thesis

On FPGA implementations for bioinformatics, neural prosthetics and reinforcement learning problems.

Abstract

Mak Sui Tung Terrence.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 132-142).Abstracts in English and Chinese.Abstract --- p.iList of Tables --- p.ivList of Figures --- p.vAcknowledgements --- p.ixChapter 1. --- Introduction --- p.1Chapter 1.1 --- Bioinformatics --- p.1Chapter 1.2 --- Neural Prosthetics --- p.4Chapter 1.3 --- Learning in Uncertainty --- p.5Chapter 1.4 --- The Field Programmable Gate Array (FPGAs) --- p.7Chapter 1.5 --- Scope of the Thesis --- p.10Chapter 2. --- A Hybrid GA-DP Approach for Searching Equivalence Sets --- p.14Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Equivalence Set Criterion --- p.18Chapter 2.3 --- Genetic Algorithm and Dynamic Programming --- p.19Chapter 2.3.1 --- Genetic Algorithm Formulation --- p.20Chapter 2.3.2 --- Bounded Mutation --- p.21Chapter 2.3.3 --- Conditioned Crossover --- p.22Chapter 2.3.4 --- Implementation --- p.22Chapter 2.4 --- FPGAs Implementation of GA-DP --- p.24Chapter 2.4.1 --- System Overview --- p.25Chapter 2.4.2 --- Parallel Computation for Transitive Closure --- p.26Chapter 2.4.3 --- Genetic Operation Realization --- p.28Chapter 2.5 --- Discussion --- p.30Chapter 2.6 --- Limitation and Future Work --- p.33Chapter 2.7 --- Conclusion --- p.34Chapter 3. --- An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation --- p.35Chapter 3.1 --- Introduction --- p.36Chapter 3.2 --- Maximum-Likelihood Model --- p.39Chapter 3.3 --- Hardware Mapping for Pruning Algorithm --- p.41Chapter 3.3.1 --- Related Works --- p.41Chapter 3.3.2 --- Number Representation --- p.42Chapter 3.3.3 --- Binary Tree Representation --- p.43Chapter 3.3.4 --- Binary Tree Traversal --- p.45Chapter 3.3.5 --- Maximum-Likelihood Evaluation Algorithm --- p.46Chapter 3.4 --- System Architecture --- p.49Chapter 3.4.1 --- Transition Probability Unit --- p.50Chapter 3.4.2 --- State-Parallel Computation Unit --- p.51Chapter 3.4.3 --- Error Computation --- p.54Chapter 3.5 --- Discussion --- p.56Chapter 3.5.1 --- Hardware Resource Consumption --- p.56Chapter 3.5.2 --- Delay Evaluation --- p.57Chapter 3.6 --- Conclusion --- p.59Chapter 4. --- Field Programmable Gate Array Implementation of Neuronal Ion Channel Dynamics --- p.61Chapter 4.1 --- Introduction --- p.62Chapter 4.2 --- Background --- p.63Chapter 4.2.1 --- Analog VLSI Model for Hebbian Synapse --- p.63Chapter 4.2.2 --- A Unifying Model of Bi-directional Synaptic Plasticity --- p.64Chapter 4.2.3 --- Non-NMDA Receptor Channel Regulation --- p.65Chapter 4.3 --- FPGAs Implementation --- p.65Chapter 4.3.1 --- FPGA Design Flow --- p.65Chapter 4.3.2 --- Digital Model of NMD A and AMPA receptors --- p.65Chapter 4.3.3 --- Synapse Modification --- p.67Chapter 4.4 --- Results --- p.68Chapter 4.4.1 --- Simulation Results --- p.68Chapter 4.5 --- Discussion --- p.70Chapter 4.6 --- Conclusion --- p.71Chapter 5. --- Continuous-Time and Discrete-Time Inference Networks for Distributed Dynamic Programming --- p.72Chapter 5.1 --- Introduction --- p.74Chapter 5.2 --- Background --- p.77Chapter 5.2.1 --- Markov decision process (MDPs) --- p.78Chapter 5.2.2 --- Learning in the MDPs --- p.80Chapter 5.2.3 --- Bellman Optimal Criterion --- p.80Chapter 5.2.4 --- Value Iteration --- p.81Chapter 5.3 --- A Computational Framework for Continuous-Time Inference Network --- p.82Chapter 5.3.1 --- Binary Relation Inference Network --- p.83Chapter 5.3.2 --- Binary Relation Inference Network for MDPs --- p.85Chapter 5.3.3 --- Continuous-Time Inference Network for MDPs --- p.87Chapter 5.4 --- Convergence Consideration --- p.88Chapter 5.5 --- Numerical Simulation --- p.90Chapter 5.5.1 --- Example 1: Random Walk --- p.90Chapter 5.5.2 --- Example 2: Random Walk on a Grid --- p.94Chapter 5.5.3 --- Example 3: Stochastic Shortest Path Problem --- p.97Chapter 5.5.4 --- Relationships Between λ and γ --- p.99Chapter 5.6 --- Discrete-Time Inference Network --- p.100Chapter 5.6.1 --- Results --- p.101Chapter 5.7 --- Conclusion --- p.102Chapter 6. --- On Distributed g-Learning Network --- p.104Chapter 6.1 --- Introduction --- p.105Chapter 6.2 --- Distributed Q-Learniing Network --- p.108Chapter 6.2.1 --- Distributed Q-Learning Network --- p.109Chapter 6.2.2 --- Q-Learning Network Architecture --- p.111Chapter 6.3 --- Experimental Results --- p.114Chapter 6.3.1 --- Random Walk --- p.114Chapter 6.3.2 --- The Shortest Path Problem --- p.116Chapter 6.4 --- Discussion --- p.120Chapter 6.4.1 --- Related Work --- p.121Chapter 6.5 --- FPGAs Implementation --- p.122Chapter 6.5.1 --- Distributed Registering Approach --- p.123Chapter 6.5.2 --- Serial BRAM Storing Approach --- p.124Chapter 6.5.3 --- Comparison --- p.125Chapter 6.5.4 --- Discussion --- p.127Chapter 6.6 --- Conclusion --- p.128Chapter 7. --- Summary --- p.129Bibliography --- p.132AppendixChapter A. --- Simplified Floating-Point Arithmetic --- p.143Chapter B. --- "Logarithm, Exponential and Division Implementation" --- p.144Chapter B.1 --- Introduction --- p.144Chapter B.2 --- Approximation Scheme --- p.145Chapter B.2.1 --- Logarithm --- p.145Chapter B.2.2 --- Exponentiation --- p.147Chapter B.2.3 --- Division --- p.148Chapter C. --- Analog VLSI Implementation --- p.150Chapter C.1 --- Site Function --- p.150Chapter C.1.1 --- Multiplication Cell --- p.150Chapter C.2 --- The Unit Function --- p.153Chapter C.3 --- The Inference Network Computation --- p.154Chapter C.4 --- Layout --- p.157Chapter C.5 --- Fabrication --- p.159Chapter C.5.1 --- Testing and Characterization --- p.16

    Similar works