−v∗ | · σ. For more details
we refer to Cercignani [Cer88] for a Boltzmann equation oriented approach, and the
classical books by Landau-Lifshitz [LL97] andNewton2 [New82] for a more general
exposition.

Consider the classical scattering between two identical particles of mass m = 1,
interacting by a repulsive radial interaction potential Φ : R+ → R+. By a change
of coordinates (centre-of-mass and relative coordinates), the two-body problem is
equivalent to the scattering of one particle coming from infinity (the bullet particle),
with reduced mass µ = m

2 , in the field Φ generated by the second particle (the target
particle) sitting at the centre-of-mass location. Let q and p = µvrel be position and
momentum of the bullet particle.

Since the potential is radial, the angular momentum (2-form) L = q∧p is conserved
and the motion therefore takes place in a plane. It is convenient to introduce polar

2not Sir Isaac Newton, but the theoretical physicist Roger G. Newton.
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coordinates r and ϕ in the plane of motion of the bullet particle. Then conservation
of angular momentum and energy can be expressed as

L = µr 2 Ûϕ = const.

E =
µ

2
( Ûr 2 + r 2 Ûϕ2) + Φ(r ) =

µ Ûr 2

2
+

L2

2µr 2
+ Φ(r ) = const.

(1.5)

An immediate consequence of these conservation laws is that Ûϕ has a fixed sign, so ϕ is
monotone in time. Further,

Ûr 2(t ) =
2
µ
[E − Φ(r (t ))] −

L2

µ2r 2(t )
,

which means that the trajectory is restricted by

2
µ
[E − Φ(r (t ))] −

L2

µ2r 2(t )
≥ 0. (1.6)

Equality in (1.6) determines the extremal points of the trajectory, as in those points
we have Ûr = 0. To describe scattering states we assume that r (t ) ∈ [rmin,∞) and that
r (t ) → ∞ for t → ±∞. The minimal distance rmin (in the point of closest approach)
to the bullet particle at the centre-of-mass is then the (positive) root of the equation

Φ(r ) +
L2

2µr 2
= E .

Let ϕ0 be the polar angle corresponding to the point of closest approach. Integration
of the conservation laws (1.5) then yields the orbit equation for r as a function of ϕ in
an implicit form,

ϕ − ϕ0 = ±

∫ r

rmin

L
µs2√

2
µ [E − Φ(s)] −

L2

µ2 s2

ds .

Notice that Ûr = ±
√

2
µ [E − Φ(s)] −

L2

µ2 s2 changes its sign at rmin, which implies that the
trajectory is symmetric around rmin. Indeed, any two points on the orbit equidistant
from the origin only differ by the sign of ϕ − ϕ0. Therefore, the deviation angle θ of
the bullet particle on its way past the target particle is given by

θ = π − 2ϕ0 = π − 2
∫ ∞

rmin

L
µs2√

2
µ [E − Φ(s)] −

L2

µ2 s2

ds,

see also Figure 1.2.
For our purposes it is convenient to introduce v∞ as the asymptotic velocity of

the particle at infinity and the impact parameter ρ, which is the distance at which the
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ρ

0

rmin

ϕ0

θ

Figure 1.2: Scattering of two particles

particle would fly by the centre-of-mass if there were no field acting on it. Those two
quantities can be used to express the conserved energy and momentum as

E =
µ

2
v2
∞, L = µρv∞.

Then the deviation angle can be computed as

θ = π − 2ρ
∫ ∞

rmin

(
1 −

2Φ(s)
µv2
∞

−
ρ2

s2

)−1/2 ds
s2

= π − 2
∫ ρ

rmin

0

(
1 − x2 −

2
µv2
∞

Φ

( ρ
x

))−1/2
dx .

(1.7)

We will later need the dependence of the impact parameter ρ on the deviation
angle θ . Unfortunately, even for such easy interaction potentials as inverse power laws,
the equation (1.7) cannot in general be inverted explicitly to yield ρ = ρ(θ). However,
it is possible to study the asymptotics of ρ(θ) for angles close to 0 and π

2 , see [Cer88,
p.71] and [MUXY09, Appendix].

Let x0 = ρ
rmin

be the positive root of

1 − x20 −
2

µv2
∞

Φ

(
ρ

x0

)
= 0, (1.8)
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and write with π
2 =

∫ 1
0 (1 + y2)−1/2 dy ,

θ

2
=
π

2
−

∫ x0

0

(
1 − x2 −

2
µv2
∞

Φ

( ρ
x

))−1/2
dx

=

∫ 1

0
(1 + y2)−1/2 dy −

∫ 1

0

(
1 − y2 + x−20

[
1 − x20 −

2
µv2
∞

Φ

(
ρ

x0y

)] )−1/2
dy .

By the definition (1.8) of x0, we obtain∫ 1

0

(
1 − y2 + x−20

[
1 − x20 −

2
µv2
∞

Φ

(
ρ

x0y

)] )−1/2
dy

=

∫ 1

0

(
1 − y2 +

2
µv2
∞x20

[
Φ

(
ρ

x0

)
− Φ

(
ρ

x0y

)])−1/2
dy,

and hence

θ

2
=

∫ 1

0

1√
1 − y2

1 −
©«1 +

2
µv2
∞x20

Φ

(
ρ
x0

)
− Φ

(
ρ
x0y

)
1 − y2

ª®®¬
−1/2 dy .

In the limit θ → 0, that is, ρ →∞, we can approximate x20 = 1 + O(ρ−1) and

©«1 +
2

µv2
∞x20

Φ

(
ρ
x0

)
− Φ

(
ρ
x0y

)
1 − y2

ª®®¬
−1/2

= 1 −
1

µv2
∞

Φ (ρ) − Φ
(
ρ
y

)
1 − y2

+ O(ρ−1),

so,

θ

2
=

1
µv2
∞

∫ 1

0
(1 − y2)−3/2

[
Φ (ρ) − Φ

(
ρ

y

)]
dy + O(ρ−1) (1.9)

for small θ .

Example (Inverse power-law potentials, [Cer88]). For repulsive inverse power-law
interaction potentials Φ(r ) = κr 1−n , n > 2, κ > 0, we obtain the equation

θ = π − 2
∫ x0

0

(
1 − x2 −

(
x
β

)n−1)−1/2
dx, (1.10)

with β = ρv
2

n−1
∞

( µ
2κ

) 1
n−1 , and x0 being the positive root of

1 − x20 −
(
x0
β

)n−1
= 0 (1.11)
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for x0 = ρ
rmin

. Equation (1.10) implicitly defines the dependence of β (which is directly
related to the impact parameter ρ ) on θ , so that we may write

ρ(θ) =

(
2κ
µ

) 1
n−1

v−
2

n−1
∞ β(θ). (1.12)

Except for the case n = 3 equation (1.10) cannot be solved explicitly for β. However,
the function β is locally smooth and for small deviation angles θ → 0 we obtain with
(1.9) the asymptotics

θ

2
=

κ

µv2
∞

cn ρ1−n + O(ρ−1)

where cn =
∫ 1
0 (1 − y

2)−3/2(1 − yn−1) dy = π1/2Γ(n/2)/Γ(n−12 ). It follows that

ρ = O
(
θ−

1
n−1

)
and

dρd−1

dθ
= O

(
θ−1−

d−1
n−1

)
as θ → 0.

In the limit θ → π we must have x0 → 0 by (1.10) and thus β ' x0 → 0 by
equation (1.11). In particular,

θ = π − 2
∫ x0

0

(
1 − x2 −

(
x
β

)n−1)−1/2
dx ' π − 2β

∫ 1

0

(
1 − yn−1

)−1/2 dy,

so that β = O(π − θ) and

dρd−1

dθ
= O

(
(π − θ)d−2

)
.

�

Example (Debye-Yukawa type potentials, [MUXY09]). As a second example we
consider the family of screened Coulomb potentials

Φ(r ) =
e−r

s

r
, 0 < s < 2.

The case s = 1 is the classical Debye-Yukawa potential. As in the power-law case, we
have

θ = π −

∫ x0

0

(
1 − x2 −

2
µv2
∞

x
ρ
e−(

ρ
x )

s
)−1/2

dx
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by equation (1.7), with x0 being the positive root of (1.8). This time, however, the
dependence of ρ on θ does not factorise into a function of v∞ and θ as before.

We therefore contend ourselves with the study of the asymptotics for grazing
collisions, that is, for small deviation angles θ → 0. By equation (1.9), we find

θ

2
≈

1
µv2
∞

e−ρ
s

ρ

∫ 1

0
(1 − y2)−3/2

(
1 − ye−ρ

s (y−s−1)
)
dy .

Let f (ρ) :=
∫ 1
0 (1 − y

2)−3/2
(
1 − ye−ρ s (y−s−1)

)
dy . Then

f (0) =
∫ 1

0
(1 − y2)−3/2(1 − y) dy = 1

and

f ′(ρ) = s ρ s−1
∫ 1

0
(1 − y2)−3/2y1−s (1 − y s ) e−ρ

s (y−s−1) dy ≥ 0.

Further, by estimating the exponential in the integrand by one, we obtain the bounds

0 ≤ f ′(ρ) ≤ c s s ρ s−1,

with c s =
∫ 1
0 (1 − y

2)−3/2y1−s (1 − y s ) dy < ∞ for 0 < s < 2. Integrating the inequality
yields

1 ≤ f (ρ) ≤ c s ρ s + 1,

so for small θ , that is large ρ, we can approximate log θ ≈ −K ρ s , and hence

ρ(θ) ≈ κ
(
log θ−1

) 1
s (1.13)

as θ → 0. �

An important quantity in scattering theory is the differential scattering cross-
section, as we usually do not have any information on the impact parameter in the
scattering process. It describes the flux of particles scattered in a particular direction. As-
sume that a beam of bullet particles with energy E enters into the scattering uniformly
distributed over the azimuthal direction ω ∈ Sd−2 and impact parameters ρ. Then all
the bullet particles with impact parameter in the infinitesimal area element ρd−2 dρ dω
will be scattered into an infinitesimal cone of solid angle dΩ = sind−2 θ dθ dω, where
the dependence of θ and ρ is given by (1.7). Here, dω denotes the uniform measure on
Sd−2 and dΩ the uniform measure on Sd−1. The differential scattering cross-section dσ

dΩ
is defined by

dσ
dΩ

sind−2 θ dθ dω = ρd−2 dρ dω,
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so

dσ
dΩ
=

1

sind−2 θ
ρd−2

dρ
dθ
=

1

sind−2 θ

1
d − 1

dρd−1

dθ
. (1.14)

The Boltzmann kernel is related to the differential scattering cross-section by

B(z, cos θ) = |z |
dσ
dΩ
(z, θ), (1.15)

where z = v − v∗ is the relative velocity, in particular, |z | = v∞, see, for instance
[Cer88].

Example (Inverse power-law potentials, continued). In the case of inverse power-law
interactions, we therefore get with (1.14) and the dependence of the impact parameter
on the deflection angle from (1.12), that

dσ
dΩ
=

1
d − 1

(
2κ
µ

) d−1
n−1

v−
2(d−1)
n−1

∞

1

sind−2 θ

dβd−1(θ)
dθ

.

In particular, the differential scattering cross-section, and therefore also the Boltzmann
kernel for power-law interactions, factorises into a product of a function of the asymp-
totic velocity v∞ = |v − v∗ | (kinetic factor) and a function of the deviation angle θ
(angular collision kernel). If we write

b(cos θ) :=
1

d − 1

(
2κ
µ

) d−1
n−1 1

sind−2 θ

dβd−1(θ)
dθ

,

then the Boltzmann kernel takes the form

B(|v − v∗ |, cos θ) = |v − v∗ |γb(cos θ)

with γ = n−(2d−1)
n−1 . The angular collision kernel b is a locally smooth, non-negative

function, which is well-behaved for θ → π , but has a non-integrable singularity

sind−2 θ b(cos θ) θ→0
∼

K
θ1+2ν

(1.16)

for some K > 0 and ν = d−1
2(n−1) .

Notice also that ∫ π

0
sind θ b(cos θ) dθ < +∞ (1.17)

as long as ν < 1. The quantity
∫ π

0 sind θ b(cos θ) dθ is related to the cross-section for
momentum transfer M , defined by∫

Sd−1
(v − v ′) B(|v − v∗ |, cos θ) dσ =

v − v∗
2

M (|v − v∗ |),
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see [Vil02, p.48]. Splitting the direction σ into its components along v − v∗ and an
orthogonal direction ω ∈ Sd−2, we may write

σ = cos θ
v − v∗
|v − v∗ |

+ sin θ ω,

and obtain with v ′ = v+v∗
2 +

|v−v∗ |
2 σ,∫

Sd−1
(v − v ′) B(|v − v∗ |, cos θ) dσ

=
v − v∗

2
|v − v∗ |γ

∫ π

0

∫
Sd−2

b(cos θ)(1 − cos θ) sind−2 θ dω dθ

=
v − v∗

2
|v − v∗ |γ |Sd−2 |

∫ π

0
b(cos θ)(1 − cos θ) sind−2 θ dθ

as the integral over ω vanishes by symmetry in the second term. So finiteness of the
integral (1.17) guarantees that the cross-section for momentum transfer is finite.

An important simplification occurs for n = 2d − 1 (= 5 in three dimensions),
where the exponent γ = 0 in the kinetic factor, so the Boltzmann kernel is a function
of the deviation angle θ only. This situation is generally referred to as the Maxwellian
molecules case. �

Example (Debye-Yukawa type potentials, continued). For Debye-Yukawa type po-
tentials, we obtain from (1.13) the following asymptotics of the Boltzmann kernel for
small angles θ → 0:

B(|v − v∗ |, cos θ) ≈ |v − v∗ |b(cos θ),

with

sind−2 θ b(cos θ) ≈ κd,sθ−1
(
log θ−1

) d−1
s −1 .

Again, the singularity at θ = 0 is not integrable, but we have∫ π

0
sind θ b(cos θ) dθ < ∞

as long as s < d − 1. �

Assumptions on the scattering kernel

After this short excursion into classical scattering theory, we shall formulate the basic
assumptions on the collision kernels we want to investigate in the following chapters.
These are modelled after the two examples of inverse power-law interactions and
Debye-Yukawa type interactions.

We start with the assumptions on B for d ≥ 2:
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(B1) We only consider the case of Maxwellian molecules, that is,

B(|v − v∗ |, cos θ) = b(cos θ).

By symmetry properties of the Boltzmann collision operator Q( f , f ), the
function b can be assumed to be supported on angles θ ∈ [0, π2 ]; for otherwise
(see [Vil02]) it can be replaced by

b̃(cos θ) =
(
b(cos θ) + b(cos(π − θ)

)
1{0≤θ≤ π2 } .

(B2) The angular collision kernel b has a non-integrable singularity for grazing
collisions θ → 0 of the form

(a) Inverse power-law type

sind−2 θ b(cos θ) ∼
κ

θ1+2ν
, as θ → 0+ (1.18)

for some κ > 0 and 0 < ν < 1,

(b) Debye-Yukawa type

sind−2 θ b(cos θ) ∼ κθ−1
(
log θ−1

) µ (1.19)

for some κ, µ > 0.

(B3) The cross-section for momentum transfer is finite,∫ π/2

0
sind θ b(cos θ) dθ < ∞. (1.20)

In the one-dimensional Boltzmann-Kac case, b1 was originally chosen to be constant.
We will assume, as in [Des03], that

(K1) b1 is an even function supported on angles θ ∈ [− π4 ,
π
4 ]. The restriction on the

smaller set of deviation angles θ is again possible due to symmetry properties of
K ( f , f ), for otherwise it can be replaced by its symmetrised version

b̃1(θ) =
(
b1(θ) + b1( π2 − θ)

)
1{0≤θ≤ π4 } +

(
b1(θ) + b1(− π2 − θ)

)
1{− π4 ≤θ≤0} .

(K2) b1 has the non-integrable singularity

b1(θ) ∼
κ

|θ |1+2ν
, for θ → 0, (1.21)

with 0 < ν < 1 and some κ > 0.

(K3) b1 satisfies ∫ π
4

−
π
4

b1(θ) sin2 θ dθ < ∞. (1.22)
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1.2 Weak solutions: definition, existence, and uniqueness

The non-integrability of the angular collision kernel produces some difficulties. In
particular, it is a priori not clear if the expressions (1.3) and (1.4) are even well-defined.

In this section we discuss the above issue and define the class of weak solutions for
which our regularity results hold. We will mainly work with the weighted Lp spaces,
defined as

Lp
α(R

d ) :=
{
f ∈ Lp(Rd ) : 〈·〉α f ∈ Lp(Rd )

}
, p ≥ 1, α ∈ R,

with norm

‖ f ‖Lp
α(R

d ) =

(∫
Rd
| f (v)|p 〈v〉αp dv

)1/p
, 〈v〉 := (1 + |v |2)1/2.

We will also use the weighted (L2 based) Sobolev spaces

H k
` (R

d ) =
{
f ∈ S′(Rd ) : 〈·〉` f ∈ H k(Rd )

}
, k, ` ∈ R,

where H k(Rd ) are the usual Sobolev spaces given by

H k(Rd ) =
{
f ∈ S′(Rd ) : 〈·〉k f̂ ∈ L2(Rd )

}
, k ∈ R.

The inner product on L2(Rd ) is given by 〈 f , g〉 =
∫
Rd

f (v)g (v) dv .
It will be assumed that the initial datum f0 . 0 is a non-negative density with finite

mass, energy and entropy, which is equivalent to

f0 ≥ 0, f0 ∈ L1
2(R

d ) ∩ L log L(Rd ), (1.23)

where

L log L(Rd ) =
{
f : Rd → R measurable : ‖ f ‖L log L < ∞

}
,

and

‖ f ‖L log L =

∫
Rd
| f (v)| log

(
1 + | f (v)|

)
dv,

and the negative of the entropy is given by H ( f ) :=
∫
Rd

f log f dv .
The space L1

2(R
d ) ∩ L log L(Rd ) is very natural, since we have

Lemma 1.1. Let f ≥ 0. Then

f ∈ L1
2(R

d ) ∩ L log L(Rd ) ⇔ f ∈ L1
2(R

d ) and H ( f ) is finite.
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Proof. Let f ∈ L1
2(R

d ) ∩ L log L(Rd ). Then

|H ( f )| =
∫
Rd

f log+ f dv +
∫
Rd

f log− f dv .

The positive part is bounded by
∫

f log(1 + f ) dv = ‖ f ‖L log L. The negative part can
be controlled by∫

Rd
f log− f dv =

∫
{ f ≤1}

f log
1
f
dv ≤ Cδ

∫
{ f ≤1}

f 1−δ dv

≤ Cδ

(∫
Rd
(1 + |v |2)−

1−δ
δ dv

)δ
‖ f ‖1−δL1

2
,

which is finite for 0 < δ < 2
d+2 , having used that for any δ > 0 there exists a constant

Cδ such that log t ≤ Cδ t δ for all t ≥ 1.
Conversely, let f ∈ L1

2(R
d ) with finite entropy H ( f ). Then∫

Rd
f log(1 + f ) dv =

∫
{ f ≤1}

f log(1 + f ) dv +
∫
{ f >1}

f log(1 + f ) dv

On the set where f ≤ 1, we replace f by 1 and where f > 1, we bound 1 + f by 2 f ,
leading to∫

Rd
f log(1 + f ) dv ≤ log 2

∫
Rd

f dv +
∫
Rd

f log f dv +
∫
Rd

f log− f dv .

As above, we conclude∫
Rd

f log(1 + f ) dv ≤ log 2| | f ‖L1(Rd ) + H ( f ) +Cδ,d ‖ f ‖1−δL1
2(R

d )
, (1.24)

with a finite constant Cδ,d for 0 < δ < 2
d+2 . �

The following is the precise definition of weak solutions which we use:

Definition 1.2 (Weak Solutions of the Cauchy Problem (1.2) [Ark81, Vil98, Des95]).
Assume that the initial datum f0 is in L1

2(R
d )∩L log L(Rd ). f : R+×Rd → R is called

a weak solution to the Cauchy problem (1.2), if it satisfies the following conditions3:

( i) f ≥ 0, f ∈ C(R+; D′(Rd )) ∩ L∞(R+; L1
2(R

d ) ∩ L log L(Rd ));

( ii) f (0, ·) = f0;

( iii) For all t ≥ 0, mass is conserved,
∫
Rd

f (t, v) dv =
∫
Rd

f0(v) dv , kinetic energy
is decreasing,

∫
Rd

f (t, v) v2 dv ≤
∫
Rd

f0(v) v2 dv , and the entropy is increasing,
that is, H ( f (t, ·)) ≤ H ( f0);

3Throughout the text, whenever not explicitly mentioned, we will drop the dependence on t of a
function, i.e. f (v) := f (t, v) etc.
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(iv) For all ϕ ∈ C1(R+; C∞0 (R
d )) one has

〈 f (t, ·), ϕ(t, ·)〉 − 〈 f0, ϕ(0, ·)〉 −
∫ t

0
〈 f (τ, ·), ∂τϕ(τ, ·)〉 dτ

=

∫ t

0
〈Q( f , f )(τ, ·), ϕ(τ, ·)〉 dτ, for all t ≥ 0,

(1.25)

where the latter expression involvingQ is defined by

〈Q( f , f ), ϕ〉 =
1
2

∫
R2d

∫
Sd−1

b
(
v − v∗
|v − v∗ |

· σ

)
f (v∗) f (v)

×
(
ϕ(v ′) + ϕ(v ′∗) − ϕ(v) − ϕ(v∗)

)
dσdvdv∗,

(1.26)

for test functions ϕ ∈W 2,∞(Rd ) in dimension d ≥ 2, and in one dimension

〈Q( f , f ), ϕ〉 = 〈K ( f , f ), ϕ〉

=

∫
R2

∫ π
4

−
π
4

b1(θ) g (w∗)g (w) (ϕ(w ′) − ϕ(w)) dθdwdw∗
(1.27)

for test functions ϕ ∈ W 2,∞(R), making use of symmetry properties of the
Boltzmann and Kac collision operators and cancellation effects.

Remark. In the study of the Boltzmann operator Q it is often convenient to use its
bilinear form

Q(g, f ) =
∫
Rd×Sd−1

B(|v − v∗ |, cos θ)
(
g (v ′∗) f (v ′) − g (v∗) f (v)

)
dv∗dσ,

which, for f , g ∈ L1
2(R

d ) is well-defined in the weak sense

〈Q(g, f ), ϕ〉 :=
∫
R2d×Sd−1

B(|v − v∗ |, cos θ) g (v∗) f (v)

×
[
ϕ(v ′∗) + ϕ(v ′) − ϕ(v∗) − ϕ(v)

]
dvdv∗dσ

for ϕ ∈W 2,∞(Rd ). �

A few remarks regarding Definition 1.2 are in order:4

I. Maxwell’s weak formulation. Formally, equations (1.26) and (1.27) can be derived
from the original expressions (1.3) and (1.4) by suitable coordinate transforma-
tions. Indeed, the pre-post-collisional change of variables

(v, v∗, σ) → (v ′, v ′∗, k) with k =
v − v∗
|v − v∗ |

4We refer to the reviews by Villani [Vil02] and Alexandre [Ale09] for more details.
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is involutive by momentum conservation, has unit Jacobian by energy con-
servation, and leaves B invariant by micro-reversibility. Further, the change
of coordinates (v, v∗) → (v∗, v) defines an involution with unit Jacobian. It
follows that for suitable test functions ϕ the following equalities hold, at least
formally5:∫
Rd

Q( f , f )(v)ϕ(v) dv

=

∫
R2d×Sd−1

B(|v − v∗ |, cos θ)
(
f ′ f ′∗ − f f∗

)
ϕ dvdv∗dσ

=

∫
R2d×Sd−1

B(|v − v∗ |, cos θ) f f∗ (ϕ′ − ϕ) dvdv∗dσ (1.28)

=
1
2

∫
R2d×Sd−1

B(|v − v∗ |, cos θ) f f∗
(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)
dvdv∗dσ (1.29)

= −
1
4

∫
R2d×Sd−1

B(|v − v∗ |, cos θ)
(
f ′ f ′∗ − f f∗

) (
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)
dvdv∗dσ

(1.30)

Expressions (1.28) and (1.29) are particularly important in the case of singular
collision kernels B , because the differences ϕ′−ϕ and ϕ′+ϕ′∗−ϕ−ϕ∗ vanish for
small deviation angles θ (for which v ′ ≈ v and v ′∗ ≈ v∗ ) under some smoothness
assumption on ϕ. Indeed, if ϕ ∈W 2,∞(Rd ), then we can Taylor expand it to
obtain

ϕ(v ′) − ϕ(v) =∇ϕ(v) · (v ′ − v)

+

∫ 1

0
D2ϕ(v + τ(v ′ − v))(1 − τ) dτ : (v ′ − v) ⊗ (v ′ − v),

and similarly

ϕ(v ′∗) − ϕ(v∗) =∇ϕ(v∗) · (v ′∗ − v∗)

+

∫ 1

0
D2ϕ(v∗ + τ(v ′∗ − v∗))(1 − τ) dτ : (v ′∗ − v∗) ⊗ (v ′∗ − v∗).

Notice that v ′∗ − v∗ = −(v ′ − v) and, decomposing the direction σ into its
components along v − v∗ and an orthogonal direction ω ∈ Sd−2, we may write

σ = cos θ
v − v∗
|v − v∗ |

+ sin θ ω,

5we use the common notation f∗ = f (v∗), f ′ = f (v ′) etc to make the rather lengthy expressions a
bit more readable
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and obtain

v ′ − v =
v + v∗

2
+
|v − v∗ |

2
σ − v = −

v − v∗
2
+
|v − v∗ |

2
σ

= −
v − v∗

2
(1 − cos θ) +

|v − v∗ |
2

sin θ ω

= − sin2
θ

2
(v − v∗) +

|v − v∗ |
2

sin θ ω.

With these observations we can estimate

|ϕ′ + ϕ′∗ − ϕ − ϕ∗ | ≤ C (ϕ)|v − v∗ |2θ,

where we also used that |∇ϕ(v) − ∇ϕ(v∗)| ≤ ‖ϕ‖W 2,∞ |v − v∗ | to get a second-
order contribution in |v − v∗ |.
Recall, though, that we need a factor of θ2 in order to make the angular singu-
larity in b(cos θ) integrable for small θ . Notice that the “bad”, i.e., linear in
θ , contribution comes from the term proportional to ω, which disappears by
symmetry when integrating over Sd−2! In this case, one indeed gets the desired
smoothing effect of the singularity����∫

Sd−2
(ϕ′ + ϕ′∗ − ϕ − ϕ∗) dω

���� ≤ C (ϕ)|v − v∗ |2θ2

with a constant C (ϕ) depending on theW 2,∞ norm of ϕ. This is the reason why
the definition of 〈Q( f , f ), ϕ〉 in (1.26) makes sense by duality in (W 2,∞)∗, with

|〈Q( f , f ), ϕ〉|

≤

∫
R2d

∫ π
2

0
b(cos θ) sind−2 θ f f∗

����∫
Sd−2
(ϕ′ + ϕ′∗ − ϕ − ϕ∗) dω

���� dθdvdv∗
≤ C (ϕ)

∫ π
2

0
b(cos θ) sind−2 θ θ2 dθ

∫
R2d

f (v) f (v∗) |v − v∗ |2 dvdv∗

≤ C (ϕ, b) ‖ f ‖2L1
2
. (1.31)

As noted by Alexandre and Villani [AV02], a more careful estimate shows that
one does not really need to define the Boltzmann operator in the fully symmetric
weak form (1.29), but can work with (1.28). More precisely, they obtained the
bound

〈Q( f , f ), ϕ〉

≤
1
4
‖ϕ‖W 2,∞(Rd )

∫
R2d

f∗ f |v − v∗ |(1 + |v − v∗ |)M (|v − v∗ |) dv dv∗, (1.32)

where M is the cross-section for momentum transfer introduced in Section 1.1.
However, this does not make any difference when discussing the homogeneous
Maxwellian problem.
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II. Formal conservation laws. Maxwell’s weak formulation (1.29) also implies the
formal conservation laws

d
dt

∫
Rd

f (t, v)
©«
1
v j
|v |2
2

ª®®¬ dv = 0, j = 1, . . . , d,

of total mass, momentum, and kinetic energy. Indeed, if f solves the (homogen-
eous) Boltzmann equation, then

d
dt

∫
Rd

f (t, v)ϕ(v) dv =
∫
Rd

Q( f , f )(t, v)ϕ(v) dv

=
1
2

∫
R2d×Sd−1

B(|v − v∗ |, cos θ) f f∗
(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)
dvdv∗dσ.

So if

ϕ(v ′) + ϕ(v ′∗) = ϕ(v) + ϕ(v∗) for a.e. (v, v∗, σ) ∈ R2d × Sd−1, (1.33)

then, at least formally, d
dt

∫
Rd

f (t, v)ϕ(v) dv = 0. Solutions to the functional
equation 1.33 are called (summational) collisional invariants and under the very
weak assumption that ϕ is measurable and finite almost everywhere, one can
show that6

ϕ(v) = A + B · v +C
|v |2

2
, A,C ∈ R, B ∈ Rd,

see [AC90].

III. Formal increase of the entropy, Boltzmann’s H theorem. Entropy plays an ex-
tremely important role in kinetic theory, and there is obviously not enough time
nor space to treat it in proper detail in this thesis. We will discuss some aspects
again in Part II in the simpler Kac model, and refer for a more detailed treatise
in Villani’s review article [Vil02, p.32ff] and references therein, in particular
[Kac59].

The important thing for us is that it is physically reasonable to assume that
the entropy of the initial datum is finite, and that it is increasing under the
Boltzmann evolution. To see this, at least at a formal level, we take a closer look
at the Boltzmann H functional

H ( f (t, ·)) =
∫
Rd

f (t, v) log f (t, v) dv,

6Smooth C2 solutions to the equation (1.33) had already been shown by Boltzmann to be linear
combinations of 1, v , and |v |2.
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which is the negative of the physical (dynamical, i.e. non-equilibrium) entropy.
Then

d
dt

H ( f (t, ·)) =
∫
Rd

Q( f , f )(t, v) log f (t, v) dv +
∫
Rd

Q( f , f )(t, v) dv .

Using the weak formulation (1.30) (Boltzmann’s weak formulation), and∫
Q( f , f ) dv = 0,

we obtain

d
dt

H ( f (t, ·)) =
∫
Rd

Q( f , f )(t, v) log f (t, v) dv

= −D( f (t, ·))

with the entropy dissipation functional

D( f ) := −
1
4

∫
R2d×Sd−1

B(|v − v∗ |, cos θ)
(
f ′ f ′∗ − f f∗

)
log

f ′ f ′∗
f f∗

dvdv∗dσ.

Notice that the function (x, y) 7→ (x − y) log x
y is non-negative, so that along

solutions of the homogeneous Boltzmann equation,

d
dt

H ( f (t, ·)) = −D( f (t, ·)) ≤ 0. (1.34)

If the Boltzmann collision kernel B is strictly positive, then equality in (1.34)
occurs if and only if

f (v ′) f (v ′∗) = f (v) f (v∗) for a.e. (v, v∗, σ) ∈ R2d × Sd−1.

Taking logarithms, we see that ϕ = log f has to be a collisional invariant, so f
has to be a Maxwellian distribution

f (v) =
(
β

2π

)d/2
e−

β
2 |v−u |

2

for some inverse temperature β > 0 and momentum u ∈ Rd , see also (1.33). The
Maxwellian is normalised to have total mass

∫
f dv = 1, and the parameters u

and β are uniquely determined by∫
Rd

v f (v) dv = u∫
Rd
|v |2 f (v) dv = |u |2 +

d
β
.

Collecting results from the literature, the following is known regarding the exist-
ence, uniqueness and further properties of weak solutions:
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d ≥ 2: The existence of weak solutions of the Cauchy problem (1.2) with initial
conditions satisfying (1.23) for the homogeneous Boltzmann equation was first
proved by Arkeryd [Ark72, Ark81] (see also the articles by Goudon [Gou97],
Villani [Vil98], and Desvillettes [Des01, Des03]). Uniqueness in this case was
shown by Toscani and Villani [TV99], see also the review articles byMischler

and Wennberg [MW99] (for the cut-off case) and Desvillettes [Des01].

d = 1: For the homogeneous non-cutoff Kac equation for Maxwellian molecules exist-
ence of weak solutions was established by Desvillettes [Des95].

For the sake of completeness, we present the relevant existence theorems for our
smoothing result in the following two theorems.

Theorem 1.3 (Existence of weak solutions for the Boltzmann equation, Arkeryd

[Ark72],Villani [Vil98]). Let f0 ≥ 0, f0 ∈ L1
2 ∩ L log L(Rd ), and assume that the

collision kernel satisfies Assumptions (B1)–(B3). There exists a weak solution f of the
Cauchy problem (1.2) for the Boltzmann equation with initial datum f0 in the sense of
Definition 1.2, which in addition conserves momentum and energy.

Moreover, for all ϕ ∈W 2,∞(Rd ), the map

(0,∞) 3 t 7→
∫
Rd

f (t )ϕ dv

is Lipschitz continuous.

We give a short proof of the existence result for Maxwellian molecules, which is
contained in the more general results due to Arkeryd [Ark72], with extensions due to
Villani [Vil98].

Proof. Fix some arbitrary T > 0 and let f0 ≥ 0, f0 ∈ L1
2 ∩ L log L(Rd ). Assume that

the collision kernel satisfies (1.18) and (1.20).
The first step is to construct a sequence

bn(cos θ) B b(cos θ) ∧ n

of cut-off collision kernels, with corresponding Boltzmann operators Qn satisfying the
Grad cut-off assumption.

By Arkeryd’s existence theorem in the cut-off case [Ark72], for each n ∈ N there
exists a classical solution fn ≥ 0 of

∂t fn = Qn( fn, fn), t ∈ [0,T ], (1.35)

with fn(0) = f0 for all n ∈ N, such that mass, momentum and kinetic energy are
preserved, and H ( fn) is decreasing. That is, for all t ∈ [0,T ], we have the a priori
bounds ∫

Rd
fn(t, v)

(
1 + |v |2

)
dv = ‖ f0‖L1

2
,

H ( fn(t )) ≤ H ( f0), n ∈ N.
(1.36)
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So the sequence { fn(t )}n∈N is bounded in L1
2 ∩ L log L, see Lemma 1.1. In particular,

by De la Vallée Poussin’s criterion, { fn(t )} is equi-integrable. Let φ : Rd → [0,∞) be
a function such that 〈·〉−κφ ∈ L∞(Rd ) for some 0 ≤ κ < 2. Then

sup
n∈N

∫
|v | ≥R

fn(t, v)φ(v) dv ≤ ‖〈·〉−κφ‖L∞ sup
n∈N

∫
|v | ≥R

fn(t, v)〈v〉κ dv

≤
‖〈·〉−κφ‖L∞

(1 + R2)2−κ
sup
n∈N

∫
|v | ≥R

fn(t, v)〈v〉2 dv ≤
‖〈·〉−κφ‖L∞

(1 + R2)2−κ
‖ f0‖L1

2
,

hence

lim
R→∞

sup
n∈N

∫
|v | ≥R

fn(t, v)φ(v) dv = 0. (1.37)

It follows that the sequence { fn(t )} is weakly compact in L1(Rd ) by the Dunford-Pettis
Theorem7. By a diagonal-sequence argument, we can find a non-negative function
f ∈ L∞

(
[0,T ]; L1

2 ∩ L log L(Rd )
)
such that, along a subsequence, fn(t ) ⇀ f (t )

weakly in L1 for all t ∈ [0,T ] ∩ Q.
Note that for any test function ψ ∈ C∞0 (R

d ) and 0 ≤ s < t ≤ T we have����∫
Rd

fn(t, v)ψ(v) dv −
∫
Rd

fn(s, v)ψ(v) dv
����

≤

∫ t

s

����∫
Rd

Qn( fn, fn)(τ, v)ψ(v) dv
���� dτ

≤ C (ψ, b)
∫ t

s
‖ fn(τ, ·)‖2L1

2(R
d )
dτ

≤ C (ψ, b)|t − s |‖ f0‖2L1
2(R

d )
,

(1.38)

see also inequality (1.31). The constant C (ψ, b) is independent of n, since∫ π
2

0
bn(cos θ) sind−2 θ θ2 dθ ≤

∫ π
2

0
b(cos θ) sind−2 θ θ2 dθ,

for n ∈ N, and depends only on the test function ψ (through itsW 2,∞ norm) and on∫ π
2

0 b(cos θ) sind−2 θ θ2 dθ < ∞. We also used that the functions fn conserve mass and
kinetic energy.

7 Theorem (Weak compactness in L1, Dunford-Pettis) Let (Ω,A, µ) be a measure space. F ⊂

L1(Ω) is weakly sequentially precompact if and only if

(i) F is bounded in L1(Ω),
( ii) F is equi-integrable and for every ε > 0 there exists A ∈ A, µ(A) < ∞, such that

sup
f ∈F

∫
Ac
| f | dµ ≤ ε .

We refer to, for instance, Theorem 2.54 in [FL07] for a proof.
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The sequence
{∫

fn(t )ψ dv
}
n∈N is therefore uniformly equicontinuous in t , and

converges pointwise to
∫
Rd

f (t )ψ dv for all t ∈ [0,T ]∩Q. Hence, for each test function
ψ ∈ C∞0 (R

d ) the map t 7→
∫
Rd

f (t )ψ dv is continuous (even Lipschitz continuous by
(1.38)) on [0,T ].

Further, by (1.37),

lim
n→∞

∫
Rd

fn(t, v)φ(v) dv =
∫
Rd

f (t, v)φ(v) dv

for all t ∈ [0,T ] along a subsequence, if 〈·〉−κφ ∈ L∞(Rd ) for some κ ∈ [0, 2). In
particular, mass and momentum are conserved.

Now if ϕ ∈ C1(R+; C∞0 (R
d )), and t ∈ [0,T ], then for each n ∈ N∫ t

0
〈Qn( fn, fn)(τ), ϕ(τ)〉 dτ =

∫ t

0
〈∂τ fn(τ), ϕ(τ)〉

= 〈 fn(t ), ϕ(t )〉 − 〈 f0, ϕ(0)〉 −
∫ t

0
〈 fn(τ), ∂τϕ(τ)〉 dτ,

because fn is a classical solution of (1.35) with initial datum fn(0) = f0. Thus, taking
the limit n →∞, the above continuity properties guarantee that f satisfies the weak
formulation (1.26) of the Boltzmann equation.

The increase of entropy (i.e. decrease of H ) follows by convexity of the functional
H , together with the weak-L1 convergence of fn(t )⇀ f (t ) along a subsequence, and
the corresponding property of the approximation fn ,

H ( fn(t )) = H (w-limn→∞ fn(t )) ≤ lim inf
n→∞

H ( fn(t )) ≤ H ( f0).

To check energy conservation we use that the weak formulation implies for any
ψ ∈ C∞0 (R

d ) (time independent), and any 0 ≤ s < t ≤ T ,∫
Rd

f (t, v)ψ(v) dv −
∫
Rd

f (s, v)ψ(v) dv =
∫ t

s
〈Q( f , f )(τ), ψ〉 dτ

=

∫ t

s

∫
R2d×Sd−1

b(cos θ) f (τ, v) f (τ, v∗)
[
ψ(v ′) + ψ(v ′∗) − ψ(v) − ψ(v∗)

]
dvdv∗dσdτ.

(1.39)

Let ψ(v) = |v |2 χ(εv) with χ a smooth cut-off function, say equal to 1 on {|v | ≤ 1}
and zero for {|v | ≥ 2}. Then by our a priori bounds on the energy (1.36) (which
carry over to the weak limit f ) and Lebesgue’s dominated convergence theorem, the
expression in brackets on the right hand side of (1.39) tends to

|v ′ |2 + |v ′∗ |2 − |v |2 − |v∗ |2 = 0

as ε → 0. �

In an analogous fashion, one can prove
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Theorem 1.4 (Existence of weak solutions for the Kac equation,Desvillettes [Des95]).
Let f0 ≥ 0, f0 ∈ L1

2∩L log L(R), and assume that the collision kernel satisfies Assumptions
(K1)–(K3). Then there exists a weak solution of the Boltzmann-Kac equation

∂t f = K ( f , f ) = Q( f , f )

with initial datum f0 in the sense of Definition 1.2.
Moreover, if f0 ∈ L1

2p(R) for some p ≥ 2, then f ∈ L∞(R+; L1
2p(R)) and the conser-

vation of energy ∫
R
f (t, v)|v |2 dv =

∫
R
f0(v)|v |2 dv

holds for all t ≥ 0.

For more details on the proof we refer to [Des97].

1.3 Bobylev identity

We close this chapter with a calculation of the Fourier transform of the Boltzmann
operator in the Maxwellian case, which goes back to Bobylev [Bob84], see also the
appendix of [ADVW00].

The following convention regarding the Fourier transform of a Schwartz function
f ∈ S(Rd ) will be used throughout Part I,

(Ff )(η) = f̂ (η) =
∫
Rd

f (v) e−2πiv ·η dv,

and extended by duality to the space of tempered distributions S′.

Theorem 1.5 (Bobylev Identity for Maxwellian molecules). The (distributional) Fourier
transform of the Boltzmann collision operator for Maxwellian molecules is given by�Q(g, f )(ξ)
=

1
2

∫
Sd−1

b
(
ξ

|ξ |
· σ

) [
ĝ (ξ−) f̂ (ξ+) + ĝ (ξ+) f̂ (ξ−) − ĝ (ξ) f̂ (0) − ĝ (0) f̂ (ξ)

]
dσ,

where ξ± = ξ±|ξ |σ
2 .

Remark. In view of inequality (1.32), we can also define weak solutions by the weak
formulation (1.28) of the Boltzmann collision operator. This leads to the Bobylev
identity

�Q(g, f )(ξ) = ∫
Sd−1

b
(
ξ

|ξ |
· σ

) (
ĝ (ξ−) f̂ (ξ+) − ĝ (0) f̂ (ξ)

)
dσ (1.40)

for Maxwellian molecules. This is actually the form of Bobylev’s identity we will be
using in the following.
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A simple, but in a sense important, consequence of Bobylev’s identity (1.40) is that,
for all d ≥ 1,

PΛQ(g, f ) = PΛQ(PΛg, PΛ f ) (1.41)

where, for convenience, we put PΛ := 1Λ(Dv ) for the orthogonal projection onto
Fourier ’modes’ |η | ≤ Λ. This (quasi-)locality property will turn out to be crucial in
our inductive strategy to prove the strong smoothing properties of the homogeneous
Boltzmann equation.

We will get back to Bobylev’s identity in Chapter 5, where the non-Maxwellian
version of Theorem 1.5 will be briefly discussed. In particular, we will give some details
on why the proof of our main result cannot simply be extended to this case. �

Proof. Let ϕ ∈ S(Rd ) and assume that f , g ∈ L1
2(R

d ). Then by the definition of the
distributional Fourier transform and the weak formulation of Boltzmann’s collision
operator, we have

〈�Q(g, f ), ϕ〉 = 〈Q(g, f ), ϕ̂〉
=

1
2

∫
R2d×Sd−1

b
(
v − v∗
|v − v∗ |

· σ

)
g (v∗) f (v)

[
ϕ̂(v ′∗) + ϕ̂(v ′) − ϕ̂(v∗) − ϕ̂(v)

]
dvdv∗dσ

=
1
2

∫
Rd

dξ
∫
R2d×Sd−1

dvdv∗dσ b
(
v − v∗
|v − v∗ |

· σ

)
g (v∗) f (v)ϕ(ξ)

×

[
e−2πiξ ·v

′
∗ + e−2πiξ ·v

′

− e−2πiξ ·v − e−2πiξ ·v
]

=
1
2

∫
Rd

dξ
∫
R2d

dvdv∗ g (v∗) f (v)ϕ(ξ) e−2πiξ ·
v+v∗
2∫

Sd−1
dσ b

(
v − v∗
|v − v∗ |

· σ

) [
e2πiξ ·

|v−v∗ |
2 σ + e−2πiξ ·

|v−v∗ |
2 σ − e−2πiξ ·

v−v∗
2 − e2πiξ ·

v−v∗
2

]
.

The key observation of Bobylev was that∫
Sd−1

F (k · σ, ` · σ) dσ =
∫
Sd−1

F (` · σ, k · σ) dσ

for any integrable F and unit vectors k, l ∈ Sd−1. Notice that due to cancellations,∫
Sd−2

[
e2πiξ ·

|v−v∗ |
2 σ + e−2πiξ ·

|v−v∗ |
2 σ − e−2πiξ ·

v−v∗
2 − e2πiξ ·

v−v∗
2

]
dω

is of order θ2 for small θ , which regularises the singularity in b , see the calculation
leading to (1.31). In particular, the above remark for k = v−v∗

|v−v∗ | and ` =
ξ
|ξ | yields∫

Sd−1
dσ b

(
v − v∗
|v − v∗ |

· σ

) [
e2πiξ ·

|v−v∗ |
2 σ + e−2πiξ ·

|v−v∗ |
2 σ − e−2πiξ ·

v−v∗
2 − e2πiξ ·

v−v∗
2

]
=

∫
Sd−1

dσ b
(
ξ

|ξ |
· σ

) [
e2πi

|ξ |
2 (v−v∗)·σ + e−2πi

|ξ |
2 (v−v∗)·σ − e−2πiξ ·

v−v∗
2 − e2πiξ ·

v−v∗
2

]
.
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Introducing ξ± = ξ±|ξ |σ
2 , it then follows that

〈�Q(g, f ), ϕ〉 = 1
2

∫
Rd

dξ
∫
R2d×Sd−1

dvdv∗dσ b
(
ξ

|ξ |
· σ

)
g (v∗) f (v)ϕ(ξ)

×

[
e−2πiv ·ξ

−

e−2πiv∗ ·ξ
+

+ e−2πiv ·ξ
+

e−2πiv∗ ·ξ
−

− e−2πiv ·ξ − e−2πiv∗ ·ξ
]

=
1
2

∫
Rd

dξ ϕ(ξ)
∫
Sd−1

dσ b
(
ξ

|ξ |
· σ

)
×

[
ĝ (ξ+) f̂ (ξ−) + ĝ (ξ−) f̂ (ξ+) − ĝ (0) f̂ (ξ) − ĝ (ξ) f̂ (0)

]
.

This identifies the distributional Fourier transform of Q(g, f ). �



CHAPTER2
Smoothing properties of the
Boltzmann collision operator

It has long been suspected that the non-cutoff Boltzmann operator with a singular
cross section kernel of the form (1.16) has similar coercivity properties to the fractional
Laplacian (−∆)ν , for suitable 0 < ν < 1:

−Q(g, f ) ≈ (−∆)ν f + lower order terms,

that is, it behaves similar to a singular integral operator with leading term proportional
to a fractional Laplacian. The intuition has been made precise by Alexandre, Des-

villettes, Villani, and Wennberg [ADVW00], see also the reviews by Alexandre

[Ale09] and by Villani [Vil02] for the idea’s history. In terms of compactness prop-
erties this has been noticed for the linearised Boltzmann kernel as early as in [Pao74]
and for the nonlinear Boltzmann kernel in [Lio94a, Lio94b]. The suspicion has led to
the hope that the fully nonlinear homogenous Boltzmann equation enjoys regularity
properties similar to the heat equation with a fractional Laplacian given by{

∂t u + (−∆)νu = 0
u |t=0 = u0 ∈ L1(Rd ).

Using the Fourier transform one immediately sees that

û(t, ξ) = e−t (2π |ξ |)
2ν
û0(ξ) with û0 ∈ L∞(Rd ),

so

sup
t>0

sup
ξ ∈Rd

et |ξ |
2ν
|û(t, ξ)| ≤ ‖u0‖L1(Rd ) < ∞,

that is, the Fourier transform of the solution is extremely fast decaying for strictly
positive times, that is, solutions of the fractional heat equation gain a high amount of
regularity for arbitrary positive times.

29
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This is in sharp contrast to the fact that in the Grad cutoff case there cannot be
any smoothing effect. Instead, regularity and singularities of the initial datum get
propagated in this case, see, for example, [MV04].

The discussion about solutions of the heat equation with a fractional Laplacian
motivates the following definition of Gevrey spaces, which give a convenient frame-
work to describe this smoothing by interpolating between smooth and (ultra-)analytic
functions.

Definition 2.1. Let s > 0. A function f ∈ L1(Rd ) belongs to the Gevrey classG s (Rd ),
if there exists an ε0 > 0 such that1

eε0 〈Dv 〉
1/s
f ∈ L2(Rd ) , where 〈Dv 〉 =

(
1 + |Dv |

2)1/2 .
Thus,G1(Rd ) is the space of real analytic functions, andG s (Rd ) for s ∈ (0, 1) the space
of ultra-analytic functions.

Equivalently2, f ∈ G s (Rd ) if f ∈ C∞(Rd ) and there exists a constant C > 0 such
that for all k ∈ N0 one has

‖Dk f ‖L2(Rd ) ≤ C k+1(k!)s,

where ‖Dk f ‖2L2 = sup | β |=k ‖∂
β f ‖2L2 .

It is therefore natural to believe, as conjectured in [DW04], that weak solutions to
the non-cutoff Boltzmann equation gain a certain amount of smoothness, and even
analyticity, for any t > 0.

Conjecture (Gevrey smoothing). Any weak solution of the non-cutoff homogenous Boltz-
mann equation with a singular cross section kernel of order ν and with initial datum in
L1
2(R

d ) ∩ L log L(Rd ), i.e., finite mass, energy and entropy, belongs to the Gevrey class
G 1

2ν (Rd ) for strictly positive times.

The central result of this part of the thesis is a proof of this conjecture for Max-
wellian molecules. In particular, we prove

Theorem. Assume that the non-cutoff Boltzman cross section has a singularity 1+2ν with
0 < ν < 1 and obeys some further technical conditions, which are true in all physically
relevant cases, for details see (1.18) and (2.5). Then, for initial conditions f0 ∈ L log L∩L1

m
with an integer

m ≥ max
(
2,

2ν − 1
2(2 − 2ν )

)
any weak solution of the fully non-linear homogenous Boltzmann equation for Maxwellian
molecules belongs to the Gevrey classG 1

2ν for strictly positive times.
1We denote Dv = −

i
2π ∇ and for a suitable functionG : Rd → C we define the operatorG(Dv ) as a

Fourier multiplier, that is, G(Dv ) f B F−1[G f̂ ].
2Regarding equivalency, see, for example, Theorem 4 in [LO97].
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In particular, for ν ≤ log(9/5)/log(2) ' 0.847996 we have m = 2 and the theorem
does not require anything except the physically reasonable assumptions of finite mass, en-
ergy, and entropy. If log(9/5)/log(2) < ν < 1 and we assume only that f0 ∈ L log L∩L1

2,

then we prove that the solution is inG
log 2

2 log(9/5) , in particular, that it is ultra-analytic.

1. For a more precise formulation of our results, see Theorems 2.2, 2.4, and 2.5 for
the case m = 2 and Theorems 3.27, 3.28, and 3.29 below.

2. We would like to stress that our results cover both the weak and strong singularity
regimes, where 0 < ν < 1/2, respectively 1/2 ≤ ν < 1.

3. The theorem above applies to all dimensions d ≥ 1. The physical case for
Maxwellian molecules in dimension d = 3 is ν = 1/4.

The main problem for establishing Gevrey regularity is that, in order to use the
coercivity results of Alexandre, Desvillettes, Villani and Wennberg [ADVW00],
one has to bound a non-linear and non-local commutator of the Boltzmann kernel
with certain sub-Gaussian Fourier multipliers. The main ingredient in our proof is a
new way of estimating this non-local and nonlinear commutator.

In a similar way, one can look at the homogeneous Boltzmann equation for
Maxwellian molecules and an angular singularity of Debye-Yukawa type (1.19).

In this case, the singularity and thus the coercive effects are much weaker and of
the form

−Q(g, f ) ≈ (log(1 − ∆))µ+1 f + lower order terms, (2.1)

as was noticed in [MUXY09], see also Section 2.4 below. However, one should still
expect a smoothing effect similar to the logarithmic type heat equation{

∂t u + (log(1 − ∆))µ+1u = 0
u |t=0 = u0 ∈ L1(Rd ),

where the solutions satisfy

sup
t>0

sup
ξ ∈Rd

et log(1+ |ξ |
2)µ+1 |û(t, ξ)| ≤ ‖u0‖L1(Rd ) < ∞.

Higher regularity of weak solutions

The first regularisation results in this direction were due to Desvillettes for the
spatially homogeneous non-cutoff Kac equation [Des95] and the homogeneous non-
cutoff Boltzmann equation for Maxwellian molecules in two dimensions [Des97],
where C∞ regularisation is proved. Later, Desvillettes and Wennberg [DW04]
proved under rather general assumptions on the collision cross-section (excluding
Maxwellian molecules, though) regularity in Schwartz space of weak solutions to
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the non-cutoff homogeneous Boltzmann equation. By quite different methods, using
Littlewood-Paley decompositions, Alexandre and El Safadi [AE05] showed that the
assumptions on the cross-section (1.18)-(1.20) imply that the solutions are in H∞ for
any positive time t > 0. By moment propagation results for Maxwellian molecules (see
Truesdell [Tru56]) this cannot be improved to regularity in Schwartz space.

For collision cross-sections corresponding to Debye-Yukawa-type interaction poten-
tials, Morimoto, Ukai, Xu and Yang [MUXY09] proved the same H∞ regularising
effect using suitable test functions in the weak formulation of the problem.

The question of the local existence of solutions in Gevrey spaces for Gevrey regular
initial data with additional strong decay at infinity was first addressed in 1984 by Ukai

[Uka84], both in the spatially homogeneous and inhomogeneous setting.
We are interested in the Gevrey smoothing effect, namely that under the (physical)

assumptions of finite mass, energy and entropy of the initial data, weak solutions of
the homogeneous Boltzmann equation without cutoff are Gevrey functions for any
strictly positive time. This question was treated in the case of the linearised Boltzmann
equation in the homogeneous setting by Morimoto et al. [MUXY09], where they
proved that, given 0 < ν < 1, weak solutions of the linearised Boltzmann equation
belong to the space G 1

ν (R3) for any positive time. In [LMPX14], radially symmetric

perturbations g = g (|v |) around a global Maxwellian µ(v) = (2π)− 3
2 e−

|v |2
2 , that is, for

f in (1.2),

f (v) = µ(v) +
√
µ(v) g (v), g (v) = g (|v |),

were studied by using eigenfunctions of the linearised Boltzmann operator L, where

Lg = −µ−
1
2Q(µ, µ

1
2 g ) − µ−

1
2Q(µ

1
2 g, µ).

In this setting, the authors obtained a Gelfand-Shilov smoothing effect, which includes
Gevrey regularity.

For the non-Maxwellian Boltzmann operator, Gevrey regularity was proved under
very strong unphysical decay assumptions on the initial datum in [Lin14].

For radially symmetric solutions, the homogeneous non-cutoff Boltzmann equa-
tion for Maxwellian molecules is related to the homogeneous non-cutoff Kac equation.
The non-cutoff Kac equation was introduced by Desvillettes in [Des95], where first
regularity results were established, see also Desvillettes’ review [Des03]. For this
equation, the best available results so far are due to Lekrine and Xu [LX09] and Glan-

getas and Najeme [GN13]: Lekrine and Xu [LX09] proved Gevrey regularisation
of order 1

2α for mild singularities 0 < ν < 1
2 and all 0 < α < ν . Strong singularities

1
2 ≤ ν < 1 were treated by Glangetas and Najeme [GN13], where they prove that
for ν = 1

2 the solution becomes Gevrey regular of order 1
2α for any 0 < α < 1

2 and
Gevrey regular of order 1, that is, analytic, when 1

2 < ν < 1. Thus, in the critical
case ν = 1

2 , the result of [GN13] misses the analyticity of weak solutions and does not
prove ultra-analyticity in the range 1

2 < ν < 1. Moreover, both results are obtained
under the additional moment assumption f0 ∈ L1

2+2ν (R).
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Ultra-analyticity results have previously been obtained by Morimoto and Xu

[MX09] for the homogeneous Landau equation in the Maxwellian molecules case and
related simplified models in kinetic theory. The analysis of smoothing properties of
Landau equation is quite different from the Boltzmann and Kac equations. The Landau
equation explicitly contains a second order elliptic term, which yields coercivity, and,
more importantly, certain commutators with weights in Fourier space are identically
zero, which simplifies the analysis tremendously, see Proposition 2.2 in [MX09].

For the nonlinear non-cutoff homogeneous Boltzmann equation some partial res-
ults regarding Gevrey regularisation were obtained by Morimoto and Ukai [MU10],
including the non-Maxwellian molecules case, but under the strong additional assump-
tions of Maxwellian decay and smoothness of the solution. Still with these strong decay
assumptions, Yin and Zhang [YZ12, YZ14] extended this result to a larger class of
kinetic cross-sections.

We stress that for the main result of our paper the initial datum is only assumed to
obey the natural assumptions coming from physics, i.e., finiteness of mass, energy and
entropy.

2.1 Absence of smoothing in the Grad cutoff case

Before we formulate the main results about smoothing properties of the Boltzmann
and Kac equations, we quickly discuss the Grad cut-off case, that is∫

Sd−1
b(cos θ) dσ =: a < ∞.

In this case, the Boltzmann collision operator can be split into a gain partQ+( f , f )
and a loss part Q−( f , f ), according to the sign in the definition of the Boltzmann
operator (1.3),

Q( f , f ) = Q+( f , f ) −Q−( f , f ) = Q+( f , f ) − f (L f ),

where L f = a
∫
Rd

f (v) dv . Solutions of the homogeneous Boltzmann equation

∂t f + f (L f ) = Q+( f , f )

are then given by Duhamel’s formula

f (t, v) = e−
∫ t
0 L f (τ,v) dτ f0(v) +

∫ t

0
e−

∫ t
s L f (τ,v) dτQ+( f , f )(s, v) ds . (2.2)

While one can show that the operatorQ+( f , f ) has smoothing properties, equation
(2.2) shows that the solution f in the Grad cut-off case will at most be as regular as the
initial datum f0, that is f0 ∈ L1

2 ∩ L log L(Rd ) in our case.3
3However, one can show that the solution can be split into a part that lies in the Sobolev space H s , s

arbitrarily large, and one that has the regularity of the inital datum, but decays exponentially, see [MV04]
for more details in a non-Maxwellian setting and the classical treatise by Wild [Wil51].
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This observation shows the importance of the singularity in the angular collision
kernel for grazing collisions θ → 0 when it comes to smoothing properties of the
Boltzmann equation.

2.2 Gevrey smoothing for Maxwellian Molecules with
Power-law Interaction

In this section we formulate the main theorems regarding Gevrey smoothing for the
homogeneous Boltzmann and Kac equations for Maxwellian molecules with singularity
of power-law type.

Given β > 0 and α ∈ (0, 1) we define the Gevrey multiplier G : R+ × Rd → R by

G(t, η) := eβt 〈η 〉
2α

and for Λ > 0 the cut-off Gevrey multiplier GΛ : R+ × Rd → R by

GΛ(t, η) := G(t, η)1Λ(|η |),

where 1Λ is the characteristic function of the interval [0,Λ]. The associated Fourier
multiplication operator is denoted by GΛ(t,Dv ),

(GΛ(t,Dv ) f )(t, v) :=
∫
Rd

GΛ(t, η) f̂ (t, η) e2πiη ·v dη = F−1
[
GΛ(t, ·) f̂ (t, ·)

]
.

Note that, since GΛ(t, ·) has compact support in Rdη for any t > 0, one has

GΛ f ,G2
Λ
f ∈ L∞([0,T0];H∞(Rd ))

for any finite T0 > 0 and Λ > 0, if f ∈ L∞([0,T0]; L1(Rd )). This holds since

‖GΛ f ‖2H s (Rdv )
≤ ‖ f̂ ‖2

L∞(Rdη )
‖〈·〉 sGΛ(t, ·)‖2L2(Rdη )

≤ ‖ f ‖2
L1(Rdv )

‖〈·〉 sGΛ(T0, ·)‖
2
L2(Rdη )

for all s ≥ 0. These functions, due to the cut-off in Fourier space, are even analytic in a
strip containing Rdv .

Theorem 2.2 (Gevrey smoothing I). Let 0 < ν < 1 and assume that the cross-section
b satisfies conditions (B1)–(B3) with power-law type singularity (1.18) for d ≥ 2. For
d = 1, assume that b1 satisfies conditions (K1)–(K3). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ). Then, for all
0 < α ≤ min

{
α2,d, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (2.3)

for all t > 0, where α2,d =
log[(8+d)/(4+d)]

log 2 .
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Remarks 2.3. (i) In numbers,

α2,1 ' 0.847997, α2,2 ' 0.736966, and α2,3 ' 0.652077.

This means, that under only physically reasonable assumptions of finite mass,
energy, and entropy, weak solutions are analytic for ν ≥ 1

2 and even ultra-
analytic if ν > 1

2 . It is easy to see that α2,d is decreasing in d and for d = 6,
α2,6 ' 0.485427. Hence, for d ≥ 6, analyticity (respectively ultra-analyticity)
does not follow from this theorem.

(ii) For the proof of Theorem 2.2 (and also 2.4 and 2.5 below) it is important that
the energy of f is bounded, which enters in the technical Lemma 3.7 and its
Corollary 3.8. A considerably simpler proof could be given using only that
f ∈ L1

1(R
d ). In this case, α2,d is replaced by α1,d =

log[(4+d)/(2+d)]
log 2 (see also

Remark 2.2 below). However, α1,3 < 0.4855 in three dimensions, thus we would
not be able to conclude (ultra-)analytic smoothing of weak solutions for strong
singularities 1

2 ≤ ν < 1.

(iii) As our theorem above shows, weak solutions of the homogenous Kac equation
become Gevrey regular for strictly positive times for moderately singular col-
lision kernels with singularity ν ∈ (0, 12 ), see (1.21) for the precise description
of the singularity. For ν = 1

2 they become analytic, which improves the result
of Glangetas and Najeme [GN13] in this critical case. They even become
ultra-analytic for ν ∈ ( 12, 1).

( iv) Rotationally symmetric solutions f corresponding to rotationally symmetric
initial conditions f0 are Gevrey regular for strictly positive times under the same
conditions as in the one-dimensional case d = 1. The proof is exactly as the
proof of Theorem 3.27 with some small changes in the proof of Lemma 3.15,
where the independence of the solution f on the angular coordinates can be
explicitly used with the n = 1 version of Corollary 3.8.

As already remarked, the result of Theorem 2.2 deteriorates in the dimension.
Under the same assumptions, but using quite a bit more structure of the Boltzmann
operator, we can prove a dimension independent version. Its proof, however, is
considerably more involved than the proof of Theorem 2.2.

Theorem 2.4 (Gevrey smoothing II). Let d ≥ 2. Assume that the cross-section b satisfies
the conditions of Theorem 2.2. Let f be a weak solution of the Cauchy problem (1.2) with
initial datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ). Then, for all 0 < α ≤ min
{
α2,2, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (2.4)

for all t > 0, where α2,2 =
log(5/3)
log 2 ' 0.736966. In particular, in contrast to Theorem 2.2,

the weak solution is real analytic if ν = 1
2 and ultra-analytic if ν >

1
2 in any dimension.
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If the integrability condition (1.20) is replaced by the slightly stronger condition
that b(cos θ) is bounded away from θ = 0, that is,

for any 0 < θ0 <
π
2 there exists Cθ0 < ∞ such that

0 ≤ b(cos θ) ≤ Cθ0 for all θ0 ≤ θ ≤
π
2 ,

(2.5)

which is true in all physically relevant cases, we can prove an even stronger result.

Theorem 2.5 (Gevrey smoothing III). Let d ≥ 2. Assume that the cross-section b satisfies
the conditions of Theorem 2.2 and the condition (2.5), that is, it is bounded away from
the singularity. Let f be a weak solution of the Cauchy problem (1.2) with initial datum
0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ). Then, for all 0 < α ≤ min
{
α2,1, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (2.6)

for all t > 0, where α2,1 =
log(9/5)
log 2 ' 0.847997.

Remark. (i) Since we do not rely on interpolation inequalities between Sobolev
spaces, our results also include the limiting case α = ν , at least if ν ≤ α2,n
(n = d, 2, 1). This is in contrast to all previous results on smoothing properties
of the Boltzmann and Kac equations.

(ii) If higher moments of the initial datum are bounded (and thus stay bounded
eternally due to moment propagation results, see, for instance, Villani’s review
[Vil02]), the results in Theorem 2.4 and Theorem 2.5 can be improved in the
high singularity case, where ν is close to one. Namely, let f0 ∈ L log L∩L1

m(R
d )

for some integer m > 2, then the constants α2,d , α2,2, respectively α2,1, are
replaced by αm,n =

log[(4m+n)/(2m+n)]
log 2 (n = d, 2, 1), which are strictly increasing

towards the limit α∞,n = 1 as m becomes large. See Theorems 3.27, 3.28 and
3.29 below.

�

Moreover, we prove that for very strong singularities ν , we can prescribe precise
conditions on the initial datum such that we have f ∈ G 1

2ν (Rd ).

Theorem 2.6. Given 0 < ν < 1, there is m(ν) such that, if m ∈ N and m ≥ m(ν) and
f0 ∈ L log L ∩ L1

m , the weak solution is inG 1
2ν (Rd ) for all t > 0.

More precisely, under the conditions of Theorem 2.2 havingm ≥ max
(
2, 2

ν−1
2−2ν

)
yields

Gevrey smoothing of order 1
2ν and under the slightly stronger conditions of Theorem 2.5

havingm ≥ max
(
2, 2ν−1

2(2−2ν )

)
is enough.

Remark. The proof of this theorem follows directly from the results of Theorems 3.27,
3.28, and 3.29 in Section 3.7, which extend Theorems 2.2, 2.4, and 2.5 to the case of
finite moments m ≥ 2. �
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The strategy of the proofs of our main results Theorems 2.2, 2.4, and 2.5 is as
follows: we start with the additional assumption f0 ∈ L2 on the initial datum. We use
the known H∞ smoothing of the non-cutoff Boltzmann and Kac equation to allow
this. This yields an L2 reformulation of the weak formulation of the Boltzmann and
Kac equations which includes suitable growing Fourier multipliers.

The inclusion of sub-Gaussian Fourier multipliers leads to a nonlocal and nonlinear
commutator of the Boltzmann and Kac kernels, which turns out to be a three-linear
expression in the weighted solution f̂ on the Fourier side. In order to bound this
expression with L2 norms, one of the three terms has to be controlled pointwise,
including a sub-Gaussian growing factor, see Proposition 3.5. The problem is that one
has to control the pointwise bound with an L2 norm, which is in general impossible.
To overcome this obstacle there are several important technical steps:

(1) When working on a ball of radius Λ, we need this uniform control only on a
ball of radius Λ/

√
2, which enables an inductive procedure.

(2) Using the additional a priori information that the kinetic energy is finite, or,
depending on the initial condition, even higher moments are finite, we transform
weighted L2 bounds into pointwise bounds on slightly smaller balls with an
additional loss of power in the weights in Fourier space. Here we rely on
Kolmogorov-Landau type inequalities, see Lemma 3.9 and Appendix C.

(3) We use the strict concavity of the Fourier multipliers, see Lemma 3.3, in order
to compensate for this loss of power.

(4) Averaging over a codimension 2 sphere in the proof of Theorem 2.4, we get, in
any dimension, the same results as for the two dimensional Boltzmann equation.

(5) Averaging over a codimension 1 set constructed from a codimension 2 sphere
and the collision angles θ away from the singularity, and using the fact that near
the singularity one of the three Fourier weights is not big due to Lemma 3.3, we
can even get, in any dimension, the same results as for the one-dimensional Kac
equation under the conditions of Theorems 2.5 and 3.29.

2.3 Strong smoothing for Maxwellian Molecules with
Debye-Yukawa type Interaction

Based upon the proof of Gevrey smoothing for the homogeneous Boltzmann equation
with Maxwellian molecules and angular singularity of the inverse-power law type (1.18),
we can show a stronger than H∞ regularisation property of weak solutions in the
Debye-Yukawa case.

In [MUXY09] it has been shown that weak solutions to the Cauchy problem (1.2)
with Debye-Yukawa type interactions enjoy an H∞ smoothing property, i.e. starting
with arbitrary initial datum f0 ≥ 0, f0 ∈ L1

2 ∩ L log L(Rd ), one has f (t, ·) ∈ H∞ for
any positive time t > 0.
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Proposition 2.7 (H∞ smoothing of weak solutions, Theorem 1.1 in [MUXY09]).
Assume that 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ) and the collision kernel satisfies Assumptions
(B1)–(B3) with Debye-Yukawa type singularity (1.19). Let f be a weak solution of the
Cauchy problem (1.2) satisfying

sup
t ∈[0,T ]

∫
f (t, v)

(
1 + |v |2 + log(1 + f (t, v))

)
dv < ∞

for some T > 0. Then for any 0 < t ≤ T , we have

f (t, ·) ∈ H∞.

Remark. (1) Even though the above theorems are stated in dimension d = 3 in the
references, their proofs can be done in any dimension d ≥ 2.

(2) Also the proof of H∞ smoothing, valid in dimension d ≥ 2 for the Boltzmann
equation, respectively, the Kac equation in dimension d = 1, in Appendix B can be
easily transferred to the Debye-Yukawa case.

(3) This kind of logarithmic regularity effect was first observed by Morimoto for
infinitely degenerate elliptic operators [Mor87].

�

We will need the following function spaces to describe the gain of smoothness in
the Debye-Yukawa case:

Definition 2.8. Let µ > 0. A function f ∈ H∞(Rd ) is defined to be in the space
Aµ(Rd ) if there exist constants C > 0 and b > 0 such that∂α f L2 ≤ C |α |+1eb |α |

1+1/µ
for all α ∈ Nd

0 . (2.7)

For µ > 0 we define the family of function spaces, parametrised by τ > 0,

D
(
eτ(log〈D 〉)

µ+1
: L2(Rd )

)
B

{
f ∈ L2(Rd ) : eτ(log〈D 〉)

µ+1
f ∈ L2(Rd )

}
Lemma 2.9. Let µ > 0. Then

Aµ(Rd ) =
⋃
τ>0

D
(
eτ(log〈D 〉)

µ+1
: L2(Rd )

)
.

The proof is rather technical and is deferred to Appendix D.
In view of the coercivity property (2.1) and the regularisation properties of the

logarithmic heat equation

∂t f = −(log(1 − ∆))µ+1 f , (2.8)

the spaces Aµ, through their Fourier characterisation in Lemma 2.9, capture exactly the
gain of regularity that is to be expected for the Boltzmann equation with Debye-Yukawa
type angular singularity. Indeed, our main result is
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Theorem 2.10. Let f be a weak solution of the Cauchy problem (1.2) for the homogen-
eous Bolzmann equation for Maxwellian molecules with angular collision kernel satisfy-
ing Assumptions (B1)–(B3) with Debye-Yukawa type singularity (1.19), and initial datum
f0 ≥ 0, f0 ∈ L1

2(R
d ) ∩ L log L(Rd ). Then for any T0 > 0 there exists β > 0 such that

eβt(log〈Dv 〉)
µ+1

f (t, ·) ∈ L2(Rd ) (2.9)

for all t ∈ (0,T0]. In particular, f (t, ·) ∈ Aµ for all t > 0.
Furthermore, for all 0 ≤ t ≤ T0 there exists M > 0 such that with β as in (2.9),

sup
η∈Rd

e
2

d+2 βt(log〈η 〉)
µ+1
| f̂ (t, η)| ≤ M . (2.10)

Remark. The bound (2.10) holds uniformly in 0 ≤ t ≤ T0, whereas (2.9) does not give
uniform control on the L2 norm of eβt(log〈Dv 〉)

µ+1
f (t, ·) as t → 0.

As t → 0, ‖ f (t, ·)‖L2(Rd ) → ∞ since the initial datum is only assumed to satisfy
f0 ∈ L1

2 ∩ L log L(Rd ). Indeed, our proof strategy uses H∞ smoothing of the weak
solution first (see Proposition 2.7) and then proceeds with the additional assumption
f0 ∈ L2 ∩ L1

2 ∩ L log L(Rd ), see Theorem 4.4. As in Appendix B, we can show that the
L2 norm of f blows up at most polynomially though as t → 0. �

Remark. This regularity is much weaker than the Gevrey regularity we prove for
singular kernels of the form (1.18), but it is much stronger than the H∞ smoothing
shown in [MUXY09]. Moreover, it is exactly the right type of regularity one would
expect for a coercive term of the form (2.1) from the analogy with the heat equation
(2.8). We therefore expect this regularity result to be sharp. �

For our proof we have to choose β small if T0 is large and our bounds on β

deteriorate to zero in the limit T0 →∞, so our Theorem 2.10 does not give a uniform
result for all t > 0. Nevertheless, by propagation results due to Desvillettes, Furiolo

and Terraneo [DFT09] we even get a uniform bound:

Corollary 2.11. Under the same assumptions as in Theorem 2.10, for any weak solution
f of the Cauchy problem (1.2) with initial datum f0 ≥ 0 and f0 ∈ L1

2(R
d )∩L log L(Rd ),

there exist constants 0 < K ,C < ∞ such that

sup
0≤t<∞

sup
η∈Rd

eK min(t,1) (log〈η 〉)
µ+1
| f̂ (t, η)| ≤ C . (2.11)

The strategy of the proofs of our main result Theorem 2.10 is as follows: We start
with the additional assumption f0 ∈ L2 on the initial datum (Theorem 4.4). We use
the known H∞ smoothing [MUXY09] of the non-cutoff Boltzmann equation to allow
for this. Within an L2 framework, a reformulation of the weak formulation of the
Boltzmann equation is possible which includes suitable growing Fourier multipliers. As
in [MUXY09], the inclusion of Fourier multipliers leads to a nonlocal and nonlinear
commutator with the Boltzmann kernel. For non-power-type Fourier multipliers
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this commutator is considerably more complicated than the one encountered in the
H∞ smoothing case. To overcome this, we follow the strategy we developed in the
power-law case (see Chapter 3), where an inductive procedure is invented to control
the commutation error, in order to prove the Gevrey smoothing conjecture in the
Maxwellian molecules case.

2.4 Coercivity of the Boltzmann collision operator

The coercive properties of the non-cutoff Boltzmann bilinear operator, which play the
crucial role in the smoothing of solutions, are made precise in the following sub-elliptic
estimate by Alexandre, Desvillettes, Villani and Wennberg [ADVW00]. We
remark that, while the proof there is given for the Boltzmann equation, it equally
applies to the Kac equation.

Proposition 2.12 (Sub-elliptic Estimate, [ADVW00, MUXY09]). Let g ∈ L1
2(R

d ) ∩

L log L(Rd ), g ≥ 0 (g . 0). Assume that the collision cross-section b satisfies Assumptions
(B1)–(B3), respectively (K1)–(K3).

Power-law case. If the singularity of b for grazing collisions is of the type (1.18), then there
exists a constant Cg > 0 (depending only on the dimension d , the collision kernel
b , ‖g ‖L1

2
and ‖g ‖L log L ) and a constant C > 0 (depending only on d and b ), such

that for any f ∈ H 1(Rd ) one has

−〈Q(g, f ), f 〉 ≥ Cg ‖ f ‖2H ν −

(
2νCg +C ‖g ‖L1

2

)
‖ f ‖2L2 .

Debye-Yukawa case. If the singularity of b for grazing collisions is of the type (1.21), then
there exists a positive constant Cg depending only on the dimension d , the collision
kernel b , ‖g ‖L1

1
and ‖g ‖L log L and constants C > 0, R ≥

√
e, depending only

on the dimension d and on the collision kernel b , such that for all α ≥ 0 and all
0 ≤ f ∈ H 1(Rd ) one has

−〈Q(g, f ), f 〉 ≥
Cg(

log(α + e)
) µ+1 (log〈Dv 〉α

) µ+1
2 f

2
L2

−

(
Cg

(
log R

) µ+1
+C ‖g ‖L1

)
‖ f ‖2L2 .

Remark. As explained, for instance, in [AMUXY10], the constant Cg is an increasing
function of ‖g ‖L1 , ‖g ‖−1

L1
2
and ‖g ‖−1L log L. In particular, if g is a weak solution of

the Cauchy problem (1.2) with initial datum g0 ∈ L1
2(R

d ) ∩ L log L(Rd ), we have
‖g ‖L1 = ‖g0‖L1 , ‖g ‖L1

2
≤ ‖g0‖L1

2
and ‖g ‖L log L ≤ log 2‖g0‖L1 + H (g0) +Cδ,d ‖g0‖1−δL1

2
,

for small enough δ > 0 (see (1.24)). This implies Cg ≥ Cg0 and thus

−〈Q(g, f ), f 〉 ≥ Cg0 ‖ f ‖
2
H ν −

(
2νCg0 +C ‖g0‖L1

2

)
‖ f ‖2L2,
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respectively,

−〈Q(g, f ), f 〉 ≥
Cg0(

log(α + e)
) µ+1 (log〈Dv 〉α

) µ+1
2 f

2
L2

−

(
Cg0

(
log R

) µ+1
+C ‖g0‖L1

)
‖ f ‖2L2,

uniformly in t ≥ 0. �

As a first step in the proof of Proposition 2.12 we show

Lemma 2.13. Assume that the assumptions of Proposition 2.12 hold. Then

Power-law case. There exists a constant C ′g > 0, depending only on b , the dimension d ,
and ‖g ‖L1 , ‖g ‖L1

2
, and ‖g ‖L log L, such that∫

Sd−2
b

(
η

|η |
· σ

) (
ĝ (0) − | ĝ (η−)|

)
dσ ≥ C ′g |η |2ν 1{ |η | ≥1}

for all η ∈ Rd .

Debye-Yukawa case. There exists a constant C ′g > 0, depending only on b , the dimen-
sion d , and ‖g ‖L1 , ‖g ‖L1

2
, and ‖g ‖L log L, as well as a constant R ≥

√
e depending

only on d and b , such that∫
Sd−2

b
(
η

|η |
· σ

) (
ĝ (0) − | ĝ (η−)|

)
dσ ≥ C ′g

(
log〈η〉α
log(α + e)

) µ+1
1{ |η | ≥R}

for all η ∈ Rd .

Proof of Lemma 2.13. Since g ≥ 0, g ∈ L1
2 ∩ L log L, there exists a constant C̃g > 0

such that for all η ∈ Rd

ĝ (0) − | ĝ (η)| ≥ C̃g
(
|η |2 ∧ 1

)
.

It is therefore enough to bound
∫
Sd−1

b( η
|η | · σ)(|η

− |2 ∧ 1) dσ. Recall that |η− |2 =
|η |2

2

(
1 − η

|η | · σ
)
, and, choosing spherical coordinates with pole η

|η | such that η
|η | · σ =

cos θ , we obtain∫
Sd−1

b
(
η

|η |
· σ

) (
|η− |2 ∧ 1

)
dσ = |Sd−2 |

∫ π
2

0
sind−2 θ b(cos θ)

(
|η |2 sin2

θ

2
∧ 1

)
dθ

≥
|Sd−2 |

4π2

∫ π
2

0
sind−2 θ b(cos θ)

(
|η |2θ2 ∧ 1

)
dθ.
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Now, for the inverse power-law case, we use assumption (1.16) on the singularity:
there exists a deviation angle θ0 > 0 small enough such that

|Sd−2 |

4π2

∫ π
2

0
sind−2 θ b(cos θ)

(
|η |2θ2 ∧ 1

)
dθ

≥
κ

2
|Sd−2 |

4π2

∫ θ0

0
θ−1−2ν

(
|η |2θ2 ∧ 1

)
dθ

= |η |2ν
κ

2
|Sd−2 |

4π2

∫ |η |θ0

0
θ−1−2ν

(
θ2 ∧ 1

)
dθ.

For |η | ≥ 1 we thus obtain∫
Sd−1

b
(
η

|η |
· σ

) (
|η− |2 ∧ 1

)
dσ ≥ C ′g |η |2ν,

where

C ′g =
κ

2
|Sd−2 |

4π2

∫ θ0

0
θ−1−2ν

(
θ2 ∧ 1

)
dθ < ∞

in view of the momentum-transfer assumption (B3).
In the Debye-Yukawa case, by assumption (1.19) on the singularity for grazing

collisions on b , there exists a θ0 > 0 small enough such that

|Sd−2 |

4π2

∫ π
2

0
sind−2 θ b(cos θ)

(
|η |2θ2 ∧ 1

)
dθ

≥
κ

2
|Sd−2 |

4π2

∫ θ0

0
θ−1

(
log θ−1

) µ (
|η |2θ2 ∧ 1

)
dθ.

Let R > 0 be large enough, such that 1
R < θ0. Then for |η | ≥ R we have

κ

2
|Sd−2 |

4π2

∫ θ0

0
θ−1

(
log θ−1

) µ (
|η |2θ2 ∧ 1

)
dθ

≥
κ

2
|Sd−2 |

4π2

∫ θ0

1
|η |

θ−1
(
log θ−1

) µ dθ

=
κ

2
|Sd−2 |

4π2
1

µ + 1

[ (
log |η |

) µ+1
−

(
log

1
θ0

) µ+1]
≥ C

(
log |η |

) µ+1
for some constant C > 0 depending only on the dimension and the collision kernel b .
We conclude by noting that for all |η | ≥

√
e one has

log |η | =
1
2
log |η |2 ≥

log〈η〉α
log(e + α)

,

since for any α ≥ 0 the function [e,∞) 3 s 7→ H (s) B log s− log(α+s)
log(α+e) is non-decreasing

with H (e) = 0. �
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Proof of Proposition 2.12. We have 〈Q(g, f ), f 〉 = Re〈Q(g, f ), f 〉 and by Bobylev’s
identity,

−Re〈Q(g, f ), f 〉 = Re
∫
Rd×Sd−1

b
(
η

|η |
· σ

) [
ĝ (0) f̂ (η) − ĝ (η−) f̂ (η+)

]
f̂ (η) dσ dη

=
1
2

∫
Rd×Sd−1

b
(
η

|η |
· σ

) 〈(
f̂ (η)
f̂ (η+)

)
,

(
2ĝ (0) −ĝ (η−)
−ĝ (η−) 0

) (
f̂ (η)
f̂ (η+)

)〉
C2

dσ dη

=
1
2

∫
Rd×Sd−1

b
(
η

|η |
· σ

) 〈(
f̂ (η)
f̂ (η+)

)
,

(
ĝ (0) −ĝ (η−)
−ĝ (η−) ĝ (0)

) (
f̂ (η)
f̂ (η+)

)〉
C2

dσ dη

−
1
2

∫
Rd×Sd−1

b
(
η

|η |
· σ

) 〈(
f̂ (η)
f̂ (η+)

)
,

(
−ĝ (0) 0
0 ĝ (0)

) (
f̂ (η)
f̂ (η+)

)〉
C2

dσ dη

=: I1 − I2.

To estimate I2 = 1
2

∫
Rd×Sd−1

b
(
η
|η | · σ

)
ĝ (0)

(
| f̂ (η+)|2 − | f̂ (η)|2

)
dσ dη , we do a

change of variables η+ → η as in [ADVW00] in the first part, treating b as if it
were integrable, and using a limiting argument to make the calculation rigorous (this
is a version of the cancellation lemma of [ADVW00] on the Fourier side). We then
obtain with ĝ (0) = ‖g ‖L1

I2 = |Sd−2 |
∫ π/2

0
sind−2 θ b(cos θ)

[
1

cosd θ
2

− 1

]
dθ ‖g ‖L1(Rd ) ‖ f ‖

2
L2(Rd )

.

In particular, since 1
cosd θ

2
− 1 = d

8 θ
2 + O(θ3), the θ -integral is finite and it follows that

|I2 | ≤ C ‖g ‖L1(Rd ) ‖ f ‖
2
L2(Rd )

.

For the integral I1, we note that since g ≥ 0, the matrix in I1 is positive definite by
Bochner’s theorem and has the lowest eigenvalue ĝ (0) − | ĝ (η−)|, hence

I1 ≥
1
2

∫
Rd×Sd−1

b
(
η

|η |
· σ

) (
ĝ (0) − | ĝ (η−)|

) (
| f̂ (η)|2 + | f̂ (η+)|2

)
dσ dη

≥
1
2

∫
Rd
| f̂ (η)|2

∫
Sd−1

b
(
η

|η |
· σ

) (
ĝ (0) − | ĝ (η−)|

)
dσ dη.

By Lemma 2.13, we have for the power-law case

I1 ≥
C ′g
2

∫
{ |η | ≥1}

| f̂ (η)|2 |η |2ν dη ≥
C ′g
21+ν

∫
{ |η | ≥1}

| f̂ (η)|2 |η |2ν dη

≥
C ′g
21+ν
‖ f ‖2H 1 −

C ′g
2
‖ f ‖2L2,
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where we used |η |2 ≥ 〈η 〉
2

2 for |η | ≥ 1. Similarly, we obtain in the Debye-Yukawa case

I1 ≥
C ′g
2

∫
{ |η | ≥R}

| f̂ (η)|2
(

log〈η〉α
log(α + e)

) µ+1
dη

≥
C ′g

2(log(α + e))µ+1

(log〈Dv 〉α
) µ+1

2 f
2
L2
−
C ′g
2

(
log(α + R2)

2 log(α + e)

) µ+1
‖ f ‖L2

≥
C ′g

2(log(α + e))µ+1

(log〈Dv 〉α
) µ+1

2 f
2
L2
−
C ′g
2

(
log R

) µ+1
‖ f ‖L2 .

In the last inequality we used the fact that for R ≥
√
e the function α 7→ log(α+R2)

2 log(α+e) is
decreasing.

Combining the estimates of I1 and I2, we arrive at the claimed sub-elliptic estimates
for the Boltzmann operator. �



CHAPTER3
Gevrey smoothing for Maxwellian

Molecules with Power-law
Interaction

3.1 Gevrey regularity and (ultra-)analyticity of weak
solutions with L2 initial data

In this section, we will prove the Gevrey smoothing of weak solutions with initial
datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ) and, additionally, f0 ∈ L2(Rd ).
The following is our starting point for the proof of the regularising properties of

the homogenous Boltzmann equation:

Proposition 3.1. Let f be a weak solution of the Cauchy problem (1.2) with initial datum
0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ), and let T0 > 0. Then for all t ∈ (0,T0], β > 0, α ∈ (0, 1),

and Λ > 0 we haveGΛ f ∈ C
(
[0,T0]; L2(Rd )

)
and

1
2
‖GΛ(t,Dv ) f (t, ·)‖2L2 −

1
2

∫ t

0

〈
f (τ, ·),

(
∂τG2

Λ
(τ,Dv )

)
f (τ, ·)

〉
dτ

=
1
2
‖1Λ(Dv ) f0‖2L2 +

∫ t

0

〈
Q( f , f )(τ, ·),G2

Λ
(τ,Dv ) f (τ, ·)

〉
dτ.

(3.1)

Informally, equation (3.1) follows from using ϕ(t, ·) := G2
Λ
(t,Dv ) f (t, ·) in the

weak formulation of the homogenous Boltzmann equation.
Recall that G2

Λ
f ∈ L∞([0,T0];H∞(Rd )) for any finite T0 > 0, so it misses the re-

quired regularity in time needed to be used as a test function. The proof of Proposition
3.1 is analogous to Morimoto et al. [MUXY09], for the sake of completeness and the
convenience of the reader, we prove it in Appendix A.

45
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Together with Proposition 3.1 the coercivity estimate Lemma 2.13 implies

Corollary 3.2 (A priori bound for weak solutions). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ), and let T0 > 0.
Then there exist constants C̃ f0,C f0 > 0 (depending only on the dimension d , the collision
kernel b , ‖ f0‖L1

2
and ‖ f0‖L log L ) such that for all t ∈ (0,T0], β > 0, α ∈ (0, 1), and

Λ > 0 we have

‖GΛ f ‖2L2 ≤ ‖1Λ(Dv ) f0‖2L2 +

∫ t

0
2
(
−C̃ f0 ‖GΛ f ‖

2
H ν +C f0 ‖GΛ f ‖

2
L2

)
dτ

+

∫ t

0
2
��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉�� dτ

+

∫ t

0
2β‖GΛ f ‖2H α dτ.

(3.2)

Proof. We want to apply the coercivity result from Lemma 2.13 to the second integral
on the right hand side of Proposition 3.1. Therefore, we write

〈Q( f , f ),G2
Λ
f 〉 = 〈GΛQ( f , f ),GΛ f 〉
= 〈Q( f ,GΛ f ),GΛ f 〉 + 〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉

≤ −C̃ f0 ‖GΛ f ‖
2
H ν +C ‖ f0‖L1

2︸    ︷︷    ︸
=:C f0

‖GΛ f ‖2L2

+ 〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉.

Moreover,

∂τG2
Λ
(τ, η) = 2β〈η〉2αG2

Λ
(t, η).

Inserting those two results into (3.1), we obtain

‖GΛ f ‖2L2 ≤ ‖1Λ(Dv ) f0‖2L2 + 2β
∫ t

0
‖GΛ f (τ, ·)‖2H α dτ

+ 2
∫ t

0

(
−C̃ f0 ‖GΛ f ‖

2
H ν +C f0 ‖GΛ f ‖

2
L2

)
dτ

+ 2
∫ t

0
〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉 dτ. �

The term 〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉 is called commutation error.

3.2 Bound on the commutation error

Next, we prove a new bound on the commutation error. An important ingredient is
the following elementary observation:
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Lemma 3.3 (Strict concavity bound). Let α ∈ (0, 1] be fixed. The map

0 ≤ u 7→ ε (α, u) := (1 + u)α − uα

has the following properties:

(i) If α ∈ (0, 1), then ε (α, ·) is strictly decreasing on [0,∞) with limu→∞ ε (α, u) = 0.
In particular, for any γ ≥ 1 and 0 ≤ γ s− ≤ s+ one has

ε
(
α, s

+

s−

)
≤ ε (α, γ) ≤ ε (α, 1) = 2α − 1 < 1. (3.3)

Moreover, for all α ∈ (0, 1) and all u > 0

ε (α, u) ≤ uα−1.

(ii) If u > 0, then ε (·, u) is strictly increasing on [0, 1].

(iii) For all s−, s+ ≥ 0

(1 + s− + s+)α ≤ ε
(
α, s

+

s−

)
(1 + s−)α + (1 + s+)α .

Proof. Since

∂

∂u
ε (α, u) = α

(
(1 + u)α−1 − uα−1

)
< 0 for α ∈ (0, 1),

ε (α, ·) is strictly decreasing. Furthermore, for fixed u > 0 we have

∂

∂α
ε (α, u) = log(1 + u) (1 + u)α − log u uα > 0,

which shows that ε (·, u) is strictly increasing.
For α ∈ (0, 1) and u ≥ 0 we estimate

ε (u, α) = α
∫ 1+u

u
r α−1 dr ≤ αuα−1 ≤ uα−1.

In particular, limu→∞ ε (α, u) = 0. By monotonicity, the chain of inequalities (3.3)
follows.

Let s−, s+ ≥ 0. Then

(1 + s− + s+)α = (s−)α
[(
1 + 1+s+

s−

)α
−

(
1+s+
s−

)α]
+ (1 + s+)α

≤ ε
(
α, 1+s

+

s−

)
(1 + s−)α + (1 + s+)α

≤ ε
(
α, s

+

s−

)
(1 + s−)α + (1 + s+)α

where we made use of the monotonicity of ε (α, ·) in the last inequality. �
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Remark. The proof of Lemma 3.3 is so simple that one might wonder whether it could
be of any use. In fact, it is crucial. Its usefulness is hidden in the fact that it enables us
to gain a small exponent in the commutator estimates, see Proposition 3.5 and Lemma
3.6 below. Furthermore, ε (α, γ) can be made as small as we like if γ can be chosen
large enough, which will be important in the proof of Theorem 2.5. �

Corollary 3.4. Let G̃(s) := eβt (1+s)
α for s ≥ 0, α ∈ (0, 1]. Then, for all s−+ s+ = s with

0 ≤ s− ≤ s+,

|G̃(s) − G̃(s+)| ≤ 2αβt (1 + s+)α
(
1 − s+

s
)
G̃(s−)ε

(
α,

s+
s−

)
G̃(s+)

with ε (α, u) from Lemma 3.3.

Proof. Since s+ ≤ s and α ∈ (0, 1],

|G̃(s) − G̃(s+)| ≤
∫ s

s+

���� ddr G̃(r )���� dr = αβt ∫ s

s+
(1 + r )α−1G̃(r ) dr

≤ αβt (1 + s+)α−1(s − s+)G̃(s).

In addition, since s ≤ 2s+,

s − s+

1 + s+
=

(
1 −

s+

s

)
s

1 + s+
≤ 2

(
1 −

s+

s

)
.

Moreover, since s = s+ + s−, the strict concavity Lemma 3.3 gives

G̃(s) ≤ G̃(s−)ε
(
α,

s+
s−

)
G̃(s+),

which completes the proof. �

Proposition 3.5 (Bound on Commutation Error). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ). Recall ε (α, u) =
(1 + u)α − uα . Then for all t ∈ (0,T0], β > 0, α ∈ (0, 1), and Λ > 0 we have��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉��

≤ 2αβt
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

)
G(η−)ε (α, |η

+ |2/ |η− |2) | f̂ (η−)|

×GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dσdη,
(3.4)

for d ≥ 2, and��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉��
≤ 2αβt

∫
R

∫ π
4

− π4

b1 (θ) sin2 θ G(η−)ε (α, |η
+ |2/ |η− |2) | f̂ (η−)|

×GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dθdη,

(3.5)

in the one-dimensional case.
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Remark. If the weight G was growing polynomially, the term G(η−) in the integral
(3.4), respectively (3.5), would be replaced by 1. In this case, the “bad terms" which
contain η− can simply be bounded by ‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 and the rest can be
bounded nicely in terms of ‖GΛ f ‖L2 and ‖GΛ f ‖H α , see the discussion in Appendix
B.

If the weight G is exponential, the estimate of the terms containing η− in (3.4),
respectively (3.5), is an additional challenge and the methods we devised in order to
control this term in the commutation error is probably the most important new
contribution of this work. �

Proof of Proposition 3.5. We start with d ≥ 2. By Bobylev’s identity, one has��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉�� = ��〈F [
Q( f ,GΛ f ) −GΛQ( f , f )

]
,F

[
GΛ f

]〉
L2

��
≤

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)| |GΛ(η+) −GΛ(η)| dσ dη

=

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)| |G(η+) −G(η)| dσ dη,

where the latter equality follows from the fact that GΛ is supported on the ball
{|η | ≤ Λ} and |η+ | ≤ |η |.

To estimate |G(η+) −G(η)|, we use Corollary 3.4 with s := |η |2 and, accordingly,
s± = |η± |2. Notice that

|η± |2 =
|η |2

2

(
1 ±

η

|η |
· σ

)
, |η |2 = |η+ |2 + |η− |2,

and, writing cos θ = η ·σ
|η | , we also have

|η+ |2 = |η |2 cos2 θ
2 , |η

− |2 = |η |2 sin2 θ
2 .

Since b is supported on angles in [0, π/2], one sees 0 ≤ |η− |2 ≤ 1
2 |η |

2 and 1
2 |η |

2 ≤

|η+ |2 ≤ |η |2. Therefore, s− ≤ s
2 ≤ s+ ≤ s and s = s+ + s−.

It follows that for all η ∈ Rd with |η | ≤ Λ, noting that |η+ | ≤ |η | ≤ Λ,

|G(η) −G(η+)| ≤ 2αβt 〈η+〉2α
(
1 − |η

+ |2

|η |2

)
G(η−)ε (α, |η

+ |2/ |η− |2)GΛ(η+), (3.6)

which finishes the proof in dimension d ≥ 2.
For the Kac model we remark that the above proof depends only on |η− | ≤ |η+ | ≤

|η | and |η− |2 + |η+ |2 = |η |2, hence |η− |2 ≤ |η |2/2, and the strict concavity Lemma
3.3 and the Corollary 3.4. Since, by symmetry, we assume that b1 is supported in
[−π/4, π/4], the same bounds for η− and η+ hold in dimension one and the above proof
can be literally translated, with obvious changes in notation, to the Kac equation. �

The bound on the commutation error in Proposition 3.5 is a trilinear expression
in the weak solution f . In order to close the a priori bound from Corollary 3.2 in
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L2, one of the terms has to be controlled uniformly in η . Seemingly impossible with
the growing weights, it is exactly at this place where the gain of the small exponent
ε (α, |η+ |2/|η− |2) ≤ ε (α, 1) < 1 in the G(η−) term in (3.4) and (3.5) allows us to
proceed with this strategy. This gain of the small exponent is new and enabled by the
strict concavity bound of Lemma 3.3 and its Corollary 3.4 and it is crucial for our
inductive approach for controlling the commutation error.

The change of variables is a standard computation used earlier, for instance in
[ADVW00, MUXY09]. We repeat it for the convenience of the reader and, more
importantly, since some care has to be exercised in view of the strategy of our inductive
setup for controlling the commutation error.

Lemma 3.6. The inequality��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉�� ≤ Id,Λ + I +d,Λ

holds, where, for d ≥ 2

Id,Λ = αβt
∫
Rd

( ∫ π
2

0

∫
Sd−2(η)

sind θ b(cos θ)G(η−)ε
(
α,cot2 θ2

)
| f̂ (η−)|

× 1 Λ√
2
(|η− |) dω dθ

)
|GΛ(η) f̂ (η)|2 〈η〉2α dη.

(3.7)

Here the vector η− is expressed as a function of η and σ, that is,

η− = η−(η, σ) =
1
2
(η − |η |σ) = |η | sin2( θ2 )

η

|η |
− |η | sin( θ2 ) cos(

θ
2 )ω (3.8)

and σ is a vector on the unit sphere given by

σ = σ(θ,ω) = cos(θ)
η

|η |
+ sin(θ)ω (3.9)

with polar angle θ ∈ [0, π/2] with respect to the north pole in the η direction, ω ∈
Sd−2(η) := {ω̃ ∈ Rd : ω̃ ⊥ η, |ω̃ | = 1}, the (d − 2)-sphere in Rd orthogonal to the η
direction, and dω the canonical measure on Sd−2.

I +d,Λ = 2dαβt
∫
Rd

( ∫ π
4

0

∫
Sd−2(η+)

sind ϑ b (cos 2ϑ) G(η−)ε(α,cot
2 ϑ) | f̂ (η−)|

× 1 Λ√
2
(|η− |) dω dϑ

)
|GΛ(η+) f̂ (η+)|2〈η+〉2α dη+

(3.10)

where now the vector η− is expressed as a function of η+ and σ, that is,

η− = η−(η+, σ) = η+ − |η+ |

(
η+ · σ

|η+ |

)−1
σ = −|η+ | tan(ϑ)ω (3.11)
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where σ is now a vector on the unit sphere with north pole in the η+ direction given by

σ = σ(ϑ,ω) = cos(ϑ)
η+

|η+ |
+ sin(ϑ)ω (3.12)

with polar angle ϑ ∈ [0, π/4] and ω ∈ Sd−2(η+), the (d − 2)-sphere in Rd orthogonal to
the η+ direction. If d = 2 we set S0 := ∅ in this context.

For d = 1 we have

I1,Λ = αβt
∫
R

∫ π
4

−
π
4

sin2 θb1(θ)G(η−)
ε
(
α,cot2 θ2

)
| f̂ (η−)| 1 Λ√

2
(|η− |) dθ

× |GΛ(η) f̂ (η)|2 〈η〉2α dη,

I +1,Λ =
√
2αβt

∫
R

∫ π
4

−
π
4

sin2 θb1(θ)G(η−)
ε
(
α,cot2 θ2

)
| f̂ (η−)| 1 Λ√

2
(|η− |) dθ

× |GΛ(η+) f̂ (η+)|2 〈η+〉2α dη+,

where in the first case η− = η−(η, θ) = η sin θ and in the second case

η− = η−(η+, θ) = η+ tan θ

and there is no need to distinguish between the θ and ϑ parametrisation.

Remark. In the η , respectively η+, integrals above η− and σ are always the same
vectors expressed in different parametrisations. We therefore have the relation ϑ = θ/2,
see Figure 3.1 for the geometry of the collision process in Fourier space. �

η

η+

η−

θ

θ/2
θ/2

σ

ϑ

Figure 3.1: Geometry of the collision process in Fourier space.
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Remark. From the bounds given in Lemma 3.6 one might already see that, in order to
bound the commutation error by some multiple of ‖GΛ f ‖2H α(Rd )

, one has to control
integrals of the form

sup
|η | ≤Λ

∫ π
2

0

∫
Sd−2(η)

sind θb(cos θ)Gε
(
α,cot2 θ2

)
(η−) | f̂ (η−)| 1 Λ√

2
(|η− |) dω dθ,

with the parametrisation (3.8) for η−, and similarly for (3.10) and the corresponding
integrals in the one dimensional case. Due to the characteristic function in η−, this
uniform control is not needed on the full ball of radius Λ, but only on a strictly smaller
one, giving rise to an induction-over-length-scales type of argument. �

Proof of Lemma 3.6. Let d ≥ 2. Using the elementary estimate

|GΛ(η) f̂ (η)| |GΛ(η+) f̂ (η+)| ≤
1
2

(
|GΛ(η) f̂ (η)|2 + |GΛ(η+) f̂ (η+)|2

)
in the bound (3.4) gives��〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉�� ≤ Ĩd,Λ + Ĩ +d,Λ

with

Ĩd,Λ = αβt
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

)
G(η−)ε (α, |η

+ |2/ |η− |2) | f̂ (η−)|

× 1 Λ√
2
(|η− |) |GΛ(η) f̂ (η)|2 〈η+〉2α dσdη,

and

Ĩ +d,Λ = αβt
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

)
G(η−)ε (α, |η

+ |2/ |η− |2) | f̂ (η−)|

× 1 Λ√
2
(|η− |) |GΛ(η+) f̂ (η+)|2 〈η+〉2α dσdη.

First we consider Ĩd,Λ. Writing σ in a parametrisation where the north pole is in the η
direction, one has

σ = cos θ
η

|η |
+ sin θ ω

where cos θ = η ·σ
|η | ≥ 0 and ω is a unit vector orthogonal to η , that is, ω ∈ Sd−2(η).

Due to the support condition on b one has cos θ ≥ 0, that is, σ is restricted to the
northern hemisphere θ ∈ [0, π/2]. In this parametisation one has dσ = sind−2 θdθdω.
From the definition of η± one sees

η± =
1
2
(η ± |η |σ) =

|η |

2
(1 ± cos θ)

η

|η |
±
|η |

2
sin(θ)ω
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so

η+ = |η | cos2( θ2 )
η

|η |
+ |η | sin( θ2 ) cos(

θ
2 )ω.

In particular,

|η+ | = |η | cos
θ

2
, and 1 −

|η+ |2

|η |2
= 1 − cos2

θ

2
= sin2

θ

2
.

Moreover,

η− = |η | sin2
θ

2
η

|η |
− |η | sin

θ

2
cos

θ

2
ω, and |η− | = |η | sin

θ

2
,

so

|η+ |2

|η− |2
=

cos2 θ
2

sin2 θ
2

= cot2
θ

2
.

After this preparation, using also 〈η+〉2α ≤ 〈η〉2α and sin θ
2 ≤ sin θ for θ ∈ [0, π2 ], the

inequality Ĩd,Λ ≤ Id,Λ is immediate. The inclusion of the additional factor 1Λ(|η |) =
1sin θ

2Λ
(|η− |) ≤ 1

Λ/
√
2(|η

− |) seems artificial for the moment, but will be convenient to
keep track of the fact that η− is always restricted to a ball of radius Λ√

2
.

Concerning Ĩd,Λ, we want to implement a change of variables from η to η+. As a
function of η and σ, η+ = 1

2 (η − |η |σ). Thus����∂η+∂η ���� = ����12 (
1 +

η

|η |
⊗ σ

)���� = 1
2d

(
1 +

η

|η |
· σ

)
≥

1
2d
,

since η · σ ≥ 0 and the second equality is an application of Sylvester’s determinant
theorem. Therefore, the Jacobian of the transformation from η to η+ can be bounded
by ���� ∂η∂η+ ���� = ����∂η+∂η ����−1 ≤ 2d .

In addition,

|η+ |2 =
|η |2

2

(
1 +

η · σ

|η |

)
and η+ · σ =

|η |

2

(
1 +

η · σ

|η |

)
=
|η+ |2

|η |
,

which implies

η+ · σ

|η+ |
=
|η+ |

|η |
and

η · σ

|η |
= 2
|η+ |2

|η |2
− 1 = 2

(
η+ · σ

|η+ |

)2
− 1.

Moreover, from the definition of η± one sees

η = 2η+ − |η |σ
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so

η− = η+ − |η |σ = η+ − |η+ |

(
η+ · σ

|η+ |

)−1
σ.

Therefore, taking care of the domain of integration,

Ĩ +d ≤ 2d
∫
Rd

∫
Sd−1

b

(
2
(
η+ · σ

|η+ |

)2
− 1

) (
1 −

(
η+ · σ

|η+ |

)2)
1 η+ ·σ

|η+ |
Λ
(|η+ |)

×Gε(α, |η+ |2/ |η− |2)(η−)| f̂ (η−)| |GΛ(η+) f̂ (η+)|2〈η+〉2α dσ dη+.

Introducing spherical coordinates with north pole in the η+ direction, one has

σ = σ(ϑ,ω) = cos(ϑ)
η+

|η+ |
+ sin(ϑ)ω

where now cos ϑ = η+ ·σ
|η+ | . From figure 3.1 one sees ϑ = θ

2 ∈ [0, π/4]. In this paramet-
risation one has

η− = η+ −
|η+ |

cos ϑ
σ = −|η+ | tan(ϑ)ω

and again dσ = sind−2 ϑ dϑdω. Thus

Ĩ +d ≤ 2d
∫
Rd

∫
Sd−2

∫ π
4

0
b (cos 2ϑ) sind ϑGε(α,cot2 ϑ)(η−)| f̂ (η−)| 1(cos ϑ)Λ(|η+ |)

× |G(η+) f̂ (η+)|2〈η+〉2α dϑ dω dη+.

Since |η− | = |η+ | tan ϑ we obtain 1(cos ϑ)Λ(|η
+ |) = 1(sin ϑ)Λ(|η

− |) ≤ 1
Λ/
√
2(|η

− |),
because ϑ ∈ [0, π/4]. Hence Ĩ +d,Λ ≤ I +d,Λ.

The proof in the d = 1 case is completely analogous. �

3.3 Extracting pointwise information from local L2 bounds

Lemma 3.7. Let m ≥ 2 and ℎ ∈ W m,∞(R) and q ≥ 1
m . Then there exists a constant

Lm < ∞ depending only on q,m, ‖ℎ‖L∞(R) and ‖ℎ(m)‖L∞(R) such that

|ℎ(r )|q ≤ Lm

∫
Ωr

|ℎ(ξ)|q−
1
m dξ for all r ∈ R,

where Ωr = [r , r + 2] if r ≥ 0 and Ωr = [r − 2, r ] if r < 0.

Looking into the proof of Lemma 3.7, it is clear that its m = 1 version also holds,
even with a much simpler proof. Before actually going into the proof, we state an
important consequence of it, which will enable us to get pointwise decay estimates on
a function once suitable L2 norms are bounded.

For m ∈ N define ‖Dm f ‖L∞(Rd ) := supω∈Sd−1 ‖(ω · ∇)
m f ‖L∞(Rd ). Notice that this

norm is invariant under rotations of the function f .
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Corollary 3.8. Let H ∈ Cm(Rn). Then there exists a constant Lm,n < ∞ (depending
only onm, n, ‖H ‖L∞(Rn) and, ‖DmH ‖L∞(Rn)) such that

|H (x)| ≤ Lm,n

(∫
Qx

|H (ξ)|2 dξ
) m

2m+n

,

where Qx is a cube in Rn of side length 2, with x being one of the corners, such that it is
oriented away from x in the sense that x · (ξ − x) ≥ 0 for all ξ ∈ Qx .

Remark. The constant Lm,n in Corollary 3.8 is invariant under rotations of the func-
tion H . This will be convenient for its application in Sections 3.5 and 3.6. �

Proof. We apply Lemma 3.7 iteratively in each coordinate direction to obtain

|H (x1, x2, . . . , xn)|2+
n
m ≤ L(1)m

∫
Ωx1

|H (ξ1, x2, . . . , xd )|2+
n−1
m dξ1

≤ L(1)m L(2)m
∫
Ωx1

∫
Ωx2

|H (ξ1, ξ2, x3 . . . , xd )|2+
n−2
m dξ1 dξ2

≤ L(1)m · · · L
(n)
m

∫
Ωx1

· · ·

∫
Ωxd

|H (ξ1, . . . , ξd )|2 dξ1 · · · dξn .

The constants L(i)m , i = 1, . . . , n, only depend on m,

‖H (x1, . . . , x i−1, · , x i+1, . . . , xn)‖L∞(R) ≤ ‖H ‖L∞(Rn)

and

‖∂mi H (x1, . . . , x i−1, · , x i+1, . . . , xn)‖L∞(R) ≤ ‖DmH ‖L∞(Rn).

Setting Lm,n =
∏n

i=1 L
(i)
m yields the stated inequality with Qx = Ωx1 × · · · ×Ωxn . �

Remark. It is worth noticing that the exponent in Corollary 3.8 is decreasing in the
dimension and increasing in m. �

For the proof of Lemma 3.7 we need the following interpolation result between
L∞ norms of derivatives of a function.

Lemma 3.9 (Kolmogorov-Landau inequality on the unit interval). Let m ≥ 2 be an
integer. There exists a constant Cm > 0 such that for all w ∈W m,∞([0, 1]),

‖w (k)‖L∞([0,1]) ≤ Cm

(
‖w ‖L∞([0,1])

uk
+ um−k ‖w (m)‖L∞([0,1])

)
, k = 1, . . . ,m − 1,

for all 0 < u ≤ 1.
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Proof. The result dates back to E. Landau and A. N. Kolmogorov who proved it on
R and R+. A proof of the inequality on a finite interval can be found in the book by R.

A. DeVore and G. G. Lorentz [DL93] (pp.37–39), but for the reader’s convenience
we also give a short proof in Appendix C. �

For us, the important consequence we are going to make use of is

Corollary 3.10. Let Cm > 0 be the constant from Lemma 3.9. Then for all w ∈

W m,∞([0, 1]),

‖w (k)‖L∞([0,1]) ≤ 2Cm ‖w ‖1−k/mL∞([0,1])max
{
‖w ‖k/mL∞([0,1]), ‖w

(m)‖
k/m
L∞([0,1])

}
, (3.13)

k = 1, . . . ,m − 1.

Proof. If ‖w (m)‖L∞([0,1]) ≤ ‖w ‖L∞([0,1]), we choose u = 1 in the bound from Lemma
3.9, which gives

‖w (k)‖L∞([0,1]) ≤ 2Cm ‖w ‖L∞([0,1]).

In this case, and if ‖w (m)‖L∞([0,1]) ≥ ‖w ‖L∞([0,1]), we can choose

u = ‖w ‖1/mL∞([0,1])‖w
(m)‖

−1/m
L∞([0,1]) ≤ 1

to obtain

‖w (k)‖L∞([0,1]) ≤ 2Cm ‖w ‖1−k/mL∞([0,1])‖w
(m)‖

k/m
L∞([0,1]).

Together this proves (3.13). �

We can now turn to the

Proof of Lemma 3.7. Assume without loss of generality that r ≥ 0, so that Ωr =

[r , r + 2]. By the Sobolev embedding theorem ℎ is continuous and we let r ∗ be a
point in Ωr where |ℎ | attains its maximum. We can assume that r ∗ ∈ [r , r + 1] and
set 〈ℎ〉r ∗ :=

∫ r ∗+1
r ∗ ℎ(ξ) dξ (otherwise we use 〈ℎ〉r ∗ :=

∫ r ∗

r ∗−1 ℎ(ξ) dξ ). Then for some
p ≥ 1 we have

|ℎ(r ∗)|p −
��〈ℎp〉r ∗ �� ≤ ∫ r ∗+1

r ∗
|ℎp(r ∗) − ℎp(ξ)| dξ =

∫ 1

0
|ℎp(r ∗) − ℎp(r ∗ + ζ )| dζ .

By the fundamental theorem of calculus, for any ζ ∈ [0, 1], the integrand can be
bounded by

|ℎp(r ∗) − ℎp(r ∗ + ζ )| ≤ p
∫ 1

0
|ℎ(r ∗ + sζ )|p−1 |ℎ ′(r ∗ + sζ )|ζ ds

≤ p sup
s∈[0,1]

|ℎ ′(r ∗ + sζ )|
∫ 1

0
|ℎ(r ∗ + sζ )|p−1ζ ds .
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We now use that

sup
s∈[0,1]

|ℎ ′(r ∗ + sζ )| = sup
x∈[0,ζ ]

|ℎ ′(r ∗ + x)| ≤ sup
x∈[0,1]

|ℎ ′(r ∗ + x)| = ‖ℎ ′(r ∗ + ·)‖L∞([0,1])

and apply the Kolmogorov-Landau inequality for the first derivative in its multiplicative
form (Corollary 3.10) to the function [0, 1] 3 x 7→ ℎ(r ∗ + x) ∈W m,∞([0, 1]) to obtain

‖ℎ ′(r ∗ + ·)‖L∞([0,1])

≤ 2Cm ‖ℎ(r ∗ + ·)‖1−1/mL∞([0,1])max
{
‖ℎ(r ∗ + ·)‖1/mL∞([0,1]), ‖ℎ

(m)(r ∗ + ·)‖1/mL∞([0,1])

}
≤ 2Cm |ℎ(r ∗)|1−1/m max

{
‖ℎ‖1/mL∞(R), ‖ℎ

(m)‖
1/m
L∞(R)

}
.

It follows that

|ℎ(r ∗)|p −
��〈ℎp〉r ∗ �� ≤ 2pCm |ℎ(r ∗)|1−1/m max

{
‖ℎ‖1/mL∞(R), ‖ℎ

(m)‖
1/m
L∞(R)

}
×

∫ 1

0

∫ 1

0
|ℎ(r ∗ + sζ )|p−1ζ ds dζ .

The latter integral can be further estimated by∫ 1

0

∫ 1

0
|ℎ(r ∗ + sζ )|p−1ζ ds dζ =

∫ 1

0

∫ ζ

0
|ℎ(r ∗ + x)|p−1 dx dζ

≤

∫ 1

0

∫ 1

0
|ℎ(r ∗ + x)|p−1 dζ dx =

∫ 1

0
|ℎ(r ∗ + x)|p−1 dx

=

∫ r ∗+1

r ∗
|ℎ(ξ)|p−1 dξ ≤

∫
Ωr

|ℎ(ξ)|p−1 dξ.

Using ��〈ℎp〉r ∗ �� ≤ ∫ r ∗+1

r ∗
|ℎ(ξ)|p dξ ≤ ‖ℎ‖L∞(Ωr )

∫
Ωr

|ℎ(ξ)|p−1 dξ

≤ |ℎ(r ∗)|1−1/m ‖ℎ‖1/mL∞(R)

∫
Ωr

|ℎ(ξ)|p−1 dξ

we get

|ℎ(r ∗)|p ≤ Lm |ℎ(r ∗)|1−1/m
∫
Ωr

|ℎ(ξ)|p−1 dξ

with Lm = 2pCm max
{
‖ℎ‖1/mL∞(R), ‖ℎ

(m)‖
1/m
L∞(R)

}
+ ‖ℎ‖1/mL∞(R), and therefore

|ℎ(r ∗)|p−1+1/m ≤ Lm

∫
Ωr

|ℎ(ξ)|p−1 dξ.

Choosing q := p − 1 + 1/m ≥ 1/m then yields

|ℎ(r )|q ≤ |ℎ(r ∗)|q ≤ Lm

∫
Ωr

|ℎ(ξ)|q−1/m dξ,

which is the claimed inequality. �
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3.4 Gevrey smoothing of weak solutions for L2 initial data:
Part 1

Equipped with Corollary 3.8 we can construct an inductive scheme based upon a uni-
form bound onG(η−)ε (α,1) | f̂ (η−)|. As already remarked, this result will depend on the
dimension, and will actually deteriorate quickly as dimension increases. Nevertheless it
leads to strong regularity properties of weak solutions in the physically relevant cases.

Theorem 3.11. Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈ L log L(Rd ) ∩
L1
m(R

d ) for some m ≥ 2, and, in addition, f0 ∈ L2(Rd ). Let 0 < ν < 1 and assume that
the cross-section b satisfies the conditions (B1)–(B3) with power-law type singularity (1.18)
for d ≥ 2. For d = 1, assume that b1 satisfies the conditions (K1)–(K3).

Let f be a weak solution of the Cauchy problem (1.2) with initial datum f0. Set
αm,d := log

(
4m+d
2m+d

)
/log 2. Then, for all 0 < α ≤ min

{
αm,d, ν

}
and T0 > 0, there

exists β > 0, such that for all t ∈ [0,T0]

eβt 〈Dv 〉
2α
f (t, ·) ∈ L2(Rd ), (3.14)

that is, f ∈ G
1
2α (Rd ) for all t ∈ (0,T0].

By decreasing β, if necessary, one even has a uniform bound:

Corollary 3.12. Let T0 > 0. Under the same conditions as in Theorem 3.11 there exist
β > 0 and M1 < ∞ such that

sup
0≤t ≤T0

sup
η∈Rd

eβt 〈η 〉
2α
| f̂ (t, η)| ≤ M1. (3.15)

Remark. (i) For strong singularities, the restriction on the Gevrey class originates
in the bound on the commutation error, with the best value in d = 1 dimension.
The aim of Part 2 below will be to recover the two-dimensional result in any
dimension d ≥ 2. Under slightly stronger assumptions on the angular cross-
section, which still covers all physically relevant cases, we can get the one-
dimensional result in any dimension d ≥ 1, see Part 3.

( ii) In dimensions d = 1, 2, 3 and m = 2, corresponding to initial data with finite
energy, we have α2,d = log

(
8+d
4+d

)
/log 2 ≥ log

( 11
7
)
/log 2 ' 0.652077. This

means that for ν = 1
2 the weak solution gets analytic and even ultra-analytic for

ν > 1
2 .

( iii) In the case of physical Maxwellian molecules, where ν = 1
4 , in three dimensions

and with initial datum having finite mass, energy and entropy, we obtain Gevrey
G2(R3) regularity.
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(iv) Even though the range of α in Theorem 3.11 above deteriorates as the dimension
increases, it only fails to cover (ultra-)analyticity results in dimensions d ≥ 6.
Theorems 3.16 and 3.21 below yield results uniformly in the dimension.

�

We will prove Theorem 3.11 inductively over suitable length scales ΛN → ∞ as
N →∞ in Fourier space. To prepare for this, we fix some M < ∞, 0 < T0 < ∞ and
introduce

Definition 3.13 (Hypothesis Hyp1Λ(M )). Let M ≥ 0. Then for all 0 ≤ t ≤ T0

sup
|ζ | ≤Λ

G(t, ζ )ε (α,1) | f̂ (t, ζ )| ≤ M . (3.16)

Remark. Recall that G(t, ζ ) = eβt 〈ζ 〉
α
, that is, it depends on α, β, and t , and also f is

a time dependent function, even though we suppress this dependence in our notation.
Thus Hyp1Λ(M ) also depends on the parameters in G(t, ζ ) and on M and T0, which,
for simplicity, we do not emphasise in our notation. We will later fix some T0 > 0
and a suitable large enough M . The main reason why this is possible is that, since
‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 < ∞, for any Λ, β,T0 > 0, the hypothesis Hyp1Λ(M ) is
true for large enough M and even any M > ‖ f0‖L1 is possible by choosing β > 0 small
enough. �

A first step into the inductive proof is the following

Lemma 3.14. Let α ≤ ν and define cb,d := |Sd−2 |
∫ π

2
0 sind θ b(cos θ) dθ for d ≥ 3,

cb,2 :=
∫ π

2
0 sin2 θ b(cos θ) dθ , cb,1 :=

∫ π
4
−
π
4
sin2 θ b1(θ) dθ , which are finite by the integ-

rability assumptions (1.20) and (1.22), and let β ≤
C̃ f0

(1+2d−1) cb,dαT0M+1
. Then, for any weak

solution of the homogenous Boltzmann equation,

Hyp1Λ(M ) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1
√
2Λ(Dv ) f0‖L2(Rd ) e

C f0T0 (3.17)

for all 0 ≤ t ≤ T0.

Remark. The main point of this lemma is that the right hand side of (3.17) does not
depend on M . This is crucial for our analysis and might seem a bit surprising, at first.
It is achieved by making β small enough. �

Proof. Let d ≥ 2. Since cot2 θ
2 ≥ 1 for θ ∈ [0, π2 ] and cot2 ϑ ≥ 1 for ϑ ∈ [0, π4 ], we can

bound ε (α, cot2 θ
2 ) and ε (α, cot

2 ϑ) by ε (α, 1) in the integrals Id,√2Λ and I +
d,
√
2Λ

from
Lemma 4.7.

Assume Hyp1Λ(M ) holds. Then

G(t, ζ )ε (α,1) | f̂ (t, ζ )| ≤ M for all |ζ | ≤ Λ.
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In particular, the terms containing η− in Id,√2Λ and I +
d,
√
2Λ

can be bounded by M . Thus,
these integrals can now be further estimated by

Id,√2Λ ≤ αβt M |S
d−2 |

∫ π
2

0
sind θ b(cos θ) dθ

∫
Rd
|G√2Λ(η) f̂ (η)|

2 〈η〉2α dη

= αβt M cb,d ‖G√2Λ f ‖
2
H α(Rd )

and

I +
d,
√
2Λ
≤ 2dαβt M |Sd−2 |

∫ π
4

0
sind ϑ b (cos 2ϑ) dϑ

∫
Rd
|G(η+) f̂ (η+)|2〈η+〉2α dη+.

In the ϑ integral, we bound sin ϑ ≤ sin(2ϑ) to obtain

I +
d,
√
2Λ
≤ 2d−1αβt M cb,d ‖G√2Λ f ‖

2
H α(Rd )

.

By Lemma 4.7, the commutation error corresponding to the weight G√2Λ is thus
bounded by ���〈Q( f ,G√2Λ f ) −G√2ΛQ( f , f ),G√2Λ f 〉��� ≤ Id,√2Λ + I +

d,
√
2Λ

≤ (1 + 2d−1) αβt M cb,d ‖G√2Λ f ‖
2
H α(Rd )

.
(3.18)

With Corollary 3.2 we then have

‖G√2Λ f ‖
2
L2(Rd )

≤‖1√2Λ(Dv ) f0‖2L2 +

∫ t

0
2C f0 ‖G√2Λ f ‖

2
L2(Rd )

dτ

+

∫ t

0
2
(
− C̃ f0 ‖G√2Λ f ‖

2
H ν (Rd )

+
(
(1 + 2d−1) αβt M cb,d + β

)
‖G√2Λ f ‖

2
H α(Rd )

)
dτ.

Since α ≤ ν and β ≤
C̃ f0

(1+2d−1)cb,d αT0M+1
, this implies

‖G√2Λ f ‖
2
L2(Rd )

≤ ‖1√2Λ(Dv ) f0‖2L2(Rd )
+

∫ t

0
2C f0 ‖G√2Λ f ‖

2
L2(Rd )

dτ

and with Gronwall’s inequality

‖G√2Λ f ‖
2
L2(Rd )

≤ ‖1√2Λ(Dv ) f0‖2L2(Rd )
e2C f0T0 (3.19)

follows.
For d = 1, we note that, with the obvious change in notation, the above proof

literally translates to the Kac equation. �
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The second ingredient gives a uniform bound in terms of a weighted L2 norm and
some a priori uniform bound on some higher derivative of f̂ .

Lemma 3.15. Assume that there exist finite constants Am and B , such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (3.20)

for some integerm ≥ 2 and for all 0 ≤ t ≤ T0. Set

Λ̃ :=
1 +
√
2

2
Λ (3.21)

and assume furthermore that

Λ ≥ Λ0 :=
4
√
d

√
2 − 1

. (3.22)

Then for all |η | ≤ Λ̃

| f̂ (t, η)| ≤ K1G(t, η)−
2m

2m+d for all 0 ≤ t ≤ T0, (3.23)

with a constant K1 depending only on the dimension d ,m, Am , and B .

Remark. The exponent 2m
2m+d in equation (3.23) comes from Corollary 3.8, choosing

n = d . This is responsible for our definition of αm,d , since then ε
(
αm,d, 1

)
= 2m

2m+d . �

Remark. The assumptions of Lemma 3.15 are quite natural: since the Boltzmann
equation conserves mass and kinetic energy does not increase, we have the a priori
estimate

‖ f (t, ·)‖L1
2(R

d ) ≤ ‖ f0‖L1
2(R

d ) =: A2,

and due to the known results on moment propagation for the homogeneous Boltzmann
equation in the Maxwellian molecules case1, we have

f0 ∈ L1
m(R

d ) =⇒ f (t, ·) ∈ L1
m(R

d ) uniformly in t ≥ 0

for any m > 2 in addition to assumptions (1.23). �

The importance of Lemma 3.15 is that it effectively converts a local L2 bound on
suitable balls into a pointwise bound on slightly smaller balls.

Proof of Lemma 3.15. By the Riemann-Lebesgue lemma, the function f̂ has continuous
and bounded derivatives of order up to m. Since for any multi-index α ∈ Nd

0 one has

1see, for instance, Villani’s review [Vil02] pp. 73ff for references.
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∂α f̂ = (−2πi) |α | v̂α f , we obtain the bound

‖Dm f̂ (t, ·)‖L∞(Rd ) = sup
ω∈Sd−1

‖(ω · ∇)m f̂ (t, ·)‖L∞(Rd )

≤ sup
ω∈Sd−1

sup
η∈Rd

∑
|α |=m

(
m
α

)
|ωα | |∂α f̂ (η)|

≤ (2π)m sup
ω∈Sd−1

∫
Rd

∑
|α |=m

(
m
α

)
|ωαvα | f (v) dv

≤ (2π)m sup
ω∈Sd−1

∫
Rd
(ω · v)m f (v) dv

≤ (2π)m
∫
Rd
|v |m f (v) dv ≤ (2π)m ‖ f (t, ·)‖L1

m (R
d ) ≤ (2π)

mAm .

Of course, also ‖ f̂ ‖L∞(Rd ) ≤ ‖ f ‖L1(Rd ) ≤ Am .

Let η ∈ Rd such that |η | ≤ Λ̃. By Corollary 3.8 applied to the function f̂ , there is
a constant Lm,d that depends only on d,m, and Am such that

| f̂ (η)| ≤ Lm,d

(∫
Qη

| f̂ (ζ )|2 dζ

) m
2m+d

,

where Qη is the cube of side length 2 at η , such that all sides are oriented away from
the origin. The definitions of Λ̃ and Λ0 guarantee by Pythagoras’ theorem, that, for
|η | ≤ Λ̃,Qη always stays inside the ball around the origin with radius

√
2Λ. Since the

orientation of Qη is such that η is the point closest to the origin and the weight G is
radial and increasing, we have

| f̂ (η)| ≤ Lm,d

(
G(η)−2

∫
Qη

G(ζ )2 | f̂ (ζ )|2 dζ

) m
2m+d

≤ Lm,d G(η)−
2m

2m+d

(∫
{ |η | ≤

√
2Λ}

G(ζ )2 | f̂ (ζ )|2 dζ
) m

2m+d

≤ Lm,dB
2m

2m+d G(η)−
2m

2m+d .

Setting K1 := Lm,dB
2m

2m+d yields the claimed inequality. �

Proof of Theorem 3.11. By Lemma 3.14, 3.15, and Remark 3.4, a suitable choice for Am ,
B , and the length scales ΛN is

B := ‖ f0‖L2(Rd )e
C f0T0,

Am := sup
t ≥0
‖ f (t, ·)‖L1

m (R
d ) < ∞,
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and

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1 +
√
2

2
ΛN−1 =

(
1 +
√
2

2

)N
Λ0

with Λ0 from (3.22).
Furthermore, we set

M1 := max {2Am + 1,K1} ,

with the constant K1 from equation (3.23).
For the start of the induction, we need Hyp1Λ0

(M1) to be true. Since

sup
0≤t ≤T0

sup
|η | ≤Λ0

G(η)ε (α,1) | f̂ (η)| ≤ eε (α,1)βT0(1+Λ2
0)
α
Am,

and from our choice of M1, there exists β0 > 0 such that Hyp1Λ0
(M1) is true for all

0 ≤ β ≤ β0.
Now, we choose

β = min

(
β0,

C̃ f0

(1 + 2d−1)cb,d αT0M1 + 1

)
.

With this choice the conditions of Lemma 3.14 and 3.15 are fulfilled and Hyp1Λ0
(M1) is

true.
For the induction step assume that Hyp1ΛN

(M1) is true. Then Lemma 3.14 gives

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1

√
2ΛN
(Dv ) f0‖L2(Rd ) e

C f0T0 ≤ B .

Note that ε (α, 1) ≤ 2m
2m+d , since α ≤ min

{
αm,d, ν

}
, see Remark 3.4. In addition,

ΛN+1 = Λ̃N , so Lemma 3.15 shows

sup
|η | ≤ΛN+1

G(η)ε (α,1) | f̂ (η)| ≤ K1 ≤ M1,

that is, Hyp1ΛN+1
(M1) is true. By induction, it is true for all N ∈ N. Invoking Lemma

3.14 again, we also have
‖G√2ΛN

f ‖L2(Rd ) ≤ B

for all N ∈ N, and passing to the limit N → ∞, we see ‖G f ‖L2(Rd ) ≤ B , which
concludes the proof of the theorem. �

Proof of Corollary 3.12. The proof of Theorem 3.11 showed that given T0 > 0 there
exists M1 > 0 and β > 0 such that Hyp1ΛN

(M1) is true for all N ∈ N. This clearly
implies (3.15). �
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3.5 Gevrey smoothing of weak solutions for L2 initial data:
Part 2

The results of Part 1 are best in one dimension and give the correct smoothing in terms
of the Gevrey class for ν not too close to one, more precisely ν ≤ αm,d . In order
to improve this in higher dimensions d ≥ 2 and for a larger range of singularities
0 < ν < 1, the commutator estimates have to be refined. We have

Theorem 3.16. Let d ≥ 3. Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈
L log L(Rd ) ∩ L1

m(R
d ) for some m ≥ 2, and, in addition, f0 ∈ L2(Rd ). Further as-

sume that the cross-section b satisfies conditions (B1)–(B3)with power-law type singulartity
(1.18) for some 0 < ν < 1.

Let f be a weak solution of the Cauchy problem (1.2) with initial datum f0, then for
all 0 < α ≤ min

{
αm,2, ν

}
and T0 > 0, there exists β > 0, such that for all t ∈ [0,T0]

eβt 〈Dv 〉
2α
f (t, ·) ∈ L2(Rd ), (3.24)

that is, f ∈ G
1
2α (Rd ) for all t ∈ (0,T0].

In particular, the weak solution is real analytic if ν = 1
2 and ultra-analytic if ν >

1
2 .

The beauty of this theorem is that, in contrast to Theorem 3.11, its result does not
deteriorate as dimension increases. We also have a corollary similar to Corollary 3.12,
however with a weaker conclusion. Moreover, it is not uniform in the time t ≥ 0 but
only holds on finite, but arbitrary, time intervals [0,T0].

Corollary 3.17. Under the same assumptions as in Theorem 3.16, for any weak solution
f of the Cauchy problem (1.2) and any 0 < T0 < ∞ there exists β̃ > 0 and M < ∞ such
that

sup
0≤t ≤T0

sup
η∈Rd

e β̃t 〈η 〉
2α
| f̂ (t, η)| ≤ M . (3.25)

The proof of Theorem 3.16 is again based on an induction over length scales in
Fourier space. Having a close look at the integrals Id,Λ and I +d,Λ from Lemma 3.6
and using that ε (α, γ) is decreasing in γ, one sees that it should be enough to bound
expressions of the form∫

Sd−2(η)
G(η−)ε (α,1) | f̂ (η−)|1 Λ√

2
(|η− |) dω

and ∫
Sd−2(η+)

G(η−)ε (α,1) | f̂ (η−)|1 Λ√
2
(|η− |) dω

uniformly in η and θ , respectively η+ and ϑ, with the parametrisation (3.8), respectively
(3.11), that is, instead of having to use the purely pointwise estimates expressed in the
hypothesis Hyp1Λ from the previous section, one can take advantage of averaging over
codimension 2 spheres first. This motivates
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Definition 3.18 (Hypothesis Hyp2Λ(M)). Let M ≥ 0 be finite. Then for all 0 ≤ t ≤
T0,

sup
ζ ∈Rd\{0}

sup
(z,ρ)∈AΛ

∫
Sd−2(ζ )

G
(
t, z ζ

|ζ | − ρω
) ε (α,1) ��� f̂ (

t, z ζ
|ζ | − ρω

)��� dω ≤ M , (3.26)

where AΛ = {(z, ρ) ∈ R2 : 0 ≤ z ≤ ρ, z2 + ρ2 ≤ Λ2} and Sd−2(ζ ) = {ω ∈ Rd : ω ⊥
ζ, |ω | = 1}.

Again, we have

Lemma 3.19. Let α ≤ ν , define cb,d,2 =
∫ π

2
0 sind θb(cos θ) dθ (which is finite by the

integrability assumption (1.20)), and let β ≤
C̃ f0

(1+2d−1)cb,d,2αT0M+1
. Then, for any weak

solution of the homogenous Boltzmann equation,

Hyp2Λ(M ) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1
√
2Λ(Dv ) f0‖L2(Rd ) e

C f0T0 (3.27)

for all 0 ≤ t ≤ T0.

Proof. Using the monotonicity of ε (α, γ) in γ and (3.7) one sees

Id,√2Λ ≤ αβt
∫
Rd

( ∫ π
2

0

(∫
Sd−2(η)

G(η−)ε (α,1) | f̂ (η−)| 1Λ(|η− |) dω
)

× sind θ b(cos θ) dθ
)
|G√2Λ(η) f̂ (η)|

2 〈η〉2α dη

where η− = η−(η, θ,ω) is expressed via the parametrisation (3.8). For σ = (θ,ω) ∈
[0, π2 ] × S

d−2, one has η− = |η | sin2 θ
2
η
|η | + |η | sin

θ
2 cos

θ
2 ω and if |η | ≤

√
2Λ, then

|η− | ≤ Λ. Identifying z = |η | sin2 θ
2 and ρ = |η | sin θ

2 cos
θ
2 , and the direction of ζ

with the direction of η , hypothesis (Hyp2Λ) clearly implies

sup
|η | ≤
√
2Λ

sup
θ∈[0,π/2]

∫
Sd−2(η)

G(η−)ε (α,1) | f̂ (η−)| 1Λ(|η− |) dω ≤ M .

It follows that

Id,√2Λ ≤ αβt M
∫
Rd

∫ π
2

0
sind θb(cos θ) dθ |G√2Λ(η) f̂ (η)|

2 〈η〉 dη

= αβt M cb,d,2‖G√2Λ f ‖
2
H α(Rd )

.

Similarly one has

I +
d,
√
2Λ
≤ 2dαβt

∫
Rd

( ∫ π
4

0

(∫
Sd−2(η+)

G(η−)ε (α,1) | f̂ (η−)| 1Λ(|η− |) dω
)

× sind ϑ b(cos 2ϑ) dϑ
)
|G√2Λ(η

+) f̂ (η+)|2 〈η+〉2α dη+,
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where η− = η−(η, ϑ,ω) is expressed via the parametrisation (3.11). The vectors η− and
η+ are orthogonal and we have η− = −|η+ | tan ϑω for (ϑ,ω) ∈ [0, π4 ] × S

d−2(η+).
Setting z = 0 and ρ = |η+ | tan ϑ we have ρ = |η− | ≤ Λ in the ϑ and η+ integrals

above. Thus (Hyp2Λ) again implies

sup
|η+ | ≤

√
2Λ

sup
ϑ∈[0,π/4]

∫
Sd−2(η+)

G(η−)ε (α,1) | f̂ (η−)| 1Λ(|η− |) dω ≤ M .

Hence,

I +
d,
√
2Λ
≤ 2dαβt M

∫ π
2

0
sind θb(cos θ) dθ

∫
Rd
|G√2Λ(η

+) f̂ (η+)|2 〈η+〉 dη+

≤ 2d−1αβt M cb,d,2‖G√2Λ f ‖
2
H α(Rd )

.

The rest of the proof is the same as in the proof of Lemma 3.14. �

To close the induction process, we next show

Lemma 3.20. Let β ≤ 1
T0
. Assume that there exist finite constants Am and B , such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (3.28)

for some integerm ≥ 2 and for all 0 ≤ t ≤ T0.
Set Λ̃ := 1+

√
2

2 Λ and assume that

Λ ≥ Λ0 :=
4
√
2

√
2 − 1

. (3.29)

Then for all ζ ∈ Rd \ {0} and 0 ≤ z ≤ ρ with ρ2 + z2 ≤ Λ̃2 one has∫
Sd−2(ζ )

��� f̂ (
t, z ζ

|ζ | + ρω
)��� dω ≤ K2 G̃(t, z2 + ρ2)−

2m
2m+2 for all 0 ≤ t ≤ T0

with a constant K2 depending only on d,m,Am , and B . Recall that G̃(t, s) = eβt (1+s)
α .

Proof. Fix 0 < t ≤ T0, ζ ∈ Rd \ {0}, and set F (ρ, z) := f̂ (t, z ζ
|ζ | + ρω), where

we drop, for simplicity, the dependence on the time t in our notation for F . Then,
since ‖ f (t, ·)‖L1

m
≤ Am one has f̂ (t, ·) ∈ Cm(Rd ) and thus also F ∈ Cm(R2) with

‖F ‖L∞ ≤ Am , ‖∂mρ F ‖L∞ ≤ (2π)mAm , and ‖∂mz F ‖L∞ ≤ (2π)mAm and Corollary 3.8
applied to F yields��� f̂ (

z ζ
|ζ | + ρω

)��� ≤ Lm,2

(∫ ρ+2

ρ

∫ z+2

z

��� f̂ (
x ζ
|ζ | + yω

)���2 dxdy
) m

2m+2

. (3.30)

where we also dropped the dependence of f̂ on the time variable t . Furthermore, we
will drop the time dependence of G and G̃ in the following, that is, G(ξ) and G̃(s)
will stand for G(t, ξ), respectively G̃(t, s).

To recover the L2 norm of G√2Λ f in the right hand side of (3.30) we now need to
take care of three things:
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(i) Multiply with a suitable power of the radially increasing weight G ;

( ii) Integrate over the missing d − 2 directions, which will be taken care of by
integrating over Sd−2(ζ ) and taking into account additional factors to get the
d -dimensional Lebesgue measure;

(iii) Ensure that the region of integration [ρ, ρ + 2] × [z, z + 2] × Sd−2(ζ ) stays
inside a ball of radius

√
2Λ uniformly in the direction of ζ . This we control by

choosing Λ0 large enough (a simple geometric consideration shows that Λ0 from
the statement of Lemma 3.20 works) and restricting ρ and z by ρ2 + z2 ≤ Λ̃2.

Let z, ρ ≥ 0. In the region of integration in (3.30), the point ρω + z η
|η | is closest

to the origin in Rd , and since the weight G is radially increasing, we get��� f̂ (
z ζ
|ζ | + ρω

)��� ≤ Lm,2G̃
(
z2 + ρ2

)− 2m
2m+2(∫ ρ+2

ρ

∫ z+2

z
G

(
x ζ
|ζ | + yω

)2 ��� f̂ (
x ζ
|ζ | + yω

)���2 dxdy
) m

2m+2

.

(3.31)

Assume that z2 + ρ2 ≤ Λ̃2. Then the integration of inequality (3.31) over Sd−2(ζ )
yields with an application of Jensen’s inequality ( t 7→ t m

2m+2 is concave!)∫
Sd−2(ζ )

��� f̂ (
z ζ
|ζ | + ρω

)��� dω ≤ Lm,2 |S
d−2 |

m+2
2m+2 G̃

(
z2 + ρ2

)− 2m
2m+2

×

(∫
Sd−2(ζ )

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ
|ζ | + yω

)2 ��� f̂ (
x η
|η | + yω

)���2 dx dy dω
) m

2m+2

.

Now assume additionally 0 ≤ z ≤ ρ and Λ2
0 ≤ ρ2 + z2 ≤ Λ̃2. Since 0 ≤ z ≤ ρ we

have Λ2
0 ≤ z2 + ρ2 ≤ 2ρ2 and therefore∫

Sd−2(ζ )

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ
|ζ | + yω

)2 ��� f̂ (
x ζ
|ζ | + yω

)���2 dx dy dω

≤ 2
d−2
2 Λ

2−d
0

∫
Sd−2(ζ )

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ
|ζ | + yω

)2 ��� f̂ (
x ζ
|ζ | + yω

)���2 yd−2 dx dy dω

≤ 2
d−2
2 Λ

2−d
0 ‖G√2Λ f ‖

2
L2(Rd )

,

since yd−2 dx dy dω is the d -dimensional Lebesgue measure in the cylindrical coordin-
ates (x, yω) with x ∈ R, y > 0, ω ∈ Sd−2(ζ ) along the cylinder with axis ζ . So with
the assumption ‖G√2Λ f ‖L2(Rd ) ≤ B we obtain∫

Sd−2(ζ )

��� f̂ (
t, z ζ

|ζ | + ρω
)��� dω

≤ Lm,2 |S
d−2 |

m+2
2m+2

(
2

d−2
2 Λ

2−d
0 B2

) m
2m+2 G̃

(
t, z2 + ρ2

)− 2m
2m+2 .
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In the case z2 + ρ2 ≤ Λ2
0 we have G̃(t, z

2 + ρ2)−1 e βt (1+Λ2
0)
α
≥ 1 and we can simply

bound ∫
Sd−2(ζ )

��� f̂ (
t, z ζ

|ζ | + ρω
)��� dω

≤ G̃
(
t, z2 + ρ2

)− 2m
2m+2 e

2m
2m+2 βt (1+Λ

2
0)
α

|Sd−2 | ‖ f̂ (t, ·)‖L∞(Rd )

≤ Am |S
d−2 |e1+Λ

2
0G̃

(
t, z2 + ρ2

)− 2m
2m+2

since β ≤ 1/T0, by assumption. So choosing

K2 := max
(
Lm,2 |S

d−2 |
m+2
2m+2

(
2

d−2
2 Λ

2−d
0 B2

) m
2m+2

,Am |S
d−2 |e1+Λ

2
0

)
finishes the proof of the lemma. �

Now we have all the ingredients for the inductive

Proof of Theorem 3.16. By Lemmata 3.19 and 3.20 a suitable choice for Am and B is

B := ‖ f0‖L2(Rd )e
C f0T0,

Am := sup
t ≥0
‖ f (t, ·)‖L1

m (R
d ) < ∞.

Note that the finiteness of Am is guaranteed since f0 ∈ L1
m(R

d ), see Remark 3.4. We
further choose the length scales ΛN to be

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1 +
√
2

2
ΛN−1 =

(
1 +
√
2

2

)N
Λ0

with Λ0 now from (3.29), and we set

M2 := max
{
2|Sd−2 |Am + 1,K2

}
with the constant K2 from Lemma 3.20.

For the start of the induction, we need Hyp2Λ0
(M2) to be true. Since

sup
0≤t ≤T0

sup
ζ ∈Rd\{0}

sup
(z,ρ)∈AΛ0

∫
Sd−2(ζ )

G
(
t, z ζ

|ζ | − ρω
) ε (α,1) ��� f̂ (

t, z ζ
|ζ | − ρω

)��� dω
≤ |Sd−2 |eβT0(1+Λ2

0)Am

and from our choice of M2 there exists β0 > 0 such that Hyp2Λ0
(M2) is true for all

0 ≤ β ≤ β0.
Now, we choose

β = min

(
β0,T −10 ,

C̃ f0

(1 + 2d−1)cb,d,2 αT0M2 + 1

)
.
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With this choice the conditions of Lemma 3.19 and 3.20 are fulfilled and Hyp2Λ0
(M2)

is true.
For the induction step assume that Hyp2ΛN

(M2) is true. Then Lemma 3.19 gives

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1

√
2Λ(Dv ) f0‖L2(Rd ) e

C f0T0 = B

and then, since ε (α, 1) ≤ 2m
2m+2 by our choice of α, and ΛN+1 = Λ̃N , Lemma 3.20

shows that Hyp2ΛN+1
(M2) is true, so by induction, it is true for all N ∈ N. Invoking

Lemma 3.19 again, we also have

‖G√2ΛN
f ‖L2(Rd ) ≤ B

for all N ∈ N and letting N →∞, we see ‖G f ‖L2(Rd ) ≤ B , which concludes the proof
of Theorem 3.16. �

Proof of Corollary 3.17. Theorem 3.16 shows that G f ∈ L2(Rd ) for all 0 ≤ t ≤ T0.
Applying Corollary 3.8 with n = d to f̂ yields

| f̂ (η)| ≤ Lm,dG(η)−
2m

2m+d

(∫
Qη

G(ζ )2 | f̂ (ζ )|2 dζ

) m
2m+d

≤ Lm,d ‖G f ‖
2m

2m+d
L2(Rd )

G(η)−
2m

2m+d ,

where we also used that the Fourier multiplier is radially increasing. This proves the
uniform bound (3.25) with β̃ = β 2m

2m+d . �

3.6 Gevrey smoothing of weak solutions for L2 initial data:
Part 3

Under the slightly stronger assumption that the angular collision cross-section b is
bounded away from the singularity, we can state our theorem about Gevrey regularisa-
tion in its strongest form.

Theorem 3.21. Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈ L log L(Rd ) ∩
L1
m(R

d ) for some m ≥ 2, and, in addition, f0 ∈ L2(Rd ). Further assume that the cross-
section b in dimensions d ≥ 2 satisfies the singularity condition (1.18) for some 0 < ν < 1
and the boundedness condition (2.5).

Let f be a weak solution of the Cauchy problem (1.2) with initial datum f0, then for
all 0 < α ≤ min

{
αm,1, ν

}
and all T0 > 0, there exists β > 0, such that for all t ∈ [0,T0]

eβt 〈Dv 〉
2α
f (t, ·) ∈ L2(Rd ), (3.32)

that is, f ∈ G
1
2α (Rd ) for all t ∈ (0,T0].

In particular, the weak solution is real analytic if ν = 1
2 and ultra-analytic if ν >

1
2 .
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Remark. Thus, under slightly stronger assumptions on b than in Theorem 3.11, which
we stress are nevertheless fulfilled in any physically reasonable cases, we can prove the
same regularity in any dimension as can be obtained for radially symmetric solutions
of the homogenous Boltzmann equation. �

Corollary 3.22. Under the same assumptions as in Theorem 3.21, for any weak solution
f of the Cauchy problem (1.2) and any 0 < T0 < ∞ there exist β > 0 and M < ∞ such
that

sup
0≤t ≤T0

sup
η∈Rd

eβt 〈η 〉
2α
| f̂ (t, η)| ≤ M . (3.33)

Proof. Given Theorem 3.21, the proof of Corollary 3.22 is the same as the proof of
Corollary 3.17. �

The proof of Theorem 3.21 shows the delicate interplay between the angular
singularity of the collision kernel, the strict concavity of the Gevrey weights, and the
use of averages of the weak solution in Fourier space, together with our inductive
procedure, which has proved to be successful in Theorems 3.11 and 3.16. Again, the
main work is to bound the expressions Id,Λ and I +d,Λ from Lemma 3.6. Before we start
the proof of Theorem 3.21, we start with some preparations. It is clear that we only
have to prove Theorem 3.21 in dimension d ≥ 2 and for singularities ν > α2,m , since
otherwise the result is already contained in Theorems 3.11 and 3.16.

Looking at the integral Id,Λ from Lemma 3.6, one has

Id,Λ = αβt
∫
Rd

( ∫ π
2

0

∫
Sd−2(η)

sind θb(cos θ)G(η−)ε
(
α,cot2 θ2

)
| f̂ (η−)|

× 1 Λ√
2
(|η− |) dω dθ

)
|GΛ(η) f̂ (η)|2 〈η〉2α dη.

where we use the parametrization (3.8) for η− = η−(η, θ,ω). Splitting the θ integral
above at a point θ0 ∈ (0, π2 ) and using the monotonicity of the cotangent on [0, π2 ] and
of ε (α, γ) in γ one sees

Id,Λ ≤ Id,Λ,1 + Id,Λ,2

with

Id,Λ,1 :=αβT0 ‖GΛ f ‖2H α(Rd )

∫ θ0

0
sind θ b(cos θ) dθ

×

(
sup

0<θ≤ π2

sup
0< |η | ≤Λ

∫
Sd−2(η)

G(η−(η, θ,ω))
ε

(
α,cot2

θ0
2

)

× | f̂ (η−(η, θ,ω))|1 Λ√
2
(|η−(η, θ,ω)|) dω

) (3.34)
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and

Id,Λ,2 :=Cθ0αβT0 ‖GΛ f ‖2H α(Rd )

×

(
sup

0< |η | ≤Λ

∫ π
2

θ0

∫
Sd−2(η)

G(η−(η, θ,ω))ε (α,1) | f̂ (η−(η, θ,ω))|

× 1 Λ√
2
(|η−(η, θ,ω)|) dω dθ

)
,

(3.35)

where Cθ0 is an upper bound for b(cos θ) on [θ0, π2 ]. Now we choose θ0 > 0 so small
that

ε (α, cot2
θ0
2
) ≤ ε (α2,m, 1) =

2m
2m + 2

and note that from Corollary 3.17, since ν > α2,m , there exists a finite M2 such that

sup
0<θ≤ π2

sup
0< |η | ≤Λ

∫
Sd−2(η)

G(η−(η, θ,ω))ε(α2,m,1) | f̂ (η−(η, θ,ω))|

× 1 Λ√
2
(|η−(η, θ,ω)|) dω ≤ M2 < ∞.

So from (3.34) we get the bound

Id,Λ,1 ≤ αβT0M2cb,d,2‖GΛ f ‖2H α(Rd )
(3.36)

where the finiteness of cb,d,2 follows from the singularity condition and the boundedness
of b(cos θ) away from θ = 0.

For the integral I +d,Λ from Lemma 3.6, a completely analogous reasoning as above
shows for small enough ϑ0 such that ε (α cot ϑ) ≤ ε (α2,m, 1) we also have

I +d,Λ ≤ I +d,Λ,1 + I +d,Λ,2
with

I +d,Λ,1 ≤ 2d−1αβT0M2cb,d,2‖GΛ f ‖2H α(Rd )
(3.37)

and

I +d,Λ,2 :=2
dCϑ0αβT0 ‖GΛ f ‖2H α(Rd )

×

(
sup

0< |η+ | ≤Λ

∫ π
4

ϑ0

∫
Sd−2(η+)

G(η−(η+, ϑ,ω))ε (α,1)

× | f̂ (η−(η+, ϑ,ω))|1 Λ√
2
(|η−(η+, ϑ,ω)|) dω dϑ

) (3.38)

where we use the parametrisation (3.11) for η− = η−(η+, ϑ,ω) and where Cϑ0 is an
upper bound for b(cos(2ϑ)) on [ϑ0,

π
4 ].

Recall that we always assume α ≤ α1,m , so ε (α, 1) ≤ ε (α1,m, 1) = 2m
2m+1 . Thus we

see that in order to set up our inductive procedure for controlling IdΛ and I +d,Λ it is
natural to introduce
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Definition 3.23 (Hypothesis Hyp3Λ(M )). Let M ≥ 0 be finite, 0 < θ0, ϑ0 < π
4 ,

T0 > 0, and m ≥ 2 an integer. Then for all 0 ≤ t ≤ T0 one has

sup
|η | ≤
√
2Λ

∫ π
2

θ0

∫
Sd−2(η)

G (t, η−(η, θ,ω))
2m

2m+1

��� f̂ (η−(η, θ,ω))���
× 1Λ(|η

−(η, θ,ω)|) dω dθ ≤ M ,

(3.39)

where we use the parametrisation given in (3.8) for η−, and

sup
|η+ | ≤

√
2Λ

∫ π
4

ϑ0

∫
Sd−2(η+)

G
(
t, η−(η+, ϑ,ω)

) 2m
2m+1

��� f̂ (
η−(η+, ϑ,ω)

) ���
× 1Λ(|η

−(η+, ϑ,ω)|) dω dϑ ≤ M ,

(3.40)

where we use the parametrisation given in (3.11) for η−.

For the induction proof of Theorem 3.21, we again start with

Lemma 3.24. Let M ≥ 0, T0 > 0, m ≥ 2 an integer, αm,2 < ν < 1, 0 < α ≤ ν

and recall cb,d,2 =
∫ π

2
0 sind θb(cos θ) dθ (which is finite by the singularity assumption

(1.20) and the boundedness assumption (2.5)). Let M2 be from Corollary 3.17 and β ≤
C̃ f0

αT0[(1+2d−1)cb,d,2M2+(Cθ0+2
dCϑ0 )M ]+1

.

Then for any weak solution of the homogenous Boltzmann equation,

Hyp3Λ(M ) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1
√
2Λ(Dv ) f0‖L2(Rd ) e

C f0T0 (3.41)

for all 0 ≤ t ≤ T0.

Proof. Given Lemma 3.6 and the above discussion with the bounds in (3.36), (3.37),
and using the hypothesis Hyp3Λ for the terms in (3.35) and (3.38), one sees that the
commutation error on the level

√
2Λ is bounded by���〈Q( f ,G√2Λ f ) −G√2ΛQ( f , f ),G√2Λ f 〉��� ≤ Id,√2Λ + I +

d,
√
2Λ

≤ (1 + 2d−1)αβT0M2cb,d,2‖GΛ f ‖2H α(Rd )
+ (Cθ0 + 2dCϑ0)αβT0M ‖GΛ f ‖2H α(Rd )

.

Given this bound on the commutation error, the rest of the proof is the same as in the
proof of Lemma 3.14. �

To close the induction step we also need a suitable version of Lemma 3.20, but
before we prove this we need a preparatory Lemma.

Lemma 3.25. Let H : Rd → R+ be a locally integrable function and let η, η+ ∈ Rd

with |η |, |η+ | ≥ Λ0 > 0, 0 < θ0 ≤
π
2 , and 0 < ϑ0 ≤

π
8 . Then with the parametrisation
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η− = η−(η, θ,ω) given in (3.8) one has∫ π
2

θ0

∫ 2

0
H

(
η−(η, θ,ω) + z η

|η |

)
dz dθ

≤
2

Λ0 cos θ0

∫ |η |
2 +2

Λ0 sin2
θ0
2

∫ |η |
2

Λ0 sin θ0
H

(
x η
|η | − yω

)
dy dx

for any unit vector ω orthogonal to η .
Moreover, with the parametrisation η− = η−(η+, θ,ω) given in (3.11) one has, for any

Λ̃ ≥
1+
√
2

2 Λ0,∫ π
4

ϑ0

∫ 2

0
H

(
η−(η+, ϑ,ω) + z η

|η |

)
1
Λ̃√
2

(|η−(η+, ϑ,ω)|) dz dϑ

≤
1

2Λ0

∫ 2

0

∫ Λ̃√
2

Λ0 tan ϑ0
H

(
x η
|η | − yω

)
dy dx

Remark. The restriction ϑ0 ≤
π
8 is only for convenience, to ensure that Λ0 tan ϑ0 ≤

Λ̃√
2
. �

Proof. Fix η as required and ω orthogonal to it. We want to have a map Φ1 : (θ, z) 7→
Φ1(θ, z) = (x, y) such that

η−(η, θ,ω) + z η
|η | = x η

|η | − yω.

From the parametrisation (3.8) we read off

x = |η | sin2
θ

2
+ z and y =

|η |

2
sin θ

and we can compute the Jacobian going from the (θ, z) variables to (x, y) as����∂(x, y)∂(θ, z)

���� = | detDΦ1 | =
|η |

2
cos θ ≥

|η |

2
cos θ0.

Since |η | ≥ Λ0, θ ∈ [θ0, π2 ], and 0 ≤ z ≤ 2, we have Λ0 sin2 θ0
2 ≤ x ≤ |η | sin2 π

4 =
η
2

and Λ0
2 sin θ0 ≤ y ≤ η

2 . So doing a change of variables (θ, z) = Φ−11 (x, y) in the integral
we can bound∫ π

2

θ0

∫ 2

0
H

(
η−(η, θ,ω) + z η

|η |

)
dz dθ

≤
2

Λ0 cos θ0

∫ |η |
2 +2

Λ0 sin2
θ0
2

∫ |η |
2

Λ0 sin θ0
H

(
x η
|η | + yω

)
dy dx
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since the map Φ1 is a nice diffeomorphism.
For the second bound the calculation is, in fact, a bit easier, one just has to take

care that |η− | cannot be too large, which is taken into account by the factor 1Λ(|η− |).
We now want a map Φ2 : (θ, z) 7→ Φ2(θ, z) = (x, y) such that

η−(η+, ϑ,ω) + z η+

|η+ | = x η+

|η+ | − yω.

From the parametrisation (3.8) we read off

x = z and y = |η− | = |η+ | tan ϑ

and the Jacobian going from the (ϑ, z) variables to (x, y) is simply����∂(x, y)∂(ϑ, z)

���� = | detDΦ2 | = 2|η+ | ≥ 2Λ0.

We certainly have 0 ≤ x ≤ 2 and also Λ0 tan ϑ0 ≤ y . Since y = |η− |, we also have the
restriction y ≤ Λ. So the proof of the second inequality follows similar to the proof of
first one. �

Finally, we can state and prove the second step in our inductive procedure.

Lemma 3.26. Let β ≤ 1
T0
. Assume that there exist finite constants Am and B , such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (3.42)

for some integerm ≥ 2 and for all 0 ≤ t ≤ T0.
Set Λ̃ := 1+

√
2

2 Λ and assume that

Λ ≥ Λ0 := 3. (3.43)

Then there exists a finite K3, depending only on d,m,Am , and B such thatHyp3
Λ̃
(K3) is

true.

Proof. Fix 0 < t ≤ T0, a direction η ∈ Rd \ {0}, and define the function

z 7→ F (z) := f̂ (t, η− + z η
|η | )

of the single real variable z , where we think of η− as given in the η -parametrisation (3.8)
for some θ and ω ∈ Sd−2(η), and where we drop, for simplicity, the dependence on the
time t in our notation for F and f . Then, since ‖ f (t, ·)‖L1

m
≤ Am one has f̂ (t, ·) ∈

Cm(Rd ) and thus also F ∈ Cm(R) with ‖F ‖L∞ ≤ Am , ‖∂mz F ‖L∞ ≤ (2π)mAm , and
Corollary 3.8 applied to F now gives

| f̂ (η−)| ≤ Lm,1

(∫ 2

0
| f̂ (η− + z η

|η | )|
2 dz

) m
2m+2

.
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We multiply this with the radially increasing weight G to get

G(η−)
2m

2m+1 | f̂ (η−)| ≤ Lm,1

(∫ 2

0
|G(η− + z η

|η | ) f̂ (η
− + z η

|η | )|
2 dz

) m
2m+2

.

Integrating this with respect to ω and θ , where we think of η− = η−(η, θ,ω) in the
parametrisation (3.8), and using Jensen’s inequality for concave functions, one gets∫ π

2

θ0

∫
Sd−2(η)

G(η−)
2m

2m+1 | f̂ (η−)| dθ dω

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

×

(∫ π
2

θ0

∫
Sd−2(η)

∫ 2

0
|G(η− + z η

|η | ) f̂ (η
− + z η

|η | )|
2 dz dθ dω

) m
2m+1

.

(3.44)

Now assume that |η | ≥ Λ0. Because of the first part of Lemma 3.25, we can further
bound

(3.44) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
2

Λ0 cos θ0

) m
2m+1

×
©«
∫
Sd−2(η)

∫ |η |
2 +2

Λ0 sin2
θ0
2

∫ |η |
2

Λ0 sin θ0
|G(x η

|η | − yω) f̂ (x
η
|η | − yω)|

2 dy dx dωª®¬
m

2m+1

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)2−d

×

( ∫
Sd−2(η)

∫ |η |
2 +2

Λ0 sin2
θ0
2

∫ |η |
2

Λ0 sin θ0
|G(x η

|η | − yω) f̂ (x
η
|η | − yω)|

2 yd−2dy dx dω
) m

2m+1

.

Again, the integration measure yd−2dy dx dω is d -dimensional Lebesgue measure in
the cylindrical coordinates (x, yω) with respect to the cylinder in the η direction. One
checks that the condition Λ ≥ Λ0 ≥ 3 ensures that

(Λ̃/2 + 2)2 + (Λ̃/2) ≤ (
√
2Λ)2

so since |η | ≤ Λ̃, we can extend the integration above to a ball of radius
√
2Λ to get

(3.44) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)2−d ‖G√2Λ f ‖
2m

2m+1
L2(Rd )

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)2−dB
2m

2m+1 . (3.45)

If |η | ≤ Λ0 we simply bound∫ π
2

θ0

∫
Sd−2(η)

G(η−)
2m

2m+1 | f̂ (η−)| dθ dω ≤ ‖ f̂ ‖L∞
π

2
|Sd−2 |eβT0(1+Λ2

0/2)

≤ Am
π

2
|Sd−2 |e1+Λ

2
0/2.

(3.46)
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Concerning the bound in the second half of Hyp3
Λ̃
, a completely analogous calculation

as the one above, using the second half of Lemma 3.25 gives for Λ0 ≤ |η
+ | ≤ Λ̃,∫ π

2

ϑ0

∫
Sd−2(η+)

G
(
t, η−(η+, ϑ,ω)

) 2m
2m+1

��� f̂ (
η−(η+, ϑ,ω)

) ���
× 1 Λ√

2
(|η−(η+, ϑ,ω)|) dω dϑ

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−d

×

(∫
Sd−2(η+)

∫ 2

0

∫ Λ̃√
2

0
|G(x η

|η | − yω) f̂ (x
η
|η | − yω)|

2 yd−2dy dx dω

) m
2m+1

.

(3.47)

By our choice of Λ̃ and Λ0, we always have 22 + (Λ̃/2)2 ≤ (
√
2Λ)2, so we can extend

the integration above to the whole ball |η+ | ≤
√
2Λ to see

(3.47) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−d ‖G√2Λ f ‖

2m
2m+1
L2(Rd )

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2 |

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−dB

2m
2m+1 . (3.48)

If |η+ | ≤ Λ0 we simply bound as above∫ π
4

ϑ0

∫
Sd−2(η+)

G(η−)
2m

2m+1 | f̂ (η−)| dϑ dω ≤ Am
π

4
|Sd−2 |e1+Λ

2
0 . (3.49)

Now we set K3 equal to the maximum of the constants in (3.45), (3.46), (3.48), (3.49).
With this choice, K3 depends only on d,m,Am , and B and Hyp3

Λ̃
(K3) is true. �

Proof of Theorem 3.21. In view of Lemmata 3.24 and 3.26, a suitable choice for Am and
B is

B := ‖ f0‖L2(Rd )e
C f0T0, Am := sup

t ≥0
‖ f (t, ·)‖L1

m (R
d ).

The finiteness of Am is guaranteed since f0 ∈ L1
m(R

d ), see Remark 3.4. We again
choose the length scales ΛN to be

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1 +
√
2

2
ΛN−1 =

(
1 +
√
2

2

)N
Λ0

with Λ0 = 3, see (3.43), and we set

M3 := max
{
2|Sd−2 |Am + 1,K3

}
,
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with the constant K3 from Lemma 3.26. Since

sup
0≤t ≤T0

sup
|η | ≤
√
2Λ

∫ π
2

θ0

∫
Sd−2(η)

G (t, η−(η, θ,ω))
2m

2m+1

��� f̂ (η−(η, θ,ω))��� dω dθ

≤
π

2
|Sd−2 | e

2m
2m+1 βT0(1+Λ2

0)
α
Am,

and similarly for the η+ term, it follows from our choice of M3 that there exists β0 > 0
such that Hyp3Λ0

(M3) is true for all 0 ≤ β ≤ β0.
Now, we pick

β = min

(
β0,T −10 ,

C̃ f0

αT0[(1 + 2d−1)cb,d,2M2 + (Cθ0 + 2dCϑ0)M ] + 1

)
with the constant M2 from Corollary 3.17, so that the conditions of Lemma 3.24 and
3.26 are fulfilled.

For the induction step assume that Hyp3ΛN
(M3) is true. Lemma 3.24 then implies

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1

√
2ΛN
(Dv ) f0‖L2(Rd ) e

C f0T0 ≤ B,

and Lemma 3.26 shows that Hyp3ΛN+1
(M3) is true.

It follows that Hyp3ΛN
(M3) is true for all N ∈ N, and therefore also

‖G√2ΛN
f ‖L2(Rd ) ≤ B

for all N ∈ N. In particular, letting N → ∞, we see that ‖G f ‖L2(Rd ) ≤ B , which
concludes the proof of Theorem 3.21. �

3.7 Removing the L2 constraint: Gevrey regularity and
(ultra-)analyticity of weak solutions

In this section we will give the proofs of Theorem 2.2, 2.4, and 2.5 in a slightly more
general form. More precisely, we will prove

Theorem 3.27 (Gevrey smoothing I). Let 0 < ν < 1. Assume that the cross-section b
satisfies the conditions (B1)–(B3) with power-law type singularity (1.18) for d ≥ 2. For
d = 1, assume that b1 satisfies conditions (K1)–(K3). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum f0 ≥ 0 and f0 ∈ L1

m(R
d ) ∩ L log L(Rd ) for

some integerm ≥ 2. Then, for all 0 < α ≤ min
{
αm,d, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (3.50)

for all t > 0, where αm,d =
log[(4m+d)/(2m+d)]

log 2 .
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Theorem 3.28 (Gevrey smoothing II). Let d ≥ 2. Assume that the cross-section b satisfies
the conditions of Theorem 3.27. Let f be a weak solution of the Cauchy problem (1.2) with
initial datum f0 ≥ 0 and f0 ∈ L1

m(R
d ) ∩ L log L(Rd ) for some integerm ≥ 2. Then, for

all 0 < α ≤ min
{
αm,2, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (3.51)

for all t > 0, where αm,2 =
log[(4m+2)/(2m+2)]

log 2 . In particular, the weak solution is real
analytic if ν = 1

2 and ultra-analytic if ν >
1
2 in any dimension.

If the integrability condition (1.20) is replaced by the slightly stronger condition
(2.5), which is true in all physically relevant cases, we can prove the stronger result

Theorem 3.29 (Gevrey smoothing III). Let d ≥ 2. Assume that the cross-section b
satisfies the conditions of Theorem 3.27 and the condition (2.5), that is, b is bounded away
from the singularity. Let f be a weak solution of the Cauchy problem (1.2) with initial
datum f0 ≥ 0 and f0 ∈ L1

m(R
d ) ∩ L log L(Rd ) for some integer m ≥ 2. Then, for all

0 < α ≤ min
{
αm,1, ν

}
,

f (t, ·) ∈ G
1
2α (Rd ) (3.52)

for all t > 0, where αm,1 =
log[(4m+1)/(2m+1)]

log 2 .

We even have the uniform bound

Corollary 3.30. Under the same assumptions as in Theorem 3.27 (or 3.28, respectively
3.29), for any weak solution f of the Cauchy problem (1.2) initial datum f0 ≥ 0 and
f0 ∈ L1

m(R
d ) ∩ L log L(Rd ) for some integerm ≥ 2 and for any 0 < α ≤ min{αd,m, ν}

(or any 0 < α ≤ min{αm,2, ν}, respectively 0 < α ≤ min{αm,1, ν}) there exist constants
0 < K ,C < ∞ such that

sup
0≤t<∞

sup
η∈Rd

eK min(t,1) 〈η 〉2α | f̂ (t, η)| ≤ C . (3.53)

Proof of Theorems 3.27 through 3.29. In the case where the initial condition f0 obeys
f0 ≥ 0 and f0 ∈ L1

m(R
d ) ∩ L log L(Rd ) for some integer m ≥ 2, but is not ne-

cessarily in L2(Rd ), we use the known H∞ smoothing of the Boltzmann [DW04,
AE05, MUXY09] and Kac equation2 [LX09] in a mild way (see also Appendix B): for
τ > 0 one has f (τ, ·) ∈ L2(Rd ) and using this as a new initial condition in Theorems
2.2 through 2.5, and noting that T0 in those theorems is arbitrary, this implies that
f (t, ·) ∈ G 1

2α (Rd ) for t > 0. �

2A H∞ smoothing effect for the homogeneous non-cutoff Kac equation was first proved by L.

Desvillettes [Des95], but under the stronger assumption that all polynomial moments of the initial
datum f0 are bounded, i.e. f0 ∈ L1k (R) ∩ L log L(R) for all k ∈ N.
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Proof of Corollary 3.30 . Using known results about propagation of Gevrey regularity
by Desvillettes, Furioli, and Terraneo [DFT09] for the non-cutoff homogeneous
Boltzmann and Kac equation for Maxwellian molecules, the bounds from Corollary
3.12 through 3.22 extend to all times. �





CHAPTER4
Strong smoothing for Maxwellian

molecules with Debye-Yukawa type
interaction

In this chapter we prove the strong smoothing property of the homogeneous Boltz-
mann equation for Debye-Yukawa type Maxwellian molecules. The main differences
compared with Chapter 3 are:

(1) For the weights needed in the proof of Theorem 2.10 we have a much stronger
enhanced subadditivity bound, see Lemma 4.1. The proof is more involved than
the one in the proof of Gevrey smoothing, Lemma 3.3, though.

(2) Because of the stronger form of the subadditivity bound, we can allow for a bigger
loss in the induction step. We can therefore work with a more straightforward
version of the ‘impossible’ L2-to-L∞ bound, see Lemma 4.3.

(3) Due to the special form of the weights we use in the Debye-Yukawa case, which
are in some sense in between the power type weights used in [MUXY09] and
the sub-Gaussian weight described in Section 2.2, we do not have to do much of
the additional songs and dances from Chapter 3.

81
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4.1 Enhanced subadditivity and properties of the Fourier
weights

Lemma 4.1. Let µ > 0 and ℎ : [0,∞) → [0,∞), s 7→ ℎ(s) =
(
log(α + s)

) µ+1 for some
α ≥ e µ. Then ℎ is increasing, concave and for any 0 ≤ s− ≤ s+,

ℎ(s− + s+) ≤
µ + 1

1 + log α
ℎ(s−) + ℎ(s+). (4.1)

Remark. For α ≥ eµ, one has ℎ(0) ≥ µµ+1 > 0, and from the concavity of ℎ one
concludes the subadditivity estimate

ℎ(s−) + ℎ(s+) ≥ ℎ(s− + s+) + ℎ(0) > ℎ(s− + s+)

for all s−, s+ ≥ 0. Note that this is the best possible bound for general s−, s+ ≥ 0. For
0 ≤ s− ≤ s+ Lemma 4.1 shows that the subadditivity bound can be improved to gain
the small factor µ+1

1+log α , which is strictly less than one for α > eµ, in front of ℎ(s−). So
this is indeed an enhanced subadditivity property of the function ℎ.

Lemma 4.1 plays a similar role in the proof of Theorem 2.10, as Lemma 3.3 in
Chapter 3. Here the situation is a bit simpler than in Chapter 3, since by choosing α
large enough, we can make the term µ+1

1+log α as small as we like. �

Proof. Since

ℎ ′(s) =
µ + 1
α + s

(
log(α + s)

) µ
≥ 0 if α ≥ 1,

the function ℎ is increasing. Further,

ℎ ′′(s) =
µ + 1
(α + s)2

(
log(α + s)

) µ−1 (
µ − log(α + s)

)
≤

µ + 1
(α + s)2

(
log(α + s)

) µ−1 (
µ − log(α)

)
≤ 0

for α ≥ eµ, so ℎ is concave.
For all s−, s+ ≥ 0,

ℎ(s− + s+) = ℎ(s−)
ℎ(s− + s+) − ℎ(s+)

ℎ(s−)
+ ℎ(s+),

and by concavity, s+ 7→ ℎ(s− + s+) − ℎ(s+) is decreasing, so using 0 ≤ s− ≤ s+ one has

ℎ(s− + s+) ≤ ℎ(s−)
ℎ(2s−) − ℎ(s−)

ℎ(s−)
+ ℎ(s+).

Since ℎ ′ is decreasing,

ℎ(2s−) − ℎ(s−) =
∫ 2s−

s−
ℎ ′(r ) dr ≤ ℎ ′(s−)s−



4.1. SUBADDITIVITY AND PROPERTIES OF THE FOURIER WEIGHTS 83

and we get

ℎ(s− + s+) ≤ ℎ(s−)
ℎ ′(s−)s−
ℎ(s−)

+ ℎ(s+) = ℎ(s−)
(µ + 1)s−

(α + s−) log(α + s−)
+ ℎ(s+).

For α ≥ 1 the function Fα : [0,∞) → R, Fα(s) B (α + s) log(α + s), is strictly convex
and thus

Fα(s) ≥ Fα(0) + F ′α(0)s = α log α + (1 + log α)s ≥ (1 + log α)s .

It follows that s−
(α+s−) log(α+s−) ≤

1
1+log α and therefore

ℎ(s− + s+) ≤ ℎ(s−)
µ + 1

1 + log α
+ ℎ(s+).

�

Proposition 4.2. Let β, t, µ > 0, α ≥ eµ and define the function G̃ : [0,∞) → R by

G̃(r ) B eβt2
−µ−1(log(α+r ))

µ+1
.

Then for all 0 ≤ s− ≤ s+ with s− + s+ = s one has���G̃(s) − G̃(s+)��� ≤ 2−µ βt (µ + 1)
(
1 −

s+
s

) (
log(α + s)

) µ G̃(s−) µ+1
1+log α G̃(s+).

Proof. Using

G̃ ′(s) = 2−µ−1 βt (µ + 1)
1

α + s
(
log(α + s)

) µ G̃(s)
one has

G̃(s) − G̃(s+) =
∫ s

s+
G̃ ′(r ) dr ≤ 2−µ−1 βt (µ + 1)

s − s+
α + s+

(
log(α + s)

) µ G̃(s),
where we used that s+ ≤ s and the fact that G̃ is increasing. Since s− + s+ = s and
0 ≤ s− ≤ s+, in particular s+ ≥ s

2 , we can further estimate

s − s+
α + s+

=
(
1 −

s+
s

) s
α + s+

≤

(
1 −

s+
s

) 2s+
α + s+

≤ 2
(
1 −

s+
s

)
,

to obtain

G̃(s) − G̃(s+) ≤ 2−µ βt (µ + 1)
(
1 −

s+
s

) (
log(α + s)

) µ G̃(s).
The rest now follows from the enhanced subadditivity property (4.1), namely

G̃(s) = G̃(s− + s+) ≤ G̃(s−)
µ+1

1+log α G̃(s+).

�
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4.2 Extracting L∞ bounds from L2: a simple proof

Following is a simple bound which controls the size of a function ℎ in terms of its local
L2 norm and some global a priori bounds on ℎ and its derivative.

Lemma 4.3. Let ℎ ∈ C1
b (R

d ), i.e. ℎ is a bounded continuously differentiable func-
tion with bounded derivative. Then there exists a constant L < ∞ (depending only on
d, ‖ℎ‖L∞(Rd ) and, ‖∇ℎ‖L∞(Rd ) ) such that for any x ∈ Rd ,

|ℎ(x)| ≤ L
(∫

Qx

|ℎ(y)|2 dy
) 1

d+2
, (4.2)

where Qx is a unit cube in Rd with x being one of the corners, oriented away from the
origin in the sense that x · (y − x) ≥ 0 for all y ∈ Qx .

Remark. (1) We use the norm ‖∇ℎ‖L∞(Rd ) = supη∈Rd |∇ℎ(η)|, where | · | is the Euc-
lidean norm on Rd .

(2) The exponent 1
d+2 can be improved if higher derivatives of the function ℎ are

bounded, see Section 3.3. This was important for the results of Chapter 3, but
we don’t need it here because of the stronger form of the enhanced subadditivity
Lemma for the weight we consider in this chapter.

�

Remark. If f ∈ L1
1(R

d ), its Fourier transform satisfies f̂ ∈ C1
b (R

d ) by the Riemann-

Lebesgue lemma. Since ∇η f̂ (η) = �2πiv f (η) one has the a priori bound

‖∇ f̂ ‖L∞(Rd ) ≤ 2π ‖ f ‖L1
1(R

d ).

If f is a weak solution of the homogeneous Boltzmann equation, we can also
bound ‖∇ f̂ ‖L∞(Rd ) ≤ 2π ‖ f0‖L1

2(R
d ) uniformly in time due to conservation of energy.

�

Proof. We first consider the one-dimensional case and prove the d -dimensional result
by iteration in each coordinate direction.

Let u ∈ C1
b (R) and q ≥ 1. Then for any r ∈ R we have

|u(r )|q ≤ max
{
q ‖u ′‖L∞(R), ‖u‖L∞(R)

} ∫
Ir
|u(s)|q−1 ds, (4.3)

where Ir = [r , r + 1] if r ≥ 0 and Ir = [r − 1, r ] if r < 0.
Indeed, assuming for the moment r ≥ 0,

|u(r )|q −
∫
Ir
|u(s)|q ds ≤

∫
Ir
|uq (r ) − uq (s)| ds,
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and by the fundamental theorem of calculus,

|uq (r ) − uq (s)| ≤ q
∫
Ir
|u(t )|q−1 |u ′(t )| dt ≤ q ‖u ′‖L∞(R)

∫
Ir
|u(t )|q−1 dt .

Combined with the trivial estimate
∫
Ir
|u(s)|q ds ≤ ‖u‖L∞(R)

∫
Ir
|u(s)|q−1 ds one

arrives at inequality (4.3) for r ≥ 0. The case r < 0 is analogous.
For the case d > 1 we remark that for any y ∈ Rd ,

‖ℎ(y1, . . . , y j−1, · , y j+1, . . . , yd )‖L∞(R) ≤ ‖ℎ‖L∞(Rd ), and

‖∂jℎ(y1, . . . , y j−1, · , y j+1, . . . , yd )‖L∞(R) ≤ ‖∇ℎ‖L∞(Rd )

and setting q = d + 2 iterative application of (4.3) in each coordinate direction yields
for x ∈ Rd

|ℎ(x)|d+2 ≤
(
max

{
(d + 2)‖∇ℎ‖L∞(Rd ), ‖ℎ‖L∞(Rd )

})d ∫
Ix1×···×Ixd

|ℎ(y)|d+2−d dy,

hence

|ℎ(x)| ≤
(
max

{
(d + 2)‖∇ℎ‖L∞(Rd ), ‖ℎ‖L∞(Rd )

}) d
d+2

(∫
Qx

|ℎ(y)|2 dy
) 1

d+2

=: L‖ℎ‖
2

d+2
L2(Qx )

where Qx = Ix1 × · · · × Ixd is a unit cube directed away from the origin with x ∈ Rd
at one of its corners. �

4.3 Smoothing property of the Boltzmann operator

A central step in the proof of Theorem 2.10 is to prove a version for L2 initial data first.
This is the content of Theorem 4.4 below. In the remainder of this chapter we will
always assume that the collision kernel satisfies assumptions (B1)–(B3) with angular
singularity of Debye-Yukawa type (1.19).

Theorem 4.4. Let f be a weak solution of the Cauchy problem (1.2) with initial datum
f0 ≥ 0, f0 ∈ L1

2(R
d ) ∩ L log L(Rd ) and in addition f0 ∈ L2(Rd ).

Set α = e
d
2 +

d+2
2 µ. Then for allT0 > 0 there exist β,M > 0 such that for all t ∈ [0,T0]

sup
η∈Rd

e
d

d+2 βt(log〈η 〉α)
µ+1
| f̂ (t, η)| ≤ M ,

and eβt(log〈Dv 〉α)
µ+1

f (t, ·)

L2
≤ ‖ f0‖L2 eC f0T0,

where the constant C f0 depends only on ‖ f0‖L1
2
and ‖ f ‖L log L.
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We give the proof of Theorem 4.4 in Section 4.4. To prepare for its proof, let
α ≥ eµ and β > 0 and define the Fourier multiplier G : R+ × Rd → R+ by

G(t, η) B eβt(log〈η 〉α)
µ+1
, 〈η〉α B

(
α + |η |2

) 1
2

and for Λ > 0 the cut-off multiplier GΛ : R+ × Rd → [0,∞) by

GΛ(t, η) B G(t, η)1Λ(|η |)

wehre 1Λ is the characteristic function of the interval [0,Λ]. The associated Fourier
multiplication operator is denoted by GΛ(t,Dv ),

GΛ(t,Dv ) f B F−1
[
GΛ(t, ·) f̂ (t, ·)

]
Note that, due to the cut-off in Fourier space,

GΛ f ,G2
Λ
f ∈ L∞([0,T0];H∞(Rd ))

for any finite T0 > 0 and Λ > 0, if f ∈ L∞([0,T0]; L1(Rd )), and even analytic in a strip
containingRdv . In particular, by Sobolev embedding,GΛ f ,G2

Λ
f ∈ L∞([0,T0];W 2,∞(Rd )),

so 〈
Q( f , f )(t, ·),G2

Λ
f (t, ·)

〉
is well-defined.

As in the power-law case in Chapter 3, we can derive an L2-reformulation of weak
solutions, see Proposition 3.1 and Appendix A. Together with the coercivity estimate
from Proposition 2.12 this implies

Corollary 4.5 (A priori bound for weak solutions). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum f0 ≥ 0 satisfying f0 ∈ L1

2∩L log L(Rd ), and let
T0 > 0. Then there exist constants C̃ f0,C f0 > 0 (depending only on the dimension d , the
collision kernel b , ‖ f0‖L1

2
and ‖ f0‖L log L ) such that for all t ∈ (0,T0], β, µ > 0, α ≥ 0,

and Λ > 0 we have

‖GΛ f ‖2L2 ≤‖1Λ(Dv ) f0‖2L2 + 2C̃ f0

∫ t

0
‖GΛ f ‖2L2 dτ

+ 2
∫ t

0

(
β −

C f0

(log(e + α))µ+1

) (log〈Dv 〉α
) µ+1

2 GΛ f
2
L2

dτ

+ 2
∫ t

0

〈
GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f

〉
dτ.

(4.4)

Proof. In order to make use of the coercivity property of the Boltzmann collision
operator, we write

〈Q( f , f ),G2
Λ
f 〉 = 〈GΛQ( f , f ),GΛ f 〉
= 〈Q( f ,GΛ f ),GΛ f 〉 + 〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉
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and estimate the first term with Proposition 2.12.
Since ∂τG2

Λ
(τ, η) = 2β

(
log〈η〉α

) µ+1G2
Λ
(t, η), we further have

〈
f ,

(
∂τG2

Λ

)
f
〉
= 2β

(log〈Dv 〉α
) µ+1

2 GΛ f
2
L2
,

and inserting those two results into (3.1), one obtains the claimed inequality (4.4). �

Controlling the commutation error

Proposition 4.6 (Bound on the Commutation Error). Let f be a weak solution of the
Cauchy problem (1.2) with initial datum f0 ≥ 0, f0 ∈ L1

2(R
d ) ∩ L log L(Rd ). Then for

all t, β, µ,Λ > 0 and α ≥ eµ one has the bound

|〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉|

≤ βt (µ + 1)
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

)
G(η−)

µ+1
1+log α | f̂ (η−)|

×
(
log〈η〉α

) µ GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| dσ dη.
(4.5)

Remark. The bound (4.5) is very similar to the one we derived in Chapter 3, see
Proposition 3.5. In particular, it is a trilinear expression in the weak solution f . The
f̂ (η−) term is multiplied by a faster-than-polynomially growing function. If the Fourier

multiplierG were only growing polynomially, the factorG(η−)
µ+1

1+log α would be replaced
by 1, making the analysismuch easier. We will therefore rely on the inductive procedure
we developed in Chapter 3 to treat exactly this type of situation. �

Proof. Bobylev’s identity and a small computation show that��〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉�� = ��〈F [
GΛQ( f , f ) −Q( f ,GΛ f )

]
,F

[
GΛ f

]〉
L2

��
≤

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)| |G(η) −G(η+)| dσ dη

since GΛ is supported on the ball {|η | ≤ Λ} and |η+ | ≤ |η |. We further have

|η± |2 =
|η |2

2

(
1 ±

η · σ

|η |

)
, |η− |2 + |η+ |2 = |η |2,

in particular by the support assumption on the collision kernel b , η ·σ
|η | ∈ [0, 1], and

therefore

0 ≤ |η− |2 ≤
|η |2

2
≤ |η+ |2 ≤ |η |2.
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From Proposition 4.2 it now follows that��G(η) −G(η+)�� = ���G̃(|η |2) − G̃(|η+ |2)���
≤ βt (µ + 1)

(
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ G(η−)
µ+1

1+log αG(η+),

which completes the proof. �

Lemma 4.7.∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| dσ dη

≤ cb,d
(
‖GΛ f ‖2L2 +

(log〈Dv 〉α
) µ
2 GΛ f

2
L2

)
, (4.6)

where

cb,d =
1
2
max{1, 2µ−1}max{2d−1−µ(log 2)µ, 1 + 2d−1} |Sd−2 |

∫ π
2

0
sind θ b(cos θ) dθ.

Proof. Using Cauchy-Schwartz, in the form ab ≤ a2
2 +

b2
2 , one can split the integral

into∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| dσ dη

≤
1
2

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η)2 | f̂ (η)|2 dσ dη

+
1
2

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η+)2 | f̂ (η+)|2 dσ dη

and we will treat the two terms separately. To estimate the first integral, one introduces
polar coordinates such that η

|η | · σ = cos θ and thus, since

|η+ |2 = |η |2
(
1 +

η

|η |
· σ

)
= |η |2 cos2

θ

2
,

obtains

I B
1
2

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η)2 | f̂ (η)|2 dσ dη

=
1
2
|Sd−2 |

∫ π
2

0
sind−2 θ b(cos θ) sin2 θ

2 dθ
∫
Rd

(
log〈η〉α

) µ GΛ(η)2 | f̂ (η)|2 dη

≤
1
2
|Sd−2 |

∫ π
2

0
sind θ b(cos θ) dθ

(log〈Dv 〉α
) µ
2 GΛ f

2
L2
.
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Notice that the θ integral is finite due to the assumptions on the angular collision
kernel. This is another instance where cancellation effects play an important role in
controlling the singularity for grazing collisions.

It remains to bound the second integral, and we will do this after a change of
variables η → η+. This change of variables is well-known to the experts, see, for
example, [ADVW00, MUXY09]. We give some details for the convenience of the
reader.

Observe that η
+ ·σ
|η+ | =

|η+ |
|η | and

η ·σ
|η | = 2

(
η+ ·σ
|η+ |

)2
− 1, and by Sylvester’s determinant

theorem, one has

����∂η+∂η ���� = ����12 (
1 +

η

|η |
⊗ σ

)���� = 1
2d

(
1 +

η

|η |
· σ

)
=

1
2d−1

(
η+ · σ

|η+ |

)2
=

1
2d−1
|η+ |2

|η |2
.

Since 0 ≤ |η− | ≤ |η+ | and |η |2 = |η− |2 + |η+ |2, in particular |η |2 ≤ 2|η+ |2, it follows
that

��� ∂η+∂η ��� ≥ 2−d and

log〈η〉α = 1
2 log(α + |η |

2) ≤ 1
2 log 2 +

1
2 log(α + |η

+ |2) = 1
2 log 2 + log〈η+〉α .

For all x, y ≥ 0 one has

{
(x + y)µ ≤ 2µ−1(x µ + y µ) for µ ≥ 1 by convexity, and
(x + y)µ ≤ x µ + y µ for µ < 1,

where the second statement is a consequence of the fact that for 0 < µ < 1 the function
0 ≤ s 7→ ℎ(s) = (1 + s)µ − s µ is monotone decreasing for all s > 0 with ℎ(0) = 1.
Therefore,

(
log〈η〉α

) µ
≤ max{1, 2µ−1}

(
2−µ(log 2)µ +

(
log〈η+〉α

) µ )
.
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After those preparatory remarks, we can estimate

I + B
1
2

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ GΛ(η+)2 | f̂ (η+)|2 dσ dη

=
1
2

∫
Sd−1

∫
Rd

b

(
2
(
η+ · σ

|η+ |

)2
− 1

) (
1 −

(
η+ · σ

|η+ |

)2)
×

(
log〈η〉α

) µ GΛ(η+)2 | f̂ (η+)|2
����∂η+∂η ����−1 dη+ dσ

≤ 2d−1 max{1, 2µ−1}

×

[
2−µ(log 2)µ

∫
Rd

∫
Sd−1

b

(
2
(
η+ · σ

|η+ |

)2
− 1

) (
1 −

(
η+ · σ

|η+ |

)2)
×GΛ(η+)2 | f̂ (η+)|2 dσ dη+

+

∫
Rd

∫
Sd−1

b

(
2
(
η+ · σ

|η+ |

)2
− 1

) (
1 −

(
η+ · σ

|η+ |

)2)
×

(
log〈η+〉α

) µ GΛ(η+)2 | f̂ (η+)|2 dσ dη+
]
.

Introducing new polar coordinates with pole η+

|η+ | , such that cos ϑ = η+ ·σ
|η+ | ≥

1√
2
, i.e.

ϑ ∈ [0, π4 ], one then gets

I + ≤ 2d−1 max{1, 2µ−1} |Sd−2 |
∫ π

4

0
sind ϑb(cos 2ϑ) dϑ

×

[
2−µ(log 2)µ‖GΛ f ‖2L2 +

(log〈Dv 〉α
) µ
2 GΛ f

2
L2

]
.

Estimating
∫ π

4
0 sind ϑb(cos 2ϑ) dϑ ≤

∫ π
2

0 sind θ b(cos θ) dθ and combining the bounds
on I and I + proves inequality (4.6). �

4.4 Smoothing effect for L2 initial data: Proof of Theorem
4.4

We now have all the necessary pieces together to start the inductive proof of Theorem
4.4 for initial data that are in addition square integrable.

The proof is based on gradually removing the cut-off Λ in Fourier space, in such a
way that the commutation error can be controlled, even though it contains fast growing
terms. For fixed T0, µ > 0 and α ≥ eµ we define
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Definition 4.8 (Induction Hypothesis HypΛ(M ).). Let M ≥ 0 and Λ > 0. Then for
all 0 ≤ t ≤ T0,

sup
|ξ | ≤Λ

G(t, ξ)
µ+1

1+log α | f̂ (t, ξ)| ≤ M .

Remark. Recall that the Fourier multiplier G also depends on β > 0 and α ≥ eµ and
we suppress this dependence here.

The induction step itself will be divided into two separate steps:

Step 1 HypΛ(M ) =⇒ ‖G√2Λ f ‖L2 ≤ C via a Gronwall argument.

Step 2 L2 → L∞ bound:

‖G√2Λ f ‖L2 ≤ C =⇒ Hyp
Λ̃
(M ) for intermediate Λ̃ =

1 +
√
2

2
Λ.

Here it is essential that M does not increase during the induction procedure. This can
be accomplished by choosing β small enough at very beginning.

�

Lemma 4.9 (Step 1). Fix T0, µ > 0 and α ≥ eµ and let M ≥ 0 and Λ > 0. Let further
C f0, C̃ f0 and cb,d be the constants from Corollary 4.5 and Lemma 4.7, respectively. If

0 < β ≤ β0(α) B
C f0

(log(e + α))µ+1
log α

log α + 2T0(µ + 1)cb,dM
, (4.7)

then for any weak solution of the Cauchy problem (1.2) with initial datum f0 ≥ 0, f0 ∈
L1
2 ∩ L log L,

HypΛ(M ) =⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1√2Λ(Dv ) f0‖L2(Rd ) e
T0A f0 (α),

where A f0(α) B C̃ f0 +
C f0 log α

2(log(e+α))
µ+1 depends on f0 only through ‖ f0‖L1 , ‖ f0‖L1

2
and

‖ f0‖L log L.

Proof. Assume HypΛ(M ) is true. Since |η− | = |η | sin
θ
2 ≤

|η |
√
2
by the assumption on

the angular cross-section, the hypothesis implies

sup
|η | ≤
√
2Λ

G(η−)
µ+1

1+log α | f̂ (η−)| ≤ M .

With this uniform estimate at hand, we can bound the commutation error by

|〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉|

≤ 2βt (µ + 1)M
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

) (
log〈η〉α

) µ
×G√2Λ(η

+)| f̂ (η+)|G√2Λ(η)| f̂ (η)| dσ dη,
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see equation (4.5). By Lemma 4.7, this can be further bounded by

|〈GΛQ( f , f ) −Q( f ,GΛ f ),GΛ f 〉|

≤ βT0(µ + 1)cb,dM
(
‖G√2Λ f ‖

2
L2 +

(log〈Dv 〉α
) µ
2 G√2Λ f

2
L2

)
for all 0 ≤ t ≤ T0. Thus, the a priori bound from Corollary 4.5 yields

‖G√2Λ f ‖
2
L2 ≤ ‖1√2Λ(Dv ) f0‖2L2 + 2

(
C̃ f0 + βT0(µ + 1)cb,dM

) ∫ t

0
‖G√2Λ f ‖

2
L2 dτ

+ 2
∫ t

0

(
β
(log〈Dv 〉α

) µ+1
2 G√2Λ f

2
L2

+ βT0(µ + 1)cb,dM
(log〈Dv 〉α

) µ
2 G√2Λ f

2
L2

−
C f0

(log(e + α))µ+1

(log〈Dv 〉α
) µ+1

2 G√2Λ f
2
L2

)
dτ

(4.8)

Choosing β ≤ β0(α) as defined in (4.7) ensures that the integrand in the last term
on the right hand side of (4.8) is negative. Indeed, setting B = T0(µ + 1)cb,dM and

C =
C f0

(log(e+α))µ+1 , so that β ≤ C log α
log α+2B , one sees that

β log〈η〉α + βB −C log〈η〉α ≤ −
2CB

log α + 2B
log〈η〉α +

CB log α
log α + 2B

=
CB

(
log α − log(α + |η |2)

)
log α + 2B

≤ 0,

and further, since log α ≥ µ > 0,

βB ≤
CB log α
log α + 2B

=
C log α

2
2B

log α + 2B
≤

C log α
2

.

It follows that

‖G√2Λ f ‖
2
L2 ≤ ‖1√2Λ(Dv ) f0‖2L2 + 2

(
C̃ f0 + βT0(µ + 1)cb,dM

) ∫ t

0
‖G√2Λ f ‖

2
L2 dτ

≤ ‖1√2Λ(Dv ) f0‖2L2 + 2A f0(α)

∫ t

0
‖G√2Λ f ‖

2
L2 dτ.

Now Gronwall’s lemma implies

‖G√2Λ f ‖
2
L2 ≤ ‖1√2Λ(Dv ) f0‖2L2 e

2A f0 (α)t ≤ ‖1√2Λ(Dv ) f0‖2L2 e
2A f0 (α)T0 .

�
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Lemma 4.10 (Step 2). Let β, µ > 0, T0 > 0, and

Λ ≥ Λ0 B
2
√
d

√
2 − 1

.

If there exist finite constants B1, B2 ≥ 0 such that for all 0 ≤ t ≤ T0

‖ f (t, ·)‖L1
1(R

d ) ≤ B1, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B2,

then there exists a constant K depending only on the dimension d and the bounds B1, B2,
such that for all |η | ≤ Λ̃ B 1+

√
2

2 Λ and t ∈ [0,T0]

| f̂ (t, η)| ≤ K G(t, η)−
2

d+2 .

Proof. By Remark 4.2 f satisfies the conditions of Lemma 4.3 with ‖∇ f̂ ‖L∞(Rd ) ≤
2πB1, uniformly in t ∈ [0,T0]. Obviously, also ‖ f̂ ‖L∞(Rd ) ≤ ‖ f ‖L1(Rd ) ≤ B1. It
follows that for any η ∈ Rd

| f̂ (η)| ≤
(
2π(d + 2)B1

) d
d+2

(∫
Qη

| f̂ |2 dη

) 1
d+2

.

where Qη is a unit cube with one corner at η , such that η · (ζ − η) ≥ 0 for all ζ ∈ Qη .
Since its diameter is

√
d , the condition Λ ≥ Λ0 and the choice of Λ̃ guarantee that for

|η | ≤ Λ̃ the cube Qη always stays inside a ball around the origin with radius
√
2Λ. By

the orientation ofQη and since the Fourier weightG is a radial and increasing function
in η , we can further estimate

| f̂ (η)| ≤
(
2π(d + 2)B1

) d
d+2 G(η)−

2
d+2

(∫
Qη

G(η)2 | f̂ |2 dη

) 1
d+2

≤
(
2π(d + 2)B1

) d
d+2 G(η)−

2
d+2

G√2Λ f  2
d+2

L2(Rd )

≤

(
2π(d + 2)B1B

2
d
2

) d
d+2

G(η)−
2

d+2

which is the claimed inequality with K =
(
2π(d + 2)B1B

2
d
2

) d
d+2

. �

Proof of Theorem 4.4. Let µ > 0 and T0 > 0 be fixed. Set α∗ = e
d
2 +

d+2
2 µ ≥ eµ, which

is chosen in such a way that µ+1
1+log α∗

= 2
d+2 and the function s 7→

(
log(α∗ + s)

) µ+1 is
concave.
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ChoosingΛ0 =
2
√
d√

2−1
as in Lemma 4.10, we define the length scales for our induction

by

ΛN B
ΛN−1 +

√
2ΛN−1

2
=

1 +
√
2

2
ΛN−1 =

(
1 +
√
2

2

)N
Λ0, N ∈ N.

By conservation of energy, we have

‖ f (t, ·)‖L1
1
≤ ‖ f (t, ·)‖L1

2
= ‖ f0‖L1

2
C B1

in view of Lemma 4.10. By Lemma 4.9 a good (in particular uniform in N ∈ N) choice
for B2 is

B2 B ‖ f0‖L2(Rd ) e
T0A f0 (α∗).

Define further

M B max

{
2B1 + 1,

(
2π(d + 2)B1B

2
d
2

) d
d+2

}
,

where the second expression is just the constant K from Lemma 4.10.
For the start of the induction, we need HypΛ0

(M ) to hold. Since

sup
t ∈[0,T0]

sup
|η | ≤Λ0

G(η)
µ+1

1+log α∗ | f̂ (η)| ≤ e
µ+1

1+log α∗
βT0( 12 log(α∗+Λ

2
0))

µ+1

B1,

there exists β̃ > 0 small enough, such that for the the above choice of M , HypΛ0
(M ) is

true for all 0 < β ≤ β̃.
For the induction step, assume that HypΛN

(M ) is true. Setting

β = min{β0(α∗), β̃}

with β0(α) from Lemma 4.9, all the assumptions of Lemma 4.9 are fulfilled and it
follows that

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1

√
2ΛN
(Dv ) f ‖L2(Rd ) e

T0A f0 (α∗) ≤ B2.

Notice that the right hand side of this inequality does not depend on M . Lemma 4.10
now implies that for all |η | ≤ Λ̃N = ΛN+1

G(t, η)
2

d+2 | f̂ (t, η)| ≤ K ≤ M

for all t ∈ [0,T0]. By the choice of α∗ this means that HypΛN+1
(M ) is true.

By induction, it follows that HypΛN
(M ) holds for all N ∈ N, in particular

sup
t ∈[0,T0]

sup
η∈Rd

eβt(log〈η 〉α∗)
µ+1
| f̂ (η)| ≤ M .
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Another application of Lemma 4.9 implies

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖ f0‖L2(Rd ) e

T0A f0 (α∗) for all N ∈ N.

Passing to the limit N →∞, it follows that ‖G f ‖L2(Rd ) ≤ B2, that is,

eβt(log〈Dv 〉α∗)
µ+1

f (t, ·) ∈ L2(Rd ).

�

4.5 Smoothing effect for arbitrary physical initial data

Proof of Theorem 2.10. Let T > 0 be arbitrary (but finite). By the already known
H∞ smoothing property of the homogeneous Boltzmann equation for Maxwellian
molecules with Debye-Yukawa type interaction, see Proposition 2.7, for any 0 < t0 < T
one has

f ∈ L∞([t0,T ];H∞(Rd )),

in particular f (t, ·) ∈ L2(Rd ) for all t0 ≤ t ≤ T . Using f (t0, ·) ∈ L1
2 ∩ L log L ∩ L2 as

new initial datum, Theorem 4.4 implies that there exist β,M > 0 such that

eβt(log〈Dv 〉α∗)
µ+1

f (t, ·) ∈ L2(Rd )

and

‖eβt(log〈·〉α∗)
µ+1

f̂ (t, ·)‖L∞(Rd ) ≤ M

for all t ∈ [t0,T ]. By the characterisation of the spaces Aµ (see Appendix D), and
since t0 and T are arbitrary, it follows that f (t, ·) ∈ Aµ(Rd ) for all t > 0. �

Sketch of the Proof of Corollary 2.11. In the notation of [DFT09], basically, the only
thing that needs to be checked is that the function ψα : [0,∞) → [0,∞), r 7→ ψα(r ) B
(log
√
α + r )µ+1 satisfies

(i) ψα(r ) → ∞ for r →∞

(ii) ψα(r ) ≤ r for r large enough

(iii) there exists R ≥ 1 such that for all 0 ≤ λ ≤ 1

ψα(λ
2 |η |2) ≥ λ2ψα(|η |

2) whenever λ |η | ≥ R.

Property (iii) is fulfilled by any concave function ψ with ψ(0) ≥ 0. This clearly is the
case for ψα if α ≥ eµ, see Lemma 4.1.

So we take the α from Theorem 4.4 and conclude propagation with Theorem 1.2
from [DFT09]. �





CHAPTER5
Outlook: Non-Maxwellian

Molecules and Inhomogeneous
Boltzmann Equation

We close the part on smoothing properties of the Boltzmann equation with a short
outlook on the non-Maxwellian and inhomogeneous cases.

5.1 Non-Maxwellian Molecules

Recall that in general the Boltzmann collision kernel B is a function of the relative
velocity |v − v∗ | and the collision angle θ defined (in the σ-representation) by cos θ =
v−v∗
|v−v∗ | ·σ. Let us assume that this dependence factorises into a kinetic factor Φ(|v −v∗ |)
and an angular contribution b(cos θ), such that the Boltzmann kernel takes the form

B(|v − v∗ |, cos θ) = Φ(|v − v∗ |) b(cos θ).

We will mainly have the case of inverse power law interaction potentials in mind, where
Φ(|v |) = |v |γ for some γ ∈ R, and the angular kernel has a singularity of the type

sind−2 θ b(cos θ) ∼
κ

θ1+2ν

for grazing collisions θ → 0, with κ > 0 and 0 < ν < 1. It is customary to distinguish
the cases

(i) γ < −2: very soft potentials,

(ii) −2 < γ < 0: moderately soft potentials,

97



98 CHAPTER 5. NON-MAXWELLIAN AND INHOMOGENEOUS BE

(iii) γ = 0: Maxwellian molecules,

(iv) γ > 0: hard potentials,

where the Boltzmann equation behaves rather differently.1
Indeed, already the existence of weak solutions is a challenging problem, and for

very soft potentials (due to the vanishing of ϕ′ + ϕ′∗ − ϕ − ϕ∗ only of order 2 for test
functions ϕ ∈W 2,∞ ) one has to use an altogether different definition of weak solutions:
the notion of H -solutions based on the finiteness of the entropy production functional,
which gives a useful a priori estimate and allows for a definition of 〈Q( f , f ), ϕ〉 even
in the case of very soft potentials, at least for γ > −4, see [Vil98]. We will not discuss
this case any further here, but state the relevant existence results for moderately soft
and hard potentials.

Theorem 5.1 (Theorem 1 in [Vil98]). Let f0 ∈ L1
2 ∩ L log L(Rd ). If γ > 0, assume in

addition that f0 ∈ L1
2+δ(R

d ) for some δ > 0. If −2 ≤ γ < 2 and
∫
sind θ b(cos θ) dθ <

∞, there exists a weak solution f of the Cauchy problem for the Boltzmann equation with
initial datum f0. Moreover, for all ϕ ∈W 2,∞(Rd ), the map t 7→

∫
f (t )ϕ dv is Lipschitz

continuous if f0 ∈ L1
max{2,2+γ } or in any case for t ≥ t0 > 0.

The latter statement refers to the fact that for hard potentials γ > 0 polynomial
moments of arbitrary order are immediately generated, i.e., if f0 ∈ L1

2(R
d ), then for all

q > 2 and t0 > 0 there exists a finite constant C > 0 such that for all t ≥ t0∫
Rd

f (t, v) 〈v〉q dv ≤ C ,

see, for instance, [Elm83, Des93, Wen97, MW99] for details.
The following coercivity property is known in the non-Maxwellian case:

Theorem 5.2 (Proposition 2.1 in [AMUXY12]). Let 0 ≤ g ∈ L1
2 ∩ L log L(Rd ) with

‖g ‖L1 ≥ D0 and ‖g ‖L1
2
+ ‖g ‖L log L ≤ E0 for some D0, E0 > 0. If γ + 2ν > 0, there exist

positive constants c0,C depending only on D0 and E0 such that

−〈Q(g, f ), f 〉 ≥ c0
〈·〉γ/2 f 2

H ν
−C

〈·〉γ/2 f 2
L2

for all f ∈ S(Rd ).

Using an approach based on Fourier methods for non-Maxwellian collision kernels
is considerably harder since Bobylev’s identity has a much more complicated form.
One can show that�Q(g, f )(η) = ∫

Rd×Sd−1̂
Φ(|ξ |) b

(
η

|η |
· σ

) [
ĝ (η− + ξ) f̂ (η+ − ξ) − ĝ (ξ) f̂ (η − ξ)

]
dσdξ,

(5.1)
1Of course, γ should not become too negative, otherwise the singularity would be too strong. From

our derivation in the introduction, γ = n−(2d−1)
n−1 with n > 2, so certainly γ > 3 − 2d .
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where η± = 1
2 (η ± |η |σ) as before. For Φ ≡ 1 this reduces to the Bobylev identity for

Maxwellian molecules, see (1.40).
In the most interesting case Φ(|v |) = |v |γ , say for hard potentials 0 < γ < 2, the

Fourier transform Φ̂ only exists in a distributional sense, so one has to take care of
the well-definedness of equation (5.1) under the singularity assumptions on the angular
kernel b and the natural assumptions on f and g . This is where creation of moments
can help, as this implies that the Fourier transform f̂ (t, ·) of the weak solution is
immediately a bounded C∞ function.

The main difficulty in applying our strategy from the Maxwellian molecules case,
however, is the fact that the quasi-locality property of the Boltzmann collision operator
is lost, so that the inductive scheme we developed fails to work.

The following smoothing results are known for non-Maxwellian molecules (for the
precise assumptions in each case we refer to the articles):

1. Using Littlewood-Paley theory, Alexandre and ElSafadi [AE09] were able to
prove H∞ smoothing of weak solutions for a regularised kinetic factor Φ(v) =
〈v〉γ .

2. Alexandre, Morimoto, Ukai, Xu, Yang [AMUXY12] proved H∞ smoothing
of weak solutions for the physically relevant kinetic factor Φ(v) = |v |γ .

3. Chen and He [CH11] showed H∞ smoothing, again in the physically relevant
case Φ(v) = |v |γ for the strong solutions constructed by Desvillettes and
Mouhot [DM09].

5.2 Inhomogeneous Boltzmann Equation

In the spatially inhomogeneous case, the collision operator is highly degenerate, since it
only acts on the velocity variable. Due to the presence of the transport term v · ∇x , one
expects a transfer of regularity from the velocity variable to the space variable, and there-
fore some hypoelliptic smoothing effect in both variables. This has been highlighted in
terms of a generalised uncertainty principle for kinetic equations by Alexandre, Mor-

imoto, Ukai, Xu and Yang [AMUXY08] under strong assumptions on the initial data
and the solutions. Chen andHe [CH12] were able to show an H∞ smoothing effect for
the global classical solutions obtained byGressmann and Strain [GS10, GS11], and Al-

exandre, Morimoto, Ukai, Xu, and Yang [AMUXY11a, AMUXY11b, AMUXY11c].
For the one-dimensional inhomogeneous Kac equation, Lerner, Morimoto, Pravda-

Starov and Xu [LMPX15] obtained Gelfand-Shilov smoothing with respect to the
velocity variable and Gevrey smoothing with respect to the space variable for fluctu-
ations around the global equilibrium, i.e., close to the equilibrium.

As in the homogeneous case, replacing the bilinear Boltzmann operator by a
fractional Laplacian (for power-law interactions), one is led to study the generalised
Kolmogorov equation

∂t f + v · ∇x f = −(−∆v )ν f , (x, v) ∈ R2d, t > 0, (5.2)
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for instance with initial datum f |t=0 = f0 ∈ L2(R2d ), for some ν > 0. The Fourier
transform f̂ (t, ξ, η) =

∫
R2d

e−2πi(x ·ξ+v ·η) f (t, x, v) dxdv of f is then a solution of the
inhomogeneous transport equation

∂t f̂ (t, ξ, η) − ξ · ∇η f̂ (t, ξ, η) = −(2π)2ν |η |2ν f̂ (t, ξ, η), (5.3)

for (ξ, η) ∈ R2d , t > 0, which can be solved easily by the method of characteristics: the
characteristic curve Ξ through (t, ξ, η) satisfies the ODE ÛΞ(s) = −ξ , Ξ(t ) = η , with
solution Ξ(s) = η + (t − s)ξ . Setting Fξ (s) := f̂ (s, ξ,Ξ(s)), the function Fξ solves the
differential equation

ÛFξ (s) = −(2π)2ν |Ξ(s)|2ν Fξ (s), with Fξ (0) = f̂ (0, ξ,Ξ(0)) = f̂0(ξ, η + t ξ),

i.e., Fξ (s) = e−(2π)
2ν

∫ s
0 |Ξ(τ) |

2ν dτFξ (0). Hence, the solution f̂ (t, ξ, η) = Fξ (t ) of (5.3),
that is, the Fourier transform of the solution of the generalised Kolmogorov equation
(5.2), is given by

f̂ (t, ξ, η) = e−(2π)
2ν

∫ t
0 |η+τξ |

2ν dτ f̂0(ξ, η + t ξ).

Since for any ν > 0 there exists a constant cν > 0 such that∫ t

0
|η + sξ |2ν ds ≥ cν

(
t |η |2ν + t 2ν+1 |ξ |2ν

)
,

see, for instance, [MX09, Lemma 3.1], the solution f (t, ·, ·) of (5.2) immediately
becomes Gevrey regular of order 1

2ν in both the x and v variables,

ecν(t (−∆v )
ν+t 2ν+1(−∆x )ν) f (t, ·, ·) ∈ L2(R2d ),

i.e. f (t, ·, ·) ∈ G
1
2ν (R2d ) for any t > 0. It is therefore natural to expect the

Conjecture. Let f be a solution of the inhomogeneous Boltzmann equation with initial
datum f0 satisfying∫

R2d
f0(x, v)

(
1 + |v |2 + log(1 + f0(x, v))

)
dx dv < ∞.

Then f (t, ·, ·) ∈ G
1
2ν (R2d ) for any positive time t > 0.



APPENDIX A
L2-Reformulation of the

homogeneous Boltzmann equation
for weak solutions and coercivity

A reformulation of the weak form (1.25) of the Boltzmann and Kac equations is derived.
We want to choose a suitable test function ϕ in terms of the weak solution f itself in
the weak formulation of the Cauchy problem (1.2). We use ϕ(t, ·) := G2

Λ
(t,Dv ) f (t, ·)

and since this involves a hard cut-off in Fourier space, we automatically have high
regularity of ϕ(t, v) in the velocity variable, the question is to have C1 regularity in
the time variable. For this we follow the strategy by Morimoto et al. [MUXY09].

Proposition A.1. Let f be a weak solution of the Cauchy problem (1.2) with initial
datum 0 ≤ f0 ∈ L1

2 ∩ L log L(Rd ), and let T0 > 0. Then for all t ∈ (0,T0], β > 0,

α ∈ (0, 1), and Λ > 0 we haveGΛ f ∈ C
(
[0,T0]; L2(Rd )

)
and

1
2
‖GΛ(t,Dv ) f (t, ·)‖2L2(Rd )

−
1
2

∫ t

0

〈
f (τ, ·),

(
∂tG2

Λ
(τ,Dv )

)
f (τ, ·)

〉
dτ

=
1
2
‖1Λ(Dv ) f0‖2L2(Rd )

+

∫ t

0

〈
Q( f , f )(τ, ·),G2

Λ
(τ,Dv ) f (τ, ·)

〉
dτ.

(A.1)

To ensure that we can use G2
Λ
f as a test function in the weak formulation of the

Boltzmann equation, we need the following bilinear estimate on Q(g, f ), which is a
special case of a larger class of functional inequalities by Alexandre [Ale06, Ale09,
AH08].

Lemma A.2 (Functional Estimate on Collision Operator). Assume that the angular
collision cross-section b satisfies assumptions (B1)–(B3) or (K1)–(K3), respectively. Then
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for any k > d+4
2 there exists a constant C > 0 such that

‖Q(g, f )‖H −k (Rd ) ≤ C ‖g ‖L1
2(R

d )‖ f ‖L1
2(R

d ). (A.2)

Proof. This is a direct consequence1 of Theorem 7.4 in Alexandre’s review [Ale09]:
under the assumptions on b , for any m ∈ R there exists a constant C̃ > 0 such that

‖Q(g, f )‖H −m (Rd ) ≤ C̃ ‖g ‖L1
2ν (R

d )‖ f ‖H −m+2ν2ν (Rd ).

Since L1(Rd ) ⊂ H −s (Rd ) for any s > d
2 , we obtain for k > d+4

2 and ν ∈ (0, 1),

‖ f ‖H −k+2ν2ν (Rd ) = ‖〈·〉
2ν f ‖H −k+2ν (Rd ) ≤ C ‖〈·〉2ν f ‖L1(Rd )

≤ c ‖〈·〉2 f ‖L1(Rd ) = c ‖ f ‖L1
2(R

d ),

i.e., L1
2(R

d ) ⊂ H −k+2ν2ν (Rd ) for any k > d+4
2 and ν ∈ (0, 1). Therefore,

‖Q(g, f )‖H −k (Rd ) ≤ C̃ ‖g ‖L1
2ν (R

d )‖ f ‖H −k+2ν2ν (Rd ) ≤ C ‖g ‖L1
2(R

d )‖ f ‖L1
2(R

d ).

�

Lemma A.2 implies that for f , g ∈ L1
2(R

d ), 〈Q(g, f ), ℎ〉 is well-defined for all
ℎ ∈ H k(Rd ), k > d+4

2 , and one has 〈Q(g, f ), ℎ〉 = 〈�Q(g, f ), ℎ̂ 〉L2 .

Proof of Proposition A.1. Choosing a constant in time test function ϕ(t, ·) = ψ ∈

C∞0 (R
d ) in the weak formulation (1.25) yields∫
Rd

f (t, v)ψ(v) dv −
∫
Rd

f (s, v)ψ(v) dv =
∫ t

s
〈Q( f , f )(τ, ·), ψ〉 dτ,

for all 0 ≤ s ≤ t ≤ T0 and ψ ∈ C∞0 (R
d ) (this was already remarked by Villani [Vil98]

as an equivalent formulation of (1.25)). By means of (A.2) this equality can be extended
to test functions ψ ∈ H k for k > d+4

2 , in particular one can choose ψ = G2
Λ
f (t, ·) and

ψ = G2
Λ
f (s, ·) which, taking the sum of both resulting equations, yields

‖GΛ f (t, ·)‖2L2(Rd )
− ‖GΛ f (s, ·)‖2L2(Rd )

=
〈
f (t, ·),G2

Λ
f (t, ·)

〉
−

〈
f (s, ·),G2

Λ
f (s, ·)

〉
=

〈
f (t, ·),

(
G2
Λ
(t,Dv ) −G2

Λ
(s,Dv )

)
f (s, ·)

〉
+

∫ t

s

〈
Q( f , f )(τ, ·),G2

Λ
f (t, ·) +G2

Λ
f (s, ·)

〉
dτ.

(A.3)

1This result is proved in [Ale09] for d = 3, but the proof depends only on assumption (1.18) and
general properties of Littlewood-Paley decompositions and holds in any dimension d ≥ 1.
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Using Plancherel, the first term on the right hand side of (A.3) can be estimated by��〈 f (t, ·), (G2
Λ
(t,Dv ) −G2

Λ
(s,Dv )

)
f (s, ·)

〉�� = ���〈 f̂ (t, ·), (G2
Λ
(t, ·) −G2

Λ
(s, ·)

)
f̂ (s, ·)

〉���
≤

∫
Rd
| f̂ (t, η)| |G2

Λ
(t, η) −G2

Λ
(s, η)| | f̂ (s, η)| dη

≤ |t − s |
∫
Rd

2β〈η〉2αG2
Λ
(t, η) dη ‖ f (t, ·)‖L1(Rd )‖ f (s, ·)‖L1(Rd )

≤ CΛ,T0 |t − s | ‖ f0‖2L1(Rd )
,

and, using that the terms involving the collision operator can, for any k > d+4
2 (compare

(A.2)), be bounded by

|〈Q( f , f )(τ, ·),G2
Λ
f (t, ·)〉 | ≤ ‖Q( f , f )(τ, ·)‖H −k (Rd )‖G

2
Λ
f (t, ·)‖H k (Rd )

≤ C ‖ f ‖2L1
2(R

d )

(∫
Rd
〈η〉2kG4

Λ
(t, η)| f̂ (t, η)|2 dη

)1/2
≤ C ‖ f ‖2L1

2(R
d )
‖ f (t, ·)‖L1(Rd )

(∫
Rd
〈η〉2kG4

Λ
(T0, η) dη

)1/2
≤ C ′

Λ,T0
‖ f0‖2L1

2(R
d )
‖ f0‖L1(Rd )

for any t ∈ [0,T0], yields����∫ t

s
〈Q( f , f )(τ, ·),G2

Λ
f (t, ·) +G2

Λ
f (s, ·)〉 dτ

���� ≤ 2C ′
Λ,T0
|t − s | ‖ f0‖2L1

2(R
d )
‖ f0‖L1(Rd ).

Plugging the latter two bounds into (A.3) shows that GΛ f ∈ C([0,T0]; L2(Rd )), in
fact, the map [0,T0] 3 t 7→ ‖GΛ f (t, ·)‖L2(Rd ) is even Lipschitz continuous.

For any test function ϕ ∈ C1(R+; C∞0 (R
d )) the term involving the partial derivative

∂tϕ in the weak formulation (1.25) can be rewritten as∫ t

0

〈
f (τ, ·), ∂τϕ(τ, ·)

〉
dτ = lim

ℎ→0

∫ t

0

〈
f (τ, ·) + f (τ + ℎ, ·),

ϕ(τ + ℎ, ·) − ϕ(τ, ·)
2ℎ

〉
dτ,

since f ∈ C(R+; D′(Rd )). The integral on the right hand side is well-defined even for
ϕ ∈ L∞([0,T0];W 2,∞(Rd )), in particular for ϕ = G2

Λ
f , yielding∫ t

0

〈
f (τ, ·) + f (τ + ℎ, ·),

ϕ(τ + ℎ, ·) − ϕ(τ, ·)
2ℎ

〉
dτ

=

∫ t

0

〈
f (τ, ·) + f (τ + ℎ, ·),

G2
Λ
f (τ + ℎ, ·) −G2

Λ
f (τ, ·)

2ℎ

〉
dτ

=
1
2ℎ

∫ t

0

(
‖GΛ f (τ + ℎ, ·)‖2L2 − ‖GΛ f (τ, ·)‖2L2

)
dτ

+

∫ t

0

〈
f (τ, ·),

G2
Λ
(τ + ℎ,Dv ) −G2

Λ
(τ,Dv )

2ℎ
f (τ + ℎ, ·)

〉
dτ.
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Using GΛ f ∈ C([0,T0]; L2(Rd )) it follows that

1
2ℎ

∫ t

0

(
‖GΛ f (τ + ℎ, ·)‖2L2(Rd )

− ‖GΛ f (τ, ·)‖2L2(Rd )

)
dτ

=
1
2ℎ

∫ t+ℎ

t
‖GΛ f (τ, ·)‖2L2(Rd )

dτ −
1
2ℎ

∫ ℎ

0
‖GΛ f (τ, ·)‖2L2(Rd )

dτ

ℎ→0
−→

1
2
‖GΛ f (t, ·)‖2L2(Rd )

−
1
2
‖GΛ f (0, ·)‖2L2(Rd )

.

where ‖GΛ f (0, ·)‖L2(Rd ) = ‖1Λ(Dv ) f0‖L2(Rd ). For the second integral, an application
of dominated convergence gives

lim
ℎ→0

∫ t

0

〈
f (τ, ·),

G2
Λ
(τ + ℎ,Dv ) −G2

Λ
(τ,Dv )

2ℎ
f (τ + ℎ, ·)

〉
dτ

=
1
2

∫ t

0

〈
f (τ, ·),

(
∂τG2

Λ

)
(τ,Dv ) f (τ, ·)

〉
dτ.

Putting everything together, we thus have proved equation (A.1), i.e.

1
2
‖GΛ f ‖2L2(Rd )

=
1
2
‖1Λ(Dv ) f0‖2L2(Rd )

+
1
2

∫ t

0

〈
f (τ, ·),

(
∂τG2

Λ

)
(τ,Dv ) f (τ, ·)

〉
dτ

+

∫ t

0

〈
Q( f , f ),G2

Λ
f
〉
dτ.

�



APPENDIX B
H∞ smoothing of the Boltzmann

and Kac equations

We follow the strategy as in our proof of Gevrey regularity, with several simplifications.
Of course, we do not assume that f0 is square integrable! We have

Theorem B.1 (H∞ smoothing for the homogeneous Boltzmann and Kac equation).
Assume that the cross-section b satisfies (B1)–(B3) for d ≥ 2, respectively (K1)–(K3) for
d = 1. Let f be a weak solution of the Cauchy problem (1.2) with initial datum satisfying
conditions (1.23). Then

f (t, ·) ∈ H∞(Rd ) (B.1)

for all t > 0.

The proof is known, at least for the three dimensional Boltzmann equation see
[MUXY09], we give a proof for the convenience of the reader.

Remark. Theorem B.1 applies both to the power-law type (1.18) and Debye-Yukawa
type (1.19) singularities. For simplicity, we only do the proof for power-law singularities
here. The proof for the latter type of singularities is completely analogous. �

Again, one has to use suitable time-dependent Fourier multipliers. Note that for
f0 ∈ L1(Rd ) one has

‖ f0‖H −γ (Rd ) ≤ Cd,γ ‖ f0‖L1(Rd )

with Cd,γ =
(∫
Rd
〈η〉−γ dη

)1/2
which is finite for all γ > d/2. We choose γ = d , for

convenience, and

MΛ(t, η) := 〈η〉−d e βt log〈η 〉1Λ(|η |)
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as a multiplier. Then

sup
Λ>0
‖MΛ(0,Dv ) f0‖L2(Rd ) = ‖M∞(0, ·) f̂0‖L2(Rd ) = ‖ f0‖H −d (Rd ) ≤ Cd,d ‖ f0‖L1(Rd )

The proof of Proposition A.1 carries over and we have

1
2
‖MΛ(t,Dv ) f (t, ·)‖2L2(Rd )

−
1
2

∫ t

0

〈
f (τ, ·),

(
∂τM 2

Λ
(τ,Dv )

)
f (τ, ·)

〉
dτ

=
1
2
‖MΛ(0,Dv ) f0‖2L2(Rd )

+

∫ t

0

〈
Q( f , f )(τ, ·),M 2

Λ
(τ,Dv ) f (τ, ·)

〉
dτ.

(B.2)

and as in the proof of Corollary 3.2, we have

〈Q( f , f ),M 2
Λ
f 〉 = 〈Q( f ,MΛ f ),MΛ f 〉 + 〈MΛQ( f , f ) −Q( f ,MΛ f ),MΛ f 〉

≤ −C̃ f0 ‖MΛ f ‖
2
H ν +C f0 ‖MΛ f ‖

2
L2 + 〈MΛQ( f , f ) −Q( f ,MΛ f ),MΛ f 〉

(B.3)

The replacement of Proposition 3.5 is

Proposition B.2. The commutation error is bounded by��〈MΛQ( f , f ) −Q( f ,MΛ f ),MΛ f 〉�� ≤ (1 + 2d−1)cb,d ‖ f ‖L1

(
d
2
+
βt
2
2βt/2

)
‖MΛ f ‖2L2

(B.4)

with the constant cb,d from Lemma 3.14.

Remark. Of course, for any weak solution f of the Boltzmann and Kac equations,

‖ f ‖L1 = ‖ f (t, ·)‖L1 = ‖ f0‖L1 .

The fact that the commutator is bounded in terms of the L2 norm of MΛ f makes the
proof of H∞ smoothing for the Boltzmann and Kac equations much simpler than the
proof of Gevrey regularity. �

Proof. As in the proof of Proposition 3.5, Bobylev’s formula shows

|〈MΛQ( f , f ) −Q( f ,MΛ f ),MΛ f 〉|

≤

∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

)
MΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)|

× |MΛ(t, η) − MΛ(t, η+)| dσ dη

≤ ‖ f̂ ‖L∞
∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

)
MΛ(η)| f̂ (η)| | f̂ (η+)|

× |MΛ(t, η) − MΛ(t, η+)| dσ dη
(B.5)
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where, as before, η± = 1
2 (η ± |η |σ). To bound |MΛ(η) −MΛ(η+)|, we let s := |η |2 and

s+ = |η+ |2. Recall that |η+ |2 = |η |
2

2 (1 +
η
|η | · σ) and

1 −
s+

s
= 1 −

|η+ |2

|η |2
=

1
2

(
1 −

η

|η |
· σ

)
Again, because of the support condition on the collision kernel b(cos θ), we have
s
2 ≤ s+ ≤ s . Set M̃ (s) := (1 + s)−d/2e

βt
2 log(1+s). Then, for |η | ≤ Λ,

MΛ(η) − MΛ(η+) = M̃ (s) − M̃ (s+)

= (1 + s)−d/2e
βt
2 log(1+s) − (1 + s+)−d/2e

βt
2 log(1+s+)

= (1 + s)−d/2
(
e
βt
2 log(1+s) − e

βt
2 log(1+s+)

)
+

(
(1 + s)−d/2 − (1 + s+)−d/2

)
e
βt
2 log(1+s+).

(B.6)

Since s ≤ 2s+, we have (1 + s+)−1 ≤ 2(1 + s)−1. Hence���(1 + s)−d/2 − (1 + s+)−d/2
��� = d

2

∫ s

s+
(1 + r )−d/2−1 dr ≤

d
2
(1 + s+)−d/2−1(s − s+)

≤ d(1 + s+)−d/2
(
1 −

s+

s

)
In addition, log(1 + s) ≤ log(2(1 + s+)) = log 2 + log(1 + s+). So���e βt

2 log(1+s) − e
βt
2 log(1+s+)

��� ≤ βt
2

∫ s

s+

1
1 + r

e
βt
2 log(1+r ) dr

≤
βt
2

s
1 + s+

e
βt
2 log(1+s)

(
1 −

s+

s

)
≤ βt2

βt
2 e

βt
2 log(1+s+)

(
1 −

s+

s

)
.

Also log(1 + s) ≤ log(2(1 + s+)) = log 2 + log(1 + s+). These bounds together with
(B.6) show ��MΛ(η) − MΛ(η+)

�� ≤ (
d + βt 2

βt
2

) (
1 −
|η+ |2

|η |2

)
MΛ(η+)

for all |η | ≤ Λ. Since the integration in (B.5) is only over |η | ≤ Λ, plugging this
together with ‖ f̂ ‖L∞ ≤ ‖ f ‖L1 into (B.5) yields

|〈MΛQ( f , f ) −Q( f ,MΛ f ),MΛ f 〉|

≤ ‖ f ‖L1

(
d + βt 2

βt
2

) ∫
Rd

∫
Sd−1

b
(
η

|η |
· σ

) (
1 −
|η+ |2

|η |2

)
× MΛ(η)| f̂ (η)| MΛ(η+)| f̂ (η+)| dσ dη.

Noting again

MΛ(η)| f̂ (η)| MΛ(η+)| f̂ (η+)| ≤
1
2

(
(MΛ(η)| f̂ (η)|)2 + (MΛ(η+)| f̂ (η+)|)2

)
and performing the same change of variables for the integral containing η+ as in the
proof of Lemma 3.6 finishes the proof of equation (B.4). �



108 APPENDIX B. H∞ SMOOTHING OF THE BOLTZMANN EQUATION

Now we can finish the

Proof of Theorem B.1. Using (B.2), (B.3), Proposition B.2, and

∂τMΛ(τ, η)2 = 2β log〈η〉 MΛ(τ, η)2

one sees

‖MΛ(t,Dv ) f (t, ·)‖2L2 ≤ ‖ f0‖2H −d + 2C f0

∫ t

0
‖MΛ(τ,Dv ) f (τ, ·)‖2L2 dτ

+

∫ t

0

〈
MΛ(τ,Dv ) f (τ, ·),

(
β log〈Dv 〉 − 2C̃ f0 〈Dv 〉

2ν
)
MΛ(τ,Dv ) f (τ, ·)

〉
dτ

+ (1 + 2d−1)cb,d ‖ f0‖L1

∫ t

0

(
d
2
+
βτ

2
2
βτ
2

)
‖MΛ(τ,Dv ) f (τ, ·)‖2L2 .

Setting

A(β, τ) := sup
η∈Rd

(
β log〈η〉 − 2C̃ f0 〈η〉

2ν
)
+ 2C f0

+ (1 + 2d−1)cb,d ‖ f0‖L1

(
d
2
+
βτ

2
2
βτ
2

)
=

β

2ν

[
log

(
β

4νC̃ f0

)
− 1

]
+ 2C f0 + (1 + 2d−1)cb,d ‖ f0‖L1

(
d
2
+
βτ

2
2
βτ
2

)
the above can be bounded by

‖MΛ(t,Dv ) f (t, ·)‖2L2 ≤ ‖ f0‖2H −d +
∫ t

0
A(β, τ)‖MΛ(τ,Dv ) f (τ, ·)‖2L2 dτ

and from Gronwall’s lemma we get

‖MΛ(t,Dv ) f (t, ·)‖2L2 ≤ ‖ f0‖2H −d exp
(∫ t

0
A(β, τ) dτ

)
.

Letting Λ→∞ one sees

‖ f (t, ·)‖2H βt−d = ‖M∞(t,Dv ) f (t, ·)‖2L2 ≤ ‖ f0‖2H −d exp
(∫ t

0
A(β, τ) dτ

)
.

that is, f (t, ·) ∈ H βt−d (Rd ). Now let β → ∞ to see that f (t, ·) ∈ H∞(Rd ) for any
t > 0. �

Remark. Setting β = γ+d
t , one sees that ‖ f (t, ·)‖H γ (Rd ) . t−

γ+d
4ν , so the H γ norms, in

particular the L2 norm, of f (t, ·) blow up at most polynomially as t → 0. �



APPENDIX C
The Kolmogorov-Landau

inequality

In this section we give a short proof of

Lemma C.1 (Kolmogorov-Landau inequality on the unit interval). Let m ≥ 2 be an
integer. There exists a constant Cm > 0 such that for all w ∈W m,∞([0, 1]),

‖w (k)‖L∞([0,1]) ≤ Cm

(
‖w ‖L∞([0,1])

uk
+ um−k ‖w (m)‖L∞([0,1])

)
, k = 1, . . . ,m − 1,

for all 0 < u ≤ 1.

The following argument is in part borrowed from R. A. DeVore and G. G.

Lorentz’s book [DL93, pp.37–39].

Proof. Since w ∈W m,∞([0, 1]), it has absolutely continuous derivatives of order up to
m − 1 and essentially bounded mth derivative.

Let x ∈ [0, 12 ] and ℎ ∈ [0, 12 ]. Then, by Taylor’s theorem,

w(x + ℎ) = w(x) +
m−1∑
j=1

ℎ j

j !
w ( j)(x) + Rm(x, ℎ)

with the remainder Rm(x, ℎ) =
∫ ℎ
0
(ℎ−t )m−1
(m−1)! w

(m)(x + t ) dt , which can be bounded by

|Rm(x, ℎ)| ≤ ‖w (m)‖L∞([0,1])
∫ ℎ

0

(ℎ − t )m−1

(m − 1)!
dt =

ℎm

m!
‖w (m)‖L∞([0,1]).
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Choosing m − 1 real numbers 0 < λ1 < λ2 < · · · < λm−1 ≤ 1 we obtain for
ℎ ∈ [0, 12 ] the system of equations

m−1∑
j=1

λ
j
s
ℎ j

j !
w ( j)(x) = w(x + λ sℎ) − w(x) − Rm(x, λ sℎ) for s = 1, · · · ,m − 1. (C.1)

Setting

V =
©«
λ1 λ21 · · · λm−11
λ2 λ22 · · · λm−12
...

. . .
...

λm−1 λ2m−1 · · · λm−1m−1

ª®®®®¬
, w(x) =

©«
ℎw ′(x)
ℎ2
2 w
′′(x)
...

ℎm−1
(m−1)!w

(m−1)(x)

ª®®®®®¬
,

b(x) =
©«

w(x + λ1ℎ) − w(x) − Rm(x, λ1ℎ)
w(x + λ2ℎ) − w(x) − Rm(x, λ2ℎ)

...

w(x + λm−1ℎ) − w(x) − Rm(x, λm−1ℎ)

ª®®®®¬
,

we have V w(x) = b(x). Since the Vandermonde determinant

detV =
m−1∏
i=1

λi
∏

1≤ j<l ≤m−1

(λl − λ j ) , 0,

V is invertible and we obtain w(x) = V −1b(x) and therefore����� ℎkk! w (k)(x)
����� ≤ ‖w(x)‖ ≤ ‖V −1‖ ‖b(x)‖, (C.2)

where ‖ · ‖ is any norm on Rm−1, respectively the induced operator norm on the space
of (m − 1) × (m − 1) real matrices. Choosing for concreteness the `1 norm on Rm−1,
we have

‖b(x)‖ =
m−1∑
s=1
|w(x + λ sℎ) − w(x) − Rm(x, λ sℎ)|

≤ (m − 1)
(
2‖w ‖L∞([0,1]) +

ℎm

m!
‖w (m)‖L∞([0,1])

)
.

While for our application the size of ‖V −1‖ is of no importance, one can even explicitly
calculate it: The inverse of the Vandermonde matrix V is explicitly known (see for
instance [Gau62]),

(
V −1

)
αβ = (−1)

α−1 σ
β
m−1−α

λ β
∏

ν,β(λν − λ β)
, α, β = 1, . . . ,m − 1,
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where σ j
i , i, j = 1, . . . ,m − 2 is the ith elementary symmetric function in the (m − 2)

variables λ1, . . . , λ j−1, λ j+1, . . . , λm−1,

σ
j
i =

∑
1≤ν1< · · ·<νi ≤m−1

ν1,...,νi, j

λν1 · · · λνi , σ
j
0 := 1.

By means of the identity (Lemma 1 in [Gau62])
m−2∑
i=0

σ
j
i =

m−1∏
ν=1
ν, j

(1 + λν ),

which holds since the λν are all positive, we get

‖V −1‖ = max
1≤ β≤m−1

m−1∑
α=1

��� (V −1)αβ ��� = max
1≤ β≤m−1

1
λ β

∏
ν,β |λν − λ β |

m−1∑
α=1

σ
β
m−1−α

= max
1≤ β≤m−1

1
λ β

m−1∏
ν=1
ν,β

1 + λν
|λν − λ β |

.

Going back to inequality (C.2), we have so far proved that

ℎk

k!

���w (k)(x)��� ≤ (m − 1)‖V −1‖
(
2‖w ‖L∞([0,1]) +

ℎm

m!
‖w (m)‖L∞([0,1])

)
,

which yields���w (k)(x)��� ≤ (m − 1)‖V −1‖
(
2k!
ℎk
‖w ‖L∞([0,1]) + ℎm−k

k!
m!
‖w (m)‖L∞([0,1])

)
≤ (m − 1)‖V −1‖

(
2m!
ℎk
‖w ‖L∞([0,1]) + ℎm−k ‖w (m)‖L∞([0,1])

) (C.3)

For x ∈ [ 12, 1] the same calculations with ℎ replaced by −ℎ proves inequality (C.3)
in this case as well, so

‖w (k)‖L∞([0,1]) ≤ (m − 1)‖V −1‖
(
2m!
ℎk
‖w ‖L∞([0,1]) + ℎm−k ‖w (m)‖L∞([0,1])

)
(C.4)

for all ℎ ∈ [0, 12 ]. Taking an arbitrary u ∈ [0, 1], inequality (C.4) implies, with
ℎ = u

2 ∈ [0,
1
2 ],

‖w (k)‖L∞([0,1]) ≤ 2mm!(m − 1)‖V −1‖
(
1
uk
‖w ‖L∞([0,1]) + um−k ‖w (m)‖L∞([0,1])

)
,

which is the claimed inequality with

Cm = 2mm!(m − 1)‖V −1‖ = 2mm!(m − 1) max
1≤ β≤m−1

1
λ β

m−1∏
ν=1
ν,β

1 + λν
|λν − λ β |

. (C.5)

�
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Remark. The constant Cm in equality (C.5) is far from optimal, but can be made small
by minimising in the choice of the points 0 < λ1 < · · · < λm−1 ≤ 1, suggesting that
the optimal constant might be obtained by methods from approximation theory.

Indeed, by a more refined argument making use of numerical differentiation for-
mulas, the minimisers of the associated multiplicative Kolmogorov-Landau inequality,
i.e., extremisers of

Mk(σ) := sup
{
‖w (k)‖L∞([0,1]) : w ∈W m,∞([0, 1]), ‖w ‖L∞([0,1]) ≤ 1, ‖wm ‖L∞([0,1]) ≤ σ

}
are explicitly known (at least for a wide range of parameters m ∈ N and σ ≥ 0).
The optimal Kolmogorov-Landau constants in these cases are given by the end-point
values of certain Chebyshev type perfect splines. We refer to the papers by A. Pinkus

[Pin78] and S. Karlin [Kar75], as well as the recent article by A. Shadrin [Sha14] and
references therein. �



APPENDIX D
Properties of the function spaces

Aµ

We prove a precise correspondence between the decay in Fourier space and the growth
rate of derivatives of functions in Aµ.

Theorem D.1. Let µ > 0. Then

Aµ(Rd ) =
⋃
τ>0

D
(
eτ(log〈D 〉)

µ+1
: L2(Rd )

)
.

Invoking a classic theorem by Denjoy and Carleman (see, for instance, [Coh68,
KP02, Rud87]) one can show that the classes Aµ for µ > 0 are not quasi-analytic, that
is, they contain non-vanishing C∞ functions of arbitrarily small support.

Proof. Let µ > 0 be fixed and assume first that ‖eτ(log〈D 〉)
µ+1

f ‖L2 < ∞ for some τ > 0.
Let α ∈ Nd

0 with |α | = n for some n ∈ N0. Then

‖∂α f ‖2L2 =

∫
Rd
|(2πiη)α f̂ (η)|2 dη ≤ (2π)2n

∫
Rd
〈η〉2n | f̂ |2 dξ

= 2n(2π)2n
∫ ∞

0
t 2n−1ν f ({〈η〉 > t }) dt

where we introduced the (finite) measure ν f ( dη) B | f̂ (η)|2 dη . Since 〈η〉 ≥ 1 for all
η ∈ Rd , one has

ν f ({〈η〉 > t }) = ν f (Rd ) = ‖ f ‖2L2(Rd )
for t < 1.

For t ≥ 1 we estimate

ν f ({〈η〉 > t }) ≤ e−2τ(log t )
µ+1

∫
Rd

e2τ(log〈η 〉)
µ+1
ν f ( dη)

= e−2τ(log t )
µ+1

eτ(log〈D 〉)µ+1 f 2
L2(Rd )

,

113
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since 1 ≤ t 7→ e2τ(log t )
µ+1

is increasing. It follows that

‖∂α f ‖2L2 ≤ (2π)2n ‖ f ‖2L2(Rd )

+ 2n(2π)2n
eτ(log〈D 〉)µ+1 f 2

L2(Rd )

∫ ∞

1
t 2n−1e−2τ(log t )

µ+1
dt .

(D.1)

To extract the required growth in n from the latter integral, we essentially apply
Laplace’s method. Indeed, substituting the logarithm and rescaling suitably yields∫ ∞

1
t 2n−1e−2τ(log t )

µ+1
dt =

(n
τ

)1/µ ∫ ∞

0
e2τ

−1/µn1+1/µ(t−t µ+1) dt . (D.2)

The function ℎ : (0,∞) → R, ℎ(t ) B t − t µ+1 is strictly concave and attains its
maximum at t∗ = (µ + 1)−1/µ. If µ ≥ 1, ℎ ′′ is negative and decreasing, so by Taylor’s
theorem we can bound

ℎ(t ) ≤ ℎ(t∗) +
ℎ ′′(t∗)

2
(t − t∗)21{t>t∗ }

and obtain with ℎ(t∗) = µ(µ + 1)−(1+1/µ), ℎ ′′(t∗) = −µ(µ + 1)1/µ,(n
τ

)1/µ ∫ ∞

0
e2τ

−1/µn1+1/µ(t−t µ+1) dt

≤

(n
τ

)1/µ (
(µ + 1)−1/µ +

√
π

2
√
µ

(
τ

µ + 1

) 1
2µ

n−
µ+1
2µ

)
× exp

(
2τ−1/µµ(µ + 1)−(1+1/µ)n1+1/µ

)
.

(D.3)

Therefore, inserting the obtained bound into (D.1), there exist constants C > 0 and
b > 0, depending on τ and µ, such that∂α f L2 ≤ C |α |+1eb |α |

1+1/µ
for all α ∈ Nd

0 . (D.4)

For µ ∈ (0, 1) the global bound (D.2) does not hold, but, as in the proof of Laplace’s
method for the asymptotics of integrals, one can find a suitable δ > 0 such that the
bound (D.2) holds on [t∗ − δ, t∗ + δ] and the contribution to the integral outside of
this interval is of much smaller order. So the right hand side of (D.3) still provides an
upper bound modulo lower order terms and we conclude (D.4) also in this case.

For the converse assume that (D.4) holds. We want to show that there exists a
τ > 0 such that eτ(log〈D 〉)

µ+1 f ∈ L2(Rd ). Using that

e2τ(log〈η 〉)
µ+1
= 1 +

∫ 〈η 〉

1
2τ(µ + 1)t−1(log t )µe2τ(log t )

µ+1
dt

one obtainseτ(log〈D 〉)µ+1 f 2
L2(Rd )

= ‖ f ‖2L2(Rd )
+

∫ ∞

1
2τ(µ + 1)t−1(log t )µe2τ(log t )

µ+1
ν f ({〈η〉 > t }) dt .

(D.5)
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Next we estimate for t > 1 and any n ∈ N0, since |η |2 ≥ t 2 − 1 on {〈η〉 > t },

ν f ({〈η〉 > t } ≤
1

(2π)2n(t 2 − 1)n

∫
Rd
(2π)2n |η |2n | f̂ |2 dη.

By the multinomial theorem, we have (in the standard multi-index notation)

|η |2n =

( d∑
i=1

η2i

)n
=

∑
α∈Nd

0 : |α |=n

(
n
α

)
η2α,

so

ν f ({〈η〉 > t } ≤
1

(2π)2n(t 2 − 1)n
∑
|α |=n

(
n
α

) ∫
Rd

���(2πiη)α f̂ (η)���2 dη

=
1

(2π)2n(t 2 − 1)n
∑
|α |=n

(
n
α

)
‖∂α f ‖2L2(Rd )

≤
dnC 2n+2

(2π)2n
1

(t 2 − 1)n
e2bn

1+1/µ

by assumption. Since this holds for any n ∈ N0, we even have

ν f ({〈η〉 > t } ≤ exp
[
inf
n∈N0

(
2n log A − n log(t 2 − 1) + 2bn1+1/µ

)]
= exp

[
2 inf
n∈N0

(
bn1+1/µ − n log

√
t 2 − 1
A

)]
where for notational convenience we set A = C n+1

√
d

2π . If
√
t 2 − 1 < A, then the

infimum in the above exponent is just zero, so ν({〈η〉 > t }) ≤ 1 in this case. If,
however,

√
t 2 − 1 ≥ A, we get

inf
n∈N0

(
bn1+1/µ − n log

√
t 2 − 1
A

)
≤ bn1+1/µ

∗ − n∗ log
√
t 2 − 1
A

where n∗ =
⌊(

1
b

µ
µ+1 log

√
t 2−1
A

) µ⌋
, and bac denotes the greatest integer smaller or equal

to a ∈ R. Obviously,

n∗ ≤

(
1
b

µ

µ + 1
log
√
t 2 − 1
A

) µ
< n∗ + 1,

so we get the bound

inf
n∈N0

(
bn1+1/µ − n log

√
t 2 − 1
A

)
≤ −

(
µ

β

) µ (
1

µ + 1
log
√
t 2 − 1
A

) µ+1
+ log

√
t 2 − 1
A

.
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In particular, there exists T∗ > 1 and β > 0 such that for t > T∗, one has

inf
n∈N0

(
bn1+1/µ − n log

√
t 2 − 1
A

)
≤ −β(log t )µ+1.

This shows,

ν f ({〈η〉 > t }) ≤ e−β(log t )
µ+1

for large enough t , and choosing τ < β/2 in (D.5) we get the finiteness ofeτ(log〈D 〉)µ+1 f 
L2(Rd )

. �
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CHAPTER 6
Introduction

Among the models describing a gas of interacting particles, the Kac master equation
[Kac56], due to its simplicity, occupies a special place. It is useful in illuminating
various issues in kinetic theory, e.g., providing a reasonably satisfactory derivation
of the spatially homogeneous Boltzmann equation and giving a mathematical frame-
work for investigating the approach to equilibrium. These issues were, in fact, the
motivation for Kac’s original work [Kac56]. Although it does not have a foundation
in Hamiltonian mechanics, the Kac master equation is based on simple probabilistic
principles and yields a linear evolution equation for the velocity distribution for N
particles undergoing collisions.

The Kac master equation

Assume for simplicity that the gas is homogeneous and consists of N identical particles1
with one-dimensional velocities. We will denote the velocity vector of the ensemble of
particles by v = (v1, . . . , vN ) ∈ RN .

The “collisions” in Kac’s model are described by the following rule:

(1) Pick a pair of distinct indices (i, j) in {1, . . . ,N } uniformly at random. The
particles with labels i and j are declared as the particles that will collide.

(2) Randomly pick an angle θ ∈ [−π, π) (the “scattering angle”) according to a
probability distribution dρ(θ) on [−π, π).

(3) Update the velocities of the two colliding particles by the rotation(
vi
v j

)
7→

(
v∗i (θ)
v∗j (θ)

)
=

(
cos θ − sin θ
sin θ cos θ

) (
vi
v j

)
.

1whose mass m we set to m = 2 for convenience.
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Since the collisions are just rotations in a two-dimensional plane, the total kinetic
energy

E =
N∑
i=1

v2
i = |v |

2

is conserved.2 Thus, the above collision rule generates a random walk on the energy
sphere SN−1(

√
E) (Kac sphere). Assuming that each particle carries a unit energy, we

can set E = N .
If the interaction times, i.e., the points in time where a collision occurs, are chosen

according to a Poisson process with intensity λ > 0, we obtain a continuous-time
Markov process with master equation (Kac master equation)

d
dt

FN (t ;v) = −LN FN (t ;v) := λN (QN − I ) FN (t ;v) (6.1)

for the probability distribution FN of the velocities, with initial probability distribution
FN (0; ·) = FN ,0, where

(QN FN )(t ;v) =
1(N
2
) ∑
1≤i< j≤N

∫ π

−π
FN (t ; v1, . . . , v∗i (θ), . . . , v

∗
j (θ), . . . , vN ) dρ(θ).

It is easy to see that if dρ(θ) is a symmetric probability measure, dρ(θ) = dρ(−θ),
thenQN is a self-adjoint operator on L2(SN−1(

√
N ), dσ(N )). Here, dσ(N ) denotes the

uniform probability measure on SN−1(
√
N ). Moreover, one can show that 0 ≤ QN ≤ 1

and

QN F = F if and only if F = 1,

that is,QN and e−LN t are ergodic. As a direct consequence of the spectral theorem, we
have convergence to equilibrium in L2(SN−1(

√
N )).

Lemma 6.1 (Approach to equilibrium in L2). Assume that F0 is a probability distribu-
tion on SN−1(

√
N ) with F0 ∈ L2(SN−1(

√
N ), dσ(N )). Then

‖e−LN t F0 − 1‖2 → 0

as t →∞.

For a proof of this lemma, we refer to [CCL11], from which most of the material
for this short introduction is taken.

It is in this context that Kac invented the notion of propagation of chaos and he used
it to derive the spatially homogeneous, nonlinear Kac-Boltzmann equation.

2Momentum cannot be conserved in this simple model, otherwise the only admissible “collisions”
would be particles going through each other or exchanging their velocities.
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Recall that for a Borel probability measure ν on SN−1(
√
N ), the kth marginal

measure πkν , 1 ≤ k ≤ N , is the unique measure such that

(πkν)(A) = ν ({(v1, . . . , vk) ∈ A})

for all A ∈ B(Rk), the Borel σ-algebra on Rk .

Definition 6.2 (Chaos (Boltzmann property)). Let µ be a Borel probability measure
on R. A sequence of probability measures {µN }N ∈N on SN−1(

√
N ) is called µ-chaotic,

if

(i) µN is symmetric under permutations for any N ∈ N, and

(ii) for every k ∈ N, the kth marginal measure πk µN converges to µ⊗k weakly in
the sense of measures as N →∞, that is,∫

ϕ(v1, . . . , vk) d(πk µN )(v) →
∫

ϕ(v1, . . . , vk) dµ(v1) · · · dµ(vk)

for any ϕ ∈ Cb (R
k) as N →∞.

In a way, chaoticity measures how independent the velocities (viewed as random
variables on SN−1(

√
N )) of a fixed number of particles become in the limit N →∞.

The following theorem gives the connection between the Kac master equation and the
Kac-Boltzmann equation.

Theorem 6.3 (Propagation of Chaos, Kac [Kac56]). Let {FN ,0 dσ(N )}N ∈N be an
f0(v) dv -chaotic sequence, and let FN (t ) be the solution of the Kac master equation (6.1),

FN (t ) = eN (QN −I )t FN ,0

for some t > 0.3 Then {FN (t ) dσ(N )}N ∈N is an f (t, v) dv -chaotic sequence, where f is
a solution of the Kac-Boltzmann equation

∂t f = 2
∫ π

−π
dρ(θ)

∫
R

[
f (t, v∗(θ)) f (t,w∗(θ)) − f (t, v) f (t,w)

]
dw

with initial datum f (0, ·) = f0.

The approach through master equations also led Kac to formulate the notion of
approach to equilibrium and suggested various avenues to investigate this problem as
the number of particles, N , becomes large. He emphasised that this could be done in a
quantitative way if one could show, e.g., that the gap of the generator,

∆N = inf {〈F ,N (I −QN )F 〉 : ‖F ‖2 = 1, F ⊥ 1}

is bounded below uniformly in N .4
This, known as Kac’s conjecture [Kac56], was proved by Élise Janvresse in [Jan01]

and, as a further sign of the simplicity of the model, the gap was computed explicitly
in [CCL00, CCL03], see also [Mas03].

3We set λ = 1 for simplicity.
4Where 〈F ,G〉 denotes the inner product on L2(SN−1(

√
N ), dσ(N )).
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Theorem 6.4 (Carlen-Carvalho-Loss [CCL00, CCL03]). Let dρ(θ) = 1
2π dθ . Then

∆N =
1
2
N + 2
N − 1

,

and the gap eigenfunction (unique up to a multiplicative constant) is given by

F∆N =
N∑
j=1

(
v4
j −

3N
N + 2

)
.

One of the problems in using the gap is that the approach to equilibrium is
measured in terms of an L2 distance. While this does seem to be a natural way to look
at this problem, the size of the L2 norm of approximately independent probability
distributions increases exponentially with the size of the system. Thus, the half life of
the L2 norm is of order N .

A natural measure is, of course, given by the entropy, which is extensive, i.e,
proportional to N . Let F be a probability distribution on SN−1(

√
N ). Then the

relative entropy of F with respect to the uniform probability measure dσ(N ) on the
Kac sphere is defined by5

H (F | dσ(N )) :=
∫
SN−1(

√
N )

F (v) log F (v) dσ(N ).

There has not been much success in proving exponential decay of the entropy with
good rates. In [Vil03] Cédric Villani showed that the entropy decays exponentially,
albeit with a rate that is bounded below by a quantity that is inversely proportional to
N .

Theorem 6.5 (Entropy decay, Villani [Vil03]). Let F0 be a probability density on
SN−1(

√
N ) with finite relative entropy H (F0 | dσ(N )). Then the solution FN (t, ·) of the

Kac master equation (6.1) with initial datum F0 satisfies the entropy inequality

H (FN (t, ·)| dσ(N )) ≤ e−
2

N−1 tH (F0 | dσ(N )).

This estimate was complemented by Amit Einav [Ein11], who gave an example of
a state that has entropy production essentially of order 1/N . His example is the initial
state in which most of the energy is concentrated in a few particles while most of the
others have very little energy. One might surmise, based on physical intuition, that
this state is physically very improbable and still has low entropy production because
most of the particles are in some sort of equilibrium. This intuition can be made
rigorous, see [Ein11], although by a quite difficult computation. One should add that
low entropy production does not preclude exponential decay in entropy, i.e., large
entropy production for the initial state might not be necessary for an exponential decay
rate for the entropy.

5recall from Part I that this is again the negative of the physical entropy with respect to dσ(N ).
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A breakthrough was achieved by Stéphane Mischler and Clément Mouhot in
[MM11, MM13]. They undertook a general investigation of the Kac program for gases
of hard spheres and true Maxwellian molecules in three dimensions. Among the results
of Mischler and Mouhot is a proof that these systems relax towards equilibrium in
relative entropy as well as in Wasserstein distance with a rate that is independent of the
particle number. As expected, they achieve this not for any initial condition, but rather
for a natural class of chaotic states. The rate of relaxation is, however, polynomial in
time.

To summarise, there is so far no mathematical evidence that the entropy in the
Kac model in general decays exponentially with a rate that is independent of N and
physical intuition suggests that for highly “improbable” states, such as the one used
by Einav, this cannot be expected. One can restrict the class of initial conditions by
considering chaotic states as done by Mischler and Mouhot, which shifts the problem
of finding suitable initial conditions for proving exponential decay to the level of the
non-linear Boltzmann equation.





CHAPTER7
Entropy decay for the Kac

evolution

We take a different approach here, one which is based on the idea of coupling a system
of particles to a reservoir. Recall from [BLV14] the master equation of M particles with
velocities v = (v1, v2, . . . , vM ) interacting with a thermostat at temperature 1/β,

∂ f
∂t
= LT f , f (v, 0) = f0(v) . (7.1)

The operator LT is given by

LT f = µ
M∑
j=1
(B j − I ) f ,

where

B j [ f ](v) :=
∫
R
dw

1
2π

∫ π

−π
dθ

√
β

2π
e−βw

∗
j (θ)

2/2 f (v j (θ,w)) ,

v j (θ,w) = (v1, . . . , v j cos (θ) + w sin (θ), . . . , vM ) and

w∗j (θ) = −v j sin (θ) + w cos (θ) .

Thus, B j [ f ] describes the effect of a collision between particle j in the system and
a particle in the reservoir. After the collision, the particle from the thermostat is
discarded, which ensures that the thermostat stays in equilibrium. The interaction
times with the thermostat are given by a Poisson process whose intensity µ is chosen
so that the average time between two successive interactions of a given particle with the
thermostat is independent of the number of particles in the system. Then the entropy
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decays exponentially fast. In fact, abbreviating
√

β
2π e
−
β
2 v

2
= Γβ(v), we know from

[BLV14], that

S( f (·, t )) :=
∫
RM

f (v, t ) log
(
f (v, t )
Γβ(v)

)
dv ≤ e−µt/2S( f0) .

Thus, one might guess that if a “small" system of M particles out of equilibrium interacts
with a reservoir, that is a large system of N ≥ M particles in thermal equilibrium,
then the entropy decays exponentially fast in time. This intuition is also supported
by the results in [BLTV17]. There it was shown that if the thermostat is replaced by
a large but finite reservoir initially in thermal equilibrium, this evolution is close to
the evolution given by the thermostat. This results holds in various norms and, in
particular, it is uniform in time. We would like to emphasise that the reservoir will not
stay in thermal equilibrium as time progresses, nevertheless it will not veer far from it.

Since this is the model that we consider in this work, we will now describe it in
detail. We consider probability distributions F : RM+N → R+ and write F (v,w)
where v = (v1, . . . , vM ) describes the particles in the small system, whereas w =
(wM+1, . . . ,wN+M ) describes the particles in the large system. The Kac master equation
is given by

∂F
∂t
= LF , F (v,w, 0) = F0(v,w) = f0(v)e−π |w |

2
, (7.2)

where

L=
λS

M − 1

∑
1≤i< j≤M

(
Ri j − I

)
+

λR

N − 1

∑
M<i< j≤N+M

(
Ri j − I

)
+
µ

N

M∑
i=1

M+N∑
j=M+1

(
Ri j − I

)
,

(7.3)

and Ri j is given as follows. For 1 ≤ i < j ≤ M we have

(Ri jF )(v,w) =
∫ π

−π
ρ(θ) dθ F (ri j (θ)−1(v,w)) ,

where

ri j (θ)−1(v,w) = (v1, . . . , vi cos θ − v j sin θ, . . . , vi sin θ + v j cos θ, . . . , vM ,w) .
(7.4)

The other Ri j s are defined analogously. We assume that the probability measure ρ is
smooth and satisfies ∫ π

−π
ρ(θ) dθ sin θ cos θ = 0 . (7.5)

In particular, we do not require L to be self-adjoint on L2(RN+M ), a condition called
microscopic reversibility. The initial state of the reservoir is assumed to be a thermal
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equilibrium state and we have chosen units in which the inverse temperature β = 2π .
Note that λS is the rate at which one particle from the system will scatter with any
other particle in the system and similarly for λR. Likewise, µ is the rate at which a
single particle of the system will scatter with any particle in the reservoir. The rate at
which a particular particle from the reservoir will scatter with a particle in the system
is given by µM /N . Hence, when N is large compared to M this process is suppressed
and one expects that the reservoir does not move far from its equilibrium. Indeed, it
is shown in [BLTV17] that the solution of the master equation (7.3) stays close to the
solution of a thermostated system in the Gabetta-Toscani-Wennberg metric,

dGTW (F ,G) := sup
k,0

| F̂ (k) − Ĝ(k)|
|k |2

,

see [GTW95]. Here, F̂ denotes the Fourier transform of F . More precisely, with the
initial conditions of (7.1) and (7.2), it was shown that

dGTW ( f (v, t )e−π |w |
2
, F (v,w, t )) ≤ C ( f0)

M
N

,

whereC ( f0) is a constant that depends on the initial condition but is of order one. The
distance varies inversely as N , the size of the reservoir and, moreover, this estimate
holds uniformly in time. For a detailed description of the results we refer the reader to
[BLTV17]. From this result and the fact that the entropy of the system interacting with
a thermostat decays exponentially in time, one might surmise that the entropy of the
system interacting with a finite reservoir also decays exponentially fast in time. In fact
we shall show this to be true if we consider the entropy relative to the thermal state.

7.1 Results

For the solution of the master equation (7.2) we use interchangeably the notation

F (v,w, t ) = (eLt F0)(v,w). (7.6)

This evolution preserves the energy, hence it suffices to consider it on the space
L1(SN+M−1(

√
N + M )) with the normalised surface measure. Likewise, it is easy to

see that the evolution is ergodic on SN+M−1(
√
N + M ) in the sense that eLt F0 → 1 as

t →∞ and 1 is the only normalised equilibrium state.
For our purposes it is convenient to consider the evolution in L1(RM+N ) equipped

with Lebesgue measure. Then eLt F0 converges to the spherical average of F0 taken
over spheres in RM+N . In this space we choose the initial condition

F0(v,w) = f0(v) e−π |w |
2
, (7.7)

with a probability distribution f0 on RM . Moreover, we introduce the function f ,

f (v, t ) :=
∫
RN

[
eLt F0

]
(v,w) dw, (7.8)
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and we call

S( f (·, t )) :=
∫
RM

f (v, t ) log
(
f (v, t )
e−π |v |2

)
dv

the entropy of f relative to the thermal state e−π |v |
2
. Our main result is the following

theorem.

Theorem 7.1. Let N ≥ M and let ρ be a probability distribution with an absolutely
convergent Fourier series such that (7.5) holds. The entropy of f relative to the thermal
state e−π |v |2 then satisfies

S( f (·, t )) ≤
[

M
N + M

+
N

N + M
e−t µρ (N+M )/N

]
S( f0) ,

where
µρ = µ

∫ π

−π
ρ(θ) dθ sin2(θ) ,

and f0 is as introduced in (7.7).

Remark. (i) Note that the theorem deals with the entropy relative to the thermal
state and not with respect to the equilibrium state. The entropy relative to the
equilibrium state tends to zero as t → ∞. We do not know how to adapt our
proof to this situation nor do we have any evidence that it does indeed tend to
zero at an exponential rate. If this were the case, the rate would most likely
depend on the initial condition.

(ii) The decay rate is universal in the sense that it only depends on µ and the
distribution ρ. The intra-particle interactions in the system and in the reservoir
do not seem to matter.

(iii) The statement of the theorem becomes particularly simple as N → ∞. This
corresponds to the thermostat problem treated in [BLV14] with the exact same
decay rate. It is known that for the thermostat the decay rate is optimal, see
[TV15], and hence the decay rate here is optimal as well.

(iv) Although we assume that ρ is smooth, our result also holds for the case where ρ
is a finite sum of Dirac measures. In particular Theorem 7.1 also holds if ρ is a
delta measure that has its mass at the angles θ = ±π/2, that is, our result does
not depend on ergodicity of the evolution.

�

As a consequence of Remark (ii), one obtains a result for the standard Kac model.
Recall that the generator of the standard Kac model is given by

Lcl =
2

N + M − 1

∑
1≤i< j≤N+M

(Ri j − I ) .
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Wemay arbitrarily split the variables into two groups (v1, . . . , vM ) and (wM+1, . . . ,wM+N ).
Splitting the generator accordingly,

Lcl =
2

N + M − 1

∑
1≤i< j≤M

(Ri j − I ) +
2

N + M − 1

∑
M+1≤i< j≤N+M

(Ri j − I )

+
2

N + M − 1

M∑
i=1

N+M∑
j=M+1

(Ri j − I ) ,

we see that the standard Kac model can be cast in the from (7.3) by setting

λS =
2(M − 1)
N + M − 1

, λR =
2(N − 1)
N + M − 1

and µ =
2N

N + M − 1
.

Hence, we obtain the following Corollary:

Corollary 7.2. Let N ≥ M and consider the time evolution defined by Lcl with initial
condition (7.7). Assume that the function f0 in the initial condition has finite entropy.
The entropy of the function

f (v, t ) :=
∫
RN

[
eLclt F0

]
(v,w) dw

relative to the thermal state e−π |v |2 , satisfies

S( f (·, t )) ≤
[

M
N + M

+
N

N + M
e−t µρ2(N+M )/(N+M−1)

]
S( f0) ,

where
µρ =

∫ π

−π
ρ(θ) dθ sin2(θ)

and ρ is a probability distribution such that (7.5) holds.

On a mathematical level, an efficient way of proving approach to equilibrium is
through a logarithmic Sobolev inequality, which presupposes that the generator of the
time evolution is given by a Dirichlet form. This kind of structure is notably absent in
the Kac master equation. We shall see however, that the logarithmic Sobolev inequality
in the form of Nelson’s hypercontractive estimate is an important tool for the proof of
Theorem 7.1. We will use an iterated version of it, which expresses the result in terms
of marginals of the functions involved. This, coupled with an auxiliary computation
and a sharp version of the Brascamp-Lieb inequalities [BL76] (see also [Lie90]) will
lead to the result.

In our opinion, the main result of this chapter is the description of a simple
mechanism for obtaining exponential relaxation towards equilibrium. One can extend
the results to three dimensional momentum preserving collisions, however, so far only
for a caricature of Maxwellian molecules. To carry this method over to the case of hard
spheres and for true Maxwellian molecules is an open problem.
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In Section 7.2 we derive a representation formula for the Kac evolution eLt which
is reminiscent of the Ornstein-Uhlenbeck process. This allows us to prove an entropy
inequality based upon Nelson’s hypercontractive estimate in Section 7.3. In Section 7.4
we show how the sharp version of the geometric Brascamp-Lieb inequality leads to a
correlation inequality for the entropy involving marginals, which in turn proves our
main entropy inequality. The fact that our Brascamp-Lieb datum is geometric relies on
a sum rule which will be proved in Section 7.5. A short proof of the geometric form
of the Brascamp-Lieb inequalities is deferred to Appendix E. In Chapter 8 we show
how our method can be applied to three-dimensional Maxwellian collisions with a very
simple angular dependence.

7.2 The representation formula

The aim of this section is to rewrite (7.6), that is eLt F0, in a way which is reminiscent
of the Ornstein-Uhlenbeck process. This representation will naturally lead to the next
step in the proof of Theorem 7.1, namely the entropy inequality that will be presented
in Theorem 7.5.

It is convenient to write

L= Λ(Q − I ) , where Λ = λS
M
2
+ λR

N
2
+ µM ,

and the operator Q is a convex combination of Ri j s, given by

Q =
λS

Λ(M − 1)

∑
1≤i< j≤M

Ri j +
λR

Λ(N − 1)

∑
M<i< j≤N+M

Ri j +
µ

ΛN

M∑
i=1

M+N∑
j=M+1

Ri j ,

i.e.,Q is an average over rotation operators. The right-hand side of (7.6) can be written
as

(eLt F0)(v,w) = e−Λt
∞∑
k=0

t kΛk

k!
QkF0(v,w) , (7.9)

where

QkF0(v,w)

=
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk)dθk F0
©«
[ k∏
l=1

rαl (θl )

]−1
(v,w)ª®¬ .

(7.10)
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Here, α labels pairs of particles, that is, α = (i, j), 1 ≤ i < j ≤ M + N , rα(θ) is
defined in (7.4) and λα is given by the rotation corresponding to the index α, that is,

λ(i, j) =
λS

Λ(M − 1)
if 1 ≤ i < j ≤ M ,

λ(i, j) =
λR

Λ(N − 1)
if M + 1 ≤ i < j ≤ M + N ,

λ(i, j) =
µ

ΛN
if 1 ≤ i ≤ M ,M + 1 ≤ j ≤ M + N .

Note that the sum over all pairs
∑
α λα = 1.

For our purpose, it is convenient to write the function f0, introduced in (7.7), as
f0(v) = ℎ0(v)e−π |v |

2
. Since the Gaussian function is invariant under rotations, (7.9)

takes the form

(eLt F0)(v,w) = e−π( |v |
2+ |w |2)e−Λt

∞∑
k=0

t kΛk

k!
Qk (

ℎ0 ◦ P
)
(v,w) .

We introduce the projection P : RN+M → RM by P (v,w) = v , as a reminder that the
semigroup eLt acts on functions that depend on v as well as w . If we write

f (v, t ) = e−π |v |
2
ℎ(v, t ) ,

then (7.8) can be written as

ℎ(v, t ) = e−Λt
∞∑
k=0

t kΛk

k!
ℎk(v) ,

where the functions ℎk are given by

ℎk(v) :=
∫
RN

Qk (
ℎ0 ◦ P

)
(v,w)e−π |w |

2
dw .

Likewise, the entropy of f is expressed as

S( f (·, t )) =
∫
RM

ℎ(v, t ) log ℎ(v, t )e−π |v |
2
dv =: S(ℎ(·, t )) .

Expanding the function Qk(ℎ0 ◦ P )(v,w), we find that

ℎk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk)dθk×

×

∫
RN

(
ℎ0 ◦ P

) ©«
[ k∏
l=1

rαl (θl )

]−1
(v,w)ª®¬ e−π |w |2 dw , (7.11)
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where, as before, see (7.10), rα(θ) rotates the plane given by the index pair α by an
angle θ while keeping the other directions fixed. Since P (v,w) = v , it is natural to
write 

k∏
j=1

rα j (θ j )


−1

=

(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
,

where Ak ∈ R
M×M is an M × M matrix, Bk ∈ R

M×N , Ck ∈ R
N×M and Dk ∈ R

N×N .
Further, α = (α1, . . . , αk) and θ = (θ1, . . . , θk). This notation allows us to rewrite
(7.11) as

ℎk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk) dθk×

×

∫
RN

ℎ0
(
Ak(α, θ)v + Bk(α, θ)w

)
e−π |w |

2
dw .

Note that, by the definition of rotations,

Ak(α, θ)AT
k (α, θ) + Bk(α, θ)BT

k (α, θ) = IM . (7.12)

Lemma 7.3. Let A ∈ RM×M and B ∈ RM×N be matrices that satisfy AAT +BBT = IM .
Then ∫

RN
ℎ(Av + Bw)e−π |w |

2
dw =

∫
RM

ℎ
(
Av + (IM − AAT )1/2u

)
e−π |u |

2
du

for any integrable function ℎ.

Proof. Denote the range of B by H ⊂ RM and its kernel by K ⊂ RN . We may write∫
RN

ℎ(Av + Bw)e−π |w |
2
dw =

∫
K

∫
K⊥

ℎ(Av + Bu)e−π |u |
2
e−π |u

′ |2 dudu ′

=

∫
K⊥

ℎ(Av + Bu)e−π |u |
2
du .

The symmetric map BBT : RM → RM has H as its range and H ⊥, that is the
orthogonal complement of H in RM , as its kernel. Indeed, suppose that there exists
x ∈ RM with BBT x = 0, then BT x = 0, i.e., x ∈ KerBT or x is perpendicular to H .
Hence, the map BBT : H → H is invertible. Define the linear map R : RN → H by

R =
(
BBT

)−1/2
B

and note that RRT = IH while RT R projects the space K⊥ orthogonally onto H .
Since K⊥ and H have the same dimension, it follows that RT restricted to H defines
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an isometry between H and K⊥. Hence,∫
K⊥

ℎ (Av + Bu) e−π |u |
2
du =

∫
K⊥

ℎ
(
Av +

(
BBT

)1/2
Ru

)
e−π |u |

2
du

=

∫
H
ℎ

(
Av +

(
BBT

)1/2
RRT u

)
e−π |R

T u |2 du

=

∫
H
ℎ

(
Av +

(
BBT

)1/2
u
)
e−π |u |

2
du .

The assumption AAT + BBT = IM , together with the fact that∫
H
ℎ

(
Av +

(
BBT

)1/2
u
)
e−π |u |

2
du

=

∫
H⊥

∫
H
ℎ

(
Av + (BBT )1/2u

)
e−π |u |

2
du e−π |u

′ |2 du ′

now implies the lemma. �

The matrix Ak(α, θ) has an orthogonal singular value decomposition,

Ak(α, θ) = Uk(α, θ)Γk(α, θ)V T
k (α, θ) , (7.13)

where Γk(α, θ) = diag[γk,1(α, θ), . . . , γk,M (α, θ)] is the diagonal matrix whose entries
γk, j (α, θ), j = 1, . . . ,M , are the singular values of Ak(α, θ), andUk(α, θ) andVk(α, θ)

are rotations in RM . Note that (7.12) implies γk, j (α, θ) ∈ [0, 1] for j = 1, . . . ,M . We
shall use the abbreviation

ℎ0(Uk(α, θ)v) = ℎ0,Uk (α,θ)(v) .

These considerations can be summarized by the representation formula presented in
the following theorem.

Theorem 7.4 (Representation formula). The function ℎk can be written as

ℎk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk) dθk×

×

∫
RM

ℎ0,Uk (α,θ)

(
Γk(α, θ)V T

k (α, θ)v +
(
IM − Γ2k(α, θ)

)1/2
w

)
e−π |w |

2
dw , (7.14)

where ℎ0,Uk (α,θ), Γk(α, θ) andVk are as defined above.

7.3 The hypercontractive estimate

Starting from (7.14) and using convexity of the entropy and Jensen’s inequality together
with ∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk) dθk = 1 ,
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we get

S(ℎk) ≤
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk) dθk S(gk(·, α, θ)),

where we set

gk(v, α, θ) =
∫
RM

ℎ0,Uk (α,θ)

(
γk(α, θ)v +

(
IM − γ2k(α, θ)

)1/2
w

)
e−π |w |

2
dw , (7.15)

and we removed the rotation V T
k (α, θ) by a change of variables.

To explain the main observation in this section we look at (7.15) when M = 1. Since
0 ≤ γk(α, θ) ≤ 1, we can write γk(α, θ) = e−t and we get gk(v, α, θ) = Nt (ℎ0,Uk (α,θ))

where Nt is the Ornstein-Uhlenbeck semigroup, that is

Nt ℎ(x) =
∫
R
ℎ

(
e−t x +

√
1 − e−2t y

)
e−πy

2
dy .

Thus Theorem 7.4 renders the function ℎk as a convex combination of terms reminis-
cent of the Ornstein-Uhlenbeck process, albeit in matrix form. We make use of this
observation to find a bound for S(gk(·, α, θ)). This bound together with a suitable
correlation inequality proved in the next section will lead to a bound for S(ℎk).

In addition to the notation developed in the previous section, we need various
marginals of the function ℎ0,Uk (α,θ). Quite generally, if ℎ is a function of M variables
and σ ⊂ {1, . . . ,M }, we shall denote by ℎσ the marginals of ℎ with respect to the
variables v j, j ∈ σ, for instance,

ℎ {1,2}(v3, . . . , vM ) =

∫
R2

ℎ(v1, v2, v3, . . . , vM )e−π(v
2
1+v

2
2) dv1dv2 .

It will be convenient to use the matrix Pσ : RM → R |σ | that projects RM orthogonally
onto R |σ | which we will identify with subspace of RM . To give an example, let
v = (v1, ..., vM ). Then P {1,2}v = (v1, v2). The following theorem is the main result of
this section.

Theorem 7.5 (Partial entropy bound). Let ℎ0 ∈ L1(RM , e−π |v |
2dv) be nonnegative and

assume that S(ℎ0) < ∞. Then

S(gk(·, α, θ)) ≤
∑

σ⊂{1,...,M }

∏
i∈σc

γ2k,i

∏
j ∈σ

(
1 − γ2k, j

)
×

×

∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)

(
PσcUk(α, θ)

T v
)
e−π |v |

2
dv , (7.16)

where σc is the complement of the set σ in {1, ...,M }.

A key role in the proof of Theorem 7.5 is played by Nelson’s hypercontractive
estimate.



7.3. THE HYPERCONTRACTIVE ESTIMATE 141

Theorem 7.6 (Nelson’s hypercontractive estimate). The Ornstein-Uhlenbeck semigroup,

Nt ℎ(x) =
∫
R
ℎ

(
e−t x +

√
1 − e−2t y

)
e−πy

2
dy ,

for t ≥ 0, is bounded from Lp(R, e−πx
2
dx) to Lq (R, e−πx

2
dx) if and only if

(p − 1) ≥ e−2t (q − 1) .

For such values of p and q ,

‖Nt ℎ‖q ≤ ‖ℎ‖p

with equality if and only if ℎ is constant.

Proof. For a proof we refer the reader to [Nel73]. For other proofs see [Gro75, Gro93,
Fed69, CL90]. �

Nelson’s hypercontractive estimate, that is Theorem 7.6, implies the following
Corollary, which will be useful in the proof of Theorem 7.5.

Corollary 7.7 (Entropic version of Nelson’s hypercontractive estimate). Let ℎ : R→
R+ be a function in L1(R, e−πx

2
dx) with finite entropy, i.e.,

S(ℎ) =
∫
R
ℎ(x) log ℎ(x) e−πx

2
dx < ∞ .

Then

S(Nt ℎ) ≤ e−2tS(ℎ) + (1 − e−2t )‖ℎ‖1 log ‖ℎ‖1

for all t ≥ 0.

Proof. Let ℎ ∈ Lp(R, e−πx
2
dx), for p ≥ 1 small, be a nonnegative function. As

‖Nt ℎ‖1 = ‖ℎ‖1, we can apply Nelson’s hypercontractive estimate, which implies that
for p, q that satisfy (p − 1) = e−2t (q − 1),

‖Nt ℎ‖q − ‖Nt ℎ‖1
q − 1

≤
‖ℎ‖p − ‖ℎ‖1

q − 1
= e−2t

‖ℎ‖p − ‖ℎ‖1
p − 1

.

Sending p → 1 and hence q → 1, we get the claimed estimate for such functions ℎ.
If ℎ just has finite entropy one cuts off ℎ at large values, uses the above estimate and
removes the cutoff using the monotone convergence theorem. �

We are now ready to prove Theorem 7.5.
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Proof of Theorem 7.5. Remember that 0 ≤ γk, j (α, θ) ≤ 1 for j = 1, ...,M . Thus, by
inductively applying Corollary 7.7 to∫

RM
ℎ0,Uk (α,θ)

(
γk,1v1 +

√
1 − γ2k,1 u1, . . . , γk,M vM +

√
1 − γ2k,M uM

)
×

×e−π
∑M

j=1 u
2
j du1 · · · duM ,

we obtain

S(gk(·, α, θ))

≤
∑

σ⊂{1,...,M }

∏
i∈σc

γ2k,i

∏
j ∈σ
(1 − γ2k, j )

∫
R|σ

c |
ℎσ0,Uk (α,θ)

(u) log ℎσ0,Uk (α,θ)
(u) e−π |u |

2
du .

Inserting the definition of the marginal ℎσ0,Uk (α,θ)
, we see that∫

R|σ
c |
ℎσ0,Uk (α,θ)

(u) log ℎσ0,Uk (α,θ)
(u) e−π |u |

2
du

=

∫
RM

ℎσ0,Uk (α,θ)
(Pσcv) log ℎσ0,Uk (α,θ)

(Pσcv) e−π |v |
2
dv

=

∫
RM

ℎ0,Uk (α,θ)(v) log ℎ
σ
0,Uk (α,θ)

(Pσcv) e−π |v |
2
dv

=

∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)
(PσcUk(α, θ)

T v) e−π |v |
2
dv,

which finishes the proof of Theorem 7.5. �

7.4 The key entropy bound

Collecting the results of the previous sections we get the following bound

S(ℎk) ≤
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ρ(θ1) dθ1 · · · ρ(θk) dθk
∑

σ⊂{1,...,M }

∏
i∈σc

γ2k,i×

×
∏
j ∈σ

(
1 − γ2k, j

) ∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)

(
PσcUk(α, θ)

T v
)
e−π |v |

2
dv .

(7.17)

The right-hand side of (7.17) contains a large sum over the entropy of marginals of
ℎ0. In order to bound such a sum in terms of the entropy of ℎ0 one may try to apply
some version of the Loomis-Whitney inequality [LW49] or, more precisely, of an
inequality by Han [Han78]. This is essentially correct, but will require a substantial
generalization of this inequality. Let us first formulate the main theorem of this section.
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Theorem 7.8 (Entropy bound). The estimate

S(ℎk) ≤

[
M

N + M
+

N
N + M

(
1 − µρ

N + M
NΛ

)k ]
S(ℎ0) (7.18)

holds.

As mentioned before, to prove Theorem 7.8, we need a generalized version of an
inequality by Han. This generalization was proven by Carlen-Cordero-Erausquin in
[CC09]. It is based on the geometric Brascamp-Lieb inequality due to Ball [Bal89], see
also [Bal91], in the rank one case, and due to Barthe [Bar98] in the general case.

Theorem 7.9 (Correlation inequality). For i = 1, . . . K , let Hi ⊂ R
M be subspaces of

dimension di and Bi : RM → Hi be linear maps with the property that BiBT
i = IHi , the

identity map on Hi . Assume further that there are non-negative constants ci, i = 1, . . . ,K
such that

K∑
i=1

ciBT
i Bi = IM . (7.19)

Then, for nonnegative functions fi : Hi → R,∫
RM

K∏
i=1

f cii (Biv) e−π |v |
2
dv ≤

K∏
i=1

(∫
Hi

fi(u) e−π |u |
2
du

) ci
. (7.20)

Moreover,∫
RM

ℎ(v) log ℎ(v) e−π |v |
2
dv ≥

K∑
i=1

ci
[ ∫
RM

ℎ(v) log fi(Biv) e−π |v |
2
dv

− log
∫
Hi

fi(u) e−π |u |
2
du

]
,

(7.21)

for any nonnegative function ℎ ∈ L1(RM , e−π |v |
2dv).

Since Theorem 7.9 is very useful in a number of applications, and for the readers
convenience, we will give an elementary proof in Appendix E.

Remark. By taking the trace in (7.19) one sees that

K∑
i=1

cidi = M .

�
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We would like to apply (7.21) to the right-hand side of (7.17). An immediate
problem is that (7.17) is in terms of integrals and not sums. While there are some
results available for continuous indices (see, e.g., [Bar04]), they do not apply to our
situation and hence we will take a more direct approach and approximate the measure
ρ(θ)dθ by a discrete measure. It is important that the approximation also satisfies the
constraint (7.5). The following lemma establishes such an approximation.

Lemma 7.10. Let ρ be a probability density on [−π, π] whose Fourier series converges
absolutely and assume that (7.5) is satisfied. There exists a sequence of discrete probability
measures νK , K = 1, 2, . . . , such that for every continuous function f on [−π, π]

lim
K→∞

∫ π

−π
f (θ) νK (dθ) =

∫ π

−π
f (θ)ρ(θ) dθ .

Moreover, ∫ π

−π
cos θ sin θ νK (dθ) = 0 ,

for all K ∈ N. More precisely,

νK (dθ) =
2π

4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
δ

(
θ −

2π`
4K + 1

)
dθ ,

where

ρK (θ) =

∫ π

−π
ρ(θ − φ) pK (θ) dφ and pK (θ) :=

1
2K + 1

( K∑
k=−K

eikθ
)2

.

Proof. For K any positive integer we convolve ρ(θ) with the non-negative trigonomet-
ric polynomial

pK (θ) :=
1

2K + 1

( K∑
k=−K

eikθ
)2
=

2K∑
m=−2K

(
1 −

|m |
2K + 1

)
eimθ ,

and obtain a probability density ρK (θ). The Fourier coefficients of ρK (θ) are given by

ρ̂K (m) = ρ̂(m)
(
1 −

|m |
2K + 1

)
for |m | ≤ 2K and are zero otherwise. In particular,

ρ̂K (2) − ρ̂K (−2) = 4i
∫ π

−π
ρK (θ) sin θ cos θ dθ = 0 .

With ρK we construct the measure

νK (dθ) =
2π

4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
δ

(
θ −

2π`
4K + 1

)
dθ .



7.4. THE KEY ENTROPY BOUND 145

The measure νK is positive since ρK ((2π`)/(4K + 1)) ≥ 0. Moreover, for all m ∈ Z
with |m | ≤ 2K the Fourier coefficients ν̂K (m) and ρ̂K (m) coincide. In particular, we
have ∫ π

−π
νK (dθ) sin θ cos θ = 0 .

To see this, we compute

ν̂K (m) =
1
2π

∫ π

−π
νK (θ)e−imθ dθ =

1
4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
e−2πim`/(4K+1)

for |m | ≤ 2K . Observe that

ρK

(
2π`

4K + 1

)
=

2K∑
k=−2K

ρ̂K (k)e2πik`/(4K+1) ,

and, as a consequence,

ν̂K (m) =
1

4K + 1

2K∑
`=−2K

2K∑
k=−2K

ρ̂K (k)e2πi`(k−m)/(4K+1) .

But
2K∑

`=−2K
e2πi`(k−m)/(4K+1) =

{
4K + 1 if k = m
0 if k , m,

and hence we conclude that
ν̂K (m) = ρ̂K (m) (7.22)

for |m | ≤ 2K . It is easy to see that for any continuous function f on [−π, π],

lim
K→∞

∫ π

−π
f (θ)νK (dθ) =

∫ π

−π
f (θ)ρ(θ) dθ .

Indeed, Weierstrass’s theorem implies that for any ε > 0 there exist K ∈ N and a
trigonometric polynomial qK of degree less than 2K , such that

f (θ) = qK (θ) + rk(θ)

where rk satisfies the uniform bound |rk(θ)| < ε
4 . Further, (7.22) implies that∫ π

−π
qK (θ)νK (dθ) =

∫ π

−π
qK (θ)ρK (θ) dθ ,

which yields ��� ∫ π

−π
f (θ)νK (dθ) −

∫ π

−π
f (θ)ρK (θ) dθ

��� < ε

2
.
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It remains to show that ∫ π

−π
f (θ) (ρ(θ) − ρK (θ)) dθ → 0

as K →∞. By assumption, ρ has an absolutely convergent Fourier series
∑

k ρ̂(k)eikθ .
Hence,

|ρ(θ) − ρK (θ)| ≤
∑

|k | ≥2K+1

| ρ̂(k)| +
1

2K + 1

∑
|k | ≤2K

|k | | ρ̂(k)| .

As K →∞, the first term on the right-hand side tends to zero since { ρ̂(k)}k ∈ `1(Z).
Notice that by the summability of { ρ̂(k)}k , |k ρ̂(k)| → 0 as |k | → ∞, so the second
term also goes to zero as Cesàro mean. �

At this point we can prepare the ground for the application of Theorem 7.9 to
inequality (7.17). We first replace ρ(θ)dθ in (7.17) with νK (dθ). Setting

ω` j = ρK (θ j ) , θ` j =
2π` j
4K + 1

, and θ = (θ`1, . . . , θ`k ) ,

we obtain

∑
α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

νK (dθ1) · · · νK (dθk)
∑

σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2×

×
∏
j ∈σ

(
1 − γk, j (α, θ)

2
) ∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)
(PσcUk(α, θ)

T v) e−π |v |
2
dv

=
∑

α1,...,αk

λα1 · · · λαk

∑
−K ≤`1,...,`k ≤K

k∏
j=1

ω` j

∑
σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2×

×
∏
j ∈σ

(
1 − γk, j (α, θ)

2
) ∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)
(PσcUk(α, θ)

T v) e−π |v |
2
dv .

(7.23)

In order to apply Theorem 7.9 to (7.23) we have to replace the sum over the index i
with a sum over the indices α1, . . . , αk, `1, . . . `k and all subsets σ ⊂ {1, . . . ,M }.



7.4. THE KEY ENTROPY BOUND 147

Moreover, we substitute

the constants ci by
1

Ck,M
λα1 · · · λαk

k∏
j=1

ω` j

∏
i∈σc

γk,i(α, θ)
2
∏
j ∈σ
(1 − γk, j (α, θ)

2) ,

the functions fi(w) by ℎσ0,Uk (α,θ)
(w) ,

the linear maps Bi by PσcUk(α, θ)
T ,

the functions fi(Biv) by ℎσ0,Uk (α,θ)
(PσcUk(α, θ)

T v) ,

and the subspaces Hi by R |σ
c | .

For any given index i the condition BiBT
i = IHi corresponds to

PσcUk(α, θ)
TUk(α, θ)Pσc = Pσc

which is the identity on R |σ
c | .

The next theorem establishes the sum rule (7.19) in our setting and hence ensures
the applicability of Theorem 7.9 to (7.23).

Theorem 7.11 (The sum rule). If ν(dθ) is a probability measure satisfying (7.5), then∑
α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk)×

×
∑

σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2
∏
j ∈σ

(
1 − γk, j (α, θ)

2
)
Uk(α, θ)PT

σcPσcUk(α, θ)
T

= Ck,M IM , (7.24)

where

Ck,M =

[
M

N + M
+

N
N + M

(
1 − µν

N + M
NΛ

)k ]
with

µν = µ

∫
ν(dθ) sin2 θ .

The proof will be given in Section 7.5. We observe here that it follows from
Theorem 7.10 that µρ = limK→∞ µνK .

Proof of Theorem 7.8 . First we consider the case where ρ is repaced by νK and use
Theorem 7.9 together with Theorem 7.11 and the identification rules described above.
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The entropy inequality (7.21) now says that∫
RM

ℎ0(v) log ℎ0(v)e−π |v |
2
dv

≥
1

Ck,M

∑
α1,...,αk

λα1 · · · λαk

∑
−K ≤`1,...,`k ≤K

k∏
j=1

ω` j

∑
σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2×

×
∏
j ∈σ

(
1 − γk, j (α, θ)

2
) [ ∫

RM
ℎ0(v) log ℎσ0,Uk (α,θ)

(PσcUk(α, θ)
T v) e−π |v |

2
dv

− log
∫
R|σ

c |
ℎσ0,Uk (α,θ)

(u) e−π |u |
2
du

]
.

However, since ℎ0 is normalized andUk(α, θ) is orthogonal, we find that∫
R|σ

c |
ℎσ0,Uk (α,θ)

(u) e−π |u |
2
d u =

∫
R|σ

c |

∫
R|σ |

ℎ0,Uk (α,θ)(v, u) e
−π |v |2 dv e−π |u |

2
du

=

∫
RM

ℎ0(Uk(α, θ)v) e−π |v |
2
dv

= 1 .

Thus, we find∑
α1,...,αk

λα1 · · · λαk

∑
−K ≤`1,...,`k ≤K

k∏
j=1

ω` j

∑
σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2×

×
∏
j ∈σ

(
1 − γk, j (α, θ)

2
) ∫
RM

ℎ0(v) log ℎσ0,Uk (α,θ)
(PσcUk(α, θ)

T v) e−π |v |
2
dv

≤ Ck,MS(ℎ0) . (7.25)

As K →∞, the left-hand side of (7.25) converges to the right-hand side of (7.17). �

We now have all ingredients to give the proof of Theorem 7.1.

Proof of Theorem 7.1. Recall from Section 7.2, that

f (v, t ) = e−π |v |
2
e−Λt

∞∑
k=0

t kΛk

k!
ℎk(v) ,

and that S( f (·, t )) = S(ℎ(·, t )). Combining Theorem 7.5 and Theorem 7.8, we obtain

S(ℎk) ≤ Ck,MS(ℎ0) ,

and computing

e−Λt
∞∑
k=0

Λk t k

k!
Ck,M

yields Theorem 7.1. �
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7.5 The sum rule. Proof of Theorem 7.11

We have to compute the matrix

Z :=
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk)×

×
∑

σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2
∏
j ∈σ

(
1 − γk, j (α, θ)

2
)
Uk(α, θ)PT

σcPσcUk(α, θ)
T .

Obviously PT
σcPσc = Pσc and hence

Z =
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk) ×

×Uk(α, θ)


∑

σ⊂{1,...,M }

∏
i∈σc

γk,i(α, θ)
2
∏
j ∈σ

(
1 − γk, j (α, θ)

2
)
Pσc

Uk(α, θ)
T .

The sum on σ is easily evaluated and yields the matrix Γ2k(α, θ). Hence, recalling
the orthogonal singular value decomposition (7.13) of Ak(α, θ), that is, Ak(α, θ) =

Uk(α, θ)Γk(α, θ)V T
k (α, θ), we find that

Z =
∑

α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk) Ak(α, θ)AT
k (α, θ) . (7.26)

One can think about this expression in the following fashion. Recall that[ k∏
l=1

rαl (θl )

]−1
=

(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
.

With this notation, the matrix Z equals the top left entry of the matrix

∑
α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk)

[ k∏
l=1

rαl (θl )

]−1 (
IM 0
0 0

) [ k∏
l=1

rαl (θl )

]
.

The computation hinges on a repeated application of the elementary identity∫ π

−π
ν(dθ)

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

) (
m1 0
0 m2

) (
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
(1 − ν̃)m1 + ν̃m2 0

0 (1 − ν̃)m2 + ν̃m1

)
,
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where ν̃ =
∫
ν(dθ) sin2(θ). For this to be true we just need (7.5). We easily check that

for the rotations rα(θ)∑
α

λα

∫ π

−π
ν(dθ) rα(θ)−1

(
m1IM 0
0 m2IN

)
rα(θ)

=
1
Λ

(
M λS
2
+

N λR

2

) (
m1IM 0
0 m2IN

)
+

µ

ΛN

(
N (M − 1) + N ((1 − ν̃)m1 + ν̃m2)IM 0

0 (N − 1)M + M (ν̃m1 + (1 − ν̃)m2)IN

)
=

(
m1IM 0
0 m2IN

)
+

µν
ΛN

(
N (m2 −m1)IM 0

0 M (m1 −m2)IN

)
(7.27)

, where µν = ν̃ µ. Denote by L(ν1, ν2) the (N + M ) × (N + M ) matrix

L(m1,m2) =

(
m1IM 0
0 m2IN

)
,

and set

P = I2 −
µν
ΛN

(
N −N
−M M

)
.

Then (7.27) is recast as∑
α

λα

∫ π

−π
ν(dθ) rα(θ)−1L(m1,m2)rα(θ) = L(m ′1,m

′
2) , (7.28)

where (
m ′1
m ′2

)
= P

(
m1
m2

)
.

By a repeated application of (7.28) we obtain

∑
α1,...,αk

λα1 · · · λαk

∫
[−π,π]k

ν(dθ1) · · · ν(dθk)


k∏
j=1

rα j (θ j )


T

L(m)


k∏
j=1

rα j (θ j )


= L(Pkm) .

Thus,

Z =
(
Pk

(
1
0

))
1
IM .

It is easy to see that P has eigenvalues `1 = 1 and `2 = 1 − µν (M + N )/(ΛN ) with
eigenvectors m1 = (1, 1) and m2 = (N ,−M )

T /(M + N ). Consequently,(
1
0

)
=

M
N + M

m1 +m2 ,
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which yields (
Pk

(
1
0

))
1
=

M
N + M

+
N

M + N

(
1 − µν

M + N
ΛN

)k
.

This proves Theorem 7.11. �





CHAPTER 8
Boltzmann-Kac collisions

In this chapter we show that the above results can also be extended, at least in a
particular case, to three-dimensional Boltzmann-Kac collisions.

We again consider a system of M particles coupled to a reservoir consisting of
N particles, but now with velocities v1, . . . , vM , w1, . . . ,wN ∈ R

3. The collisions
between a pair of particles have to conserve energy and momentum,

z2i + z2j = (z
∗
i )

2 + (z∗j )
2 ,

z i + z j = z∗i + z∗j ,

where z can be either the velocity of a system particle v or of a reservoir particle w . A
convenient parametrization of the post-collisional velocities in terms of the velocities
before the collision is given by

z∗i (ω) = z i − ω · (z i − z j )ω ,

z∗j (ω) = z j + ω · (z i − z j )ω , where ω ∈ S2 .

This is the so-calledω-representation. This representation is particularly useful, because
the velocities are related to each other by a linear transformation, and the strategy used
to prove the results for the one-dimensional Kac system carries over rather directly.
The direction ω will be chosen according to the uniform probability distribution on
the unit sphere S2.

Introduce the operators

(Ri j f )(z ) =
∫
S2

f (ri j (ω)−1z ) dω ,

where dω denotes the uniform probability measure on the sphere and the matrices
ri j (ω) are symmetric involutions acting as(

z∗i
z∗j

)
=

(
I − ωωT ωωT

ωωT I − ωωT

) (
z i
z j

)
153
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on the velocities of the particles i and j , and as identities otherwise. They will
replace the one-dimensional Kac collision operators in (7.3) in the otherwise unchanged
generator of the time evolution. Notice that the matrices ri j (ω) are orthogonal, so that
the expansion formula (7.10) still holds with the obvious changes in the dimension of
the single-particle spaces.

We prove an analogue of Theorem 7.1 for the case of three-dimensional Boltzmann-
Kac collisions and pseudo-Maxwellian molecules.

Theorem 8.1. Let N ≥ M and F0(v,w) = f0(v) e−π |w |
2 for some probability distribu-

tion f0 on R3M . Then the entropy of the marginal

f (v, t ) :=
∫
R3N

(
eLt F0

)
(v,w) dw

with respect to the thermal state e−π |v |2 is bounded by

S( f (·, t )) ≤
[

N
N + M

+
N

N + M
e−

µ
3
N+M
N t

]
S( f0) .

Remark. The result in three dimensions is very similar to the case of one-dimensional
Kac collisions, with the difference that the rate of exponential decay is µ/3 instead
of µρ . The factor 1/3 comes from the fact that

∫
S2
dωωωT = I3/3. It would be

interesting to cover the true Maxwellian molecules interaction

(Ri j f )(z) =
∫
S2
b

( vi − v j

|vi − v j |
· ω

)
f (ri j (ω)−1z) dω .

However, the dependence of the scattering rate b on the velocities does not seem to be
treatable with the above methods. �

The proof of Theorem 8.1 essentially deviates from the one-dimensional case in
only two places: the sum rule and the discrete approximation of the integrals. We begin
by proving an analogue of Theorem 7.11. Most of the steps for the computation of the
matrix Z in (7.26) are the same. What remains is to compute

Z :=
∑

α1,...,αk

λα1 · · · λαk

∫
S2×···×S2

dω1 · · · dωk Ak(α,ω)Ak(α,ω)
T ,

which is somewhat different for the case of Boltzmann-Kac collisions. Recall that
Ak(α,ω) is the upper left 3M × 3M block of [

∏k
j=1 rα j (ω j )]

−1, i.e.,

Ak(α,ω) = P3M [Π
k
j=1rα j (ω j )]

−1PT
3M

with the projection P3M =
(
I3M 0

)
from R3M+3N to R3M . In particular, by linearity,

Z = P3M
©«

∑
α1,...,αk

λα1 · · · λαk

∫
(S2)k

dω


k∏
j=1

rα j (ω j )


−1 (

I3M 0
0 0

) 
k∏
j=1

rα j (ω j )


ª®®¬ PT

3M .

As in the proof of Theorem 7.11, we have
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Lemma 8.2. Let α, β ≥ 0. Then∑
1≤i< j≤M+N

λi j

∫
S2
dω ri j (ω)−1

(
αI3M 0
0 βI3N

)
ri j (ω) =

(
α′I3M 0

0 β ′I3N

)
,

where α′, β ′ are related to α, β by(
α′

β ′

)
= P

(
α

β

)
, P = I2 −

µ

3Λ

(
1 −1
−M

N
M
N

)
.

Notice that the matrixPof Lemma 8.2 has eigenvalues 1 and 1−µ/(3Λ) (1 + M /N )
with corresponding eigenvectors

(
1 1

)T and
(
−N /M 1

)T . Repeated application of
Lemma 8.2 then implies, see also the argument in the one-dimensional case,

∑
α1,...,αk

λα1 · · · λαk

∫
(S2)k

dω


k∏
j=1

rα j (ω j )


−1 (

αI3M 0
0 βI3N

) 
k∏
j=1

rα j (ω j )


=

(
α(k)I3M 0

0 β(k)I3N

)
,

where (
α(k)

β(k)

)
= Pk

(
α

β

)
.

Before we prove Lemma 8.2, let us make an easy observation.

Corollary 8.3. In the particular case α = 1, β = 0, we get

Z =

[
M

M + N
+

N
M + N

(
1 −

µ

3Λ

(
1 +

M
N

))k ]
I3M .

Proof of Lemma 8.2. For 1 ≤ i < j ≤ M (respectively for M + 1 ≤ i < j ≤ M + N )
the operators ri j (ω) only act non-trivially in the first 3M (last 3N ) variables. Taking
into account that ri j (ω)−1 I ri j (ω) = I , we obtain

λS
M − 1

∑
1≤i< j≤M

∫
S2
dω ri j (ω)−1

(
αI3M 0
0 βI3N

)
ri j (ω) =

M λS
2

(
αI3M 0
0 βI3N

)
,

and

λR

N − 1

∑
M+1≤i< j≤M+N

∫
S2
dω ri j (ω)−1

(
αI3M 0
0 βI3N

)
ri j (ω) =

N λR

2

(
αI3M 0
0 βI3N

)
.
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It remains to look at the interaction terms i = 1, . . . ,M and j = M + 1, . . . ,M + N .
Notice that

ri j (ω)−1
(
αI3M 0
0 βI3N

)
ri j (ω)

=

(
αI3M 0
0 βI3N

)
+

©«

0
(β − α)ωωT

0
0

0
0
(β − α)ωωT

0

ª®®®®®®®®¬
,

where the non-zero entries in the second summand on the right-hand side correspond
to the ith, respectively j th, 3 × 3 block on the diagonal. Since

∫
S2
dωωωT = 1/3 I3, we

obtain

µ

N

M∑
i=1

M+N∑
j=M+1

∫
S2
dω ri j (ω)−1

(
αI3M 0
0 βI3N

)
ri j (ω)

= µM
(
αI3M 0
0 βI3N

)
+
µ

3
(α − β)

(
−I3M 0
0 M

N I3N

)
.

Recall the definition of Λ = M λS/2 + N λR/2 + µM . Hence, summation of all the
three contributions yields the statement of the Lemma. �

As in the one-dimensional case, in order to apply the geometric Brascamp-Lieb
inequality Theorem 7.9, we need to approximate the uniform probability measure dω
on the sphere by a suitable sequence of discrete measures as in the one-dimensional
case (see Lemma 7.10). Additionally, in each step of the discretization, the constraint∫
S2
dωωωT = 1/3I , has to hold. This is important because it guarantees that the

geometric Brascamp-Lieb condition, i.e., the sum rule (7.19), holds in each step.
In order to find such an approximation, we parametrise the sphere in the usual way

by spherical coordinates

ω = ω(θ, ϕ) =
©«
sin θ cos ϕ
sin θ sin ϕ

cos θ

ª®¬
for θ ∈ [0, π] and ϕ ∈ [0, 2π]. For K ,L ∈ N we introduce the measures

ΦK :=
π

K

2K−1∑
j=0

δ π
K j on [0, 2π], and

ΘL :=
L∑
i=1

2
(1 − u2

i )
3/2(P ′L(ui))2

δarccos ui on [0, π],
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where PL is the Legendre polynomial of order L on [−1, 1], and ui , i = 1, . . . ,L, are
its zeros. Then, if f ∈ C[0, 2π] and g ∈ C[−1, 1],∫ 2π

0
f (ϕ)Φk(dϕ) =

π

K

2K−1∑
j=0

f
( π
K

j
)
→

∫ 2π

0
f (ϕ) dϕ

as K →∞ as Riemann sum. Furthermore,∫ π

0
g (cos θ) sin θ ΘL(dθ) =

L∑
i=1

2
(1 − u2

i )(P
′
L(ui))2

g (ui)

−→

∫ 1

−1
g (u) du =

∫ π

0
g (cos θ) sin θ dθ

as L → ∞ by Gauss-Legendre quadrature. The latter approximation is exact for
polynomials of order less or equal to 2L − 1. In particular, we have∫ π

0
cos2 θ sin θ ΘL(dθ) =

∫ π

0
cos2 θ sin θ dθ =

2
3
, and∫ π

0
sin3 θ ΘL(dθ) =

∫ π

0
sin3 θ dθ =

4
3
,

for all L ≥ 2. It is easy to check that ∫ 2π

0
sin ϕ cos ϕΦk(dϕ) = 0,∫ 2π

0
sin ϕΦk(dϕ) =

∫ 2π

0
cos ϕΦk(dϕ) = 0,∫ 2π

0
sin2 ϕΦk(dϕ) =

∫ 2π

0
cos2 ϕΦk(dϕ) = π,

for all K ≥ 2. Consequently,

1
4π

∫ 2π

0
ω(θ, ϕ)ω(θ, ϕ)T ΘL(dθ)Φk(dϕ)

=
1
2K

2K−1∑
j=0

L∑
i=0

ω
(
arccos ui, π j/K

)
ω

(
arccos ui, π j/K

)T
(1 − u2

i )(P
′
L(ui))2

=
1
3
I3

for all K ,L ≥ 2. It follows that Z is not changed by replacing the uniform measure
on S2 by the above discrete approximation, in particular, Z is still proportional to the
identity matrix, which guarantees the applicability of the geometric Brascamp-Lieb
inequality.

This concludes the proof of Theorem 8.1. �





APPENDIX E
The geometric Brascamp-Lieb

inequality and the entropy
inequality

In this section we prove Theorem 7.9. We use the same strategy as in [CLL04] and
[BCCT08] which consists of transporting the functions fi with the heat kernel in such
a way that the right-hand side of (7.20) remains fixed while the left-hand side of that
inequality increases. The results in [BCCT08] are quite general but for the special case
in which the sum rule (7.19) holds, the proof is quite simple and this is one of the
reasons why we include it here.

Proof of Theorem 7.9. The inequality (7.20) is equivalent to∫
RM

K∏
i=1

f cii (Biv) dv ≤
K∏
i=1

(∫
Hi

fi(u) du
) ci

. (E.1)

This follows from the identity

K∏
i=1

(
e−π |Biv |2

) ci
= e−π

∑K
i=1(v ciBT

i Bi v) = e−π |v |
2
.

We transport the functions fi by the heat flow, that is we define

fi(Biv, t ) :=
1

(4π t )M /2

∫
RM

e−|v−w |
2/(4t ) fi(Biw)dw . (E.2)

For the above definition to make sense, we have to show that the right-hand side is a
function of Biv alone. The condition BiBT

i = IHi means that the matrix Pi = BT
i Bi

is an orthogonal projection onto a di dimensional subspace of RM . Moreover, BiPi =

159
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IHiBi = Bi . We rewrite the integral (E.2) by splitting it in an integral overw ′ ∈ Ran Pi
and one over integration over w ′′ ∈ Ran P⊥i . Carrying out the integration over w ′′
we obtain

fi(Biv, t ) =
1

(4π t )M /2

∫
Ran Pi

∫
Ran P⊥i

e−|(Piv−Piw
′) |2/(4t )e−|(P

⊥
i v−w

′′) |2/(4t ) fi(BiPiw) dw ′dw ′′

=
1

(4π t )di/2

∫
Ran Pi

e−|(Piv−Piw
′) |2/(4t ) fi(BiPiw ′) dw ′

=
1

(4π t )di/2

∫
Ran Pi

e−|(Biv−Biw′) |2/(4t ) fi(Biw ′) dw ′

=
1

(4π t )di/2

∫
Hi

e−|(Biv−u) |2/(4t ) fi(u) du ,

where, in the last equality, we have used that Bi maps the range of Pi isometrically
onto Hi . This justifies (E.2). The above computation also shows that∫

Hi

fi(u, t )du =
∫
Hi

fi(u)du

so that the right-hand side of the inequality (E.1) does not change under the heat flow.
We now show that the left-hand side of (E.1) is an increasing function of t . It is

convenient to set φi(u, t ) = log fi(u, t ). Differentiating the function φi(Biv, t ) with
respect to t yields

d
dt
φi(Biv, t ) = ∆vφi(Biv, t ) + |∇vφi(Biv, t )|2 .

Moreover,

d
dt

∫
RM

K∏
i=1

f cii (Biv, t ) dv

=

K∑
m=1

cm
∫
RM
[∆vφm(Bmv, t ) + |∇vφm(Bmv, t )|2]

K∏
i=1

f cii (Biv, t ) dv .

Integrating by parts the term containing the Laplacian yields

d
dt

∫
RM

K∏
i=1

f cii (Biv, t ) dv =

K∑
m=1

cm
∫
RM
|∇vφm(Bmv, t )|2

K∏
i=1

f cii (Biv, t )dv

−

K∑
m,`=1

cmc`
∫
RM
∇vφm(Bmv, t ) · ∇vφ`(B`v, t )

K∏
i=1

f cii (Biv, t )dv .
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Finally, using that

∇vφm(Bmv, t ) = BT
i (∇φm)(Bmv)

we get

d
dt

∫
RM

K∏
i=1

f cii (Biv, t ) dv =

K∑
m=1

cm
∫
RM
|BT

m(∇φm)(Bmv, t )|2
K∏
i=1

f cii (Biv, t )dv

−

K∑
m,`=1

cmc`
∫
RM

BT
m(∇φm)(Bmv, t ) · BT

` (∇φ`)(B`v, t )
K∏
i=1

f cii (Biv, t )dv .

We claim that this expression is non-negative. The vectors ∇φm ∈ Hm are arbitrary
and hence the problem is reduced to proving that for any set of vectors Vm ∈ Hm ,
m = 1, . . . ,K , it holds

K∑
m=1

cm |BT
mVm |

2 −

K∑
m,`=1

cmc`BT
mVm · BT

` V` ≥ 0 .

Recalling that BmBT
m = IHm and setting Y =

∑
` c`BT

` V` , we conclude that it is
enough to show that

|Y |2 ≤
K∑

m=1
cm |Vm |

2 .

This follows easily since, by applying Schwarz’s inequality, we find that

|Y |2 =
K∑̀
=1

c`Y · BT
` V` =

K∑̀
=1

c`B`Y ·V` ≤

( K∑̀
=1

c` |B`Y |2
)1/2 ( K∑̀

=1

c` |V` |
2

)1/2
.

Combining this with (7.19), we learn that

|Y |2 ≤

(
Y ·

K∑̀
=1

c`BT
` B`Y

)1/2 ( K∑̀
=1

c` |V` |
2

)1/2
= |Y |

( K∑̀
=1

c` |V` |
2

)1/2
.

Thus, we have that, when applying (E.1) to the functions fi(u, t ), the left-hand side is
an increasing function of t while the right-hand side does not depends on t . It is thus
enough to show that the inequality holds for large t . Using once more the sum rule
(7.19), we see that
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∫
RM

K∏
i=1

1
(4π t )cidi/2

[∫
Hi

e−
|Biv−u |

2

4t fi(u)du
] ci

dv

=
1

(4π)M /2

∫
RM

K∏
i=1

[∫
Hi

e−
|Biv−t

−1/2u |2
4 fi(u)du

] ci
dv

t→∞
−→

1
(4π)M /2

∫
RM

e−
|v |2
4

K∏
i=1

[∫
Hi

fi(u)du
] ci

dv =
K∏
i=1

[∫
Hi

fi(u)du
] ci
,

which proves the first part of Theorem 7.9.
To prove the entropy inequality (7.21) we follow [CC09]. Let ℎ be a non-negative

function whose L1 norm is one and whose entropy is finite. An elementary computa-
tion then shows that∫

RM
ℎ(v) log ℎ(v) e−π |v |

2
dv

= sup
Φ

{∫
RM

ℎ(v)Φ(v) e−π |v |
2
dv − log

∫
RM

eΦ(v)e−π |v |
2
dv

}
.

Now, we set

Φ(v) =
K∑
i=1

ci log fi(Biv) .

This leads to the lower bound∫
RM

ℎ(v) log ℎ(v) e−π |v |
2
dv

≥

K∑
i=1

ci
∫
RM

ℎ(v) log fi(Biv) e−π |v |
2
dv − log

∫
RM

K∏
i=1

fi(Biv)ci e−π |v |
2
dv

≥

K∑
i=1

ci
∫
RM

ℎ(v) log fi(Biv) e−π |v |
2
dv − log

[ K∏
i=1

(∫
Hi

fi(u) e−π |u |
2
du

) ci ]
,

where the second step is a consequence of the Brascamp-Lieb inequality (7.20). �
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CHAPTER9
Introduction

The dispersion managed nonlinear Schrödinger equation (DM NLS) is by now a
well-established model in nonlinear science, see, for instance, Turitsyn-Brandon-
Fedoruk [TBF12] for a good review of the subject. Initially, the main motivation to
study this equation came from fibre optics applications, after the introduction of the
dispersion compensation technique, which itself appeared due to the invention of fibres
with anomalous dispersion and vastly increased the transmission speed and capacity
of optical fibre communications systems.1 Nowadays, the DM NLS has become a
paradigm of a nonlinear dispersive equation with periodically varying coefficients that
in some regime, e.g. strong dispersion management, leads to a dispersion averaged
nonlinearity. This nonlocal equation and its solutions can easily have properties that
are qualitatively different from what one is used to from the local NLS. For example, it
may have ground states which have strongly oscillating tails, see [Lus04].

One should also note an interesting related development in pure mathematics
where several works have appeared on best constants in space-time inequalities, such
as the celebrated Strichartz inequality [Bul10, Car09, HZ06, FVV12, Kun03, Fos07],
which are related to dispersion managed solitons.

9.1 Nonlinear Optics Background

The evolutionary equation for the propagation of the wave envelope of an optical pulse
in a single mode fibre is given by [GT96, AB98]

i∂t u = −d(t ) ∂2xu − p(|u |)u, (9.1)

1For the practical implementation of the dispersion management technique, Andrew

Chraplyvy and Robert Tkach (Bell Labs) were awarded the Marconi Prize in 2009

[http://marconisociety.org/fellows/].
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where the dispersion d(t ) = ε−1d0(t/ε ) + dav is parametrically modulated. The
constant part of the group velocity dispersion dav, assumed to be nonnegative dav ≥ 0,
denotes the average component (residual dispersion), and d0 its L-periodic mean zero
part. The most basic example is d0 = 1[0,1) − 1[1,2) for L = 2, that is, the dispersion
is constant along parts of the fibre and changes sign periodically. P (u) = p(|u |)u
describes the nonlinear interaction due to the polarisability of the optical fibre.

Notice that in the above equation, t denotes the distance along the fibre, and x
is the retarded time. We ignored attenuation and amplification effects which can be
transformed out by an appropriate change of variables.

Let Tr = eir∂
2
x be the free Schrödinger evolution in one space dimension and write

u = TD(t/ε )v , with D(t ) B
∫ t
0 d0(r ) dr . Then (9.1) is equivalent to

i∂tv = −dav ∂2xv −T −1D(t/ε )
[
P (TD(t/ε )v)

]
.

In the limit of small ε , and averaging over the fast dispersion action, one obtains an
averaged dispersion managed nonlinear Schrödinger equation2,

i∂τv = −dav ∂2xv −
1
L

∫ L

0
T −1D(r )

[
P (TD(r )v)

]
dr

= −dav ∂2xv −
∫
R
T −1r [P (Trv)] µ(dr ),

(9.2)

where µ is the image of the uniform measure on [0,L] under D ,

µ(B) B
1
L

∫ L

0
1B (D(r )) dr ,

for any Lebesgue measurable set B ⊂ R. In the model example d0 = 1[0,1) − 1[1,2) from
above, the measure µ has the density ψ = 1[0,1] with respect to Lebesgue measure on R.
More generally, under physically reasonable assumptions, the probability measure µ
has compact support and is absolutely continuous with respect to Lebesgue measure,
with density ψ in suitable Lp spaces:

Lemma 9.1 (Lemma 1.4 in [HL12]). Assume that the dispersion profile d0 is locally
integrable. Then the following holds:

(i) The probability measure µ has compact support.

(ii) If the set {d0 = 0} has zero Lebesgue measure, then µ is absolutely continuous with
respect to Lebesgue measure.

(iii) If furthermore d0 changes sign finitely many times on [0,L] and is bounded away
from zero, then µ has a bounded density ψ.

2The solutions of the averaged equation and of the original one turn out to be ε close on a time scale
of order ε−1. This can be shown by developing an appropriate averaging theory similar to [ZGJT01], but
we do not pursue that direction here.
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(iv) Moreover, if d0 changes sign finitely many times on [0,L] and for some p > 1∫ L

0
|d0(s)|1−p ds < ∞,

then µ has a density ψ ∈ Lp . More precisely, we have the bound3

‖ψ‖Lp .
( ∫ L

0
|d0(s)|1−p ds

) 1
p
, (9.3)

where the implicit constant depends only on the number of sign changes of d0 and
the period L.

For more details, we refer to the discussion in [HL12, CHL17]. From now on, we
will always assume that µ(dr ) = ψ(r ) dr with some compactly supported probability
density ψ ∈ Lp(R) for some suitable 1 ≤ p ≤ ∞.

The averaged equation (9.2) was first obtained by Gabitov and Turitsyn [GT96]
and afterwards systematically derived and solved numerically byAblowitz and Biondini
[AB98].

Standing wave solutions of the averaged DM NLS of the form v(t, x) = e−iωt f (x)
are solutions of the nonlinear and nonlocal eigenvalue equation (dispersion management
equation)

ω f = −dav f ′′ −
∫
R
T −1r

[
P (Tr f )

]
µ(dr ). (9.4)

The DM equation (9.4) is of variational type, as it can be considered as an Euler-
Lagrange equation for an appropriate variational principle and weak solutions can be
found as stationary points of a suitable energy functional, see (9.5).

We remark that one can also apply the same ideas and methods from dispersion
management to the case of waveguide arrays, which are modelled by a discrete nonlinear
Schrödinger equation. This was proposed in [ESMBA98, ESMA00] and the effective
equation, the diffraction managed discrete nonlinear Schrödinger equation (DMDNLS),
governing the regime of strong diffraction management was derived in [AM01]. It is
given by

ωu = −dav∆discu −
∫
R
T −1r [P (|Tr u |)] µ(dr ),

on the sequence space `2(Z), and with x indexing the position of the waveguide. Here,
∆disc is the discrete Laplacian, acting as ∆discu(x) = u(x + 1) − 2u(x) + u(x − 1), and
the solution operator Tr = eir∆disc now corresponds to the discrete free Schrödinger
equation.

3Here and in the following, we use the notation f . g if there exists a finite constant C > 0 such
that f ≤ C g .



172 CHAPTER 9. INTRODUCTION

9.2 Variational formulation

In order to find solutions of the DM equation (9.4), we study the existence of minim-
isers for the nonlinear and nonlocal variational problems

E dav
λ B inf

f ∈Sdav
λ

H ( f ), (9.5)

where

S
dav
λ =

{
u ∈ H 1(R;C) : ‖u‖22 = λ

}
for λ > 0, dav > 0,

S0
λ =

{
u ∈ L2(R;C) : ‖u‖22 = λ

}
for λ > 0, dav = 0,

and where L2(R;C), respectively H 1(R;C) are the standard L2, respectively Sobolev
spaces for complex-valued functions. We will denote the usual inner product on
L2(R;C) by 〈 f , g〉 =

∫
R
f g dx , but consider L2(R;C) as real Hilbert space with the

inner product Re〈·, ·〉, which induces the same topology on L2(R;C). H 1(R;C) will
be equipped with the corresponding L2-inner product.

We will also use the standard Lp norms denoted by ‖ · ‖p in this part of the thesis.
The energy functional is given by

H ( f ) B
dav
2
‖ f ′‖22 − N ( f ) (9.6)

for f ∈ Hdav , where we set Hdav = H 1(R;C) if dav > 0 and H0 = L2(R;C) for
convenience. The nonlocal nonlinearity is given by

N ( f ) B
∬
R2
V (|Tr f (x)|) dx ψ(r ) dr (9.7)

for some suitable nonlinearity potential V : [0,∞) → R. Recall that ψ is the density
of some compactly supported probability measure, and will be assumed to lie in
appropriate Lp spaces.

Under rather general assumptions on the nonlinearity potential V it was recently
shown in [CHL17] that there is a threshold for the existence of dispersion managed
solitons. More precisely, assume that V satisfies

(CHL1) V is continuously differentiable on (0,∞) and continuous on [0,∞)withV (0) =
0. There exist 2 ≤ γ1 ≤ γ2 < ∞ such that

|V ′(a)| . aγ1−1 + aγ2−1 for all a > 0.

(CHL2) There exists γ0 > 2 such that

V ′(a)a ≥ γ0V (a) for all a > 0.

(CHL3) There exists a∗ > 0 such that V (a∗) > 0.
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(CHL4) If dav > 0, we assume that there exist ε > 0 and 2 < κ0 < 6 such that

V (a) & aκ0 for all 0 < a ≤ ε.

If dav = 0, we assume that there exists ε > 0 such that V (a) > 0 for all
0 < a ≤ ε.

Then the following holds:

Theorem 9.2 (Thresholds for existence for positive average dispersion, Theorem 1.2
in [CHL17]). Assume dav > 0,V obeys Assumptions (CHL1) through (CHL3) for some
2 < γ1 ≤ γ2 < 10, and ψ ∈ Lαδ has compact support for some δ > 0, where αδ :=
αδ(γ2) := max{1, 4

10−γ2 + δ}. Then

(i) There exists a threshold 0 ≤ λdavcr < ∞ such that E dav
λ = 0 for 0 < λ < λdavcr and

−∞ < E dav
λ < 0 for λ > λdavcr .

(ii) If 0 < λ < λdavcr , then no minimiser for the constrained minimisation problem (9.5)
exists. If γ1 ≥ 6, then λdavcr > 0.

(iii) If λ > λdavcr , then any minimising sequence for (9.5) is up to translations relatively
compact in L2(R). In particular, there exists a minimiser for (9.5). This minimiser is
also a weak solution of the dispersion management equation (9.4) for some Lagrange
multiplier ω < 2E dav

λ /λ < 0.

(iv) IfV obeys in addition (CHL4), then λdavcr = 0.

Theorem 9.3 (Threshold for existence for zero average dispersion, Theorem 1.4 in
[CHL17]). Assume dav = 0 and V obeys Assumptions (CHL1) through (CHL3) with
2 < γ1 ≤ γ2 < 6, and that the density ψ has compact support and ψ ∈ L

4
6−γ2
+δ for some

δ > 0. Then

(i) There exists a threshold 0 ≤ λ0cr < ∞ such that E0
λ = 0 for 0 < λ < λ0cr and

−∞ < E0
λ < 0 for λ > λ0cr.

(ii) If λ > λ0cr, then any minimising sequence for (9.5) is up to translations and boosts,
that is, translations in Fourier space, relatively compact in L2(R). In particular,
there exists a minimiser for (9.5). This minimiser is also a weak solution of the
dispersion management equation (9.4) for some Lagrange multiplierω < 2E0

λ/λ <

0.

(iii) IfV obeys in addition (CHL4), then λ0cr = 0.

While the energy functional H is related to the standard NLS functional, the
fact that the nonlinearity is averaged over the dispersion action produces several nice
properties, one of which is that ground states can exist even in the absence of the
gradient term (dav = 0).



174 CHAPTER 9. INTRODUCTION

However, the energy functional (9.6) has a lot of symmetries, which makes it
difficult to establish the existence of minimisers. Indeed, for dav > 0, it is invariant
under translations f 7→ f (· + y), y ∈ R. For dav = 0, due to the absence of the
derivative term, it is invariant under translations and boosts f 7→ ei(·)ξ f , ξ ∈ R, that
is, translations in Fourier space.

One of the key properties to assure the presence of the ground state, see Theorems
9.2 and 9.3, is that the nonlinearity potential V is “sufficiently” nonlinear. More
precisely, one needs to verify the strict sub-additivity condition

E dav
λ1+λ2

< E dav
λ1
+ E dav

λ2
,

whenever the energy is strictly negative. Heuristically speaking, this means that if
a hypothetical ground state is split into two parts, preserving the total energy, and
these two parts are moved infinitely far away from each other, then the value of
the Hamiltonian will increase. In other words, it excludes splitting of a minimising
sequence into two parts of positive L2 mass running away from another, thus restoring
(pre-)compactness (modulo the symmetries) of the problem.

Strict sub-additivity in [CHL17] is guaranteed by the Ambrosetti-Rabinowitz type
Assumption (CHL2). One important case when the sub-additivity condition does not
hold uniformly is the so-called saturated nonlinearity, such as

p(|u |) =
|u |2

1 + σ |u |2
.

This function approaches a constant for large values of |u | and, as a result, the nonlinear
term degenerates into a linear one.

9.3 Saturated Nonlinearities

In this part of the thesis we extend the above existence results, Theorems 9.2 and 9.3, to
saturating nonlinearities, which violate the Ambrosetti-Rabinowitz condition (CHL2)
in the sense that the variational problem becomes asymptotically quadratic.

From a physics viewpoint, saturated nonlinearities are relevant in modelling optical
waves in nonlinear materials, as the nonlinear interaction due to the polarisability of
the medium, which is cubic for low intensities (Kerr nonlinearity), saturates for large
fields and approaches a regime with constant refraction index. One needs to assume
some form of saturation of the nonlinearity P (u) = p(|u |)u, with the most common
law being

p(|u |) =
|u |2

1 + σ |u |2
,

where p corresponds to the intensity dependent refraction coefficient. In such models,
the corresponding term in the energy functional is given by

V (a) =
a2

2σ
−

1
2σ2 log(1 + σa2),
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where V ′(a) = P (a). Another natural modification with similar behaviour is given
by the nonlinearity potential V (a) = a4/(1 + σa2).We will actually consider a much
broader class of saturated nonlinearity potentials which includes the above two as very
special cases, but first we discuss the local saturated NLS.

The presence of solitary waves in the local NLS with saturated nonlinearity has
been addressed in several studies, see e.g. Gatz-Herrmann [GH91], Usman-Osman-

Tilley [UOT98] and references therein. Their results show that solitary wave solutions
can be obtained numerically and sometimes analytically using phase space analysis, and
one may also observe bistable (two-state) solitons.

Here, we address the question of existence of at least one solitary wave for the
nonlocal NLS. By the variational methods we use, the obtained solitary wave is
automatically a ground state solution. It is anticipated that multiple solitary waves may
also exist in the nonlocal case, but one needs to use different methods to address this
question.

While in the local case a saturable nonlinearity is often helpful by creating more
favourable conditions for the existence of ground states, e.g., by arresting collapse in
the supercritical regime, in the nonlocal case saturation presents difficulties in satisfying
the sub-additvity condition.

The direct application of the approach of [CHL17] to saturating nonlinearities
does not work because of the lack of strict sub-additivity of the energy in this case. To
overcome this difficulty, the main idea is to construct a modified minimising sequence
with a uniform L∞ bound, which prevents the minimising sequence from reaching the
saturation regime.

Saturable nonlinearities have also been considered in the context of coupled local
nonlinear Schrödinger systems, where the existence of stationary solutions was proved
by variational and bifurcation techniques, see [dAMP13, JT02, Man16].

While saturated nonlinearities are well-studied in the physics literature for the
regular NLS [GH91], the DM NLS with saturated nonlinearities has not received
much attention. This is perhaps due to the small values of optical power in fibre
optics applications, which suggests that saturation effects are negligible. Nevertheless,
theoretically speaking, it leaves an open question whether one can still construct ground
states. The task is especially delicate in the case of zero average dispersion, as we explain
below. The reader will also see that our argument points to some possible limitations
when ground states may fail to exist.

Main results

For our main results, we shall make the following assumptions on the nonlinearity
potential V :

(A1) V is continuously differentiable on (0,∞) and continuous on [0,∞)withV (0) =
0. There exist 2 ≤ γ1 ≤ γ2 < ∞ such that

|V ′(a)| . aγ1−1 + aγ2−1 for all a > 0.
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(A2) There exists a continuous function κ : [0,∞) → [2,∞) with κ > 2 on compact
intervals, such that for all a > 0,

V ′(a)a ≥ κ(a)V (a).

(A3) There exists a∗ > 0 such that V (a∗) > 0.

Remark. Assumption (A2) allows for saturation of the potential V in the sense that
V ′(a)a
V (a) → 2 as a → ∞. This is in contrast to the typically assumed Ambrosetti-
Rabinowitz condition [AR73]

V ′(a)a ≥ κV (a) for all a > 0 (9.8)

with κ > 2, which fails in the limit a → ∞ for the saturated nonlinearities. In
[CHL17], the Ambrosetti-Rabinowitz condition (9.8) was crucial in proving strict
sub-additivity of the variational problem. �

Under Assumptions (A1)–(A3), with appropriate restrictions on γ1, γ2, we can
show that there exists a threshold, that is, a critical optical power λdavcr , for the existence
of minimisers. Under the additional assumptions

(A4) dav = 0: There exists ε > 0 such that V (a) > 0 for all 0 < a ≤ ε .

dav > 0: There exist ε > 0 and 2 < γ0 < 6 such that V (a) & aγ0 for all
0 < a ≤ ε .

on V , minimisers are shown to exist for any λ > 0.

Theorem 9.4 (Existence of DM solitons for zero average dispersion). Let dav = 0.
Assume thatV satisfies the conditions (A1)–(A3), with 3 ≤ γ1 ≤ γ2 < 5. Assume further
that ψ ≥ 0 is compactly supported and ψ ∈ L

4
5−γ2
+δ for some δ > 0.

Then there exists a threshold λ0cr ≥ 0 such that

1. if 0 < λ < λ0cr, then E0
λ = 0,

2. if λ > λ0cr, then −∞ < E0
λ < 0 and there exists a minimiser u ∈ S0

λ ∩ L∞ of
the variational problem (9.5). This minimiser is a weak solution of the dispersion
management equation

ω f = −
∫
R
T −1r

[
V ′(|Tr f |)

Tr f
|Tr f |

]
ψ dr (9.9)

for some Lagrange multiplier ω <
2E0

λ

λ < 0.

If, in addition, assumption (A4) holds, then λ0cr = 0.
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Theorem 9.5 (Existence of DM solitons for positive average dispersion). Let dav > 0.
Assume that V satisfies the conditions (A1)–(A3), with 2 ≤ γ1 ≤ γ2 < 10. Assume

further that ψ ≥ 0 is compactly supported, with ψ ∈ Laδ for some δ > 0, where aδ B
max

{
1, 4

10−γ2 + δ
}
< ∞.

Then there exists a threshold λdavcr ≥ 0 such that

1. if 0 < λ < λdavcr , then E dav
λ = 0 and there exists no minimiser for the variational

problem (9.5),

2. if λ > λdavcr , then −∞ < E dav
λ < 0 and there exists a minimiser u ∈ S

dav
λ of

the variational problem (9.5). This minimiser is a weak solution of the dispersion
management equation

ω f = −dav f ′′ −
∫
R
T −1r

[
V ′(|Tr f |)

Tr f
|Tr f |

]
ψ dr (9.10)

for some Lagrange multiplier ω <
2Edav

λ

λ < 0.

If, in addition, assumption (A4) holds, then λdavcr = 0.

Remark. If we assume that there exists γ ≥ 2 such that

|V ′(|z + w |) −V ′(|z |)| . (|w | + |z |)γ−2 |w | for all w, z ∈ C, (9.11)

the nonlinearity N : Hdav → R is actually a C1 functional, see Proposition 11.4.
We can work with directional derivatives only though, including the construction
of the modified minimising sequence, so this assumption is not needed for our main
theorems. �

The main ingredient in the proof of existence of minimisers of (9.5) is the construc-
tion of a minimising sequence which satisfies an additional uniform L∞ bound. This
prevents the minimising sequence from reaching the asymptotic regime, where strict
sub-additivity would fail.

While for positive average dispersion dav > 0, the uniform L∞ bound is readily
provided by the Sobolev embedding H 1(R) ↪→ L∞(R), some work has to be done in
the setting of zero average dispersion. More precisely, we will construct a modified
minimising sequence via Ekeland’s variational principle, which provides an approximate
solution of the DM equation, combined with dispersive estimates on the gradient of
the nonlinearity.

Remark. In Theorems 9.2 and 9.3, which rely on a strict Ambrosetti–Rabinowitz con-
dition and hence do not apply to saturated nonlinearities, it was shown that any
minimising sequence is relatively compact in L2(R) modulo the natural symmetries
if λ > λ0cr. In Theorem 9.4 a slightly weaker result is proved: Given a minimising
sequence, we can find a new minimising sequence that satisfies additional L∞ bounds
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needed to guarantee strict sub-additivity, in particular, not every minimising sequence
may be relatively compact in L2(R) modulo translations and boosts. This is irrelevant,
however, for the existence of minimisers.

For positive average dispersion dav > 0, due to the Sobolev embedding, any
minimising sequence, being bounded in H 1, is also bounded in L∞. So in this case any
minimising sequence is relatively compact in L2 modulo translations. �

In Chapter 11 below, we establish the existence of ground state solutions in a general
class of averaged DM NLS with saturable nonlinearities. The existence of diffraction
managed solitons and the necessary changes of our argument to cover the discrete case
is addressed in the last section of Chapter 10.



CHAPTER 10
Existence of DM Solitons for
Saturated Potentials: an easy

example

Before we prove our main theorem regarding the existence of DM solitons in the
presence of saturating nonlinearities, we turn to an easier example, which highlights
some of the difficulties and shows how they can be overcome.

A natural strategy to establish the existence of a ground state is to show that there
is a minimiser of the constrained variational principle by constructing a converging
subsequence. One difficulty with the saturable nonlinearity is that the sub-additivity
property does not hold in the saturation regime, that is, where the amplitude gets large.
However, if the minimising sequence has bounded amplitude, which we show, then
sub-additivity holds in the relevant region.

We modify our saturated nonlinearity in such a way that the approach of Choi-
Hundertmark-Lee [CHL17] can be applied and establish a bound on the maximum
of the ground state in the modified problem. Next we show that the ground state in
the modified problem is also a ground state in the original problem.

10.1 Zero residual dispersion

We start with the case dav = 0 and consider the minimisation problem

E0
λ = inf

‖u ‖22=λ

{
−

∫ 1

0

∫
R
F (|Tt u |)dxdt

}
,

where the nonlinearity potential F is assumed to satisfy

179
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(E1) (polynomial bound) F is continuously differentiable on (0,∞) and continuous
on [0,∞) with F (0) = 0. Further, F satisfies the inequality

F ′(s) ≤ C (sγ1−1 + sγ2−1),

where 3 ≤ γ1 ≤ γ2 < 5 and C > 0 is a constant.

(E2) (superquadratic growth) For any A > 0, there exists γ0 that can depend on A
such that

W (s) :=
F ′(s)s
F (s)

≥ γ0(A) > 2, s ∈ (0,A).

(E3) (saturation condition)W (s) is a monotonically decreasing function with limit

lim
s→∞

W (s) = 2.

(E4) (positivity) F (s) > 0 for any s > 0.

Remark. (i) The growth rate functionW (s) is an important measure of polynomial
growth andW (s) > 2 implies locally faster than quadratic growth. The two
saturated nonlinearities that we mentioned in the introduction satisfy these four
conditions. One can also construct many more examples.

(ii) For positive residual dispersion (DM NLS) and arbitrary non-negative residual
diffraction (DM DNLS), we can extend the range of the parameters in Assump-
tion (E1) to 2 < γ1 ≤ γ2 < ∞.

�

Notice that we chose µ(dr ) = 1[0,1](r ) dr in this example, which corresponds to
the dispersion profile d0 = 1[0,1) − 1[1,2). This is merely for convenience and clarity
of presentation, as the arguments can easily be generalised to more general dispersion
profiles.

10.2 The modified functional

Under Assumptions (E1) – (E4)we can show the existence of DM solitons by modifying
the energy functional

N (u) = −
∫ 1

0

∫
R
F (|Tt u |) dx dt,

which is done in such a way that the Ambrosetti-Rabinowitz condition holds. Let
µ > 0 and set δ = W (µ) − 2, whereW is the growth rate function introduced in
condition (E2). Choosing µ large enough, we can assume that δ ∈ (0, 1) by Assumption
(E3).
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We now define the modified growth rate functionWm by

Wm(s) =


W (s), s ∈ [0, µ]
a(s − σ)2 + 2 + δ

2 , s ∈ [µ, σ]
2 + δ

2 , s > σ,

where

a =
W ′(µ)2

2(W (µ) − 2)
, σ = µ −

W (µ) − 2
W ′(µ)

,

see Figure 10.1.

W

Wm

2

µ σ

Figure 10.1: The modified growth rate functionWm .

The modified potential Fm is then given by

Fm(s) = F (s), 0 ≤ s ≤ µ,

and for s > µ as the solution of the ODEWm(s) = (log Fm(s))′s with initial con-
dition Fm(µ) = F (µ). By construction, the modified potential Fm(s) satisfies a
super-quadratic growth condition

F ′m(s)s ≥
(
2 +

δ

2

)
Fm(s)

with δ =W (µ) − 2 > 0, but now for all s > 0. Together with the following lemma
this shows that Fm satisfies the appropriate conditions (CHL1)–(CHL4) that guarantee
the existence of ground states, see Theorem 9.3.
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Lemma 10.1. The modified potential satisfies the bounds

Fm(s) ≤
C
3
(sγ1 + sγ2)

F ′m(s) ≤ C (sγ1−1 + sγ2−1)

for µ > 0, where C is the constant from Assumption (E1) on F .

Proof. First, by integrating the bound from Assumption (E1) from zero to s ≤ µ, we
have

F (s) ≤
C
γ1

sγ1 +
C
γ2

sγ2 ≤
C
3

(
sγ1 + sγ2

)
for all 0 < s ≤ µ. Solving the ODE (log Fm(s))′s = Wm(s) for Fm , we obtain for
s ≥ µ

Fm(s) = F (µ) exp
(∫ s

µ

Wm(τ)

τ
dτ

)
≤ F (µ)

(
s
µ

)2+δ
≤

C
3
(µγ1 + µγ2)

(
s
µ

)2+δ
=

C
3
(µγ1−δ−2 + µγ2−δ−2)s2+δ ≤

C
3
(sγ1 + sγ2),

and then using the defining differential equation for Fm , we also have

F ′m(s) = Fm(s) ·
Wm(s)

s
≤

C
3
(sγ1 + sγ2)

2 + δ
s
≤ C (sγ1−1 + sγ2−1),

which implies the result. �

The modified functional

Hm(u) = −
∫ 1

0

∫
R
Fm(|T (t )u |)dxdt,

subject to the energy constraint, possesses a ground state u∗ according to Theorem
9.3. This ground state depends on µ and λ, but we suppress this dependence in the
following for simplicity of notation.

The ground state u∗ must satisfy the corresponding Euler-Lagrange equation

ωu∗ = Qm(u∗) :=
∫ 1

0
T −1(t )

(
F ′m(|T (t )u∗ |)

T (t )u∗

|T (t )u∗ |

)
dt .

Lemma 10.2. The ground state u∗ is uniformly bounded independently of µ, and, moreover,
|(T (r )u∗)(x)| ≤ K for all x and r for some constant K < ∞.

Proof. First we show that the Lagrange multiplierω = ω(µ) ≥ c > 0, independently of
the modification. By multiplying the Euler-Lagrange equation with u∗ and integrating,
we have

ω

∫
R
|u∗ |2dx =

∫
R
Qm(u∗)u∗ dx =

∫ 1

0

∫
R
F ′m(|T (t )u∗ |)|T (t )u∗ |dxdt .
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To assure that the Lagrange multiplier ω is bounded away from zero, we look at the
ratio

ω =

∫
R
Qm(u∗)u∗dx∫
R
|u∗ |2dx

. (10.1)

The lower bound of the ratio depends on the energy
∫
|u∗ |2dx but it is fixed in the

minimisation procedure. Considering the numerator, we see that∫
R
Qm(u∗)u∗dx =

∫ 1

0

∫
R
F ′m(|T (t )u∗ |)|T (t )u∗ |dxdt

≥ 2
∫ 1

0

∫
R
Fm(|T (t )u∗ |)dxdt,

where we used the superquadratic growth property of Fm , that is, F ′m(s)s ≥ (2 +
δ/2)Fm(s) ≥ 2Fm(s). Since u∗ is an energy minimiser, we have∫ 1

0

∫
R
Fm(|T (t )u∗ |)dxdt ≥

∫ 1

0

∫
R
Fm(|T (t )g |)dxdt

≥

∫ 1

0

∫
R
F (|T (t )g |)dxdt

for any test function g , where we also used that Fm(s) ≥ F (s) for all µ > 1 and s ≥ 0.
Choosing, for instance, g to be a Gaussian test function, we simply observe that the
last integral is strictly positive (by Assumption (E4)), and independent of µ.

Next we show that Qm(u∗) is bounded by using an argument due to Kunze
[Kun03]. First recall the well-known bound on the solution of the linear Schrödinger
equation in one dimension

|T (t )u | ≤
1
|t |1/2

∫
R
|u | dx, (10.2)

and consider

T (r )Qm(u) =
∫ 1

0
T (r )T −1(t )

(
F ′m(|T (t )u |)

T (t )u
|T (t )u |

)
dt .

Proposition 10.3. Let ν ∈ [2, 4) and assume that F ′(s) ≤ C s ν for all s ≥ 0 and some
constant C . Then

|T (r )Qm(u)| ≤ C (λ)

for all r , where C (λ) is independent of the modification, but may depend on ν and the
optical power λ =

∫
R
|u(x)|2dx .
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Proof. Using the dispersive estimate (10.2),

|T (r )Qm(u)| ≤
∫ 1

0

1
|r − t |1/2

‖F ′m(|T (t )u |)‖L1
x
dt ≤

∫ 1

0

C
|r − t |1/2

‖|T (t )u |ν ‖L1
x
dt

= C
∫ 1

0

1
|r − t |1/2

‖T (t )u‖νLνxdt .

Using Hölder’s inequality, we obtain

|T (r )Qm(u)| ≤ C
(∫ 1

0

dt
|r − t |p/2

)1/p
·

(∫ 1

0
‖T (t )u‖νp

′

Lνx
dt

)1/p′
,

where
1
p
+

1
p ′
= 1.

To bound the first integral uniformly in r we need p < 2, i.e. p ′ > 2. For the
convergence of the second integral, we use a general case of the Strichartz inequality
[GV85] that we recall here:(∫ +∞

−∞

‖T (t )u‖ ρLσx dt
)1/ρ
≤ Sσ ‖u‖L2

as long as
1
σ
+

2
ρ
=

1
2
,

where 2 ≤ σ ≤ ∞ and 4 ≤ ρ ≤ ∞ and Sσ is some constant. Therefore, the relation
1
ν
+

2
νp ′
=

1
2
, i.e. ν = 2 +

4
p ′
, (10.3)

has to be fulfilled. This holds for appropriate p ′ > 2 if ν ∈ [2, 4), which ends the proof
of Proposition 10.3. �

Since u∗ satisfies the Euler-Lagrange equation

u∗ =
1
ω
Qm(u∗)

and F satisfies Assumption (E1), we can use Proposition 10.3 to obtain

|T (r )u∗(x)| =
1
ω
|T (r )Qm(u∗)(x)| ≤

C1(λ) +C2(λ)

c
for all r and x , where we also used the uniform lower bound ω = ω(µ) ≥ c > 0,
which we established in the beginning of the proof of Lemma 10.2. This also concludes
the proof of Lemma 10.2. �

Finally, if µ is chosen sufficiently large, so that |(T (r )u∗)(x)| < µ for all x and
r ∈ [0, 1], which is possible by Lemma 10.2, then u∗ is also a critical point of H .
Further observing that Hm(u) ≤ H (u) and Hm(u∗) = H (u∗), u∗ has to be a ground
state of H .
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10.3 Positive residual dispersion

We now consider the functional

H (u) =
dav
2

∫ +∞

−∞

|ux |
2dx −

∫ 1

0

∫ +∞

−∞

F (|T (t )u |)dxdt

for positive residual dispersion, where the nonlinearity potential F satisfies Assump-
tions (E1)–(E4), but now with 2 < γ1 ≤ γ2 < +∞. Modifying the functional in the
same way as in the case dav = 0, by the argument in [CHL17], there exists a minimiser
u∗ ∈ H 1 of the modified functional.

By the Sobolev imbedding theorem and unitarity of the free Schrödinger evolution
on H 1, we have

sup
x,r
|(T (r )u)(x)| ≤ ‖T (r )u∗‖H 1 = | |u∗ | |H 1 ≤ C (λ).

So taking again the modification parameter µ large enough, we obtain that u∗ is a
critical point of the original functional. Note that for this argument to work, we do
not need Lemma 10.2, which is why we can allow for arbitrary 2 < γ1 ≤ γ2 < +∞ in
Assumption (E1) on F if dav > 0.

10.4 Diffraction management

In the case of diffraction management, the ground state solutions can again be found as
minimisers of the averaged variational principle

Pλ = inf

{
H (u) :

∑
x∈Z
|u(x)|2 = λ

}
, (10.4)

where, with the forward difference D+u(x) = u(x + 1) − u(x),

H (u) =
dav
2

∑
x∈Z
|D+u(x)|2 −

∫ 1

0

∑
x∈Z

F (|T (t )u(x)|) dt .

Again, for clarity of the presentation, we consider only the square wave diffraction
profile corresponding to µ(dr ) = 1[0,1](r ) dr . The discussion in [CHL16] shows that
one can in fact include any diffraction profile one can think of.

Since ‖u‖2`2 =
∑

x∈Z |u(x)|2, we have the very simple estimate

‖u‖`∞ = sup
x∈Z
|u(x)| ≤ ‖u‖l 2 .

Thus for any u ∈ `2(Z) with optical power ‖u‖2`2 = λ, we have the bound

‖T (t )u‖`∞ ≤ ‖T (t )u‖`2 = ‖u‖`2 = λ1/2

for all t . So taking µ > λ1/2 and modifying the functional according to the same rule
as before, we get, according to [CHL16], a solution of the modified functional, which,
since µ > λ1/2, is also a solution of the unmodified functional, as before. Note that this
works for any residual diffraction dav ≥ 0 and any 2 < γ1 ≤ γ2 < +∞ in Assumption
(E1) on F .





CHAPTER 11
Existence of DM Solitons for

Saturated Potentials II

After this short example, we now turn to the proof of Theorems 9.4 and 9.5.

11.1 Preparatory and technical remarks

In this section we review some important properties of the nonlinearity N . Most of
these properties are adapted from [CHL17], which the reader may consult for a more
complete background. The basic ingredient in most of these estimates is

Lemma 11.1. Let f ∈ L2(R), 2 ≤ q ≤ 6, and ψ ∈ L
4

6−q . Then

‖Tr f ‖Lq (R2,dx ψdr ) . ‖ψ‖ 4
6−q
‖ f ‖2. (11.1)

Proof. The inequality follows from interpolation between the unitary case q = 2 and
the Strichartz inequality in one space dimension for q = 6, that is,∬

R2
|Tr f (x)|6 dx dr ≤ 12−

1
2 ‖ f ‖62 .

For more details, see [CHL17, Lemma 2.1]. �

Without proof, we also cite

Lemma 11.2 (Lemma 4.7 in [CHL17]).

dav = 0 : If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L
4

6−γ2 , then the nonlinear and nonlocal func-
tional N : L2(R) → R given by

L2(R) 3 f 7→ N ( f ) =
∬
R2
V (|Tr f |) dx ψdr

187
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is locally Lipshitz continuous on L2 in the sense that

|N ( f1) − N ( f2)| .
(
1 + ‖ f1‖γ2−12 + ‖ f2‖γ2−12

)
‖ f1 − f2‖2,

where the implicit constant depends only on the L
4

6−γ2 norm of ψ.

dav > 0 : If 2 ≤ γ1 ≤ γ2 < ∞ and ψ ∈ L1, then the nonlinear and nonlocal functional
N : H 1(R) → R given by

H 1(R) 3 f 7→ N ( f ) =
∬
R2
V (|Tr f |) dx ψdr

is locally Lipschitz continuous in the sense that

|N ( f1) − N ( f2)| .
(
1 + ‖ f1‖γ2−2H 1 + ‖ f2‖

γ2−2
H 1

) (
‖ f1‖2 + ‖ f2‖2

)
‖ f1 − f2‖2.

The directional derivatives of the nonlinearity are given by

Lemma 11.3. If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L1 ∩ L
4

6−γ2 (dav = 0), respectively if
2 ≤ γ1 ≤ γ2 < ∞ and ψ ∈ L1 (dav > 0), then for any f , ℎ ∈ L2(R), respectively
f , ℎ ∈ H 1(R), the functional N has directional derivatives given by

DℎN ( f ) =
∫
R
Re

〈
V ′(|Tr f |)

Tr f
|Tr f |

,Tr ℎ
〉
ψdr . (11.2)

In particular, ℎ 7→ DℎN ( f ) is real linear and continuous.

Proof. Let f ∈ L2(R) and t , 0. For any ℎ ∈ L2(R) the difference quotient of N is

N ( f + t ℎ) − N ( f )
t

=
1
t

[∬
R2
V (|Tr ( f + t ℎ)|) −V (|Tr f |) dx ψdr

]
=

1
t

∬
R2

∫ 1

0

d
ds
V (|Tr ( f + s t ℎ)|) ds dx ψdr . (11.3)

Since V is differentiable, we obtain

d
ds
V (|Tr ( f + s t ℎ)|) = V ′(|Tr ( f + s t ℎ)|)

t (Tr f Tr ℎ +Tr ℎTr f + 2s t |Tr ℎ |2)
2|Tr ( f + s t ℎ)|

and thus

(11.3) =
∬
R2

∫ 1

0
V ′(|Tr ( f + s t ℎ)|)

Tr f Tr ℎ +Tr ℎTr f + 2s t |Tr ℎ |2

2|Tr ( f + s t ℎ)|
ds dx ψdr .
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Under the assumptions 2 ≤ γ1 ≤ γ2 ≤ 6, respectively 2 ≤ γ1 ≤ γ2 < ∞, on the
nonlinearity, Lebesgue’s dominated convergence theorem together with the continuity
of V ′ implies that for t → 0 we have

DℎN ( f ) =
∬
R2

∫ 1

0
V ′(|Tr f |)

Re(Tr f Tr ℎ)
|Tr f |

ds dx ψdr

=

∬
R2
V ′(|Tr f |)

Re(Tr f Tr ℎ)
|Tr f |

dx ψdr ,

which completes the proof of (11.2). Linearity of the map ℎ 7→ DℎN ( f ) is immediate
from (11.2), to see the continuity observe that by assumption (A1),

|DℎN ( f )| ≤
∬
R2
|V ′(|Tr f (x)|)| |Tr ℎ(x)| dx ψ dr

≤

∬
R2

[
|Tr f (x)|γ1−1 + |Tr f (x)|γ2−1

]
|Tr ℎ(x)| dx ψ dr .

For 2 ≤ γ ≤ 6, Hölder’s inequality (with exponents γ
γ−1 and γ ) implies the bound∬

R2
|Tr f (x)|γ−1 |Tr ℎ(x)| dx ψ dr ≤ ‖Tr f ‖γ−1Lγ (dx ψdr ) ‖Tr ℎ‖Lγ (dx ψdr )

. ‖ f ‖γ−12 ‖ℎ‖2

by Lemma 11.1. By linearity, this already shows continuity of ℎ 7→ DℎN ( f ) in the
case dav = 0.

In the case of positive average dispersion, dav > 0, we can use f ∈ H 1 and
Cauchy-Schwarz to bound∬
R2
|Tr f (x)|γ−1 |Tr ℎ(x)| dx ψ dr ≤ sup

r
‖Tr f ‖γ−2∞ ‖Tr f ‖L2(dx ψdr ) ‖Tr ℎ‖L2(dx ψdr )

. ‖ f ‖γ−2H 1 ‖ f ‖2 ‖ℎ‖2

for 2 ≤ γ < ∞, since

sup
r ∈R
‖Tr f ‖∞ ≤ sup

r ∈R
‖Tr f ‖H 1 = ‖ f ‖H 1

by the simple estimate ‖g ‖∞ ≤
(
‖g ‖2‖g ′‖2

)1/2
≤ ‖g ‖H 1 and unitarity of the free

Schrödinger evolution Tr on H 1. �

Remark. In the setting of dav = 0, that is, when working in L2(R), Lemma 11.3 also
identifies the unique Riesz representative ∇N ( f ) (with respect to the real inner product
Re〈·, ·〉) of the continuous linear functional ℎ 7→ DℎN ( f ) for fixed f ∈ L2(R),

Re〈∇N ( f ), ℎ〉 = DℎN ( f ) = Re
〈∫
R
T −1r

[
V ′(|Tr f |)

Tr f
|Tr f |

]
ψ dr , ℎ

〉
,
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so

∇N ( f ) =
∫
R
T −1r

[
V ′(|Tr f |)

Tr f
|Tr f |

]
ψ dr .

�

Even though we do not need the following for our main results, we state and prove

Proposition 11.4. Assume that (9.11) holds in addition to the assumptions of Lemma 11.3,
with 2 ≤ γ ≤ 6, respectively, 2 ≤ γ < ∞. Then the functional H : Hdav → R is of class
C1(Hdav,R).

Proof. Since f 7→ ‖ f ′‖22 is a C1 functional on H 1 and the directional derivatives of N
are (real) linear, see Lemma 11.3, it suffices to show that f 7→ DℎN ( f ) is continuous
for each ℎ ∈ Hdav . We start by estimating��DℎN ( f + g ) − DℎN ( f )

��
≤

∬
R2
|Tr ℎ |

����V ′(|Tr f +Tr g |)
Tr f +Tr g
|Tr f +Tr g |

−V ′(|Tr f |)
Tr f
|Tr f |

���� dx ψdr .
Observe that by assumption (A1) and inequality (9.11), for any z,w ∈ C,����V ′(|z + w |) z + w|z + w |

−V ′(|z |)
z
|z |

����
≤ |V ′(|z + w |) −V ′(|z |)| +

|V ′(|z + w |)|
|z + w |

|w | + |V ′(|z + w |)|
���� z
|z + w |

−
z
|z |

����
= |V ′(|z + w |) −V ′(|z |)| +

|V ′(|z + w |)|
|z + w |

|w | +
|V ′(|z + w |)|
|z + w |

| |z | − |z + w | |

. |w |
[
(|z | + |w |)γ−2 + (|z | + |w |)γ1−2 + (|z | + |w |)γ2−2

]
.

It follows that
��DℎN ( f + g ) − DℎN ( f )

�� can be bounded by a sum of terms of the
form ∬

R2
|Tr ℎ | |Tr g |

(
|Tr f | + |Tr g |

)γ−2 dx ψ dr .

Using Hölder’s inequality, with exponents γ, γ, γ
γ−2 , and Lemma 11.1, we obtain the

bound��DℎN ( f + g ) − DℎN ( f )
��

. ‖ℎ‖2‖g ‖2
[ (
‖ f ‖2 + ‖g ‖2

)γ−2
+

(
‖ f ‖2 + ‖g ‖2

)γ1−2 + (
‖ f ‖2 + ‖g ‖2

)γ2−2] ,
as in the proof of Lemma 11.3, which shows that all directional derivatives DℎN are
locally Lipshitz for each fixed ℎ ∈ Hdav . Therefore, H ∈ C1(Hdav ;R) if γ ∈ [2, 6] for
dav = 0. Similarly, one proves the case dav > 0 with γ ≥ 2. �
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11.2 Strict sub-additivity of the energy

The crucial ingredient in establishing existence of minimisers is restoring (pre-)compact-
ness of minimising sequences modulo the natural symmetries of the problem. In this
section we prove sub-additivity of the ground state energy with respect to λ > 0.

While strict sub-additivity was established under the Ambrosetti-Rabinowitz con-
dition (9.8) in [CHL17], in general it fails in the saturation regime, where V ′(a)a

V (a) → 2.
For any C > 0, we define the quantity

E dav
λ (C ) B inf

{
H ( f ) : f ∈ Sdav

λ , sup
r ∈suppψ

‖Tr f ‖∞ ≤ C

}
. (11.4)

The following proposition says that strict sub-additivity still holds in the case of
saturated nonlinearities, at least if minimising sequences do not reach the saturation
regime.

Proposition 11.5 (Strict sub-additivity). Assume that (A1) and (A2) hold, and that for
any λ > 0 there exists a constant C > 0 such that

E dav
λ = E dav

λ (C ). (11.5)

Then for any 0 < δ < λ
2 , and λ1, λ2 ≥ δ with λ1 + λ2 ≤ λ, one has

E dav
λ1
+ E dav

λ2
≥

1 −
(
2
κ∗(C )

2 − 2
) (

δ

λ

) κ∗(C )
2

 E dav
λ

whenever E dav
λ ≤ 0, where κ∗(C ) B inf0<a≤C κ(a) > 2.

Remark. We will show in Propositions 11.11 and 11.14 that in fact for any λ > 0, the
ground state energy is negative, E dav

λ ≤ 0. Proposition 11.5 implies that

E dav
λ1
+ E dav

λ2
> E dav

λ1+λ2

whenever E dav
λ1+λ2

< 0, i.e. E dav
λ is strictly sub-additive if the ground state energy is

strictly negative.
As shown in [CHL17], the strict sub-additivity of the ground state energy prevents

minimising sequences from splitting. In particular, minimising sequences can be shown
to be tight modulo the natural symmetries of the problem (shifts for dav > 0 or shifts
and boosts for dav = 0). �

Proof of Proposition 11.5. Set

χ(a) B exp
(
−

∫ a

a0

κ(b)
b

db
)
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for some 0 < a0 ≤ a. Then χ(a0) = 1, χ′(a) = − κ(a)a χ(a), and therefore

χ(a)V (a) −V (a0) ≥ 0 (11.6)

since (χV )′ ≥ 0 by Assumption (A2). Setting a0 = s a for some s ∈ (0, 1], we obtain

V (s a) ≤ exp
(
−

∫ a

s a

κ(b)
b

db
)
V (a) = exp

(
−

∫ 1

s

κ(ab)
b

db
)
V (a)

≤ exp
(
− inf
β∈(0,1]

κ(a β)
∫ 1

s

db
b

)
V (a) = s κ

∗(a)V (a).

Using that by Assumption (A2)

inf
0<b≤a

κ(b) ≥ inf
0<b≤A

κ(b) = κ∗(A) > 2

for any finite A ≥ a > 0, we get

V (s a) ≤ s κ
∗(A)V (a), for all s ∈ (0, 1], 0 < a ≤ A.

At this point the L∞ bound comes into play, which guarantees that we always stay
in a regime where saturation is not reached, that is, κ∗ > 2!

Indeed, since |Tr f (x)| ≤ ‖Tr f ‖∞ ≤ C for all r ∈ suppψ, we get for 0 < µ ≤ 1
that

N (µ1/2 f ) =
∬
R2
V (µ1/2 |Tr f (x)|) dx ψ(r ) dr ≤ µκ

∗(C )/2N ( f ),

and thus

E dav
µλ = inf

‖ f ‖22=µλ

(
dav
2
‖ f ′‖22 − N ( f )

)
≥ inf
‖g ‖22=λ

(
µ
dav
2
‖g ′‖22 − µ

κ∗(C )/2N (g )
)

≥ µκ
∗(C )/2E dav

λ .

As in [CHL17, Proposition 3.3], we can now take λ j = µ jλ, j = 1, 2, with
µ1 + µ2 ≤ 1, µ1, µ2 ≥ δ

λ . It then follows that

E dav
λ1
+ E dav

λ2
= E dav

µ1λ
+ E dav

µ2λ
≥

(
µ
κ∗(C )/2
1 + µ

κ∗(C )/2
2

)
E dav
λ ,

and, since the function t 7→ (1+ t )κ∗(C )/2 − 1− t κ∗(C )/2 is increasing on [1,∞), we have

µ
κ∗(C )/2
1 + µ

κ∗(C )/2
2 ≤ 1 −

(
2
κ∗(C )

2 − 2
) (

δ

λ

) κ∗(C )
2

< 1

for δ > 0 and κ∗(C ) > 2.
Now, if E dav

λ ≤ 0, the sub-additivity

E dav
λ1
+ E dav

λ2
≥

1 −
(
2
κ∗(C )

2 − 2
) (

δ

λ

) κ∗(C )
2

 E dav
λ ,

follows. �
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11.3 Thresholds

It turns out that under the Assumptions (A1)–(A3) on the nonlinear potential V ,
minimisers for E dav

λ may only exist for large enough λ. This is due to the fact that min-
imising sequences can be shown to be pre-compact modulo translations, respectively,
translations and modulations, if the energy is strictly negative. The reason for this is
sub-additivity: the ground state energy is strictly sub-additive only if E dav

λ < 0!
This motivates

Definition 11.6 (Threshold).

λdavcr B inf{λ > 0 : E dav
λ < 0}.

Assume that E dav
λ ≤ 0 for all λ > 0 and dav ≥ 0 (see Propositions 11.11 and 11.14

about the validity of this assumption). By the sub-additivity of the ground state energy,
it immediately follows that

E dav
λ1
≥ E dav

λ1
+ E dav

λ2
≥ E dav

λ1+λ2
,

where, by Proposition 11.5, the latter inequality is strict whenever E dav
λ1+λ2

< 0. In

particular, the map 0 < λ 7→ E dav
λ is decreasing and it is strictly decreasing where

E dav
λ < 0.
Thus, E dav

λ = 0 if 0 < λ < λdavcr and E dav
λ < 0 if λ > λdavcr .

Lemma 11.7. IfV satisfies Assumptions (A2) and (A3), then λdavcr < ∞.

Proof. By definition, λdavcr < ∞ if and only if E dav
λ < 0 for some λ > 0. The claim

therefore follows if we can find a suitable trial function with negative energy H , at
least for large enough λ > 0.

Observe that by (A2) we again have the bound (11.6) on V . Let a∗ > 0 be such
that V (a∗) > 0, which exists by (A3). Then

V (a) ≥ exp
(∫ a

a∗

κ(b)
b

db
)
V (a∗)1[a∗,∞)(a),

where for 0 < a < a∗ we just used the fact thatV (a) ≥ 0. Since by (A2) infb>0 κ(b) ≥
2, we get the lower bound

V (a) ≥
(
a
a∗

)2
V (a∗)1[a∗,∞)(a). (11.7)

Consider now centered Gaussian test functions

gσ0(x) = A0 e
− x2
σ0 , σ0 > 0, (11.8)
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where A0 =
(
2λ2
πσ0

)1/4
is chosen in such a way that ‖gσ0 ‖

2
2 = λ. Then ‖g

′
σ0
‖22 =

λ
σ0

and
the time evolution is given by

Tr gσ0(x) = A0

(
σ0

σ(r )

)1/2
e−

x2
σ(r ) , σ(r ) = σ0 + 4ir , (11.9)

see [CHL16, Lemma B.3]. Thus,

|Tr gσ0(x)| = A0

(
σ2
0

σ2
0 + (4r )2

)1/4
e
−

σ0x2

σ20+(4r )
2
.

We therefore have |Tr gσ0(x)| ≤ A0 for all x ∈ R and r ∈ R. If |x | ≤ √σ0, we also
have the lower bound

|Tr gσ0(x)| ≥ A0

(
σ2
0

σ2
0 + (4r )2

)1/4
e
−

σ20
σ20+(4r )

2
.

Hence choosing R > 0 such that suppψ ⊂ [−R,R], we have

A0

2
≤ |Tr gσ0(x)| ≤ A0

for all |x | ≤ √σ0 and all |r | ≤ R, assuming σ0 > 4R.
Now set σ0 = λ for λ large enough. Then ‖g ′λ ‖2 = 1 and A0 =

( 2λ
π

)1/4. It follows
with (11.7) that∫

R
V (|Tr gλ(x)|) dx =

∫
|x | ≤
√
λ
V (|Tr gλ(x)|) dx +

∫
|x |>
√
λ
V (|Tr gλ(x)|) dx

≥

∫
|x | ≤
√
λ

(
|Tr gλ(x)|

a∗

)2
V (a∗)1[a∗,∞)(|Tr gλ(x)|) dx

≥ 2
√
λ

(
A0

2a∗

)2
V (a∗)1[a∗,∞)

( A0
2
)
.

So for λ large enough, since A0 ∼ λ
1/4,

N (gλ) =
∬
R2
V (|Tr gλ(x)|) dx ψdr & λ

and the energy is bounded by

H (gλ) =
dav
2
‖g ′λ ‖

2
2 − N (gλ) ≤

dav
2
−C λ,

for some constant C > 0. Thus, choosing λ > 0 large enough, we can always achieve
H (gλ) < 0, so E dav

λ = inf‖ f ‖22=λ H ( f ) ≤ H (gλ) < 0. �



11.3. THRESHOLDS 195

Lemma 11.8. IfV satisfies Assumptions (A1), (A2), and (A4), then λdavcr = 0 for all dav ≥
0.

Proof. Let λ > 0. We begin with dav = 0, that is, assume that there exists ε > 0
such that V (a) > 0 for all 0 < a ≤ ε . Let gσ0 be the centered Gaussian (11.8) with
‖gσ0 ‖

2
2 = λ. Then, by (11.9),

|Tr gσ0(x)| ≤ A0 =

(
2λ2

πσ0

)1/4
(11.10)

for all x ∈ R and r ∈ R. Choosing σ0 large enough, we can make |Tr gσ0(x)| ≤ ε ,
which implies H (gσ0) = −N (gσ0) < 0 by (A4), so E dav

λ < 0. Since λ > 0 was arbitrary,
it follows that λ0cr = 0.

For dav > 0 assume that there exist ε > 0 and 2 < γ0 < 6 such that V (a) & aγ0
for all 0 < a ≤ ε . We consider the same centered Gaussian gσ0 as above, with σ0 so
large that |Tr gσ0(x)| ≤ ε . It follows that

N (gσ0) =

∬
R2
V (|Tr gσ0(x)|) dx ψ dr &

∬
R2
|Tr gσ0(x)|

γ0 dx ψdr

=

(
π

γ0

)1/2 (
2λ2

π

)γ0/4
σ

2−γ0
4

0

∫
R

ψ(r )

[1 + (4r/σ0)2]
γ0−2
4

dr .

Since ‖g ′σ0
‖22 =

λ
σ0
, the energy of the Gaussian gσ0 is bounded by

H (gσ0) ≤
davλ
2σ0

[
1 −

C
davλ

(
π

γ0

)1/2 (
2λ2

π

)γ0/4
σ

6−γ0
4

0

∫
R

ψ(r )

[1 + (4r/σ0)2]
γ0−2
4

dr

]
for some constant C > 0. In particular, since 2 < γ0 < 6 and∫

R

ψ(r )

[1 + (4r/σ0)2]
γ0−2
4

dr → ‖ψ‖1 > 0

as σ0 →∞ by Lebesgue’s dominated convergence theorem, we can make σ0 sufficiently
large such that H (gσ0) < 0. As λ > 0 was arbitrary, this yields λdavcr = 0. �

The following quantity will be useful in proving the non-existence of minimisers in
the positive average dispersion case for sub-critical 0 < λ < λdavcr . Fix C > 0 and define

RC (λ) := sup

{
N (
√
λℎ)

λ‖ℎ ′‖22
: ℎ ∈ H 1(R) \ {0}, ‖ℎ‖2 = 1, ‖ℎ ′‖2 ≤ C

}
.

Lemma 11.9. Let C > 0. IfV satisfies Assumption (A2), then

RC (λ) ≥

(
λ

λ0

) 1
2 κ
∗
(√
λC

)
−1

RC (λ0)

for all λ ≥ λ0 > 0, with κ∗
(√
λC

)
= infa≤

√
λC κ(a) > 2.
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This scaling property immediately implies

Corollary 11.10. LetC > 0 and assume thatV obeys Assumption (A2). If λdavcr > 0, then

RC (λ) <
dav
2

for all 0 < λ < λdavcr .

Proof. Let λdavcr > 0, and assume that there exists 0 < λ1 < λdavcr such that RC (λ1) ≥
dav
2 .

Pick λ2 ∈ (λ1, λdavcr ). Then Lemma 11.9 implies

RC (λ2) ≥

(
λ2
λ1

) 1
2 κ
∗
(√

λ2C
)
−1

RC (λ1) > RC (λ1) ≥
dav
2

since κ∗
(√
λC

)
> 2. In particular,

E dav
λ2
= inf
‖g ‖2=1

(
dav
2
λ2‖g ′‖22 − N (

√
λ2g )

)
≤ inf
‖g ‖2=1
‖g ′ ‖2≤C

(
dav
2
λ2‖g ′‖22 − N (

√
λ2g )

)
= inf
‖g ‖2=1
‖g ′ ‖2≤C

λ2‖g ′‖22

(
dav
2
−

N (
√
λ2g )

λ2‖g ′‖22

)
≤ λ2C 2 inf

‖g ‖2=1
‖g ′ ‖2≤C

(
dav
2
−

N (
√
λ2g )

λ2‖g ′‖22

)

= λ2C 2
©«
dav
2
− sup
‖g ‖2=1
‖g ′ ‖2≤C

N (
√
λ2g )

λ2‖g ′‖22

ª®®®¬ = λ2C
2
(
dav
2
− RC (λ2)

)
< 0,

in contradiction to λ2 < λdavcr and the definition of λdavcr . �

Proof of Lemma 11.9. Let ℎ ∈ H 1 \ {0} with ‖ℎ‖2 = 1 and ‖ℎ ′‖2 ≤ C , and define the
function

A(s) := s−2N (sℎ)

for s > 0. Then

A′(s) = s−3
(
sDℎN (sℎ) − 2N (sℎ)

)
,

and by Assumption (A2) we have

sDℎN (sℎ) − 2N (sℎ) =
∬
R2

[
V ′(|Tr (sℎ)|)|Tr (sℎ)| − 2V (|Tr (sℎ)|)

]
dx ψ dr

≥

∬
R2

[
κ(|Tr (sℎ)|) − 2

]
V (|Tr (sℎ)|) dx ψ dr .

Since for any f ∈ H 1(R) the simple inequality ‖ f ‖2∞ ≤ ‖ f ‖2‖ f ′‖2 holds, we get

‖Tr (sℎ)‖∞ = s ‖Tr ℎ‖∞ ≤ s ‖Tr ℎ‖1/22 ‖Tr ℎ ′‖1/22 = s ‖ℎ‖1/22 ‖ℎ
′‖

1/2
2 ≤ s

√
C ,
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where we made use of the fact that Tr commutes with differentiation and is unitary on
L2, as well as the properties of ℎ. It follows that

sDℎN (sℎ) − 2N (sℎ) ≥
(

inf
a≤s
√
C
κ(a) − 2

)
N (sℎ)

≥

(
inf

a≤t
√
C
κ(a) − 2

)
N (sℎ) =

(
κ∗

(
t
√
C

)
− 2

)
N (sℎ)

for all 0 < s ≤ t , t > 0, and thus the function A satisfies the differential inequality

A′(s) ≥
(
κ∗

(
t
√
C

)
− 2

)
s−1 A(s),

which yields

A(t ) ≥
(
t
t0

) κ∗ (t√C )
−2

A(t0)

for any t ≥ t0 > 0. In particular, we have

RC (λ) = sup
‖ℎ ‖2=1
‖ℎ′ ‖2≤C

N (
√
λℎ)

λ‖ℎ ′‖22
≥

(
λ

λ0

) 1
2 κ
∗
(√
λC

)
−1

sup
‖ℎ ‖2=1
‖ℎ′ ‖2≤C

N (
√
λ0ℎ)

λ0‖ℎ ′‖22

=

(
λ

λ0

) 1
2 κ
∗
(√
λC

)
−1

RC (λ0)

for all λ ≥ λ0 > 0. �

11.4 Existence of minimisers for zero average dispersion

We start by establishing the existence of minimisers in the singular case dav = 0.
Throughout this section, we assume that (A1), (A2), and (A3) hold with 3 ≤ γ1 ≤

γ2 < 5, and that ψ is compactly supported with ψ ∈ L
4

5−γ2
+δ for some δ > 0. This Lp

condition on ψ ensures that the Lp condition in [CHL17] holds, in particular, all their
multilinear estimates and splitting estimates continue to hold in our setting.

Proposition 11.11. For any λ > 0, the energy functional H = −N is bounded below on
S0
λ and

−∞ < E0
λ ≤ 0.

Proof. Let λ > 0. Integrating the bound on V ′ in (A1) yields

|V (a)| . aγ1 + aγ2 (11.11)
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and therefore

N ( f ) .
∫
R
‖Tr f ‖γ1γ1 ψdr +

∫
R
‖Tr f ‖γ2γ2 ψdr . ‖ f ‖

γ1
2 + ‖ f ‖

γ2
2

by Lemma 11.1. It follows that

E0
λ = inf

‖ f ‖22=λ
H ( f ) = − sup

‖ f ‖22=λ
N ( f ) & −

(
λ

γ1
2 + λ

γ2
2

)
> −∞.

Since V (a) ≥ 0 for any a > 0, clearly H ( f ) = −N ( f ) ≤ 0 for any f ∈ S0
λ and

therefore E0
λ ≤ 0. �

The following lemma is a generalization of a result by Kunze [Kun04, Lemma
2.12], and establishes L∞ bounds on the time evolved gradient of H .

Lemma 11.12. Let f ∈ L2(R), 3 ≤ γ1 ≤ γ2 < 5, ψ ∈ L
4

5−γ2
+δ for some δ > 0, and ψ

compactly supported. Then Ts∇H ( f ) ∈ L∞(R) and

sup
s∈R
‖Ts∇H ( f )‖∞ . ‖ f ‖γ1−12 + ‖ f ‖γ2−12 , (11.12)

where the implicit constant depends on ‖ψ‖ 4
5−γ2
+δ .

Proof. We have

‖Ts∇H ( f )‖∞ = sup
‖g ‖1=1

��Re〈Ts∇H ( f ), g〉
�� = sup

‖g ‖1=1

��Re〈∇H ( f ),T−s g〉��
= sup
‖g ‖1=1

����Re∫
R

〈
V ′(|Tr f |)

Tr f
|Tr f |

,Tr−s g
〉
ψ(r ) dr

���� .
Using the basic dispersive estimate for the free Schrödinger evolution, ‖Ts g ‖∞ .
|s |−1/2‖g ‖1 for all s , 0, we obtain, together with assumption (A1),

‖Ts∇H ( f )‖∞ .
∫
R

ψ(r )
|r − s |1/2

∫
R
|V ′(|Tr f |)| dx dr

.

∫
R

ψ(r )
|r − s |1/2

(
‖Tr f ‖γ1−1γ1−1 + ‖Tr f ‖γ2−1γ2−1

)
dr . (11.13)

An application of Hölder’s inequality then yields∫
R

ψ(r )
|r − s |1/2

‖Tr f ‖γ−1γ−1 dr ≤ ‖| · −s |
−1/2ψ‖ p

p−1

(∫
R
‖Tr f ‖

p(γ−1)
γ−1 dr

)1/p
.

The pair (γ − 1, p(γ − 1)) is Strichartz admissible if γ − 1 ≥ 2 and 2
p(γ−1) =

1
2 −

1
γ−1 ,

that is, p = 4
γ−3 . Note that p ≥ 1 if γ ≤ 7. In this case,∫

R
‖Tr f ‖

p(γ−1)
γ−1 dr . ‖ f ‖p(γ−1)2
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by Strichartz’ inequality, and thus∫
R

ψ(r )
|r − s |1/2

‖Tr f ‖γ−1γ−1 dr . ‖| · −s |
−1/2ψ‖ 4

7−γ
‖ f ‖γ−12 .

Setting α = 2
7−γ , we see that we have to bound

∫
|r − s |−αψ2α(r ) dr uniformly in s .

Let θ > 1 and apply Hölder’s inequality once more to see∫
|r − s |−αψ2α(r ) dr ≤

(∫
suppψ

|r − s |−αθ dr
) 1
θ
(∫

ψ(r )
2αθ
θ−1

) θ−1
θ

.

As long as αθ < 1, we have

sup
s∈R

∫
suppψ

|r − s |−αθ dr < ∞

since suppψ is compact. So we need α < 1/θ , which is equivalent to

2αθ
θ − 1

>
2α

1 − α
=

4
5 − γ

.

Since ψ is compactly supported and ψ ∈ L
4

5−γ2
+δ for some δ > 0, we see that, setting

α j =
4

7−γ j
, there exist θ j > 1 with α jθ j < 1 and

2α j θ j
θ j−1

= 4
5−γ j
+ δ. This shows that

both terms on the right hand side of (11.13) can be bounded uniformly in s ∈ R. �

Lemma 11.13. Assume that 3 ≤ γ1 ≤ γ2 < 5 and that ψ ∈ L
4

5−γ2
+δ for some δ > 0. Let

(un)n∈N ⊂ L2(R), ‖un ‖22 = λ for all n ∈ N, be a minimising sequence for E0
λ . If E

0
λ < 0,

then there exists another minimising sequence (vn)n∈N ⊂ L2 ∩ L∞(R) with

sup
r ∈R
‖Trvn ‖∞ ≤ Cλ .

Proof. Step 1 (Construction of a modified minimising sequence). Since H satisfies
all the requirements of Ekeland’s variational principle (see Appendix F), there exists
another minimising sequence (wn)n∈N ⊂ S0

λ such that H (wn) ≤ H (un) for all n ∈ N,
‖wn − un ‖2 → 0 as n →∞, and

∇H (wn) −

〈
∇H (wn),

wn

‖wn ‖2

〉
wn

‖wn ‖2
→ 0 as n →∞ (11.14)

strongly in L2, where ∇H ( f ) = −
∫
R
T −1r

[
V ′(|Tr f |)

Tr f
|Tr f |

]
ψdr , see Remark 11.1.

Write

gn := ∇H (wn) + σn
wn

‖wn ‖2
= ∇H (wn) + σn

wn
√
λ
, n ∈ N, (11.15)

with σn B −
〈
∇H (wn),

wn
‖wn ‖2

〉
. Then gn → 0 strongly in L2 for n →∞ by (11.14).
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By assumption (A2),

−〈∇H (wn),wn〉 = DwnN (wn) =

∬
R2
V ′(|Trwn |) |Trwn | dx ψ(r ) dr

≥ 2N (wn) = −2H (wn)
n→∞
−→ −2E0

λ > 0.

So, picking a subsequence if necessary, we can assume that σn ≥ −
E0
λ√
λ
> 0 for all n ∈ N.

Therefore, σ−1n is uniformly bounded and σ−1n gn → 0 as n →∞.
Now define the sequence

vn := −
√
λ
∇H (wn)

‖∇H (wn)‖2
, ‖vn ‖22 = λ, n ∈ N.

We will show that (vn)n∈N ⊂ S0
λ is again a minimising sequence for H . Indeed,

‖vn − wn ‖2 =

√
λ

σn

(1 − σn

‖∇H (wn)‖2

)
∇H (wn) − gn


2

≤
√
λ

����1 − σn

‖∇H (wn)‖2

���� ‖∇H (wn)‖2

σn
+
√
λ
‖gn ‖2
σn

.

Since σ−1n gn → 0 in L2, it remains to show that

σn

‖∇H (wn)‖2
→ 1

as n →∞. But from (11.15) we have

‖∇H (wn)‖
2
2 = ‖gn ‖

2
2 + σ

2
n − 2σnRe

〈
wn

‖wn ‖2
, gn

〉
,

so that

‖∇H (wn)‖
2
2

σ2
n

= 1 +
‖gn ‖22
σ2
n
− 2Re

〈
wn

‖wn ‖2
,
gn
σn

〉
→ 1

as n →∞ since σ−1n gn → 0 in L2.

Step 2 (L∞ boundedness of the modified minimising sequence). By Lemma 11.12
and the bound

‖wn ‖2‖∇H (wn)‖2 ≥ |Re〈∇H (wn),wn〉| ≥ −2E0
λ > 0,

we obtain

‖Tsvn ‖∞ =
√
λ

‖∇H (wn)‖2
‖Ts∇H (wn)‖∞

.
λ

|E0
λ |

(
‖wn ‖

γ1−1
2 + ‖wn ‖

γ2−1
2

)
=

(
λ

γ1+1
2 + λ

γ2+1
2

)
/|E0

λ |.

�
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We can now turn to the proof of existence of dispersion managed solitons in the
case of zero average dispersion.

Proof of Theorem 9.4. We start with 0 < λ < λ0cr. Since by Proposition 11.11 E0
λ ≤ 0,

the definition of the threshold (Definition 11.6) implies that E0
λ = 0, proving part (i) of

the theorem.
Assume now that λ > λ0cr. Then, by definition, E0

λ < 0.
Let (vn)n∈N ⊂ S0

λ ∩ L∞(R) be the minimising sequence constructed in Lemma
11.13, such that ‖Trvn ‖∞ ≤ Cλ for some uniform constant Cλ .

By Proposition 11.5, the ground state energy E0
λ is strictly sub-additive along

(vn)n∈N. Once we have strict sub-additivity, the bound (4.7) from [CHL17, Proposition
4.4] again holds. Then one can use this, similarly to the proof of [CHL17, Proposition
4.6], to show that the sequence (vn)n∈N is tight (that is, |vn(x)|2 dx and |v̂n(η)|2 dη
are tight in the sense of measures) modulo shifts and boosts, i.e. there exist shifts yn
and boosts ξn such that

lim
R→∞

sup
n∈N

∫
|x−yn |>R

|vn(x)|2 dx = 0,

lim
L→∞

sup
n∈N

∫
|η−ξn |>L

|v̂n(η)|2 dη = 0.

Let fn(x) B eiξn xvn(x − yn), n ∈ N, be the shifted and boosted minimising sequence.
Then by the invariance of H under shifts and boosts, ( fn)n∈N is again a minimising
sequence with ‖ fn ‖22 = ‖vn ‖

2
2 = λ. Since | fn(x)| = |vn(x − yn)| and | f̂n(η)| =

|v̂n(η − ξn)|, the sequence ( fn)n∈N is also tight.
Since the sequence ( fn)n∈N is bounded in L2(R), there exists a weakly convergent

subsequence (again denoted by ( fn)n∈N) by the weak compactness of the unit ball.
Since this subsequence is also tight, it converges even strongly in L2(R) to some f ∈ L2.
By continuity of the L2 norm and the nonlinearity N under strong L2-convergence,
we have

E0
λ ≤ H ( f ) = −N ( f ) = lim

n→∞
−N ( fn) = E0

λ

since ( fn)n∈N is minimising. Thus f is a minimiser of the variational problem (9.5) for
dav = 0.

The Euler-Lagrange equation of the constrained minimisation problem is the
dispersion management equation (9.9) and it is a standard exercise to show that the
minimiser ℎ found above is a weak solution of the Euler-Lagrange equation,

ω 〈 f , g〉 = −DgN ( f ) = −
∫
R

〈
V ′(|Tr f |)

Tr f
|Tr f |

,Tr g
〉
ψ dr (11.16)



202 CHAPTER 11. EXISTENCE FOR SATURATED POTENTIALS II

for all g ∈ L2(R), see also [CHL17] for more details. In particular, Lemma 11.12 implies
that Ts f ∈ L∞(R) for all s ∈ suppψ. Inserting g = f as test function in (11.16) yields

ω‖ f ‖22 = ωλ = −
∬
R2
V ′(|Tr f (x)|) |Tr f (x)| dx ψ dr

≤ −

∬
R2
κ(|Tr f (x)|)V (|Tr f (x)|) dx ψ dr

≤ −κ∗(Cλ)N ( f ) < −2N ( f ) = 2E0
λ

by assumption (A2) and the uniform bound on the minimiser. So ω <
2E0

λ

λ . �

11.5 Existence of minimisers for positive average dispersion

The situation is much easier in the positive average dispersion case since the uniform
L∞ bound is directly provided by the simple bound

‖ℎ‖2∞ ≤ ‖ℎ‖2‖ℎ ′‖2 ≤ ‖ℎ‖2H 1 (11.17)

for any ℎ ∈ H 1(R), i.e., the Sobolev embedding H 1(R) ⊂ L∞(R). We will assume
throughout this section that Assumptions (A1), (A2), and (A3) hold with 2 < γ1 ≤

γ2 < 10. We further assume that ψ is compactly supported and ψ ∈ Laδ for some
δ > 0, where aδ B max{1, 4

10−γ2 + δ}.

Proposition 11.14. The energy functional H is bounded below onSdav
λ for any λ > 0 and

coercive in ‖ f ′‖, that is,

lim
‖ f ′ ‖→∞
‖ f ‖2=λ

H ( f ) = +∞.

Moreover, −∞ < E dav
λ ≤ 0.

Proof. For 2 < γ1 ≤ γ2 ≤ 6 we can, as in Proposition 11.11, estimate the nonlinearity
by

N ( f ) . ‖ f ‖γ12 + ‖ f ‖
γ2
2 .

In case γ j > 6 for some j = 1, 2, we can extract the excess part in the L∞ norm,
estimating ∫

R
‖Tr f ‖γγ ψdr ≤ sup

r ∈R
‖Tr f ‖κ∞

∫
R
‖Tr f ‖γ−κγ−κ ψdr

for some 2 ≤ γ − κ ≤ 6. Using (11.17),

sup
r ∈R
‖Tr f ‖∞ ≤

(
‖ f ‖2‖ f ′‖2

)1/2
,
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where we used the unitarity of Tr on L2 and the fact that Tr commutes with ∂x .
Together with Lemma 11.1 this yields

N ( f ) . ‖ f ′‖
κ1
2
2 ‖ f ‖

γ1−
κ1
2

2 + ‖ f ′‖
κ2
2
2 ‖ f ‖

γ2−
κ2
2

2

for suitable (γ j − 6)+ ≤ κ j ≤ γ j − 2, j = 1, 2, and an implicit constant that can be
chosen in such a way that it only depends on the Laδ norm of ψ. It is easy to see that
for given aδ ≥ 1 one can always choose κ j < 4. Therefore,

H ( f ) ≥
dav
2
‖ f ′‖22 −C

(
‖ f ′‖

κ1
2
2 ‖ f ‖

γ1−
κ1
2

2 + ‖ f ′‖
κ2
2
2 ‖ f ‖

γ2−
κ2
2

2

)
(11.18)

for some constant C = C (‖ψ‖aδ ). In particular, if ‖ f ‖22 = λ, then H ( f ) → ∞ as
‖ f ′‖2 →∞. Moreover,

E dav
λ ≥ inf

t>0

(
dav
2
t 2 −C

(
t
κ1
2 λ

1
2 (γ1−

κ1
2 ) + t

κ2
2 λ

1
2 (γ2−

κ2
2 )

))
> −∞.

To prove that E dav
λ ≤ 0 we again calculate the energy of suitable centered Gaussians

(11.8). Since by (11.11)

N (gσ0) . ‖ψ‖1 sup
r ∈suppψ

(
‖Tr gσ0 ‖

γ1
γ1 + ‖Tr gσ0 ‖

γ2
γ2

)
,

where 2 < γ1 ≤ γ2, it is not hard to see that

lim
σ0→∞

H (gσ0) = 0,

which implies E0
λ ≤ 0. �

Proof of Theorem 9.5. Fix 0 < λ < λdavcr . By definition of the threshold and E dav
λ ≤ 0,

we must then have E dav
λ = 0. Assume now that there exists a minimiser f ∈ Sdav

λ with
H ( f ) = E dav

λ = 0. Then

0 = H ( f ) =
dav
2
‖ f ′‖22 − N ( f ) = ‖ f ′‖22

(
dav
2
−

N ( f )
‖ f ′‖22

)

≥ ‖ f ′‖22
©«
dav
2
− sup

‖g ‖2=1
‖g ′ ‖2≤λ−1/2 ‖ f ′ ‖2

N (
√
λg )

λ‖g ′‖22

ª®®®¬
= ‖ f ′‖22

(
dav
2
− Rλ−1/2 ‖ f ′ ‖2(λ)

)
.

(11.19)

Since λ < λdavcr , Corollary 11.10 implies that RC (λ) <
dav
2 for any C > 0, in particular

for C = λ−1/2‖ f ′‖2. So

dav
2
− Rλ−1/2 ‖ f ′ ‖2(λ) > 0,
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which by (11.19) implies that ‖ f ′‖2 = 0. But as the kernel of ∂x is trivial on H 1(R), we
must have f ≡ 0, in contradiction to ‖ f ‖22 = λ, which shows that there cannot exist a
minimiser if we are below the threshold λdavcr .

Assume now λ > λdavcr and let (vn)n∈N ⊂ S
dav
λ be a minimising sequence for E dav

λ .
Since H is coercive on S

dav
λ , the sequence (vn) is bounded. Indeed, since ‖vn ‖22 = λ

and H (vn) → E dav
λ > −∞, the bound (11.18) implies that ‖v ′n ‖2 stays bounded, thus

‖vn ‖H 1 is bounded uniformly in n ∈ N.
Together with (11.17) and the unitarity of Tr on H 1, we have

‖Trvn ‖∞ ≤ ‖Trvn ‖H 1 = ‖vn ‖H 1 ≤ Cλ

for any r ∈ suppψ, and some constant Cλ > 0, and Proposition 11.5 implies that the
ground state energy E dav

λ is strictly sub-additive. Hence arguing as in the proofs of
[CHL17, Propositions 4.3 and 4.5], the minimising sequence is tight modulo shifts
and tight in Fourier space, that is there exist shifts (yn)n∈N such that for the sequence
wn := vn(· − yn), n ∈ N, we have

lim
R→∞

sup
n∈N

∫
|x |>R

|wn(x)|2 dx = 0,

and there exists a constant K < ∞ such that for any L > 0

sup
n∈N

∫
|η |>L

|ŵn(η)|
2 dη = sup

n∈N

∫
|η |>L

|v̂n(η)|2 dη ≤
K
L2 .

Since H (wn) = H (vn) for all n ∈ N by translation invariance, (wn)n∈N is also a
minimising sequence with ‖wn ‖

2
2 = ‖vn ‖

2
2 = λ, which is bounded in H 1, ‖wn ‖H 1 =

‖vn ‖H 1 ≤ Cλ . So the weak compactness of the unit ball implies that there exists a
subsequence wnk ⇀ v ∈ H 1 weakly in H 1 and in L2. By tightness, we even have
strong convergence in L2. It follows that

‖v ‖22 = lim
k→∞
‖wnk ‖

2
2 = λ > 0

and together with the weak sequential lower semi-continuity of the H 1 norm this also
implies

‖v ′‖22 ≤ lim inf
k→∞

‖w ′nk ‖
2
2 .

Finally, since {wnk }k∈N is bounded in H 1 and converges in L2, the continuity of the
nonlinearity N with respect to strong L2-convergence (Lemma 11.2) yields

lim
k→∞

N (wnk ) = N (v).

Altogether, we thus have shown that H is weakly lower semi-continuous along {wnk },
in particular

E dav
λ ≤ H (v) ≤ lim inf

k→∞
H (wnk ) = E dav

λ ,

since {wnk } is minimising. It follows that f is a minimiser of the variational problem
(9.5). The rest of the proof is analogous to the zero average dispersion case dav = 0. �



APPENDIX F
Ekeland’s variational principle

In this chapter we briefly derive the following corollary of Ekeland’s variational
principle [Eke74, see also the Appendix in [Cos07]] needed in the construction of our
modified minimising sequence. Note that we do not require the functional to be C1,
but only that all its directional derivatives exists and depend linearly and continuously
on the direction.

Proposition F.1. Let Hbe a real Hilbert space and ϕ : H→ R a continuous functional
with the property that all directional derivatives exist and the functional ℎ 7→ Dℎϕ( f ) is
linear and continuous for all f ∈ H.

Assume that ϕ is bounded from below on Sλ = {u ∈ H : ‖u‖2 = λ}, and let
( fn)n∈N ⊂ Sλ be a minimising sequence for ϕ |Sλ . Then there exists another minimising
sequence (gn)n∈N ⊂ Sλ such that

ϕ(gn) ≤ ϕ( fn), ‖gn − fn ‖ → 0

and

|(Dℎnϕ |Sλ )(gn)| → 0 as n →∞

for any ℎn ∈ TgnSλ with supn ‖ℎn ‖ < ∞.

Remark. (i) As will be clear from the proof, linearity of the map ℎ 7→ Dℎϕ( f ) is
not needed, the only important property is that the one-sided derivatives from
left and right coincide, respectively, that D−ℎϕ( f ) = −Dℎϕ( f ) for all f ∈ H.
Linearity allows us to represent, by reflexivity, the directional derivative at a
given point f in Sλ by a vector ∇ϕ( f ) ∈ H.

( ii) Let u ∈ Sλ . Since by assumption, the map

ℎ 7→ Dℎϕ(u)

205
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is linear and continuous, there exists by the Riesz representation theorem a
uniquely determined vector ∇ϕ(u) such that

〈∇ϕ(u), ℎ〉 = Dℎϕ(u).

Since Sλ is a sphere in H, we have H= TuSλ ⊕ Ru for all u ∈ Sλ . Therefore,
the projection of ∇ϕ(u) onto TuSλ is given by

∇ϕ(u) −
〈
∇ϕ(u),

u
‖u‖

〉
u
‖u‖

.

By Proposition F.1, we thus have���〈∇ϕ(gn) − 〈∇ϕ(gn), gn
‖gn ‖ 〉

gn
‖gn ‖ , ℎn

〉��� = ��(Dℎnϕ |Sλ )(gn)
��→ 0

as n → ∞ for all ℎn ∈ TgnSλ with ‖ℎn ‖ ≤ 1 (and therefore also for all
ℎ̃n ∈ TgnSλ ⊕ Rgn = Hwith ‖ ℎ̃n ‖ ≤ 1), so that

∇ϕ(gn) − 〈∇ϕ(gn),
gn
‖gn ‖ 〉

gn
‖gn ‖ → 0, n →∞

strongly in H.
�

Proof. Let c = infSλ ϕ and set εn = max
{ 1
n , ϕ( fn) − c

}
. By Ekeland’s variational

principle there exists a sequence (gn)n∈N ⊂ Sλ such that ϕ(gn) ≤ ϕ( fn) for all n ∈ N,
‖gn − fn ‖ → 0 as n →∞, and

ϕ(gn) < ϕ(u) +
√
εn ‖gn − u‖ for all u , gn . (F.1)

Now let γ : (−1, 1) → Sλ be a C1 curve with γ(0) = gn and γ ′(0) = ℎn, for some
arbitrary ℎn ∈ TgnSλ . Then, by means of the continuity of ℎ 7→ Dℎϕ( f ) for all
f ∈ H, we have

lim
t→0

ϕ(γ(t )) − ϕ(γ(0))
t

= lim
t→0

ϕ(γ(0) + tγ ′(0) + o(t )) − ϕ(γ(0))
t

= lim
t→0

ϕ(γ(0)) + tDγ′(0)+t−1o(t )ϕ(γ(0)) + o(t ) − ϕ(γ(0))
t

= lim
t→0

Dγ′(0)+t−1o(t )ϕ(γ(0)) = Dγ′(0)ϕ(γ(0)) = Dℎnϕ(gn).

As the curve γ was arbitrary, this implies

(Dℎnϕ |Sλ )(gn) = lim
t→0

ϕ(γ(t )) − ϕ(γ(0))
t

.

By (F.1), for all t > 0 we have

ϕ(γ(t )) − ϕ(γ(0)) > −
√
εn ‖γ(0) − γ(t )‖,
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and dividing by t > 0 and letting t → 0 yields

(Dℎnϕ |Sλ )(gn) = lim
t ↓0

ϕ(γ(t )) − ϕ(γ(0))
t

≥ −
√
εn ‖γ

′(0)‖ = −
√
εn ‖ℎn ‖.

Similarly, exchanging t by −t , one obtains

(Dℎnϕ |Sλ )(gn) = lim
t ↓0

ϕ(γ(−t )) − ϕ(γ(0))
−t

≤
√
εn ‖γ

′(0)‖ =
√
εn ‖ℎn ‖,

and therefore ��(Dℎnϕ |Sλ )(gn)
�� ≤ √εn ‖ℎn ‖ → 0 as n →∞.

�
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