166 research outputs found

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    SNAVA—A real-time multi-FPGA multi-model spiking neural network simulation architecture

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities.Peer ReviewedPostprint (author's final draft

    A Survey of Spiking Neural Network Accelerator on FPGA

    Full text link
    Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects

    On FPGA implementations for bioinformatics, neural prosthetics and reinforcement learning problems.

    Get PDF
    Mak Sui Tung Terrence.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 132-142).Abstracts in English and Chinese.Abstract --- p.iList of Tables --- p.ivList of Figures --- p.vAcknowledgements --- p.ixChapter 1. --- Introduction --- p.1Chapter 1.1 --- Bioinformatics --- p.1Chapter 1.2 --- Neural Prosthetics --- p.4Chapter 1.3 --- Learning in Uncertainty --- p.5Chapter 1.4 --- The Field Programmable Gate Array (FPGAs) --- p.7Chapter 1.5 --- Scope of the Thesis --- p.10Chapter 2. --- A Hybrid GA-DP Approach for Searching Equivalence Sets --- p.14Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Equivalence Set Criterion --- p.18Chapter 2.3 --- Genetic Algorithm and Dynamic Programming --- p.19Chapter 2.3.1 --- Genetic Algorithm Formulation --- p.20Chapter 2.3.2 --- Bounded Mutation --- p.21Chapter 2.3.3 --- Conditioned Crossover --- p.22Chapter 2.3.4 --- Implementation --- p.22Chapter 2.4 --- FPGAs Implementation of GA-DP --- p.24Chapter 2.4.1 --- System Overview --- p.25Chapter 2.4.2 --- Parallel Computation for Transitive Closure --- p.26Chapter 2.4.3 --- Genetic Operation Realization --- p.28Chapter 2.5 --- Discussion --- p.30Chapter 2.6 --- Limitation and Future Work --- p.33Chapter 2.7 --- Conclusion --- p.34Chapter 3. --- An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation --- p.35Chapter 3.1 --- Introduction --- p.36Chapter 3.2 --- Maximum-Likelihood Model --- p.39Chapter 3.3 --- Hardware Mapping for Pruning Algorithm --- p.41Chapter 3.3.1 --- Related Works --- p.41Chapter 3.3.2 --- Number Representation --- p.42Chapter 3.3.3 --- Binary Tree Representation --- p.43Chapter 3.3.4 --- Binary Tree Traversal --- p.45Chapter 3.3.5 --- Maximum-Likelihood Evaluation Algorithm --- p.46Chapter 3.4 --- System Architecture --- p.49Chapter 3.4.1 --- Transition Probability Unit --- p.50Chapter 3.4.2 --- State-Parallel Computation Unit --- p.51Chapter 3.4.3 --- Error Computation --- p.54Chapter 3.5 --- Discussion --- p.56Chapter 3.5.1 --- Hardware Resource Consumption --- p.56Chapter 3.5.2 --- Delay Evaluation --- p.57Chapter 3.6 --- Conclusion --- p.59Chapter 4. --- Field Programmable Gate Array Implementation of Neuronal Ion Channel Dynamics --- p.61Chapter 4.1 --- Introduction --- p.62Chapter 4.2 --- Background --- p.63Chapter 4.2.1 --- Analog VLSI Model for Hebbian Synapse --- p.63Chapter 4.2.2 --- A Unifying Model of Bi-directional Synaptic Plasticity --- p.64Chapter 4.2.3 --- Non-NMDA Receptor Channel Regulation --- p.65Chapter 4.3 --- FPGAs Implementation --- p.65Chapter 4.3.1 --- FPGA Design Flow --- p.65Chapter 4.3.2 --- Digital Model of NMD A and AMPA receptors --- p.65Chapter 4.3.3 --- Synapse Modification --- p.67Chapter 4.4 --- Results --- p.68Chapter 4.4.1 --- Simulation Results --- p.68Chapter 4.5 --- Discussion --- p.70Chapter 4.6 --- Conclusion --- p.71Chapter 5. --- Continuous-Time and Discrete-Time Inference Networks for Distributed Dynamic Programming --- p.72Chapter 5.1 --- Introduction --- p.74Chapter 5.2 --- Background --- p.77Chapter 5.2.1 --- Markov decision process (MDPs) --- p.78Chapter 5.2.2 --- Learning in the MDPs --- p.80Chapter 5.2.3 --- Bellman Optimal Criterion --- p.80Chapter 5.2.4 --- Value Iteration --- p.81Chapter 5.3 --- A Computational Framework for Continuous-Time Inference Network --- p.82Chapter 5.3.1 --- Binary Relation Inference Network --- p.83Chapter 5.3.2 --- Binary Relation Inference Network for MDPs --- p.85Chapter 5.3.3 --- Continuous-Time Inference Network for MDPs --- p.87Chapter 5.4 --- Convergence Consideration --- p.88Chapter 5.5 --- Numerical Simulation --- p.90Chapter 5.5.1 --- Example 1: Random Walk --- p.90Chapter 5.5.2 --- Example 2: Random Walk on a Grid --- p.94Chapter 5.5.3 --- Example 3: Stochastic Shortest Path Problem --- p.97Chapter 5.5.4 --- Relationships Between λ and γ --- p.99Chapter 5.6 --- Discrete-Time Inference Network --- p.100Chapter 5.6.1 --- Results --- p.101Chapter 5.7 --- Conclusion --- p.102Chapter 6. --- On Distributed g-Learning Network --- p.104Chapter 6.1 --- Introduction --- p.105Chapter 6.2 --- Distributed Q-Learniing Network --- p.108Chapter 6.2.1 --- Distributed Q-Learning Network --- p.109Chapter 6.2.2 --- Q-Learning Network Architecture --- p.111Chapter 6.3 --- Experimental Results --- p.114Chapter 6.3.1 --- Random Walk --- p.114Chapter 6.3.2 --- The Shortest Path Problem --- p.116Chapter 6.4 --- Discussion --- p.120Chapter 6.4.1 --- Related Work --- p.121Chapter 6.5 --- FPGAs Implementation --- p.122Chapter 6.5.1 --- Distributed Registering Approach --- p.123Chapter 6.5.2 --- Serial BRAM Storing Approach --- p.124Chapter 6.5.3 --- Comparison --- p.125Chapter 6.5.4 --- Discussion --- p.127Chapter 6.6 --- Conclusion --- p.128Chapter 7. --- Summary --- p.129Bibliography --- p.132AppendixChapter A. --- Simplified Floating-Point Arithmetic --- p.143Chapter B. --- "Logarithm, Exponential and Division Implementation" --- p.144Chapter B.1 --- Introduction --- p.144Chapter B.2 --- Approximation Scheme --- p.145Chapter B.2.1 --- Logarithm --- p.145Chapter B.2.2 --- Exponentiation --- p.147Chapter B.2.3 --- Division --- p.148Chapter C. --- Analog VLSI Implementation --- p.150Chapter C.1 --- Site Function --- p.150Chapter C.1.1 --- Multiplication Cell --- p.150Chapter C.2 --- The Unit Function --- p.153Chapter C.3 --- The Inference Network Computation --- p.154Chapter C.4 --- Layout --- p.157Chapter C.5 --- Fabrication --- p.159Chapter C.5.1 --- Testing and Characterization --- p.16
    • …
    corecore