
On FPGA Implementations for Bioinformatics, Neural

Prosthetics and Reinforcement Learning Problems

MAK Sui Tung Terrence

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Systems Engineering and Engineering Management

©The Chinese University of Hong Kong

June 2005

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

UNIVERSITY
\c^lBRARY SYSTEMX^^

I

Abstract

Along with the remarkable success of Human-Genome-Project and the launch of Genome-to-

Life project, voluminous biological data was accumulated and the secrets of life were yet to be

deciphered. Innovations and implementations of high performance computing infrastructure to

support the computational analysis of large-scale data set, complex model simulations and

achieving effective access to biological data are considered to be equally important as continuing

to generate new biological data from pipelining biotechnological machineries.

In parallel with the development of the computational bioinformatics, neural prosthetics, on

the other hand, emerges as an innovative and interdisciplinary subject, in which the need of real-

time performance is critical. Neuron-machine interfaces such as dynamic clamp and brain-

implantable neuro-prosthetic devices require real-time simulations of neuronal ion channel

dynamics, in which silicon devices mimic the living cell mechanics. A hardware-based,

application-specific implementation of the neuronal ion channel dynamics would circumvent the

limitations of computational speed and flexibility in general-purpose computers.

Further, for future combat to reduce human causalities, gathering scientific data from distant

planets or in extreme environments, intelligent robots such as Unmanned Aerial Vehicles

(UAVs), and Mars Rover, should be equipped with capability learning and real-time decision

making, which are both computational intensive tasks. Delay in the decision making, due to

heavy computational burden, would be disastrous. The distributed and parallel computational

learning architecture could circumvent the limitation of the sequential computation machineries.

Field programmable gate array (FPGA) has emerged as a high-speed digital platform for

application-specific computation devices. However, it is a challenge to have efficient design with

good mapping from algorithms to hardware logics, due to the design complexity and the

algorithm complexity. The objective of this thesis is to investigate and develop efficient methods

to address the computational and implementation challenges in FPGA The research covers area

from computational genomics, neural prosthetics applications to theoretical reinforcement

- i -

learning implementation in a distributed environment, with a goal to improve existing software-

based implementation methodologies and sequential computational framework.

In light of the advance ‘ programmable distributed logics technology, we have worked on the

FPGAs designs based on three different application-oriented examples. Firstly, we propose a

novel approach for searching equivalence set from genetic network and offer an efficient FPGAs

implementation. The approach is beneficial to genetic network dynamics development. Secondly,

we propose a FPGA-based architecture for computational intensive phylogenetic tree topology

evaluation. Significant acceleration for the tree evaluation can be obtained based on the proposed

hardware architecture. Thirdly, we present an FPGA design of a neuromorphic Hebbian synapse

which mimics the NMDA and non-NMDA ion channel dynamics observed experimentally in

hippocampal neurons. The proposed design can be readily extended to high-speed

implementations of dynamic clamp and neuro-prosthetics as replacements for damaged neurons

in the brain.

In addition, we consider a distributed computational framework for continuous-time inference

network for solving dynamic programming problems. It is a computational intensive task which

becomes the bottleneck of real-time reinforcement learning and decision making. We offer an

FPGAs implementation scheme with distributed arithmetic with adaptation of the embedded

multipliers and logics. We also consider an analog Very Large Scale Integrated (VLSI) design

for the realization and verification of the theoretical formulation. We show that the inference

network converges to the optimal Bellman optimality condition, for which the convergence rate

can be made arbitrarily fast and is practically independent of the problem size. Lastly, based on

the framework of the Bellman Inference Network, a novel g-leaming network architecture is

proposed. We introduce the exploration and memory components to the original Bellman

inference network to form a connectionist network with the capability of parallel learning and

optimization. We found that the g-leaming network significantly outperforms the conventional

g-leaming algorithm under a distributed unknown environment. We also proposed two design

alternatives for the realization of g-leaming network using FPGAs with the network dedicated to

fit different applications.

- i i -

摘要

t

隨著「人類基因組計劃」革命性的成功和近期展開的大規模微生物基因排序「從基因硏

究了解生命」，國際基因庫屯積了大量生物數據，但是我們對生命密碼的破解還是處於起

步的階段。高效能計算分析、複雜模型運算，及有效存取生物數據的創新性實現方法硏究

應和繼續採集生物數據有相同的重要性。在生物計算高速發展的同時，腦一機界面(或稱

神經義肢)成爲對實時計算有高要求的新興學科。當中，以動態鉗和腦部可植入晶片的硏

究對高效能實時運算有最高要求。通過在專用硬件上實現，此硏究可用作模擬真細胞的運

作和模擬腦細胞離子通道運作並可改善普通電腦在運算速度和彈性上的限制。另外，爲應

付未來戰爭或到外星極地進行科學硏究，智能機械人，例如無人駕駛飛機，火星挑戰者

號，應具備實時學習及決策的能力。但這些都是需要大量運算的。如果因要應付大量運算

而延誤了決策，可能導致嚴重的後果。

近&，現場可編程門陣列已成爲現代專門高速運算硬件平台。但因爲硬件設計和算法的

複雜性，令算法在硬件實現上出現很大的困難。本論文的目的是硏究在生物信息、腦一機

界面、及機器學習的問題上如何有效地實現分怖式硬體以達到提高單以軟體爲基礎的實現

方法。我們針對三個不同的領域的問題進行現場可編程問陣列硬件實現的硏究。第一’我

們提出遺傳算法及動態規劃的綜合算法以解決同類基因搜索的問題。此新算法對建造基因

動態模形有很大幫助。此外，我們還對算法提供了硬體的實現方法’以大大縮短所需計算

時間。第二，我們提出了以並行硬件實現模式以加快基因遺傳樹重建的密集計算。第三，

我們提出一套對腦細胞離子通道模擬的硬件實現方法。硬件設計對高速互動鉗和腦一機介

面的建造有極大的幫助。

除此以外，本論文也針對增強式學習問題提出了間斷性和連續性推理網絡的理論基礎及

實現方法。該方法可以突破實時學習的計算速度瓶頸。我們提供了現場可編程門陣列及模

擬電路在超大規模集成電路的實現。最後爲解決在信息不全的情況下增強學習的問題，我

們提出了 2-學習網絡的構想。從初步的模擬測試中，0-學習網絡表現了較有效率的學習

及優化計算。此外，我們也提出了不同的硬件實現方法以應付不同的需求°

-iii -

List of Tables
Table 3.1 Dynamic range comparison between Simplified Floating Point (SFPT), Fixed-

t
point and Single Precision Floating Point (FPT) 42

Table 3.2 Timing analysis based on the number of multiplications 53

Table 3.3 Hardware resource consumption with increasing number of taxa 57

Table 4.1 Comparison of resource utilization on different FPGAs 71

Table 6.1 Comparison between the two approaches on the consumption of logic slice with

respect to the number of actions and bit length 126

Table 6.2 Maximum updating rate 127

Table C. 1 Main system component in the circuit fabrication 160

C

- iv -

List of Figures
Figure 2.1 An example of genetic network with equivalence sets. 17

r

Figure 2.2 Steps to compute the equivalence set. 19

Figure 2.3 Pseudo-code of bounded mutation. 23

Figure 2.4 Pseudo-code of the conditional crossover 24

Figure 2.5 GA-DP hardware architecture 25

Figure 2.6 Network topology diagram of Binary Relation Inference Network. 27

Figure 2.7 Data flow diagram of the mutation operator 28

Figure 2.8 Data flow diagram of the Crossover operation 29

Figure 2.9 The schematic diagram of the crossover unit 30

Figure 2.10 Software simulation result for searching equivalence genes using GADP 31

Figure 2.11 Simulation study for the number of generations versus population size of the GA-

DP 32

Figure 2.12 Comparison of computational time between the GA-DP and the transitive-closure

approach from (Maki, Tominaga et al. 2001) 33

Figure 3.1 A 4-taxa unrooted bifurcating tree 37

Figure 3 1 Illustration of the idea using hardware to accelerate phygenetic tree reconstruction
38

Figure 3.3 An example of 8-node unrooted phylogenetic tree 44

Figure 3.4 An example of tree representation using a ROM/RAM 44

Figure 3.5 Flowchart for pre-order tree traversal with using stack 45

Figure 3.6 The partial likelihood definition 46

Figure 3.7 Pseudo-code of four basic routines to compute the partial likelihood 48

Figure 3.8 Pseudo-code of the recursive maximum-likelihood evaluation algorithm 49

Figure 3.9 Data path diagram of likelihood evaluation for a given tree topology, branch

lengths and model parameters 50

Figure 3.10 Illustration the idea of the parallel partial likelihood computation 51

Figure 3.11 FPGAs architecture of the State-Parallel Computational Unit (SPCU) 52

Figure 3.12 Comparison of the computational time between software and FPGA

implementation 58

-V -

Figure 4.1 Biological synapse with glutamate activating AMPA and NMDA channels, and

generating an EPSP 63

Figure 4.2 Schematic design of the NMDA and non-NMDA synapse using FPGA 67

Figure 4.3 Schematic design of learning and adaptation of plasticity using FPGA 68

Figure 4.4 a.) Biological Recordings of individual NMDA channels, and miniature EPSCs

which sum AMPA and NMDA currents, adapted from [22]. b.) Simulation of

FPGA circuit for the AMPA and NMDA current (upper) and the EPSC (below),

which are qualitatively similar to the experimental data in (Renger, Egles et al.

2001) in a.) 69

Figure 4.5 Screen capture from oscilloscope for FPGAs real-time computation of ion channel

dynamics 69

Figure 4.6 Comparison between software and FPGA for the post-synaptic ion channel

simulation 70

Figure 5.1^ Learning system interacting with its environment 78

Figure 5.2 A typical step in reinforcement learning problem 78

Figure 5.3 Unit interconnection in a general binary relation inference network 84

Figure 5.4 a.) Original problem state graph b.) inference network for solving graph in a.)
86

Figure 5.5 A small Markov process for generating random walks 90

Figure 5.6: Convergence of the differential equations 92

Figure 5.7: Convergence of the differential equations another case 93

Figure 5.8 Simulation of a 10-unit inference network for 10-state random walk 93

Figure 5.9 A small Markov process for generating random walks on grid 94

Figure 5.10 Computation of state-value functions for the random walk in the grid-world
96

Figure 5.11 Learning curves for continuous-time inference network for random walk in the

grid-world problem 97

Figure 5.12 The flow-graph for stagecoach problem (Haykin 1999) 97

Figure 5.13 Simulation of a inference network for the stagecoach problem 98

Figure 5.14 Convergence speed for continuous-time inference network for the random walk

problem 99

-vi -

Figure 5.15 Comparison of convergence speed for continuous-time inference network for the

random walk problem 100

Figure 5.16 Verification of the network convergence on FPGAs implementation with referring

to the software computation 101

Figure 5.17 Bit truncation error in the 16-bit FPGA inference network computation 102

Figure 6.1 A typical computational unit in the learning network depicts the input and output

of the learning network architecture 111

Figure 6.2 Schematic of a typical computational unit in Q-leaming network 113

Figure 6.3 A small Markov process for generating random walks 114

Figure 6.4 A distributed Q-leaming framework to solve the random walk problem 115

Figure 6.5 Learning curve of the distributed Q-leaming network 116

Figure 6.6 The flow-graph for stagecoach problem (Haykin 1999) 116

Figure 6.7 Comparison between typical Q-leaming and the distributed Q-leaming network

I approach 118

Figure 6.8 This is the experiment for comparison of convergence between Q-leaming and

distributed Q-leaming the with smaller learning rate 118

Figure 6.9 Convergence of the distributed Q-leaming network can be varied with different

learning rate 119

Figure 6.10 For the Bellman inference network, the network needs longer convergence time

for a larger discount factor 120

Figure 6.11 Schematic design for the computational unit which represents state s and n actions
123

Figure 6.12 Q-factor table are mapping to the internal RAM and addressed by the action index

125

Figure C.l. Four-quadrant current-mode multiplier cell (Chan, Ling et al. 1995) 151

Figure C.2. Current-mode multiplier cell 152

Figure C.3 Current-mode multiplier cell response 153

Figure C.4 Current-mode minimum circuit 154

Figure C.5 Minimum circuit response to a sinusoid and constant inputs. The circuit delay can

be found at around 80ns 154

Figure C.6 A typical 6-state MDPs problem 155

-vii -

Figure C.7 (left) Numerical simulation of the 6-node single-destination inference network

based on solving first-order ordinal differential equation (right) Inference network

circuit simulation for the same problem 156

Figure C.8 Root-mean-square (RMS) errors with averaged over all states are computed for

the inference network with different discount factor 156

Figure C.9 Layout of a n-type current mirror 157

Figure C. 10 Layout of a p-type current mirror 157

Figure C.l 1 The two-input minimum operator 158

Figure C. 12 Binary Relation Inference Network for 10-node Shortest Path Problem 159

Figure C.13 Overall design with the Pad Frame 161

-viii -

Acknowledgements

t

First of all, I would like to express my greatest gratitude to my supervisor, Professor Kai-Pui

Lam, for his invaluable suggestions and comments on this thesis. More importantly, he had

showed me the philosophy of engineering and the basic elements that a researcher should be

equipped with during the last two years. Also, I have leamt a lot through our discussions on

different research aspects. Specifically, I would also like to thank for his kind support and

arrangement for my visiting study at MIT.

I would also like to express my gratefulness to Dr. Chi-Sang Poon, my supervisor when I was

a visiting student at MIT. I was greatly impressed by his passionate and meticulous research

attitude and his confident and cheerful personality. I have leamt a lot about research through our

discussion. Also, I would like to thank Shirley, Guy, Yunguo, Chung, Armon, Dr. Song,
I

Shawnon, Mary, Andy, Vera, Louis, Ricky and friends at Boston for their kind support and

accompany at the time when I was in Boston. I would like to specially thank Guy Rathmuth for

teaching me analog VLSI design, layout and fabrication technical techniques.

I greatly appreciate the members of my dissertation committee, Professor Peter Cheung,

Professor Kam-Fai Wong and Professor Wai Lam for their useful feedback and suggestions.

I am also greatly indebted to Professor Shuzhong Zhang and Professor Duan Li on behalf of

Department of Systems Engineering and Engineering Management to support my visiting study

at MIT during my M.Phil study. I would also like to thank the graduate school of The Chinese

University of Hong Kong to support the MIT visit.

My greatest gratitude goes to my parents for their endless love and encouragement. Most

importantly, I would express my love to my girlfriend, Miss Ophelia Tsui for her love and

support.

- ix -

I

Table of Contents

Abstract i

List of Tables iv

List of Figures v

Acknowledgements ix

r\
1. Introduction 1

1.1 Bioinformatics 1

1.2 Neural Prosthetics 4

1.3 Learning in Uncertainty 5

1.4 The Field Programmable Gate Array (FPGAs) 7

1.5 Scope of the Thesis 10

2. A Hybrid GA-DP Approach for Searching Equivalence Sets 14
2.1 Introduction 16

2.2 Equivalence Set Criterion 18

2.3 Genetic Algorithm and Dynamic Programming 19

2.3.1 Genetic Algorithm Formulation 20

2.3.2 Bounded Mutation 21

2.3.3 Conditioned Crossover 22

2.3.4 Implementation 22

2.4 FPGAs Implementation of GA-DP 24

2.4.1 System Overview 25

2.4.2 Parallel Computation for Transitive Closure 26

-X -

2.4.3 Genetic Operation Realization 28

2.5 Discussion 30

2.6 Limitation and Future Work 33

2.7 Conclusion 34

3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny

Evaluation 35
3.1 Introduction 36

3.2 Maximum-Likelihood Model 39

3.3 Hardware Mapping for Pruning Algorithm 41

3.3.1 Related Works 41

3.3.2 Number Representation 42

3.3.3 Binary Tree Representation 43

3.3.4 Binary Tree Traversal 45

3.3.5 Maximum-Likelihood Evaluation Algorithm 46

3.4 System Architecture 49

3.4.1 Transition Probability Unit 50

3.4.2 State-Parallel Computation Unit 51

3.4.3 Error Computation 54

3.5 Discussion 56

3.5.1 Hardware Resource Consumption 56

3.5.2 Delay Evaluation 57

3.6 Conclusion 59

4. Field Programmable Gate Array Implementation of Neuronal Ion Channel

Dynamics 61
4.1 Introduction 62

4.2 Background 63

4.2.1 Analog VLSI Model for Hebbian Synapse 63

4.2.2 A Unifying Model of Bi-directional Synaptic Plasticity 64

-xi -

4.2.3 Non-NMDA Receptor Channel Regulation 65

4.3 FPGAs Implementation 65

4.3.1 FPGA Design Flow 65

4.3.2 Digital Model of NMD A and AMPA receptors 65

4.3.3 Synapse Modification 67

4.4 Results 68

4.4.1 Simulation Results 68

4.5 Discussion 70

4.6 Conclusion 71

5. Continuous-Time and Discrete-Time Inference Networks for Distributed

Dynamic Programming 72
5.1 Introduction 74

5.2 Background 77

5.2.1 Markov decision process (MDPs) 78

5.2.2 Learning in the MDPs 80

5.2.3 Bellman Optimal Criterion 80

5.2.4 Value Iteration 81

5.3 A Computational Framework for Continuous-Time Inference Network 82

5.3.1 Binary Relation Inference Network 83

5.3.2 Binary Relation Inference Network for MDPs 85

5.3.3 Continuous-Time Inference Network for MDPs 87

5.4 Convergence Consideration 88

5.5 Numerical Simulation 90

5.5.1 Example 1: Random Walk 90

5.5.2 Example 2: Random Walk on a Grid 94

5.5.3 Example 3: Stochastic Shortest Path Problem 97

5.5.4 Relationships Between A and / 99

5.6 Discrete-Time Inference Network 100

5.6.1 Results 101

5.7 Conclusion 102

-xii -

6. On Distributed g-Learning Network 104
6.1 Introduction 105

6.2 Distributed Q-Learriing Network 108

6.2.1 Distributed g-Leaming Network 109

6.2.2 2-Leaming Network Architecture 111

6.3 Experimental Results 114

6.3.1 Random Walk 114

6.3.2 The Shortest Path Problem 116

6.4 Discussion 120

6.4.1 Related Work 121

6.5 FPGAs Implementation 122

6.5.1 Distributed Registering Approach 123

6?5.2 Serial BRAM Storing Approach 124

6.5.3 Comparison 125

6.5.4 Discussion 127

6.6 Conclusion 128

7. Summary 129

Bibliography 132

Appendix

A. Simplified Floating-Point Arithmetic 143

B. Logarithm, Exponential and Division Implementation 144

B.l Introduction 144

B.2 Approximation Scheme 145

B.2.1 Logarithm 145

B.2.2 Exponentiation 147

B.2.3 Division 148

C. Analog VLSI Implementation 150

-xiii -

C.l Site Function 150

C.1.1 Multiplication Cell 150

C.2The Unit Function • 153

C.3 The Inference Network Computation 154

C.4 Layout 157

C.5 Fabrication 159

C.5.1 Testing and Characterization 161

rA

-xiv -

Chapter 1. Introduction 1

I

Chapter 1

Introduction

1.1 Bioinformatics

February 2001, it was the landmark of human technological advance, the remarkable success

of Human Genome Project (Baltimore 2001; Consortium 2001; Venter et al. 2001), by raveling

the underpinning of numerous genomes and DNA sequences from microbes to plants to

mammals, have created a revolution in biology that has no equal in the history of science.

Genomics is now the starting point for studies in biology, making tractable for the first time a

systematic and deep understanding of life's process. While stunning in the impact of the human

genome project, our foray into genomes has touched upon only the tiniest fraction of life on earth.

The diversity and range of the environment adaptations of microbes mean that they long ago

evolved solutions to many problems that scientists must now address. Comprising about fifty

percent of the earth's biomass (Whitman, Coleman et al. 1998), microbes are in consequence the

foundation of the biosphere, controlling earth's biogeochemical cycles and affecting the

productivity of the soil, quality of water, and global climate. The desire and aspiration of

understanding the life in the microbe's would, leads to the launch of another project, Genome to

Life, with scale equivalent to the Human Genome Project (Frazier, Thomassen et al. 2003).

The advent of the Human Genome Project and Genome to Life projects have impacted all of

the biomedical research and brought the exhilaration and celebration of the entering of post-

genomic era. However, the development of large sets of genomic data has challenged biologists

who as a rule have never encountered data of this scale. The secrets of life are yet to be

Chapter 1. Introduction 2

deciphered. Implementations of conventional statistical techniques have brought a level of order

and results to the biologist's desktop. But significant problems remain to be solved. The

challenge remains to extract the maximum useful information from genomic data. Consider

biology is awash by the amount of data and its complexity, which demands increasing

computation power. In addition to generation new data from pipelining biotechnological

machineries, innovations and implementations of computing infrastructure to support the

computational analysis of large-scale data set, complex model simulations and achieving

effective access to biological data are equally important.

Starting from gene sequencing, the combination of DNA base pairs of thousands genes can be

identified, and clues for a variety of structural and functional features might be provided.

However, to our knowledge, only molecular machinery of the cell can interpret the encrypted

sequences to determine the complex biochemical mechanism and to define the organism

behavior (D'haeseleer, Liang et al. 2000). Analysis of genomic sequences aims to understand

mechanisms of molecular machinery. Data mining and modeling approaches try to conceptualize

and unravel the functional relationships implicitly indicated in the genetic data set. Clustering

algorithms are typically popular on automatically grouping of genes based on their expression

measure and prior knowledge of the biological experiments. Some of these techniques, such as

Singular Value Decomposition (SVD) for genes clustering (Alter，Brown et al. 2000; Wall, Dyck

et al. 2001), expectation-maximization algorithm to cluster yeast data (Mjolsness, Mann et al.

1999), standard agglomerative hierarchical clustering algorithm for average-linkage analysis on

gene expression data (Eisen, Spellman et al. 1998), are considered as popular unsupervised

learning methods, from the engineering perspective.

Still, clustering approach typically only tells us correlative information, but not causality and

regulating models about genes, though it is a relatively easy way to extract useful information

out of large-scale gene expression data sets (D'haeseleer, Liang et al. 2000). More advance

analysis aims to infer causal connections between genes and network dynamics. One way to

make progress in understanding the principles of network dynamic is to radically simplify the

individual molecular interactions, and focus in the collective outcome (D'haeseleer, Liang et al.

2000; Maki, Tominaga et al. 2001). Boolean network (Kauffman 1969) represents such a

simplification: each gene is considered as a binary variable — either ON or OFF 一 regulated by

other genes through logical or Boolean functions. Although there are effective measurements of

Chapter 1. Introduction 3

genetic data from the microarray experiments, computational analysis is complex and is a serious

bottleneck in the study of genetic network using contemporary computing technology. New

computational paradigm of massive parallel and high performance computers are therefore in

great demand.

Among the computational genomic examples, evolutionary studied of different organisms,

through the judicious evaluation of DNA or protein sequences, is still the main stream in biology.

This is because an organism is best understood in the light of its evolutionary relationship to

other organisms (Karp 2003). Comparative study based on the theory of evolution can be traced

back to Charles Darwin (Darwin 1929). Instead of comparing the phenotype, such as size of eye

ball, or palm and height, nowadays, metrics based on DNA sequences are applied for

evolutionary studies. Computational model and methods to infer (or reconstruct) the evolutionary

history of organism, namely phylogentic tree reconstruction, becomes everyday practices of

biologists in many laboratories.

Phylogenetic tree study is one of the most fundamental bases in biology. It has been shown

that phylogeny analysis has its profound implication in pharmaceutical research which focus on

the evolution of virus for the purposes of drug-resistance prediction, immune-escape of

mutations (Rambaut, Posasa et al. 2004), etc. Also the strong drug adaptation of HIV virus can

be explained by its fast mutation rate. In (Worobey, Santiago et al. 2004), the origin of HIV is

using meticulous phylogeny analysis. To decipher HIV interaction with the immune system and

to develop effective control strategies, close relatives of the virus are studied using phylogeny

(Rambaut, Posasa et al. 2004). Besides virology and pharmaceutical applications of phylogeny,

recently, it has been shown that evolutionary studies of species can benefit the genomic studied

and the regulatory genetic network prediction as well (Eisen and Fraser 2003).

Phylogenetic tree reconstruction is computational intensive. Especially for recent advance

probabilistic-based model, phylogeny computation becomes a challenging engineering issue and

considered intractable for desktop computers. It is a difficult task to find the optimal solution

based on the maximum likelihood criterion, simply because of the exponentially growth of the

possible tree topologies with the number of taxa^. The possible unrooted, bifurcating w-taxa tree
84

topologies is corresponding to nearly 16 billion different trees for 12 taxa and 3x10 trees for

55 taxa. The optimal phylogenetic tree search problem is regarded as NP-hard (Lemmon and

1 Taxa is a general term referring to any kind of taxonomic unit including DNA sequences and nucleotide site.

Chapter 1. Introduction 4

Milinkovitch 2002) which implies that no known algorithm can find the optimal solution in

polynomial time. Heuristics are often used to search the near optimal tree within a reasonable

time, which essentially applies hill climbing or genetic algorithm approaches as the search

strategies (Strimmer and Haeseler 1996; Swofford, Olsen et al. 1996; Lewis 1998; Lemmon and

Milinkovitch 2002). The heuristics can reduce the search space for a near-optimal solution. The

tree evaluation is computationally demanding and is used repeatedly in the search. In general, the

computational cost of likelihood, accounts for the greatest portion of the execution time (i.e. 95%

in sequential execution) (Stamatakis, Ludwig et al. 2002). The computational intensive fixed-

topology tree evaluation is time consuming and this would result in the reduction of the overall

search speed.

12 Neural Prosthetics

In parallel with the success of computational genomics, neural science, is another important

subject in biology and medical science. Tremendous efforts have been put on innovation and

development in this area in the past two decades (Kandel, Schwartz et al. 2000). One of the

frontiers is repair of the human brain: developing prosthetics for the central nervous systems to

replace higher thought processes that have been lost due to damage or disease. The type of neural

prosthetic that performs or assists a cognitive function is qualitatively different from the cochlear

implant or artificial retina, in which transducer converts physical energy from the environment

into electrical stimulation or nerve fibers (Loeb 1990), and qualitatively different from functional

electrical stimulation (FES), in which preprogrammed electrical stimulation protocols are used to

activate muscular movement (Mauritz and Peckham 1987). Although there is still a long way

before the ultimate goal is achieved, neural prosthetic silicon neurons would have functional

properties specific to those of the damaged neurons, and would both receive as inputs and send

as output electrical activities to regions of the brain with which the damaged region previously

communicated (Berger et. al.2001).

Real-time simulation is an important step in the implementation of brain-machine interaction

(BMI), and is fundamental to several emerging neuromorphic, biomimetic and prosthetics

applications. For example, in electrophysiological studies of neuronal membrane properties using

the dynamic clamp technique (Sharp et. al. 1993; Butera et. al. 2004) , a digital computer is used

Chapter 1. Introduction 5

to generate virtual ion channel conductance which continuously interacts with a biological

neuron in real time. Such software-based experimental applications are highly computation-

intensive and often require judicious choice of operating system (Sharp et. al. 1993) and

numerical procedures (Butera et. al. 2004) to improve the computational speed and flexibility. A

hardware-based, application-specific implementation of the dynamic clamp technique would

circumvent the limitations of general-purpose computers.

Another example of neural prosthetics brain-machine-interface (BMI) is real-time neuronal

ion channel dynamics computation. For example, a robotic arm controlled by central brain

activities have been shown to be capable of generating complex motions (Taylor 2002), and such

capability may find important applications in patients with Parkinson's disease, Essential Tremor,

and dystonia (Isaacs et. al. 2000). One such technology is neuromorphic analog VLSI circuits

(Mead 1990). Towards this end, Rachmuth and Poon have previously proposed neuromorphic

Hebbian synapse design using analog CMOS circuits operating in subthreshold regime

(Rachmuth and Poon 2003; Rachmuth and Poon 2004). However, the relatively long design and

fabrication cycle for analog CMOS circuits is a bottleneck in the development of such devices.

1.3 Learning in Uncertainty

Besides the real-time requirement of the brain-machine-interface application, rapid learning

under stochastic and uncertainty is also important. This is widely used in knowledge acquisition

for making time-critical decision in real-time. Autonomous robots and vehicles are assigned to

perform missions in highly hazardous and extreme environments. In most of the time, good path

planning and quick reaction to avoid dangerous spots can increase the chance to reach the target

or accomplish a mission, as in the cases of gathering scientific information from a distant planets

or searching and rescuing life from a mass casualty incident site (Team 1997; Volpe, Estlin et al.

2000; Casper and Murphy 2003). One of the examples is the design of Mars rover, which is used

for exploration of Mars. Robust navigation through rocky terrains by small mobile robots is

challenging as little information about the uncertain environment at extreme conditions and there

is only limited number of communication with earth controller, i.e. twice a day (Volpe, Estlin et

al. 2000). Highly autonomous robots with intelligent and capability of learning and making

decision for path planning, execution are acquired for maximizing scientific data return from the

Chapter 1. Introduction 6

Mars exploration mission. Sojourner, the Mars Pathfinder rover was sent to Mars making

observations on the rocks and other deposits at the Ares site to collect information and prior

knowledge to increase the chance for latter rover success (Rover Team 1997).

Since the environment is highly dynamic and unpredictable, path planning relying only on the

prior knowledge is risky. Several real-time and on-line planning navigation techniques are

proposed to enhance the intelligence and on-line decision making capability of the rover for the

coming projects (Williams, Kim et al. 2001). On the other hand, exploration of the surface of a

distant planet by networks of autonomous cooperating vehicles would be an effective alternative

approach. Collective information from a distributed environment would increase the content of

the information and increase the chance of survival of the autonomous robots. Given this option,

distributed approaches for rapid learning in an uncertain environment and for making real-time

decision is important (Williams, Kim et al. 2001).

Among the examples of real-time path planning and decision making is the development of

intelligent Unmanned Aerial Vehicles (UAVs) for future combats to reduce human causalities.

The major challenge for intelligent UAVs development is path planning in uncertain and even

adversarial environments, for which the objective is to complete the given mission, to arrive at

the given target within a pre-specified time, while maximizing the safety of the UAVs. The

problem can be modeled as a typical stochastic learning and sequential decision problem (Jun

and D'Andrea 2003). However, in practice, UAV path planning is difficult because of two main

reasons. Firstly, in the adversarial environment, information is always incomplete and is highly

uncertain. It is difficult to acquire knowledge to decide on a reasonably well trajectory of the

flight. Secondly, the computational load grows quickly as the number of radar sites increases.

Delay in decision making, due to heavy computational burden, would be disastrous. The

distributed and parallel computational learning architecture could circumvent the limitation of

the sequential computation machineries (Tin 2004).

1.4 The Field Programmable Gate Array (FPGAs)

The latest high-end microprocessors utilize 90nm complementary metal oxide semiconductor

(CMOS) technology with 64-bit data bus, multiple functional units and megabytes of integrated

Chapter 1. Introduction 7

cache packed on a single die with up to a hundred million transistors operations at clock

frequencies over 3 GHz (Intel 2005). Although the computational abilities of these advanced

microprocessors are useful'to a wide range of civil, business and engineering applications, they

cannot always fulfill the needs of real-time signal processing, high-throughput computational

genomic systems and large-scale optimization, which require even higher computational power.

High power requirements and large heat dissipation are also shortcomings of microprocessors.

Essentially, the limitation of microprocessor system is due to the nature that software programs

executing follows a sequential operation within a microprocessor (Leong 2001). In contrast,

hardware implementation would utilize hardware parallelism and dedicated logic leading to

performance improvement over a microprocessor. The dedicated hardware architecture can be

designed to be more power and computational efficient.

Field Programmable Gate Array (FPGAs) becomes unique, power efficient, robust and high

performance computation engine. Originally FPGAs simply regarded as a fast prototyping tool

for microprocessor design in early 80，s. Evolution of silicon reconfiguration technology leads to

revolutionary replacement of legacy microcontroller. When comparing to traditional

microprocessors, the FPGA allow parallel implementation of computational logics and

arithmetic. Given a judicious design, throughput of the applications can be greatly enhanced. For

example, FPGA-based computing platform called a Programmable Active Memory (PAM)

machine (Bertin and Touati 1994; Mencer, Morf et al. 1998) achieved the fastest reported

encryption/decryption rate in history. In their work, it has been shown that an implementation of

the International Data Encryption Algorithm (IDEA) on a Xilinx Virtex-XCV300 FPGA

achieved 10 times faster than software implementation on a Sun Enterprise E4500 machine

equipped with twelve 400 MHz processors. In (Trimberger, Pang et al. 2003), implementation of

the Data Encryption Standard (DES) on a Xilinx XCV-300 device achieved 12Gbits/sec

encryption rate while only 9.3Gbits/sec was reported in the fastest ASIC implementation.

The technological advancement of FPGAs does not limited to civil applications, but

aeronautic and military applications are abounded. Mars Exploration Rover mission utilizes

Xilinx FPGAs in critical applications for both the lander and rover vehicles. According to

NASA's Jet Propulsion Laboratory in Pasadena, the Spirit Mars Exploration Rover (MER)

launched June 10, 2003 and the Opportunity MER launched July 7, 2003 employed some of the

most advanced radiation tolerant Xilinx Virtex FPGAs once they reached Mars. The Xilinx

Chapter 1. Introduction 8

devices was used to control the pyrotechnic devices on the lander, and several motor control

functions on the rover, including controllers for the wheels, steering, and antenna gimbals

(Xilinx 2003). In (Burke, Cozy et al. 2004), it was found that the operation of FPGAs, both Actel

and Xilinx parts, is in good condition at very low temperatures e.g. down to -165°C.

Investigation and implementation of control logics using FPGAs would greatly enhance its

robustness and speedup the development cycle. This would greatly benefit the autonomous

robotic and aeronautic machineries design application for distant planet exploration.

The capacity, functionalities and efficiency of FPGAs technologies does not stop evolving in

recent years. The earliest architecture XC4000 FPGAs had up to 180 thousands system gates.

Programmable floating gate transistor can be programmed becomes non-volatile memory

together with programmable switches form a network of programmable logics. Thousands of

logic operators could be connected together. Early architecture performance was limited by its

capacity. The later Xilinx Virtex series FPGAs had up to 4 millions system gates and 832 Kbytes

embedded memory. It was the first reconfigurable architecture with embedded memories, which

had greatly enhanced the competitiveness of FPGA to other signal processing and ASIC

processors. Later, Virtex-II series architectures were proposed. It was considered that signal

processing performance required large volume of arithmetic operator. Introduction of 18-bit

embedded multipliers increased the computational speed of the application. Further, it facilitated

higher robustness, power efficiency and logic utilization. More recently, Virtex-II Pro and

Virtex-4 FPGAs series enabled with IBM PowerPC immersed into the FPGAs fabric while high

performance internal bus architecture dedicating for the communication between the distributed

logics, embedded memory, multipliers and the embedded microprocessor (Xilinx 2002). The

platform offers great flexibility for users to define task partitioning between the FPGA hardware

logic and software running on the embedded microprocessor. It also provides a tightly-coupled

HW/SW computing environment and supports a high-speed internal bus, which significantly

reduces communication overhead. A central bus infrastructure with dedicated sub-buses and

interconnected bridges is essential for providing a high throughput communication gateway

connecting the microprocessor and FPGA. More specifically in (IBM 2002), the PowerPC core

accesses high-speed system resources (such as instructions and data) through the Processor Local

Bus (PLB); and On-Chip Peripheral Bus (OPB) provides the connectivity to the FPGA. As

Chapter 1. Introduction 9

integrated circuit technology continue to improve at a noticeable rate, one could be assured that

even more powerful FPGA devices would be available in the future.

Accumulation of biological data, leads scientists and biologists to look for effective

alternatives to process the stacking data and to circumvent the computational problem attributed

to desktop computers. FPGAs, on the other hand, would be an effective implementation platform

for tackling the computational problem by its distributed architecture and effective use of

parallelism. It is only the beginning to apply FPGA technology on biomedical, bioinformatics

and even neural prosthetics. Pioneer TimeLogic Inc. commercially provides solutions to the

problem of searching genetic databases (TimeLogic 2002), in which 160 FPGAs are used to

form a powerful cluster of computational system. Although the system is only one fifth of the

computational speed of the machines used in the Human Genome Project, it is more power

efficient and inexpensive. (Guccione and Keller 2002) found that, over ten times acceleration

achieved for using more advance FPGA processors. In that case 4000 processing units were used

to match gene sequences in parallel. This showed that FPGAs was an excellent solution to the

bioinformatics applications. Few of the latest achievements in DNA sequence alignment were

presented in (Yu, Kwong et al. 2003; Dydek and Bala 2004), where different systolic array

parallelization schemes were adopted to gain higher acceleration.

In addition, FPGA implementation is an effective solution to neural prosthetics and

reinforcement learning problems mentioned above. Based on the programmable distributed logic

cells and other embedded resources, algorithms can be mapped to FPGA. The reconfigurable

nature of FPGAs enables multiple designs to be programmed on the same hardware device at

different times. Thus the costly design and fabrication process delay associated with Very Large

Scale Integration (VLSI) design are avoided. The continuous improvement in silicon technology

offers faster and larger FPGA devices over time. Design based on FPGA is versatile. With

improved density and shorter design time in the future, designers may implement more

sophisticated algorithms leading to further improvement in system performance.

Unfortunately, the FPGAs design and mapping of algorithms to FPGAs are always not

straightforward. It is challenging to have efficient design with good mapping from the algorithms

to the hardware logics. This is always due to the design complexity and the algorithm complexity.

Efficient and simple algorithms are not necessarily efficient to be executed in hardware with

trivial implementation. Besides, one difficulty in designing FPGA applications is that hardware

Chapter 1. Introduction 10

resources are strictly limited. Hardware area efficiency is still a major issue, even though density

of FPGA devices has improved substantially. Very often, performance is sacrificed to fit a design

into a given FPGA device. It is important to able to explore the tradeoff between area and

performance, and a single design description can lead to multiple implementations with area and

performance tradeoff.

1.5 Scope of the Thesis

The objective of this thesis is to investigate and develop efficient methods to address the

computational challenges, from bioinformatics, neural prosthetics problems to theoretical

reinforcement learning implementation in a distributed environment. Our goal are to explore new

applications and to improve the performance based on software-based implementation

methodologies and sequential computational framework.

Reverse engineering of genetic network is one of the greatest challenges in today's

bioinformatics. In (Akutsu, Kuhara et al. 1998; Maki, Tominaga et al. 2001; Kimura,

Hatakeyama et al. 2003), the idea of partitioning genes into equivalence sets, from a large

genetic network and with reference to a Boolean matrix obtained from the gene expression

patterns resulted from microarray experiments was proposed. The equivalence sets facilitate

effective grouping of "closed-loop" genes, and can be derived from transitive-closure

computation. Subsequently, dynamic models are estimated from the identified equivalence sets

for capturing network behavior. Therefore, computation of the transitive-closure for the

equivalence sets is as an important step for building static and dynamic models of genetic

network (Maki, Tominaga et al. 2001). In Chapter 2, we present a hybrid method, which

integrates genetic algorithm (GA) with dynamic programming approach address the

computational intensive equivalence sets search problem. This approach converts a high

dimension computation problem into a search problem which is solved by GA using dynamic

programming. The computation of transitive-do sure forms the basic fitness evaluation in GA.

This is used for selecting candidate chromosomes generated by applying basic genetic operators.

Small transitive-closure equivalence sets can be found from large genetic network with less

computational effort. We also offer an efficient Field Programmable Gate Array (FPGAs)

implementation platform for the required computation. Application of FPGA processors for

Chapter 1. Introduction 11

searching equivalence set minimizes experimental delay due to computational intensive data

analysis.
t

Chapter 3 addresses the computational problem in the evolutionary study of DNA sequences.

We specifically study different approaches to speedup the phylogenetic tree reconstruction.

Phylogeny (phylogenetic tree) is a meaningful representation for the evolutionary history of

different organisms and it had been shown tremendous impact to the biological and medical

science. Due to the exponentially increasing search space for the optimal Maximum Likelihood

(ML) criterion, the phylogeny inference is classified as NP-hard. Heuristic search makes use of

the likelihood evaluation function extensively to give score for the candidate solutions. This tree

evaluation process is a critical but computationally demanding task. We present the design of a

dedicated FPGA-based hardware system that performs ML tree evaluation in a more efficient

manner than a software implementation. With simplification of the ML function, a recursive ML

evaluation algorithm is proposed. This algorithm can be mapped to FPGAs using digital logics.

In addition, based on the DNA state and nucleotide site independence, fine-grained parallelism is

introduced into the proposed FPGA-based architecture to provide significant speed-up.

In Chapter 4, we study the FPGAs implementation for one of the basic mechanisms in neural

prosthetics. Neuron-machine interfaces such as dynamic clamp and brain-implantable neuro-

prosthetic devices require real-time simulations of neuronal ion channel dynamics. We present

an FPGA design of a neuromorphic Hebbian synapse, which mimics NMDA and non-NMDA

ion channel dynamics observed experimentally in hippocampal neurons. The proposed design

can be readily extended to high-speed implementations of dynamic clamp and neuro-prosthetics

for replacements of damaged neurons in the brain.

Dynamic programming is a step of crucial importance in real-time decision making

reinforcement learning problem where problem solution time can be an implementation

bottleneck. In Chapter 5, we consider a distributed computational framework for both discrete-

time and continuous-time inference network for solving dynamic programming problems.

Interconnected computational units, forming a network, participate simultaneously in the

computation while maintaining coordination by information exchange via continuous

communication link. The implementation of the value-iteration algorithm of dynamic

programming for the expected average cost criterion is presented. We show that the inference

Chapter 1. Introduction 12

network converges to the optimal Bellman optimality condition, for which the convergence rate

can be made arbitrarily fast and is practically independent of the discounting factor and the

number of states. Numerical simulation of using such continuous-time inference network for

random-walk and stochastic shortest path problems are also described and compared. We also

derived a discrete-time version of the inference network that the network can be well mapped to

FPGAs for solving dynamic programming. Besides, we investigate the realization of continuous-

time inference network using analog CMOS VLSI. Inference cell with embedded computational

units based on analog arithmetic components would be developed for verification and realization

of the continuous-time inference network model.

In a Markov decision process, knowledge of the state transition probability function and the

reinforcement reward is not always available. The agent must interact with its environment

directly to obtain information. This is by means an appropriate algorithm, to produce optimal

decisions. In Chapter 6 assuming the probability and rewards are unknown, to circumvent the

limitation of the dynamic programming, Q-leaming, proposed by Watkins, as a simple yet

strikingly powerful learning algorithm contributes the on-line reinforcement learning. However,

the slow sequential learning process under the conventional g-leaming algorithm would delay

the solution time for many time-critical and real-time decision making problems. Based on the

framework of the Bellman Inference Network, a novel g-leaming network architecture is

proposed. We introduce the exploration and memory components to the original Bellman

inference network to form a connectionist network with together the capability of parallel

learning and optimization. We found that the Q-leaming network outperforms significantly the

conventional Q-leaming algorithm under a distributed unknown environment. We also proposed

two design alternatives for the realization of g-leaming network using FPGAs. The network

would be dedicated to fit different applications.

Chapter 1. Introduction 13

In Chapter 7, we summarize and conclude our studies on FPGA-based architecture design with

respect to the problems in the area of bioinformatics, neural prosthetics and reinforcement

learning.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 14

Chapter 2
t

A Hybrid GA-DP Approach for

Searching the Equivalence Sets

The computation of transitive-closure equivalence sets has recently emerged as an important step

for building static and dynamic models of genetic network. We present a hybrid method of

integrating genetic algorithm (GA) with dynamic programming (DP) approach and offer an

efficient Field Programmable Gate Array (FPGA) implementation platform for the required

computation. This approach converts a computational problem of high dimension into a search

problem with DP embedded in GA. The DP computation of transitive-closure forms the basic

fitness evaluation in GA, for selecting candidate chromosomes generated by applying basic

genetic operators. Small transitive-closure equivalence sets can be found from large genetic

network with less computational effort. Mutation and crossover operators are specially designed,

that always keeps the chromosome in feasible solution domain. The results show that GA-DP is

able to locate the small equivalence set from a large network with less than 100 generation even

with a small population size (i.e. 30). In our FPGA implementation, a Boolean Relation

Inference Network (BRIN) is embedded in the hardware GA that realizes the parallel transitive-

closure computation. Implementation of parallel mutation and crossover operation will also be

discussed.

Keywords: Equivalence Set, Genetic Algorithm, Transitive Closure, FPGA

Abbreviations and Acronyms

GA Genetic Algorithm

ES Equivalence set

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 15

GA-DP Genetic Algorithm and Dynamic Programming

FPGA Field Programmable Gates Array

BRIN Boolean Relation Inference Network

RNG Random Number Generator

Nomenclature

R Boolean matrix representing the genetic network

R{iJ) The accessibility from gene i to gene j

R ‘ Transitive-closure of the genetic network R

R \i, j) The accessibility from gene i to gene j in the transitive-closure R ‘

N The genetic network

n The size of the genetic network (i.e. the number of nodes in N)

A The sub-matrix that representing the Boolean relationships of elements in

M

A ‘ The transitive-closure of A

ER(iJ) The evaluation of the element i and j, whether they belong to the same

equivalence set

M The equivalence set

m The number of elements in the equivalence set

P Population size of GA

CR the population of GA, that it is P x M matrix

CR{c) the c chromosome in the population

CR(c, g) gene g from the chromosome c
•

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 16

2.1 Introduction

The rapid advance in technology such as DNA microarrays makes available voluminous

experimental data (Smyth, Yang et al. 2002) for the analysis and development of models for

large scale genetic network comprising several thousands of genes. Information extraction and

reduction to meaningful patterns from the data has become an urgent but rather computationally

demanding task. In (Akutsu, Kuhara et al. 1998; Maki, Tominaga et al. 2001; Kimura,

Hatakeyama et al. 2003) the idea of partitioning genes into equivalence sets, from a large

network was proposed, with reference to a Boolean matrix R obtained from the gene expression

patterns resulting from disruption or forced expression. The equivalence sets allow effective

grouping of "closed-loop" genes (where the effects of gene on gene ‘b, and gene 'Z?' on gene

‘a, coexist in the set), and can be derived from transitive-closure computation (See Figure 2.1).

Subsequently, dynamic models are estimated from the identified equivalence sets for capturing

network behavior (Maki, Tominaga et al. 2001).

While the transitive-closure computation for an «-node genetic network N can be readily

obtained by sequential dynamic programming techniques such as Floyd-Warshall or Bellman-

Ford algorithm (Cormen, Leiserson et al. 1990), the procedure is computationally intensive for

practical network size where the network size is large. Subsequent search to obtain all possible

m-node (where m is much smaller than n) equivalence sets is needed based on the result of

transitive-closure computation. Since the transitive closure computation is a computational

intensive task with O(n^), it is not efficient and wasting computation effort to find a m-node

equivalence sets from a large «-node genetic network (n » m) that requires the computation of

transitive-closure for the whole genetic network as an initial step.

Instead of locating the equivalence set by applying dynamic programming on the network, we

introduce a searching strategy based on an equivalence set criterion. It is only required to

compute the transitive-closure for a candidate solution M, which is a small sub-network from N.

The high dimension computational intensive task is broken down into smaller pieces, such that

only a small sub-network transitive-closure computation is required instead of a large network.

However, an exhaustive Brute-Force search for testing all the possible m-node sets of

candidates solutions on the equivalence criterion from an «-node genetic network is not viable,

simply because that the number of combinations increases drastically. However, Genetic

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 17

Algorithm (GA) has long been known to be a highly efficient global search procedure than

Brute-Force, provided that a meaningful fitness evaluation for candidate solutions (or so-call

chromosome in a population) is known (Cheng 1998; Langdon 1998; Leung, Li et al. 1998). In

this chapter, we introduce a hybrid genetic algorithm, dynamic programming (GA-DP) approach,

which provides an efficient alternative solution to search the equivalence genes from a network

of genes. The specific problem in this chapter is to maximize the equivalence set criterion for an

m-node network, which is selected by GA from the whole w-node network. The equivalence set

is found when GA converges to the optimal solution. Instead of locating the equivalence set in a

network by an exhaustive computation, the GA-DP approach can reduce the computation effort

in transitive-closure computation and offers a fast searching strategy.

Equivalence set

Figure 2.1 A 30-node genetic network, in which node represents gene and solid edges represents the causality

relations between genes, while the dotted edges represented the transitive-closure relationships. An equivalence sets

{1, 5, 6，9, 14} is shown, where within this set every gene is affecting the others directly or by transitive-closure.

In addition, we have implemented the hybrid GA-DP algorithm using Field Programmable

Gates Arrays (FPGA), a real-time custom computing platform that has seen growing usage for

GA (Graham and Nelson 1996; Martin 2001; Shackleford, Snider et al. 2001; Canham and

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 18

Tyrrell 2003). Intrinsic fine-grained parallelism for the genetic operators, such as mutation and

crossover, in GA-DP are exploited in digital hardware. In addition, a Boolean Relation Inference

Network (BRIN) is realized for the parallel transitive-closure computation. This design can

effectively reduce the computation complexity of transitive-closure to 0(\ogi{n-\)) from 0{n)

(Ng and Lam 2003). With these hardware designs, the GA-DP in hardware can outperform the

speed performance of GA-DP in software.

In section 2, we give an introduction of the equivalence set problem. In the section 3, the GA-

DP algorithm is presented. The overview of the GA-DP architecture is presented, with further

details of individual GA and DP block given in section 4. The simulation results and discussion

are in section 5. Limitations and future works are presented in section 6, while conclusion is in

section 7.

2.2 Equivalence Set Criterion
In line with the work in (Maki, Tominaga et al. 2001), the accessibility relationships of genes

can be represented as an w x w Boolean matrix [Rij\nxn where Rij = 1 when gene ‘/，and gene ‘f

affect each other, otherwise Rij = 0. Let the node of network Â be F = {v!, V2, ..., v„}, and

consider a subset M= {v\, V2, ..., v^} of vertices for some m. An equivalence set M is introduced,

in which a set of genes are affecting each other in a group and the group is assumed to be one

gene. To evaluate the equivalence relationships, we can base on the transitive-closure matrix [Tuv_

of the original matrix where there is a path from vertex v“ to vertex Vv in G denoted as r“v二 1,

otherwise r^y^O.

Then, we can use the transitive-closure relationship to evaluate a set of genes in the genetic

network, whether they belong to the same equivalence set. Suppose, we have two genes, gene

and gene ‘b,, if the two genes are forming an equivalence set ER(a, b), that their corresponding

transitive-closure will be Tab 二 1 and Tba � 1. This can be extended to an equivalence set with m

genes, such that all pairs of elements in M are fulfilled the conditioned of an equivalence set

which is given as follows,

= 》 二 ^ (2.1)

Making partition genes into equivalence set, all genes are included in only one group. In other

words, there are no repeating genes in an equivalence sets and no one genes belongs to more than

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 19

one equivalence set. The partitioning of a set of equivalence genes is represented as S = {^Sj,

such that the sets are pairwise disjoint, that is Si, Sj e S and i * j imply A 乂 = 0 .

To determine whether a set of genes M from the genetic network N is an equivalence set, Eq.

(2.1) is readily applied. Firstly, a sub-matrix A is constructed from R, where A is the Boolean

relation matrix for elements in M. Then A , which is the transitive-closure of A, is computed by

using dynamic programming. Then, we can use A to evaluate whether the set M is an

equivalence set. If two genes are in the same equivalence set, the sum of their corresponding

entries in the transitive-closure matrix will be two). As there are m{m-\)/2 pairs of the

elements in M, and if M is an equivalence set, the sums of all entries in the transitive-closure

matrix A will be m{m-\). In other words, the optimal condition is, that all the entries in A ,

excluding the diagonal, are one (See Figure 2.2).

Figure 2.2 A sub-network, which consists of node {1, 5，6，9，14} is extracted from the genetic network N.

Transitive closure computation is applied to the sub-network, then the total number of edges is 20, as this sub-

network forms an equivalence set.

2.3 Genetic Algorithm and Dynamic Programming

In (Maki, Tominaga et al. 2001), the procedure based on dynamic programming to infer

equivalence set from a network has been outlined that the transitive closure of the whole network

has to be derived as the first step. After that equivalence sets are extracted from the transitive-

closure network subsequently by identifying groups of genes affecting each others. It happens to

be the equivalence set searching becomes a time consuming process due to the computationally

intensive transitive-closure inference. As an alternative, the equivalence set problem can be

formulated into a search problem, that the algorithm intents to search a set of node from the

genetic network that the equivalence criterion is maximized.

1 If the set [a, b] is an equivalence set, then the transitive-closure R'(a, b) = 1 and R'(fl, b) = 1, thus R'(a, b) + R'{b, a) = 2

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 20

The computation of transitive-closure from the candidate set M is only based on the

connectivity of vertexes in M. Therefore, we can construct a Boolean matrix [QST]MXM represents

the accessibility between genes in M. Also an indexing function ^(v/) is introduced that re-index

the vertex v/ in M where v； g M, Therefore the relationship between matrix Q and R is given as

We also denote the transitive-closure of 0 as 0，. Based on the definition of equivalence set

given in Eq. (2.1), the objective of the optimization is to maximize the number edges in the

transitive-closure of the sub-graph M that is given as

m m

max V V Q.
观 台 4 (2.3)

where i j 二 众）and v̂ e M ’VA: = l,2,.",m

Under this objective function, the evaluation of the candidate solution, only the transitive-

closure of the candidate of equivalence sub-network is necessary to compute while the sub-

network is much smaller than the network {n»m). However, the number of possible solutions is

increasing exponentially^ with the network size, though the dimension of the transitive-closure

matrix is reduced. It will also be time consuming to use the Brute-force approach to enumerate

all possible solutions.

2.3.1 Genetic Algorithm Formulation

Genetic Algorithm (GA), which is a well-known efficient heuristic search algorithm, which is

adopted to search the equivalence set from the network. The idea is that we let the fitness

function as the objective function in Eq. (2.3) and using genetic operators to search equivalence

sets from the network. Candidate with higher fitness score indicates that the transitive-closure of

the chromosome has larger number of edges. Thus GA tends to leave more offspring, which is

with large number of edges, in the next generation, and natural selection increases the average

density of the chromosomes in the population. At the same time, the mutation and the crossover

operators in GA will explore the search space looking for alternative solution.

There is an interesting class of partitioning problems, which require partitioning n object into k

categories. One of the categories of evolution programs was based on representing all objects as

2 The possible solutions equals to select m genes from n genes, therefore the solution space equals to „C„.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 21

a permutation list; special operators can be applied and a decoder makes the decisions on the

assignments (Davis 1991). However, in genetic network equivalence set search problem, there

are thousands objects to be partitioned. This leads to a very long chromosome string and a

possibly slow convergence, as there are many objects to be partitioned. A straightforward

approach is to encode the equivalence set as a chromosome, as the size of the equivalence set is

much smaller. The partition can be represented as m-strings of integer numbers, C/ = (xi, X2,

Xm) where the j-th. integer Xj e M as a gene in the genetic network. Chromosome C/ is candidate

equivalence set of the network. Therefore, the size of the chromosome only is the size of the

equivalence set, which is much smaller than the network.

2.3.2 Bounded Mutation

Integer chromosome representation is common used in many evolutionary algorithms.

However, most of the operators are dedicatedly designed for meeting the constraint of the

problem or objective formulation. For the equivalence criterion in Eq. (2.2), the most important

constraint for the candidate solution is that there are no repeating genes in an equivalence sets.

As there is no existing genetic operator that can provide mutation and crossover operation that

the chromosome will not violate the constraint. Therefore, we develop the bounded mutation and

conditioned crossover operator, which provide genetic operation on the chromosomes while the

offspring chromosome is within the feasible domain.

A bounded mutation operator is developed that makes the new offspring not violating the

equivalence set constraint. As in an equivalence set, there is no repeating gene within one

equivalence set. If we replace the gene randomly in the mutation process, there is a chance for a

gene to appear within one chromosome more than once. It is an infeasible solution for the fitness

evaluation function. The idea is to randomly replace a node in the chromosome by a new node,

which is different from all existing nodes in the chromosome.

It is defined as follows. For a parent jc, if the element Xk was selected for this mutation, the

result isx' = (x\, ...,Xk, ..-j^m) where,

X; =y, whQrGyeV-{x^,X2,...,xJ (2.4)

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 22

where V is the complete set of nodes in network N and y belongs to the set of nodes, that the

nodes in the parent chromosome are removed. The bounded mutation generates offspring with no

repeating genes as the new gene jc�belongs to the set that offspring genes are removed.

2.3.3 Conditioned Crossover

The crossover operation has a similar problem that is faced in the mutation, as random genes

exchanging between two chromosomes will probably result in gene duplication in the offspring.

For two parents are defined as follows: if xi = {^i, …，Xm) and X2 = [y i ,少 2， y m) are
t >

crossed after the A:-th position, the resulting offspring are: x； = {xi, Xk,少众+/,...,少m} and

= [y i , yi, ym, Xk+i,..., X^}- However, if { xi, X2, Xk } fl (y/H/,...,少m}关0 and [yi,少2,...,

yk} n Xm}̂ 0 , the offspring x/ and X2 will be infeasible solution. Therefore,

comparison is applied between every element of the two parents. If there is a gene Xi in Xi equals

to yj in X2, crossover will be prohibited in the i-th position of chromosome xi. Thus, we denote

the single offspring from the two parent chromosomeXi andxzs i sx = {^1, X2, s!,..., s^-k},

such that Si is given as

^ 似 ， (2 5)

The offspring from the two parents generates offspring in a domain of the feasible solution

that can be evaluated by the equivalence criterion given the parents are feasible set. The

following example is used to illustrate the idea of conditioned crossover

Example: Suppose we have two parent chromosomes, x! = {1, 3, 7, 11, 19} and = {2, 14,

19, 23, 3}. A condition crossover is applied directly on these two chromosomes, and X2.

Suppose the crossover is at the first position, which means starting from the second genes in x j

can be exchanged to xj. As the gene 19 and 3 in the 3-rd and 5-th position of x j that are

appearing in JC2. Then the offspring is 二 {1, 14, 7, 23, 19}, in which no crossover on the 3-rd and

5-th position.

2.3.4 Implementation
A implementation for bounded mutation would be start with preparing a list, in which is

indexes of all nodes. Then remove the node, which can be found in the chromosome, from the

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 23

list. Lastly, a node is randomly drawn from the list to replace one of gene in the chromosome.

However, this approach could be slow and memory consuming, as the length of the list could be

lengthy once the network is large. An alternative approach is to apply a sorting operation on the

chromosome as first step. After that a new gene can be generated based on any interval between

two genes, which the new gene is not repeating with the existing genes. The alternative approach

does not require prepare a lengthy list.

The chromosome is sorted as the first step. Then there will be m+1 intervals between the m

sorted genes], as each gene CR(c, g) in chromosome c is represented by an integer value from 1

to n. Then two random numbers are generated, that rand_pos is for deciding which interval to

use and the rand—node is used for generating new integer between the chosen intervals. Lastly,

one of the nodes from chromosome is chosen randomly to be replaced by this new node. The

process is repeated for all the chromosomes, which are subjected to mutate. The pseudo-code of

the bounded mutation is presented in Figure 2.3.

Bounded Mutation (CR)
For c � 1 to P
Sort(CR)
If (rand > m_rate)
rand_pos := round(rand*(m+l))

if (randj)os� 1)
rand_node=round(mnd*(CR(c, rand_pos)))

else if (randj)OS=l)
rand_node=round(mnd*(n-CR(c, rand_pos+l))
else
rand_node=round(rand'^(CR(c, rand_pos)-CR(c, randjws+l)))
end
rand_pos wund(mnd*m)
CR(c, rand_pos) = rand—node
end if
Return CR;
end

Figure 2.3 The pseudo-code of bounded mutation. In all pseudo-code, we use rand to represent random generated

number in (0,1).

Conditioned crossover is performed with probability c—rate. After a first parent CR(c) has been

chosen and given rise to an offspring chromosome in the next generation, a decision is made

whether or not to allow a second parent to recombine with this new offspring individual. With

3 We represent each gene as a positive integer from 1 to n. Once m genes in the chromosome are sorted, we can have m+1 interval, which is

the difference between two genes (integers).

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 24

the probability c—rate for each chromosome, a second chromosome CR(p-c-^\) is selected from

the parental population. A preprocessing task is performed before the crossover operation is

applied on these two chromosomes that it is to ensure that the offspring will not violate the

equivalence set constraint. A temporary array CR，，which records whether the elements in the

first chromosome has elements appearing in the second chromosome. The array CR’ can be

accomplished by comparing the two parent chromosomes and if the element in the z-th position

of the first chromosome appearing in the second chromosome, CR '(i) =\, otherwise, CR，(/)=0,

Crossover (CR)
For c = 1 to P

If (rand > c_rate)
For i = I to m

For j = 1 torn ^
If(CR(c, i)=CR(p-c+lJ)) Preposessmg task to

CR'(i) = l I prepare CTT
Else

CR'(i) = 0
endif

endfor
new_CR(c) = Condition_Crossover(CR(c), CR(p-c+l), CR’)

End
End
Return new CR;

End 一

Condition_Crossover(CR\, CR2, CR’)
for i = I to rand_pos

if(CR'=0)
CRj(i) = CR2(i);

end if
endfor
Return CRj；

Figure 2.4 The pseudo-code of the conditional crossover

2.4 Digital Implementation of GA-DP
The GA-DP approach can be implemented using digital logic, which provides efficient

hardware logical operation and parallel computation. In this section, we present the hardware

implementation of the GA-DP algorithm, that (1) system architecture overview, (2) parallel

computation for transitive-closure and (3) the design of the genetic operators will be discussed

specifically.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 25

2.4.1 System Overview

Figure 2.5 shows a GA7DP system overview. It consists of 2 major components: (1) the GA

and (2) the fitness evaluation. There are three GA operators, which are selection, crossover and

mutation, and they are working independently and sharing with the same memory. Data

communication relies on the temp_RAM, which stores the chromosomes. Each operator retrieves

the chromosomes from the temp—RAM before execution, and stores the results back to the

temp RAM after finishing the work. An asynchronous mechanism is adopted, that there are an

enable input and a ready output within each functional block. The genetic operators will start to

run only after the enable signal is 1, and its ready output will be 1, once it has finished the work.

Theses control signal are centralized and controlled by the System Controller. It ensures the

functional blocks are executed sequentially.

_ Boo lean
她 P 剛 Network

Matr ix (ROM)

… A . Fitness Value GAOpjrators J J . Computation

Select ion — ^ Crossover Mutation 一 卜 LUT BRIN Summat ion _

4 ^ ^ + ^ ^ f ^ ^ A f i

^ 1 t r
System Controller

— i Elite RAM — — — —

Figure 2.5 The architecture of the GA-DP hardware system

The fitness value computation module is comprised of 3 sub-modules, which are the sub-

matrix construction, transitive-closure computation and the summation operation. The first sub-

module is to reconstruct the sub-matrix from the chromosome, that it requires reading the values

from Boolean matrix. It is tightly coupled with the ROM, which stores the Boolean matrix R.

The Boolean Matrix is mapped to a vector with aligned by rows while storing in the ROM. The

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 26

address for the accessibility value in the Boolean matrix can be easily calculated by the Eq. (2.6),

where i and j are the row and column of the Boolean matrix respectively.

,RiiJ)A) + , (2.6)
[y + / X w +1 , otherwise

where n is the network size.

The sub-matrix is readily used for transitive-closure computation. Though it is possible to use

the Floyd-Warshall algorithm as implemented in the software, it cannot utilize the parallelism

capability in hardware. A Boolean Relation Inference Network (BRIN) is realized, that it

provides a parallel architecture for the required computation. We will discuss the design in the

next section in details. BRIN inputs the sub-matrix and outputs its transitive-closure. The last

step is to sum up all values from this output. Then the result, which is the fitness value of the

chromosome, is stored in the RAM.

2.4.2 Parallel Computation for Transitive-Closure

Floyd-Warshall algorithm is adopted in software programming for GA-DP. The

computation complexity is in 0{r?). A Boolean Relation Inference Network (BRIN) is

introduced, that in the hardware implementation the transitive-closure computation can be

efficiently parallelized. The computation complexity is reduced to 0(log2(«-l)). BRIN is able to

solve different optimization problems, which included critical path, and transitive closure

problem (Lam and Tong 1996; Ng and Lam 2003). The architecture has been found to show

promise in obtaining the global optimal solution in logarithm time in the FPGA implementation

(Lam 1996; Lam and Su 1996).

Transitive closure is a special case of the general shortest path problem, in which one has to

find a route between two nodes with minimum arc cost when given a set of nodes and arcs.

However, in a transitive closure calculation, the arc cost in the network becomes a binary

representation. For all-pairs transitive closure problem, the transitive-closure has to be derived by

dynamic programming like Bellmen-Ford and Floyd-Warshall (Cormen, Leiserson et al. 1990).

The complexity of these algorithms is O(n^), which is computation costly. An «-node network is

represented in n row square matrix R form with entries for n^ times either 1 or 0. For the

Bellmen-Ford algorithm, network cost is updates sequentially by the relaxation equation.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 27

However this is only for the single-destination problem. When considering the all-pair problem,

the network update is repeated n times.
f

i i
a,i) (以 (N.)

f T H " - R J n
^ A •争•

t - M ' S l i i U L] - ^ t l 处 二
• _ I i ! 讽 i)

——L U ； 1 scu�

Cm, —r"_,"."—: :>=:叙 I,�
”-——H —L
�^^ ^ ••-•••- -
Cni ："•—— 丄
c . i • ^ ^ ^ ^ ^
C u ^

Figure 2.6 Connectionist network topology diagram of BRIN. The diagram shows three computation units of

BRIN, which consists of the unit function and the site function. For transitive closure calculation, site function is

implemented by an AND-gate while the unit function is implemented by an OR-gate.

A Boolean Relation Inference Network (BRIN) was implemented with a parallelized Bellmen-

Ford algorithm to speedup the calculation from O(n^) to 0(log2(n-l)). A connectionist network,

which can realize the network updating process, parallelizes the required network relaxation step.

One way to compute the transitive closure is based on the Bellman-Ford formulation, that the

transitive-closure can be stated in the semi-ring form 二 ® ® where © is the

summary operator and % is the extension operator and dy is the cost for the path from i to j. In

the transitive closure problem, ‘OR, operator substitutes � and ‘AND, substitutes ® . The

transitive pathway from node x to z (dxz) is the binary arc cost from node x to node y (dxy) and

from node y to node z (dyz), the ‘AND，operator ensures there is a possible path from x to z

through

The general BRIN framework in Figure 2.6 can readily implement the semi-ring structure

stated. There is a site function and an unit function in a BRIN computational unit. The unit

function implements the OR-gate while the site function implements the AND-gate. The n-l

units can be constructed in a parallel way such that the output of a unit is a feedback to the input

of other units. In the worst case, the computation time for such parallel processing is 0(hg2(n-

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 28

1)). On a higher level, Bellmen-Ford modules can be run in parallel for all-pairs transitive

closure computation since all BRIN computational units are independent. Therefore even for

computing all-pairs transitive closure, a complexity of 0(log2(n-l)) is required.

2.4.3 Genetic Operation Realization

As there are no repeating elements within one equivalence set, the mutation and crossover

operator are designed that the offspring generated will not infringe the constraint. The mutation

operator consists of 3 major components, which are the random number generator (RNG), node

generator and the mutation position decision unit. The RNG is comprised of an XOR gate and a

circuit of linear feedback shift registers. Using feedback from the various stages of an k-hit shift

register, connected to the first stage with an XOR gates, a sequence of 2^-1 patterns that have the

characteristics of randomly generated numbers (Peterson and Jr. 1972). The pseudorandom

binary sequence generation gives a simple method of generating random number for the

mutation operation. This random number is readily mapped to the zero to one interval, that the

number is used as the random number rand from Figure 2.7.

Random I , Mutaton Number ~ - M p�诵q^^ Generator
T """"

Genes ::: 二
input in \ "。气 广小一
paraHel 一 genemtor N Genes 丨叩ut

—知 ~ o u t p u t
� z sequential

Figure 2.7 The data flow of the mutation operator

The node generator comprises of a sorting network and the new node generation circuit. The

sorting network sorts the genes in the chromosome in ascending order. As applying parallelism,

the sorting can be finished in logarithm time (Cormen, Leiserson et al. 1990). Then, the genes are

inputted into the new node generation circuit, which generate new node as the sequential

execution in software algorithm. The new node will replace the once of the gene from the parent

chromosome to produce an offspring with mutated gene.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 29

The crossover unit inputs two chromosomes in parallel and output a new offspring. The unit

has two sub-module, which the first sub-module is to find the repeating elements in the two

parent chromosomes, while the second sub-module is for realizing the condition crossover. We

have m comparison units (CM) for testing all combinations of genes between the two parent

chromosomes. There are m-I comparison modules in each CM, thus the comparison can be done

in parallel. The output of each CM/ will be either 1, if there exists a gene in the second

chromosome, which equals to the i gene in the first chromosome, or otherwise 0. This signal will

inform the conditional crossover unit which gene in CR(c) is not viable for the crossover to the

CR(p-c+l).

CR(c, 1} 「、、、——一] 厂
C_ �� RNG

CR(p~c+1) •

CR(c, 2} —�f
CM2 � —

‘―^ —new_gene2
Umform

CR(c, 3} Crossover �

CM3 ——�: Unit ：

—•«• —�• new_genet

:: ： ““

CR(c, I) —
CM

- •

Figure 2.8 Data flow of the Crossover operation

The uniform crossover unit comprises m new gene generation circuit running in parallel, that

one of them has been shown in Figure 2.8, The crossover happens following simple rule, that the

gene i from CR(c) will appear in the offspring only if the rand_pos^ is greater than i and CMi is 1.

If these conditions are satisfied, the multiplexer will choose the CR(c), otherwise, CR(p-c^\) will

be chosen.

4 rand—pos is the position, which begins the crossover. It is generated by round(rancN), where rand is the random number between 0 and
1 . 一

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 30

RNG

< 二 職？A.-們

, 广 I J X ^

index (/) —J �

\
CR(p'C+1, i)———————————-—

new^gene,
CR(c, i) ,

Figure 2.9 The schematic for generating one new_gene in the crossover unit

For each comparison unit (CM), there are m-\ comparators running in parallel, and followed

by the OR operators.

2.5 Discussion

We investigate the potential of the GA-DP algorithm in searching small equivalence set from a

large genetic network. Consider a typical network of 30-node with one 5-node equivalence set.

Let us relate the problem with using GA-DP algorithm for searching the equivalence set. In this

case, the size of the chromosome equals to five, and hence the genes are labeled from one to

thirty. Hence, the optimal criterion for this problem becomes twenty.

As observed from a typical run (Figure 2.10) under 100 GA generations, the GA-DP converges

to the optimal solution at the 40-th iteration^. In this example, GA-DP is able locate the

equivalence set from the network, which is much large than the equivalence set. The result is

encouraging as GA-DP is very effective in searching the equivalence set from a 30-node

network.

5 The population size is 50, the mutation rate is 0.05 and the crossover rate is 0.2.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 31

2 0 I I I I I I I I ！

V ；
n l I I I I I I I 1 1

0 10 20 30 40 50 BO 70 80 90 100

Figure 2.10 Software simulation result of the GADP on searching the 5-node equivalence genes from a 30-node

network. The dotted line is the best fitness value while the solid curve is average fitness value among the population

in every iteration.

On another experiment, we investigate the relationship between the number of GA generations

required to find the equivalence set and the population size of GA. Consider two experimental

setups with networks in size 30 and 50. We change the population size from 10 to 100. The

generations, which the GA-DP locates the equivalence set, is measured. We randomly generate

network of different topology and the equivalence set is placed randomly in the network. For

each population size, we test on 50 different networks. Figure 2.11 shows the averaged results of

50 runs. It can be observed that the generation number decreases with the population size for

both setups. The curve decreases rapidly when the population size is ranged from 10 to 30. After

that, the generation number decreases slightly. In most of cases, it appears that if the population

size of GA-DP is greater than 30, the GA-DP is able to locate the solution within 100 generations

for a network size of 30 and 50. This is attributes to the fact that the large population size can

largely diversify the search space of equivalence set from a network, and GA-DP can be more

effective to locate the optimal solution with larger population size.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 32

咖 I r 1 1 1 1 1 1 1 1

叫、_ I o ~ 3 0 n o d e s |
250」、• -

\ r < 50 nodes ……
• •� I 1
\ \ �\ w 200 - � ‘ -

\、,

'9,

g ��
？ 150 - \ \ —
a> ^ .
“ I f � � \

V � \

100- <3�\-4 -
o � 义 、 、

50-

g I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

population size

Figure 2.11 The number of generations versus population size on the GA-DP algorithm. Two experimental setups

were tested, that the network size are 30 and 50 respectively.

Furthermore, experiments have confirmed that GA-DP scales well with respect to the size of

the network. Figure 2.12 presents the results of the computation time for GA-DP to find the

equivalence set from a network of size varied from 30 to 500. The GA-DP algorithm shows little

increase in time for handling larger network. On the other hand, we found that the computation

time for original approach^, which evaluates the transitive-closure of the whole network before

extracting the equivalence set, increases rapidly with the network size. From the Figure 2.12, it is

interesting to find out that when the network size smaller than 150, TC spends less time than

GA-DP. Since the fitness evaluation and the genetic operations of GA-DP is approximately a

constant time, the TC spends less time than this constant when network size is smaller than 150.

6 We called it the TC approach, which TC stands for transitive-closure

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 33

18�
O GA-DP I

_ <] TC /

—- I /
14- , /

/

/
12 - ‘

/

广 /
S ‘
S B - /
i
“ 6 - Z

-一-《一-

0- nmw.-^ €.一� ® ® ® ® °

.21 I I I I i I I I I I
0 50 100 150 200 250 300 350 400 450 500

network size

Figure 2.12 The comparison on the computation time between the GA-DP and the transitive-closure approach

from (Maki, Tominaga et al. 2001) for searching the equivalence set from network of different size

We had successfully implemented the GA-DP system into the one FPGA processor. The

hardware system is tested on a 30-node genetic network problem. The system found the

equivalence set using 0.01361 seconds while the 0.26 second is used in the software for the same

problem. The hardware system offers 20 times acceleration in this example. This is mainly

attributed to the fine-grained parallelism on the operations in GA-DP. The system consumes 64%

of the FPGA resources called slices? in the XESS XSV-800 FPGA prototyping board with a

Virtex-800 devices.

2.6 Limitation and Future Work

So far the GA-DP approach has been shown that is able to find the equivalence set of small

size from a large network. Currently, we only investigate the case of single equivalence set

existing in the network. In a more practical manner, multiple equivalence sets can be identified,

which seems to be a more difficult problem than single equivalence set searching. This is

because the existing design of GA-DP will converge to one equivalence solution only. Also

'Slice is regarded as a measure of hardware logic consumption in FPGA.

Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 34

multiple equivalence sets may create a more complicated landscape of search space, that GA-DP

may not always reach the optimal solution, has been considered as future work.
t

In addition, the work on digital FPGA implementation indicated that performance of GA-

DP can be improved through parallel digital implementation. In reviewed work concerning

FPGA for GA implementation, indicated that performance improvement over a software

implementation of two or three orders of magnitude can be achieved by introducing GA in

hardware. Though we have realized fine-grained parallelism in the system, our work described

so far has not achieved this level of improvement. This is probably due to the fact that

parallelism has not been introduced in the chromosome mutation and fitness evaluation, that

chromosomes are mutated and evaluated sequentially. The hardware implementation shows that

64% of slice (i.e. equivalent to the number of logic gates) has been used in a XCV-800 FPGA

device. There is room for improvement on GA-DP with more parallelism implemented in FPGA.

2.6 Conclusion

The search of equivalence sets in large scale genetic network emerges as an important step in

gene expression data analysis. Our proposed GA-DP algorithm has shown to give an efficient

solution to the rather computation demanding problem. A bounded mutation and conditional

crossover operator are introduced to constrain the offspring of GA within the feasible solution

domain. We found that the GA-DP algorithm can effectively locate the small equivalence set

from large genetic network in few generations. Also, the GA-DP is more efficient than mere the

dynamic programming approach, which requires to derived the transitive-closure of the whole

genetic network, when the network size is large (>150 nodes). We also provide a realization of

GA-DP algorithm and Boolean Relation Inference Network (BRIN) for the required dynamic

programming embedded in GA using FPGA platform. Study was shown that performance of

GA-DP can be improved through parallel digital implementation significantly.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

(

Chapter 3

An FPGA-based Architecture for

Maximum-Likelihood Phylogeny

Evaluation
Study the evolutionary history of organism, namely phylogeny or phylogenetic tree

reconstruction, is an important but computational intensive task. Due to the exponentially

increasing search space based on the optimal criterion, maximum-likelihood, the phylogeny

inference is classified as NP-hard. Heuristic search makes use of the probabilistic evaluation

function repeatedly to give score for each candidate solution. The evaluation becomes a

critical but computationally demanding task. We propose a dedicated FPGA-based hardware

design for the critical computation. Modified floating point arithmetic and parallel recursive

architecture are proposed for supporting the precision demanding probabilistic computation

and the basic data structure operation of phylogenetic tree respectively. The bit-error

computation of the proposed arithmetic system has been studied and the error formula has

been derived. Significant acceleration for the tree evaluation can be obtained based on the

proposed hardware architecture.

Keywords一phylogenetic tree reconstruction, maximum-likelihood, pruning algorithm,

hardware architecture, Field Programmable Gate Array (FPGA)

•

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

3.1 Introduction
t

Molecular phylogeny studies the evolutionary processes of different organisms using

molecular data (i.e. DNA and protein), which provides significant information for molecular

biologists to understand bacteria and virus behaviors (Yang 2001; Rambaut, Posasa et al. 2004).

Numerous interesting and important examples of evolutionary studying based on DNA analysis

were presented during the last few decades. Such studies often have significant implications on

virus identification, drug design and genomic analysis (Kishino, Miyata et al. 1990; Bader,

Moret et al. 2001; Yang 2001). In (Drosten et al. 2003), a phylogenetic tree was generated from

DNA sequences of Severe Acute Respiratory Syndrome (SARS) virus and other coronavirus. By

using phylogeny analysis, the SARS virus was identified as a novel virus that is a close relative

to some known coronavirus. Besides, Rambaut et. al, showed that phylogeny analysis has its

profound implication in the pharmaceutical research that to study the evolution of virus can

predict drug-resistance and immune-escape of mutations (Rambaut, Posasa et al. 2004). Also the

strong drug adaptation of HIV virus can be explained by its fast mutation rate. In (Worobey,

Santiago et al. 2004), the origin of HIV is studied and found through meticulous phylogeny

analysis. To decipher HIV interaction with the immune system and developing effective control

strategies, close relatives of the virus are studied using the phylogeny (Rambaut, Posasa et al.

2004). In addition, for the virology and pharmaceutical application of phylogeny, it has been

shown that evolutionary studies of species can benefit the genomic studied and the regulatory

genetic network as well (Eisen and Fraser 2003).

The evolutionary relationships between organisms are often encoded as a bifurcating

unrooted^ tree, which are made by meaningful arrangement of nodes and branches (See Figure

3.1). Nodes at the tips of the branches (external node) correspond to a gene or an organism while

internal nodes usually represent an inferred common ancestor, which gives rise to two

independent lineages at some point in the past. In Figure 3.1, node A, B, C and D are external

nodes that represent species of which molecular sequence data is available. In contrast, the

internal node E and F represent inferred ancestors for which empirical data is not available. A

phylogenetic tree can be inferred from nucleotide sequences, or DNA (Deoxyribonucleic acid),

1 In rooted trees a single node is assigned as a common ancestor, while unrooted trees only specify the relationship between nodes and say
nothing about the direction in which evolution occurred.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

in which each DNA only exists as one of the four possible bases or so-called "states": guanine

(G), adenine (A), thymine (7) and cytosine (Q.

e r �

Figure 3.1 A 4-taxa' unrooted bifurcating tree

Although there are a variety of methods for phylogenetic tree reconstruction, Maximum

Likelihood (ML) becomes one of the most popular approach for phylogeny analysis (Felsenstein

1981). The ML approach reduces the complexity of biological mutation process to simple

stochastic models with small number of parameters. The likelihood value under the ML model

offers an evaluation for the phylogenetic trees, which is a probability of the observed DNA

sequences conditioned on tree topology T and model parameter M. The likelihood Z is a

conditional probability P(D\T,M) where D is the observed nucleotide sequences given as an n xl

matrix with its elements D^^ e {A,T,G,C}. The ML methodology is then used to determine the

best match for the tree topology T and model parameters M’ such that it can maximize the

likelihood probability to give the observed nucleotide sequences under the ML criterion.

However, it is a difficult task to find the optimal solution based on the ML criterion, simply

because of the exponentially growth of the possible tree topologies with the increasing number of

taxa^. The possible unrooted, bifurcating «-taxa tree topologies S is

— (2 " (3.1)

corresponding to nearly 16 billion different trees for 12 taxa and 3x10 "̂̂ trees for 55 taxa. The

optimal phylogenetic tree search problem is regarded as NP-hard (Lemmon and Milinkovitch

2 Taxa is a general term referring to any kind of taxonomic unit including DNA sequences and nucleotide site.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

2002) which implies that no known algorithm can find the optimal solution in polynomial time.

Heuristics are often used for searching a near optimal tree within a reasonable time, which

essentially apply hill climbing or genetic algorithm approaches as the search strategies (Strimmer

and Haeseler 1996; Swofford, Olsen et al. 1996; Lewis 1998; Lemmon and Milinkovitch 2002).

Applying the heuristics can reduce the search space for a near-optimal solution; the tree

evaluation is computationally demanding and is being used repeatedly. In general, the

computational cost of the likelihood, which accounts for the greatest portion of the execution

time (i.e. 95% in sequential execution) (Stamatakis, Ludwig et al. 2002).

Overall computational cost for the phylogeny solution consists of two parameters: (1)

evaluation time per tree topology and (2) number of candidate solutions to evaluate, which can

be simply modeled as

Overall time = Evaluation time per tree topology x number of tree topologies (3.2)

If the tree evaluation process can be speedup, the overall searching time can be reduced. In this

chapter, we address this issue where a speed-up strategy is proposed by introducing dedicated

hardware for the computational intensive evaluation function.

I ^ Sfngie-CPŷ Singlfe-CPu/ T

I / 1
I / I Z � / / f p g a

‘‘̂ ' ^ ® « ' * .��“� ，《 H H 7 « » ” TTTTTT r
numltei of taxa (n) number of taxa number of taxit(n)

Figure 3.2 a.) The topological space of the phylogenetic tree grows exponentially with the problem size, b.) the

FPGA-based processor for ML evaluation provides hundreds acceleration when comparing to the software

implementation, c.) The overall time in phylogeny reconstruction can be reduced that in a reasonable time, the

FPGA solution can handle problem of larger size.

The idea is illustrated in Figure 3.2. The first diagram is the number of tree topologies against

the number of taxa. It grows exponentially even using heuristics search strategy, which is the

same regardless of the implementation platform. The second diagram shows the computation

time for tree evaluation against the number of taxa. By using dedicated hardware device, the tree

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

evaluation time can be reduced. As a result, the overall computation time can be reduced (in the

third diagram). Though the computation time is still growing exponentially with dedicated

hardware, the curve is delayed. It implies that the solution with dedicated hardware would have

potential to solve problem of larger scale in reasonable time which is not feasible using desktop

computers.

However, it is challenging to implement the evaluation function in hardware. Firstly, the

probabilistic maximum-likelihood evaluation is precision demanding. The fixed-point arithmetic

architecture in FPGAs would be difficult to support the precision requirement. Secondly, in

hardware, there is lack of dynamic data structure, such as binary tree and stack, which are trivial

basics in software implementations. Thus, it is difficult to implement the basic phylogenetic tree

operations, such as binary tree traversal, which is a critical step in the tree evaluation. Thirdly,

logarithm and exponential evaluation are required, which are essentially difficult to be

implemented in hardware with high precision requirement and with limited hardware resources.

To circumvent the limitations and difficulties, we simplified the phylogeny likelihood

evaluation function as recursive routine. A pseudo-binary tree data structure is used to represent

a phylogeny that can be mapped to the memory effectively. Parallelization is introduced in the

hardware architecture that provides significant speedup when comparing to the sequential

execution in desktop computers. On the other hand, we introduce a simplified floating point

number representation scheme, in which a high precision and dedicated for the probabilistic

computation can be obtained. The dedicated processor may be readily adapted to the heuristics

search algorithms to improve the computational speed of the tree evaluation, and thus the overall

phylogenetic tree reconstruction task can be speedup.

3.2 Maximum-Likelihood Model

We consider the likelihood value of interest as a probability function which has three inputs:

an unrooted bifurcating tree J\ a molecular substitution model M, and n aligned DNA sequences

with I based pairs (i.e. each individual base pair is called a site), given as an « x / matrix D. The

substitution model has a set of parameters that defines the rate of mutation from one base DNA

to another. Following (Felsenstein 1981), the probabilistic likelihood is defined as

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

/

Ini： = I r , M) = I n (3 . 3)
5= 1

where D= [Drsjnxi，D^^ ^ (A,T,G,C}，Ds is the site pattern of D at site s (i.e. the s^ column of

D), and P(D\T,M) is the conditional probability calculated from the specified substitution model.

M and tree T are yet to be determined.

Although the likelihood probability P(D\T,M) can be expressed in a general form, it is

presented here with an example. Consider a given tree T with 4 taxa (see Figure 3.1) with

reference to the site pattern A； the lengths of the branches of the tree are ft. All nodes in the tree

are labeled {A, B, C, D, E, F), as there is a total of 2n-2 nodes in an unrooted bifurcating tree.

The specific states (here the number of possible states for DNA is four) of nodes A, B, C and D

are simply denoted as xi, X2, xs and X4 as given in A , and the states of nodes E and F are denoted

as ；cj and respectively. The likelihood probability for site pattern Ds equals to

PiD,\T.M) = t t �W) 户 ¥ 2 (⑴尸納(幻户納⑷户义(《） (3.4)
义5=1义6=1

where Py is the transition probability which represents the probability of a nucleotide changing

from state i to j (e.g. if i equals to state A and j equals to state C then P” equals to the probability

of a nucleotide mutate from state A to C). tt/ is the priori probability for state i. The likelihood

P(Ds\TM) is the product of five transition probabilities and the prior probability representing 5

incurred mutations (see Figure 3.1). The expression will have 16 terms, and in general the

expression for n taxa will have terms, which can be increasing exponentially. Fortunately,

Eq. (3.4) can be simplified by moving the summation signs rightwards (See Eq. (3.5)) to reduce

the number of terms. Eq. (3.5) gives an exact evaluation of the tree topology which equals to Eq.

(3.4).

I T , M � : f ^ � �I \ �(^ 2 X 1 尸 納 ⑷ 户 而 (幻 尸 納 ⑷ ） (3-5)
；(5=1 -^6=1

A "pruning" algorithm described in (Felsenstein 1981) can effectively compute the likelihood

value based on this idea and it is formally formulated by introducing the idea of partial

likelihood (Adachi and Hasegawa 1996). The likelihood value can be computed by using a

recursive routine, which the expression is evaluated by working outwards from the innermost

summation sign. The detail of the algorithm is described below.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

3.3 Hardware Mapping for Pruning Algorithm
3.3.1 Related Works

t

Early work of Maximum-likelihood tree evaluation implementation can be traced back to the

DNAml software, which is bundled in the phylogeny package Phylip (Felsenstein 1989). The

software implements the "pruning" algorithm proposed by Felsenstein in (Felsenstein 1981). In

the last decade, many software packages for ML phylogenetic tree reconstruction are released as

introducing new search strategies or implemented in new programming languages. For examples,

MORPHY proposed a complicate date structure of phylogeny that is dedicated for an effective

branch length optimization (Adachi and Hasegawa 1996) and Phylogenetic Analysis Library

(PAL) is package for phylogeny reconstruction written in Java (Drummond and Strimmer 2001).

Besides, a commercial version phylogeny package PAUP is very popular among biologist

(Swofford 2003) and fastDNAml is an improved version of DNAml (Olsen, Matsuda et al.

1994).

A few reasons that make the hardware implementation become difficult. Firstly, the

maximum-likelihood computation involves large amount of floating-point multiplications and

additions. Floating-point computation in hardware is expensive, in terms of speed and area, to

many current digital technologies while most of the current custom digital hardware designs are

in fixed-point due to its simplicity. Large truncation error will be introduced on the ML

computation that makes the design is difficult to scale-up handle problem of larger dimension.

For example, in (Ewe, Cheung et al. 2004), a dual fixed-point scheme provides a wider dynamic

range number representation method was proposed. On the other hand, it is not flexible as

software for developing hardware with dynamic data structure, of which it is widely available in

software (Horowitz, Sahni et al. 1996). Effort of engineering reduction should be spent to

simplify the procedure that the algorithm can be implemented in hardware efficiently. In this

section, we present the methodologies on hardware design for the ML computation. Details about

number representation, tree representation and traversal and the hardware-based recursive

algorithm are presented.

3.3.2 Number Representation

Fixed-point architecture commonly used in FPGA digital logic design, provides the

advantages of economic hardware resource consumption and high speed arithmetic. However,

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

the number range for a fixed-point architecture can represent is rather limited. Particularly, when

we deal with probability numbers, which would be a small number in many case. Based on the

idea of floating point, we issue a dynamic range of number representation with based on the

existing fixed-point arithmetic. As the numbers are always between zero and one that generally a

probability number F is represented by a pair (M, E) having the value

F = M-2' (3.6)

where M is the significant (or mantissa), E is the exponent. In our design, the base is 2 as it is

convenient in digital logics design. In addition, E is always a non-positive integer and M is

between 0.5 and 1. This is because F is always between zero and one in our case, and M is

assumed to be normalized (shifting the leading 1 to the leftmost bit). Then we can use two fixed-

point numbers to represent a simplified floating-point representation in hardware as assigning a

m-bit string with binary point at zero position to represent M and a p-h\i string to represent E as

the first sign bit can be ignored as we have assumed the exponent term is always negative.

It is flexible in reconfigurable computing design that the number of bits assigned to represent a

number or the arithmetic operations. Suppose, m bits are used to represent the mantissa M and p

bits used to represent the exponent term E. Dynamic range is defined by the ratio between the

largest and the smallest absolute number in the data format. The smallest absolute value of the

representation on Eq. (3.6) is 二—广‘+‘ while the largest absolute value is (1-2"'"), hence the

dynamic range of this number representation is given as

Dynamic range = 201og��(22"i(l-2-")) dB (3.7)

Having two number of bits realization gives the proposed number representation is better range

of capability than fixed-point as shown in Table 3,1.

Table 3.1 Dynamic range comparison between Simplified Floating Point (SFPT), Fixed-point and
Single Precision Floating Point (FPT)

Number representation SFPT SFPT Fixed-point Floating Point

Format' 32—16 32-bit 32-bit IEEE

Dynamic Range 767dB 394kdB 187dB 1529dB

3 For the format x_y, where x is the number of bits assigning to mantissa and y is the number of bits assigning to the exponent.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

The proposed number representation can handle a much larger number range when comparing

to fixed-point number representation. This is importation in the maximum-likelihood

computation, as there are many multiplication operations on the probability values, which is a

number less than one (See Eq. (3.4)). Large truncation is expected on the fixed-point number,

that the system requires large number of bit assigning to the binary representation, which is

hardware costly. Noted that the simplified floating-point representation with 16 exponent bits has

a larger number range than the single precision floating point representation. In other words, this

representation has potential for handling very large scale phylogeny maximum-likelihood

computation.

Modification on the fixed-point arithmetic operators can handle the SFPT arithmetic. In

addition, only additions and multiplications are required in the system for the probability

calculation. The design of the SFPT arithmetic operators is referring to the appendix.

3.3.3 Binary Tree Representation

Binary tree is one of the most fundamental and important data structure in computer science,

that it also has been investigated intensively in the field of computer science for a very long time

(Horowitz, Sahni et al. 1996). Binary tree is a finite set of nodes that is either empty or consists

of a root and two disjoint binary trees called the left subtree and the right subtree. A lot of tree

operations based on the binary tree are well studied.

Binary tree is similar to a phylogenetic tree, excepting that the root node in the phylogenetic is

unknown. In most of the case, the tree is unrooted. To represents a phylogeny using a binary tree,

we can arbitrary assign an imaginary root to the phylogeny, that root is the parent of two

neighboring internal node. It can be done by split the tree by removing any one edge between

two nodes. Then add another node as root, and which is also the parent of the two nodes (See

Figure 3.3). This can convert a phylogeny to a binary tree. On other hand, the binary tree can be

easily converted back to the phylogeny by removing the root.

An unrooted tree can be converted into a pseudo-rooted binary tree with one additional root

node. An unrooted bifurcating phylogenetic tree has n leaf nodes (or taxa) and n-2 internal nodes.

There are a total of 2n-2 nodes with 2n-3 branches. The pseudo-rooted binary tree then has a

total of 2n-l nodes (one root, n terminals, and n-2 non-terminals). FPGA implementation should

use either a ROM (or RAM) or fast registers. A binary tree node should have five address

attributes: node index or address (AO, parent address (P), left child address (L), right child

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

address {R). Information of a node can be accessed through the node index, e.g.,

branch_length(AO. A 2«x24-bit RAM/ROM table is used for the «-taxa rooted or unrooted tree,

each row has 3 column fields each with 8 bits, storing P, L, and R, respectively. Row 0 (or node

index 0) should not be used for valid node indexing. The unsigned 8-bit field then implies that a

maximum node index of 2^=196 can be referenced. The depth of the RAM/RAM should be 2n

for an w-taxa tree. For a general number of taxa, the size of the ROM/RAM is 6n log�^ .

(7)
) T v

(I 广、 / ！ \ 厂、h
(} / i \ . c
、么 / m n I I p q X

、‘‘丫、..、q /'飞么 《/一、气，广X
、乂 \J 1 w V" 、人

rY^ g 見 I 《 今 ' [c)
6 - r S A 广、I 产.）

、、乂 W
c d e f

Figure 3.3 A 8-node unrooted tree, which is used to illustrate the pseudo-binary tree data structure. The root r is an

arbitrary root adding between the node n and o. The edge between n and o is replaced by the edge between r and n.

The edge between r and o is an imaginary branch.

Node Address P L R

Null 0 0 0 0 ~
a 1 9 0 0

b 2 9 0 0

c 3 10 0 0

d 4 1 1 0 0

e 5 12 0 0

f 6 13 0 0

g 7 14 0 0

h 8 14 0 0

I 9 10 1 2

m 10 11 9 3

n 11 15 10 4

o 12 15 5 3

p 13 12 6 14

q 14 13 8 7

r 15 0 11 12

Figure 3.4 An example of tree represented in a ROM/RAM that the tree is in Figure 3.3

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 45

3.3.4 Binary Tree Traversal

The tree traversal is required to determine the correct operation sequence in evaluating tree T.
I

Pre-order traversal generates a Polish expression from the tree, while a post-order traversal

generates a reverse-Polish expression. Pre-order traversal is defined recursively, starting from the

root r of r w i t h its left subtree T\ and right subtree 72, as follows:

Pre-order(r) - r, Pre-order(2；), P r e - o r d e i U J (3.8)

Example: 8-taxa unrooted phylogenetic tree. The given data structure of a RAM/ROM table for

the example tree is assumed. Pre-order tree traversal will generate the node sequence [15，11, 10,

9，1,2,3,4, 12,5, 13,6，14，8, 7].

(Begin)

n ^ ^ f e ^ False
l e a f ^

True 1
V [p l | T ‘ ‘~‘ “

~ n o d e := Sw.popO
next—node := current_node->left_child

I � _ _ _ - I
S..push{GU:rrenLnode) nexLnode := node->right_child

I T
current—node := next_node

T

Sr.add(current—node)

False ^ - - ^ i t e d a i r \

nodes
I True

C^D
Figure 3.5 The flowchart for pre-order tree traversal with using stack

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

Recursive algorithm is not straightforward in hardware implementation while it can be

implemented using software in a straightforward way. The Pseudo code for finding pre-order

sequence for a binary tree T with root r is presented in a flowchart in Figure 3.5，which can be

implemented in hardware. The code is developed using operation on two stacks, working stack

(Sw) and result stack (Sr). The working stack supports the recursion while the results stack stores

the polish expression.

3.3.5 Maximum-Likelihood Evaluation Algorithm

Likelihood probability evaluation takes exponential time in the number of unknown nodes, as

the number of terms in Eq. (3.4) increases exponentially in the unknown variables. However,

there exist economics way for computing these probabilities based on variable elimination

(Homer's rule) that rearrange the individual terms in Eq. (3.5). One of the realization can be

referring to the "pruning" algorithm proposed by Felsenstein. It is based on a reverse-polish

expression to evaluate the likelihood of a given tree. In order to evaluate the likelihood value of a

tree based the Pseudo-Binary tree data structure, the likelihood function can be formulated as a

recursive function. In line with the works of (Adachi and Hasegawa \996), partial likelihood is

defined as the probabilistic likelihood of a node conditioned on a state. We can express the

partial likelihood values for site pattern A as a matrix Q=[Qik\cxd, where c is the number of

states and d is the nodes index. Following the definition of a binary tree, which is defined

recursively as Eq. (3.8), we denote Q(尸）as the partial likelihood of a parent node and g尸）and

� as the partial likelihood of left and right child nodes respectively (See Figure 3.6).

Figure 3.6 The partial likelihood Q is defined recursively based its parent-children relationships, where the

superscripts (P) is the parent, (R) is the right child and (L) is the left child. The subscript of Q is the conditional

state. 6i is the branch length with respect to node i.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

The partial likelihood can be computed recursively based on the reverse-polish expression (Eq.

(3.9)-(3.12)). The recursion starts from one of the leaf node, where the partial likelihoods for this

node are computed by using Eq. (3.12). As this is a leaf node, the partial likelihood simply

equals to the corresponding transition probability of the D N A state of the node (i.e. Ds of the

node). Partial likelihoods of any internal nodes are computed based on Eq. (3.11). Note that the

formulation of Eq. (3.9) is in a similar form of Eq. (3.11), in which defines a binary tree. Based

on the polish expression given by the Eq. (3.8), the Q⑷ and Q �)h a s been computed based on

previous visit. As we are using a Pseudo-binary tree and one of the branch is imaginary branch

that the partial likelihood value in corresponding to this node should be using Eq. (3.11) to

compute. Finally, when visiting the root node, the overall likelihood probability is evaluated

based on Eq. (3.9).

jT,M) = 驗) = . Q⑷• G 严 ） （3.9)
i=l

g厂)二 Q 严 i f p is the root node (3.10)

Q ⑵ 尸 . 0 广 ， ifP is the internal node (3.11)
7=1

= PJPk), if 户 is the leaf node (3.12)

A n algorithm is introduced to implement the tree evaluation with input the reverse-polish

expression, where we introduce four kinds of operations that working on pseudo-binary tree data

structure. They are given as: 1. Terminal Node Operation (TNO) for Eq. (3.12), 2. Internal Node

Operation (INO) for Eq. (3.11)，3. Imaginary Branch Node Operation (IMBO) for Eq. (3.10) and

4. Root Node Operation (RTO) for Eq. (3.9). There are c working stack (Si) are introduced to

accommodate the recursive computation, where i is the index of the stack. As we are working on

the D N A , there are 4 stacks are prepared and each stack is for each state.

The four kinds of operations becomes the basic function on the tree evaluation application. W e

propose a dedicate architecture that provides the four basic instructions (TNO, INO, I M N O and

RNO). The processor is designed, so that the computation speed is optimized providing parallel

execution. Also, block floating point number representation is adopted that a high accuracy can

be obtained.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

1 • Terminal Node Operation (TNO), with node h
For each state i

im = i)
Push (Pii(Gj) into Si

Else
Push (Pij(ej) into Si

end
End

2. Internal Node Operation (INO), internal node q with children nodes g and h
For each state i

QJeft[i] = Pop S,
Q_nght[i] = Pop Si
Qj)roduct[i] 二 Q_left[i] 乂 Q_right[i]

Q_parent[i]=0
For each state j

VM)
Q_parent[i] Q_product[i] x PuiOj

Else
Q_parent[i] += Q_product[i] x Pi/6J

endif
endfor

End

3. Imaginary Branch Node Operation (IBNO), internal node o with children nodes I a n d p
For each state i

QJeftfiJ = Pop Si
Q_right[i] = Pop Si
Q_product[i]= QJeftfiJ^ Q—right[i]
Push (Q_product[iJ)

End

4. Root Node Operation (RNO), root node r with children nodes n and o
Qj)arent[0]=0
For each state i

QJeft[i] 二 Pop Si
Q_right[i] = Pop Si
Q_product[i]= QJeft[i]^ Q—right[i]
Q_parent[i] += Q_product[iJ x TT-

End

Figure 3.7 The pseudo-code of four basic routines that is the realization of Eq. 9-12 of four basic routines from

Figure 3.7.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

Function Comp—likelihood (r jjolish, root, imaginary—node, N)
-root stored the root node address
-imaginary node is the imaginary branch node address
-r_polish is the stack storing the reverse polish expression
-N is the total number of nodes

begin
while(r jjolish is not empty)

n = pop(r_polish)
\fn>N

If (n = root)
RNO

Else if (n = imaginary—node)
IBNO —

Else
INO

End
Else

TNO
End

End
end

Figure 3.8 The pseudo-code of the recursive maximum-likelihood evaluation algorithm based on the four basic

routines from Figure 3.7

3.4 System Architecture

The data path diagram for maximum-likelihood tree evaluation is shown in figure 3.9. The

transition probability unit evaluates the probability from the tree branch length and model

parameters. The probabilities will be stored in R A M s that is to be retrieved by the state parallel

computational unit. The tree traversal unit outputs the reverse polish expression of the pseudo

binary tree. As the probability computation and the tree traversal are independent tasks, they can

be executed in parallel with independent hardware. The state parallel computation unit

implements the recursive maximum-likelihood evaluation algorithm with input the reverse polish

expression and the transition probability and output the likelihood value. As likelihood value of

sites are assumed independent, we can introduce an array of state-parallel computational units

and each responsible for a sub-sequence of data. The overall likelihood is just summed over all

computational units after taking the logarithm ̂ and accumulated. The designs of these

computational units are presents in the following sections.

4 Multiplicative normalization approach is adopted on the logarithm implementation [23].

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

广一一— """"̂ 、

DNA

M o d e l p a r a m e t e r , ^ r

T r a n s i t i o n | S t a t e - P a r a l i e l

Hrancn tengins probability Unit | Tr娜Computational log R
~ 广 — U n i t K \

T r e e t o p o l o g y j ^ S t a t e - P a r a l l e l p - p — ^ \
‘ T r e e T r a v e r s a l ！ ‘ ^ m ^ 一 — C o m p u t a t i o n a l 叫 l o g 十 R 厂 . \ L o q - L i k e l i h o o d
, U n i t r ^ p o f e h ^ ^ U n i t ® ^ • ^

I 棚 isa-- » i j f / f . p HwaĵWt-
• . * /J../ L___l

, * • • /

• : / :• : \ /
Y R

S t a t e - P a r a l l e l ^ ^ - ^ o y
• C o m p u t a t i o n a l h l o g R ‘

Unit -~~

Figure 3.9 The data path diagram of likelihood evaluation for a given tree topology, branch lengths and model

parameters. The state-parallel computational unit (SPCU) realize the recursive ML evaluation algorithm. Based on

the site independent assumption, each SPCU evaluates a partial sequence and the overall likelihood can be obtained

by adding up all the results from each SPCU.

3.4.1 Transition Probability Unit

The transition probability unit computes the state transition probability based on the input

branch length and the model parameters. For simple models, such as Juke-Canter, the

computation is realized using hardware. For instance, if we assumed that the sequences are

evolving according to the Jukes Cantor model (Jukes and Cantor 1969). Following (Strimmer

and Haeseler 2003), the probability can be computed based on two functions. W e apply the

addictive normalization unit to approximate the exponentiation value in the function (Ercegovac

and Lang 2004.).

For more complicated modal, like H K Y (Hasegawa-Kishino-Yano modal), spectral

factorization is required (Hasegawa, Kishino et al. 1985). It is complicated and can be expensive

in hardware implementation in terms of hardware resources. A hardware/software partitioning

approach can be adopted to deal with the computation. The transition probability evaluation is

then completed by the software (i.e. microprocessor). After obtaining the transition probability,

F P G A read back the data from a commonly shared R A M . As this the transition probability

values are the same for all nucleotide sites, this computation step only required in the

initialization step. The probability values can be stored in the internal R A M of FPGA for the

remaining computation.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

3.4.2 State-Parallel Computation Unit

Consider the evaluation of a fixed-topology phylogeny as a recursive evaluation of the partial

likelihood matrix Q, where the columns are nodes and rows are states. There exists data

dependency on the columns, as the evaluation following a reverse-polish expression. But, entries

with respect to each state are independent. In other words, the evaluation of each row of the

matrix Q is independent. Therefore, parallelization can be applied on computing the partial

likelihood matrix Q. Figure 3.10 shows the sequential and parallel ways to obtain the partial

likelihood. The sequential and parallel implementations are shown on the left and right

respectively. The calculation of partial likelihood in Figure 3.10 refers to the tree in Figure 3.1,

which consists of 4 taxa. The nodes in the figure represent the process of computing the

corresponding entry in matrix Q. Each of these nodes is evaluated by Eq. ((3.9)-(3.12)).

Tree traversal order (k) Tree traversal order (k) ^

A B C D E F A B O D E F

A , - Q Q o o Q O

i r c f c / � : / (# 0 j p O Q O Q O O
叠 i �c m q c m o i t O G O O G e
� (3 0 (^ 6 0 0 ^ ^ - 0 0 0 0 0 0

Figure 3.10 Comparison of the execution order for the partial likelihood matrix entries between software and

hardware implementation. The left diagram is the software implementation that one entry of the partial likelihood

matrix is computed each time. The right diagram is the hardware implementation that parallelism offers four entries

are evaluating each time.

As shown in Figure 3.10, four independent processors can execute in synchronized to compute

each entry of the partial likelihood. The realization is shown in Figure 3.11 that the

computational unit is called State-Parallel Computational Unit. As its name implied, the partial

likelihood of different states are evaluated in parallel. The basic building blocks of the unit are

multiply-and-accumulation block (MAC), stack, multiplexer (MUX), registers (R) and the

probability matching logics (P). The figure shows four identical state processors working in

parallel and only the detail of the first one is shown for the sake of space saving. The

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

computational unit realizes the recursive maximum-likelihood computation algorithm with four

different instructions are used repeatedly. There are n External Node Operation (ENO), n-3

Internal Node Operations (INO), one Imaginary Node Operation (IMNO) and one Root Node

Operation (RTO).

Each processor is responsible for the partial likelihood of one state. The E N O requires only

simple matching of the states that is realized by the probability matching logic. The comparator

controls the selection of probability value based on whether the incoming D N A state is

equivalence to the state index (S). Each processor has different S for distinguish the state they

corresponding for. The Internal Node Operation (INO) is more time consuming as it requires

addition and multiplications. The M A C unit is specially designed that not only outputs the

multiply-and-accumulation results, but also output the product of two inputs. This design is

dedicated for the evaluating of internal node partial likelihood and the imaginary branch node as

which requires the only the product. The stack is for the recursive computation that four stacks

are implemented for parallel data retrieval. The M U X block is the multiplexer, which is for the

purpose of control. There are three registers in each processor to store the intermediate values.

‘,,””, ,„„„ 'tmrf ”””.TOW yrrwrrr. -rnnir mm. .,””,’ rmrr. .,””” ”，,•”、. ^ww ”””''- _""»_.’ •+•'..”” ">""•• ，. •"••">'• 4

i Processor for state 1 ^
I , 1

j L p U ^ T I 丨 t t t t

i r ^ , 受 \ \ ！

ir ' -I t--̂ ZP絲 i
W … w -sv̂ -̂v -ÂVVM APM̂ .一 W v̂vssw 一 w •、-^ .WNW sssws -AVS— -w-�. .一w •^晰NNW^X

IHtQiQ^
Processor for
stBte2 “

Processor for

Processor for
state 4

Figure 3.11 FPGA architecture of the State-Parallel Computational Unit (SPCU), which implements the recursive

maximum-likelihood evaluation algorithm. There are four identical processors in the unit and each processor is

responsible for computing the partial likelihood value conditioned on one state.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

The likelihood probabilities evaluation requires —3).4”—2 multiplications (See Eq. (3.4)).

By applying the recursive routine with "pruning" algorithm, the number of multiplications are

greatly reduced. There are 8 multiplications for evaluating each Qi and there are 4 states, thus 32

multiplications in total for one internal node. Therefore, the total number of multiplications

becomes to 32(«-3)+12. For the above evaluation of number of multiplications, single processor

architecture (sequential realization) is assumed. Suppose an architecture, which is presented in

Figure 3.11, with 4 parallel multipliers, the overall time is reduced and only 8(«-3)+3 is required.

Table 3.2 shows that the number of multiplications required for case of 8 and 16 multipliers

parallel implementation also.

Table 3.2 Timing analysis based on the number of multiplications
Number of Total time of multiplication Total time of Number of RAMs

parallel for direct implementation of multiplications with required in the

multipliers Eq. (3.4) implementation of architecture

Pruning algorithm

(2"-3).4"-2 32(«-3)+12 1

4 (2n-3)4”_i 8(n-3)+3 4

8 (2«-3)-4" 4(n-3)+2 8

16 - 2{n-2>)+2 16

Parallelism on sites

The likelihood values for each site are adding up to be the overall likelihood. Parallelization

can be applied on computing the overall likelihood value. Since the sites are assumed to be

independent^ to each other in the nucleotide sequences, the overall likelihood value is obtained

by simply adding up the likelihood value of each site (See Eq. (3.3)). In sequential

implementation, only one site can be evaluated each time. In the parallel implementation, more

than one site can be computed at the same time.

More than one state-parallel computational unit, which can be used to calculate the likelihood

values of the sequences with any length (See Figure 3.9). The parallelism idea is to slice the

input data into many equal length “partial sequence". Each "partial sequence" is computed by

one computational unit, where they are running in parallel. The speed-up factor (i.e. the ratio of

5 We are woking on homogeneous model that sites are assumed to be independent to each other.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

sequential computation time to parallel computation time) equals to the number of computation

units implemented. Certainly, the speed-up factor is limited by the availability of F P G A

resources, where the resources consumption is also directly proportional the speed-up factor.

Pipelining

The partial likelihood evaluation and the logarithm computation (See. Figure 3.9) can be

regarded as two independent tasks. There are registers for storing the results from the partial

likelihood evaluation (first module) that will be used by the logarithm taking (second module).

The two modules can be working independently. Therefore, pipelined can be applied on

computing the likelihood and log-likelihood value of every site to achieve higher throughput.

3.4.3 Error Computation

The precision of the likelihood value computation obtained by the recursive maximum-

likelihood algorithm can be calculated taking into account the two main error sources: 1.) the

error in the transition probability representation that is due to the finite word length

representation in digital logics and 2.) Truncation error accumulates at the multiplication of

internal node operation and addition operations of those products with the limited bit length m of

mantissa. The first source of error, which can be considered as a number representation problem,

can be overcome by simply assigning more bits in mantissa. The maximum error on the

transition probability number representation can be estimated as , where m is the mantissa

bit length and p is the exponent.

The second source of error correlates to the problem size that is more important to understand.

The analysis is discussed as follows. Suppose real number A and B on the interval of zero and

one are represented as A '•2''̂ and B '-2'^ where r and s are non-negative integer and A ‘ and B ‘ are

real number between 0.5 and one. Suppose there are m bits on representing the mantissa that A ‘

and B ‘ can be given as ̂：】以,2—' and XI二i 〜2 " where a, and bi is either zero or one. As A，and

B ’ are number between zero and one, thus aj and bj must be one. The product of A and B can be

given as:

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

AxB = A' .B�2—"
f m \ f m \

VM J \j=\ J
厂 广 1 . \ / \ ~ 1 m-\ m-i \ I m m

\ /=1 戶 1 J M j 二 m -i+l J

IL

where the ||二 is the number can be represented by the mantissa and s公 is the truncation error

due to the limited bit range. Suppose all the truncated bits are one, the maximum error for s汤 is

given as

/=i

Since there are 2n-3> multiplications for each internal node, the overall error attributes to the

mantissa during multiplication can be estimated as

f 2 . - 5 i \
error�=1- X F l ^

V 7=1 J

where P is general term referring to the transition probability values.

Besides the multiplications, additions operation on these products are considered. For each

addition operation of A and B, that is represented as A -2'^ and B -2'^ the error can be estimated as

follows with assuming 缔|:

= 义 … “ + c � + s③.(1 +))
trun

Suppose s = t, so that the worst case of the error on the addition operation of two terms can be

known as + . There are 4n-S additional operations, the overall error can be known as

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

^likelihood = — 9)�+ - 8)6•�

The number of significant decimal digits for the likelihood computation in this system can be

estimates using the results in Eq. (3.13) as follows:

significant digits — log〗（-9)2"" + {4n — 8).(m + — 1).)|/3 (3.14)

Suppose we assign 32 bits for the mantissa representation, where m=32, and there are 8 taxa,

where n = S. Then we have the error bound equals 1.7858e-7 and the significant number of valid

digits is estimated as 7.47 ~ 7 digits are valid. For using 32-bit mantissa assignment, we can still

have valid significant digits larger than 6 for 128 taxa.

Note that only error of computing likelihood for one site pattern is estimated. The probability

likelihood is taking the logarithm and accumulated with number of sites. Suppose there is

number loss of precision on logarithm and we assume that the precision error accumulates over

site likelihood accumulation, the over error can be the accumulated with the number of sites, in

which only four decimal significant digit can be found for one thousand sites. The precision is

greatly reduced in our number system. In order to reduce the precision loss in this step, we

suggest adopting the fix-point number system with a very long word length, such as 48-bit or 64-

bit, at this step. Once the site likelihood taking the logarithm, the number is naturally converted

the result into a fixed-point number representation. The number can be simply represented I

fixed-point without extra effort. In contrast, extra logics are required to convert the number into

floating point representation. Also, only addition operations are applied on this fixed-point

number, the precision loss can be reduced to 2—" simply increasing the word length to q, where q

is number much larger than m, says 64.

3.5 Discussion

3.5.1 Hardware Resource Consumption

There are three different kinds of hardware resources, which are 1.) Logic slices, 2.) Internal

Block R A M (B R A M) and 3.) Embedded multipliers, available within current FPGA^ technology.

6 We refer current FPGA as Xilinx Virtex-II FPGA

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

These are called on-chip hardware resources that are particularly more efficient in data

communication and operation when comparing with the off-chip hardware. As different F P G A

technology offers different combination of number of embedded multipliers, B R A M and slices.

To our design, the overall number of memory consumption is correlated to the problem size (i.e.

number of taxa), as the maximum depth of the working stack is n-\. Also, the D N A sequences

are stored in internal R A M . The number of R A M can be estimated as equals to 0.125^+19 that is

linearly proportional to the problem size. (See Table 3.3, the number R A M required is linearly

proportional to the number of taxa) Only 4 multipliers are required, as there are 4 M A C units in

one computational unit that is independent to the problem size. (See Table 4, the number of

multipliers are always constant) The adder, multiplexer, comparators, registers and controls are

consuming logics in the FPGA. The logic consumption can be regarded as constant in our

hardware model, as increasing the problem size will introduce little extra logic to the recursive

algorithm. (See Table 3. The logic increase 0.35 percent in average when the number of taxa is

double)

Table 3.3 Hardware resource consumption with increasing number of taxa
Number of RAM Logic Multiplier

taxa

8 20 45T2 ^

\6 21 4535 20

32 ^ 4542 20

M 27 4 5 ^ 20

128 JS 4576 ^

3.5.2 Evaluation Delay
The F P G A design computational time can be estimated based on the product of total number

of clock cycles and the minimum clocking period. The total number of clock cycles depends on

the design that more parallelism applied fewer clock cycles required. In our proposed design, the

total estimated computational time is the sum of the transition probability computation (2n-2),

recursive M L evaluation (33«-27). The recursive M L evaluation is repeated /+1 times for the I

nucleotide sites and the extra cycle is for completion the logarithm as which is computed in

pipeline. On the other hand, the D N A sequences can be equally partitioned into K subsequences

and distributed to the K independent SPCUs to provide speed-up of K times. The FPGA-based

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 58

system evaluation M L evaluation time is given as:

Evaluation Time (FPGA) = [107«-101+/(33^-27)] x 1/frequency x MK (3.15)

Comparison of computational time between the software and F P G A implementation is

presented in Figure 3.12. The time is measured by varying the number of taxa on a fixed length

(/=500) sequence. Hence, we can find out the relationships between the computation time and the

problem size {n). The X-axis is the dimension of the number of taxa while the Y-axis is the time

measured in seconds. The time scale on the left is for the FPGA-based implementation while the

time scale on the right is for the software implementation. The line is the result from the software

while the bars are the F P G A results. There are two different cases for F P G A are presented which

are differs from the number of computation units used. F P G A with single computation unit

offers around 20 times speed-up when compared to the software computation. For higher degree

of parallelism, five computation units are implemented in the F P G A design and 180 times

acceleration can be achieved. In average, 21.9 and 175.6 speed-up can be found for using one

and eight SPCUs for evaluating the M L phylogeny respectively.

0 . 0 1 8 - - - 0 . 4

nniR ^ FPGA with 1 SPCU

0,016 -- / - 0.35
$0,014-- • FPGA with 8 SPCU / 03 |
2 0.012 - 念 softw沉e W • I
u. • - 0.25 o
r 0.01 -— z 省 • Q 2 忽
:0.008 -- /flfZ • • 2

I 0.006 - I I

0.002 - 1 B ™ , B - n B - l — 0.05

0 M U ^ I M w i I m n I _•::“,I I • 」 I •丨 I 0
12 20 30 40 50 60 80

number of taxa

Figure 3.12 Comparison of the computation time between software and FPGA implementation. The FPGA

implementation result is referring to the left time scale while the software results are referring to the right time scale.

Two cases, within one FPGA processor one and eight SPCU are implemented, are shown for the FPGA

implementation.

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

The FPGA-based system provide significant speed-up on the maximum-likelihood phylogeny

evaluation. It can be regarded as a coprocessor in accelerate the phylogenetic tree evaluation

while the software (microprocessor) is searching the tree topology with heuristics. However,

there is communication cost between the software and hardware, which might decrease the

speed-up ratio that the hardware provided. The latency in communication is technology

dependent. In (Mak and Lam 2003), we have shown that using H W / S W (Software/Hardware)

codesign for G A M L implementation can provide significant speed up when compared with

software-only implementation. The H W / S W approach is benefited from high performance

hardware and the flexibility of software. In our preliminary design, the G A M L is divided into

two parts: the genetic algorithm (excluding the fitness evaluation) and the M L tree topology

evaluation. Since the tree evaluation process is repeated extensively, which has been speed-up by

using FPGA, the overall G A M L runtime is reduced tremendously. It is also shown that our

H W / S W system acquires a high potential for scaling up the problem domain for real applications.

In (Mak and Lam 2004), the H W / S W co-design system been extended to a more powerful

embedded computing platform. In this platform, a microprocessor is immersed into F P G A fabric

for realizing an effective environment for H W / S W co-design implementation. Significant

improvements in data transmission between hardware and software and higher clock frequency

of F P G A have been realized when compared to the interface in (Mak and Lam 2003).

3.6 Conclusion
This was the first attempt to investigate the problem of dedicated hardware realization for

maximum-likelihood D N A phylogenetic tree evaluation. Hardware architecture for the

evaluation algorithm has been proposed. FPGAs realization can provide significant acceleration,

from 2Ox to 18Ox times, when comparing to software implementation. The hardware acceleration

for the maximum-likelihood computation is attributed to the fine-grained parallelism based on

the D N A state and nucleotide site independency, and the parallel recursive scheme proposed in

this chapter. W e also found that the logic utilization increases only 0.35 percent in average when

the number of taxa is double. The number of multipliers used is always a constant. It implies that

the design can be applicable to handle problem of larger scale. However, the internal memory

requirement is linearly proportional to the problem scale. Therefore, FPGAs with larger internal

memory is needed for handling large scale phylogeny analysis. In addition, we developed a

Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8

simplified floating-point number representation scheme, which is well adaptable for the precision

demanding probabilistic computation. W e also derived a formula on the error computation

dedicating for the maximum-likelihood evaluation. The relationship between the number of

significant decimal digits and the bit length assignment has been shown.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 61

Chapter 4

Field Programmable Gate Array

Implementation of Neuronal Ion

Channel Dynamics

Neuron-machine interfaces such as dynamic clamp and brain-implantable neuro-prosthetic

devices require real-time simulations of neuronal ion channel dynamics. Field programmable

gate array (FPGA) has emerged as a high-speed digital platform for application-specific

computation devices. Here, we present an F P G A design of a neuromorphic Hebbian synapse

which mimics the N M D A and non-NMDA ion channel dynamics observed experimentally in

hippocampal neurons. The proposed design can be readily extended to high-speed

implementations of dynamic clamp and neuro-prosthetics as replacements for damaged neurons

in the brain.

Keywords - Ion channel dynamics; dynamic clamp; brain-machine interface; brain-implantable

neuro-prosthesis; neuromorphic synapse; Field Programmable Gate Array

•

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 62

4.1. Introduction
r

Real-time simulation of neuronal ion channel dynamics is an important step in the

implementation of neuron-machine interaction, which is fundamental to several emerging

neuromorphic and biomimetic applications. For example, in electrophysiological studies of

neuronal membrane properties using the dynamic clamp technique (Sharp 1993; Butera 2004), a

digital computer is used to generate virtual ion channel conductances which continuously interact

with a biological neuron in real time. Such software-based experimental applications are highly

computation-intensive and often require judicious choice of operating system (Sharp 1993) and

numerical procedures (Butera 2004) to improve the computational speed and flexibility. A

hardware-based, application-specific implementation of the dynamic clamp technique would

circumvent the limitations of general-purpose computers.

Another example of real-time neuronal ion channel dynamics computation is found in neuro-

prosthetic devices using brain-machine interface (BMI). For example, a robotic arm controlled

by central brain activity has been shown to be capable of generating complex motions (Taylor

2002), and such capability may find important applications in patients with Parkinson's disease,

Essential Tremor, and dystonia (Isaacs 2000). Future applications of such neuro-prosthetic

devices might incorporate brain-implantable biomimetic electronics as chronic replacements for

damaged neurons in central regions of the brain (Berger 2001). One such technology is

neuromorphic analog VLSI circuits (Mead 1990). Towards this end, we have previously

proposed a neuromorphic Hebbian synapse design using analog C M O S circuits operating in

subthreshold regime (Rachmuth and Poon 2003; Rachmuth 2004). However, the relatively long

design and fabrication cycles for analog C M O S circuits can be a bottleneck for the development

of such devices.

In recent years, Field Programmable Gate Array (FPGAs) technology has emerged as a high-

speed digital computation platform. The flexibility of the FPGA's programmable logic combined

with its high-speed operation potentially allows it to control neuro-prosthetic devices and

dynamic clamp systems in real time. Additionally, FPGAs can be used to accelerate prototyping

of analog hardware models of brain processes by quickly building a simulation platform to study

the functional behavior of the proposed model in a much shorter design cycle.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 63

In this chapter, we show that F P G A is an effective prototyping or permanent platform for

hardware modeling and simulation of neuronal ion channel dynamics. Specifically, FPGAs offer

an advantage of high-speed signal processing which could be orders of magnitude faster than

software-based approaches to interfacing biological neuronal signals.

4.2 Background

4.2.1 Analog VLSI Model for a Hebbian Synapse
Previously, we described a biologically isomorphic (or 'neuromorphic' (Mead 1990))

implementation of various biophysical models of synaptic adaptation, using M O S transistor

circuits designed in the analog (subthreshold) regime (Rachmuth and Poon 2003; Rachmuth

2004). The system design is based on a biophysical model of Hebbian synapse in area CAl area

of the hippocampus (Kitajima and H a m 1990; Zador, Koch et al. 1990).

The model features two types of ionotropic glutamate receptors: N-methyl-D-aspartate

(N M D A) and non-NMDA (A M P A and kainate) receptors (See Figure 4.1). The current flow

through an ion channel can be thought of as an ohmic relationship with a time varying

conductance level, which is modeled as an alpha function. N o n - N M D A channels, which carry

the majority of the excitatory synaptic current, are modeled as:

Inon一腿DA (0 = gsyn W(厂.(0 " Kyn) (4」）

gsyrM = const,te-山一 (4.2)

where gsyn is the ligand-dependent conductance of the channel, Fm is the membrane potential,

and £'syn is the reversal potential of the synapse.
广

/ Na+ I I、
o 卜 ^ ^ ^
O C ~ • ^ p AMPA
o / ^ q u

— 1 Glutamate
。 一 X r ^
O C — • p NMDA

\ 0 卜 ca2+, Ma, L - .

Figure 4.1 Biological synapse with glutamate activating AMPA and NMDA channels, and generating an EPSP.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 64

N M D A channels are the major source of Ca+2 influx into the postsynaptic cell. They have the

interesting property that their gating is jointly controlled by neurotransmitter binding and by a

voltage-dependent blockage of the channel by Mg+2 ions. This bi-variate gating function is

modeled by the following equation:

mN画二 (E-—V歲 二]二-：二 (4.3)

where gn is the maximal channel conductance, n and T2 are the channel's activation and

deactivation time constants, [Mg] is the extracellular magnesium concentration, rj and y are

constants, Esyn is the membrane reversal potential, and Vm is the synaptic membrane potential.

Because of their unique dependence on both presynaptic and postsynaptic activation, N M D A

channels are generally thought to be a biophysical implementation of the Hebbian adaptation rule

(Hebb 1949).

4.2.2 A Unifying Model of Bi-directional Synaptic Plasticity
Hippocampal long-term potentiation (LTP) and depression (LTD) can be induced

experimentally by varying: (1) the membrane potential of the postsynaptic neuron during

presynaptic stimulation at a constant frequency (Crair and Malenka 1995); (2) the rate of

presynaptic stimulation (Bliss and Lomo 1973; Dudek and Bear 1992; Mulkey and Malenka

1992); and (3) the relative timing of presynaptic action potentials and postsynaptic

backpropagating action potentials while holding stimulation rate constant (Bi and Poo 2001).

Recently, a model proposed by Shouval et. al. (Shouval, Bear et al. 2002) has attempted to unite

the various induction protocols of synaptic plasticity into a single Hebbian mechanism that is

controlled mainly by intracellular calcium dynamics. This biophysical learning rule is

represented by the following equation:

^ = n{[Ca]){a{[Ca])-W) (4.4)

where W represents the synaptic strength, 77 is a calcium-dependent learning rate, and [Ca+2:

denotes the calcium level in the postsynaptic neuron. The function Q, which represents the

Bienenstock, Cooper, Munroe (BCM) sliding threshold adaptation model (Bienenstock, Cooper

et al. 1982), defines the sign and magnitude of synaptic plasticity.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 65

4.2.3 Non-NMDA Receptor Channel Regulation
Biologically, synaptic strength is often measured as the amplitude of excitatory postsynaptic

I

current (EPSC) that is elicited by a presynaptic spike. Synaptic current is mediated

predominantly by multiple non-NMDA receptor channels acting in parallel, each opening and

closing randomly in an all-or-none fashion. The total synaptic current is determined by the

average number of channels that are active at any instant. Hence, synaptic weight changes can

be thought of as an average increase or decrease in the number of non-NMDA receptor channels

activated for a given presynaptic stimulus.

3. FPGAs Implementation

4.3.1. FPGAs Design Flow
Our logic-level design makes extensive use of Xilinx's System Generator (SG) that works

under MATLAB's Simulink environment (J. Hwang 2001). Simulink provides a schematic

design environment of logic gate blocks with which to implement the F P G A model. SG then

automatically converts the simulink code from the schematic design to a bit stream file to

configure the F P G A hardware.

F P G A as a standalone simulation device is properly interfaced with different kind software,

such as Matlab and Lab View. Analog signal can be converted to digital by using an external

Analog-to-Digital conversion (ADC) chipset before inputting to FPGA.

4.3.2 Digital Model of NMDA and AMPA Receptors
The N M D A and non-NMDA ion channels dynamics can be modeled by using F P G A that

makes use of digital logic blocks to evaluate the characteristic equations of receptors, and a

differences equation for the membrane voltage dynamics. The dynamic membrane potential can

described as a differences equation as follows

V 画 = V 讓 (t) - f ^ - (y 圆 (0 —) + 〒⑴(5) (4.5)
^MEM ^MEM

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 66

where the CMEM is the membrane capacitance, gieak is the leak conductance of the membrane

patch, and IEXE is the excitatory current sources, which are the / n m d a and / n o n - N M D A described in

Eq. (4.1) and Eq. (4.3).

In the biological system, the post-synaptic activities are initiated by a presynaptic pulse.

However, in the functional description of the N M D A and non-NMDA ion channel dynamics, the

input is implicit. The function takes two inputs, the membrane voltage V^ and time t. In our

design, time is emulated by using a counter, which is reset to zero at each presynaptic pulse, and

then outputs integers from zero to a large integer as a function of internal clock frequency. The

other input of the receptors function is the membrane voltage V^. It is initially set to the resting

membrane potential, F r e s t -

Following (Rachmuth 2004)，an input pulse triggers N M D A and non-NMDA currents. The

output currents are integrated on C m e m , which depolarizes membrane potential. The resulting V^

value will be used as an input for evaluating the N M D A and non-NMDA channel currents in the

next time step.

In our proposed design, we are using a register to store the membrane voltage and the value in

the register is updated with a feedback loop from the output of the N M D A and non-NMDA

functional block. Also the leak conductance of the membrane can be regulated by the differences

between the membrane potential and the rest potential.

Figure 4.2 shows the schematic of an F P G A design of a synaptic compartment containing

N M D A and non-NMDA receptors. The implementation also has a control block to enable the

counter, and a register R to store Fm. R is initially set to F r e s t , and is then updated accordingly

throughout the iteration loping. The N M D A and non-NMDA blocks implement Eq. ((4.1)-(4.3))

in parallel and generate output currents with respect to the input time and membrane voltage. The

accumulator converts the charge into a voltage, acting as an R C circuit modeling the effects of

Cmem and gieak-

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 67

Pre-synaptic
pulse

I

\ Z ^ Z Z Z Z Z " FPGA
enable f | NMDA and

enable ~ • counter ~ N M D A ~ n J ^ non-NMDA
I 1 I 1 I I ,、I I current

Register I

——Iv ft) ‘―H Non- _ t t

r ^ R ^ ~ • NMDA ^

~ g

I / leak I

•rest Cmem

H
0嘛

Figure 4.2 Schematic design of the NMDA and non-NMDA synapse using FPGA.

The implementation of the N M D A and non-NMDA channel function using digital logic is

nontrivial because of the presence of exponential functions and divisions in the equations. W e

studies several possible methods to implement these function evaluations. W e chose to

implement the functions using direct table look-up for simplicity. The basic N M D A and

n o n N M D A values are pre-computed and stored in the memory. The two inputs, time and V^,

are mapped to the R A M address, and looked-up as needed.

Future implementations that need to minimize R A M consumption require alternative

implementations. For example, the Coordinate Rotation Digital Computer (CORDIC) algorithm

provides an effective solution for basic function evaluations, such as logarithms and division. It

evaluates the basic function with using one adder, shifters, and a small look-up-table (Andraka

1998). For greater precision, the gradient of the function can be stored for interpolation.

4.3.3. Synapse modification
Following (Kitajima and Hara 1990), we considered synaptic weight changes as an average

increase or decrease in the number of active non-NMDA receptor channels. The digital

implementation for this model is shown is Figure 4.3. The digital representation uses n ON/OFF

gated channels. A n-h\X synaptic weight vector W controlled their gating, with “1” representing

the O N state and "0" representing the OFF state. Thus, the sum of all n channels bits was the

amplifying factor of the non-NMDA current.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 68

The synaptic weight is controlled by the calcium current which generated by the N M D A block.

Icl is accumulated as V^^ which is then used to drive synaptic plasticity learning rule described

by Eq. (4.4). The updated weight is multiplied with a unitary non-NMDA current to magnify the

non-NMDA current according to the learning rule.

NMDA
,ca+2

\ t

accumulation 丄
^ ^ ^ Non-NMDA

I — ^ y
” Magnifying non-

： ^ ^ NMDA current
Learning rule ~ • ； (S ~ • O K) based on the

. ^ - r ^ synaptic weight

/non-NMDA

Figure 4.3 Schematic design of the NMDA and non-NMDA synapse using FPGA.

4.4 Results
4.4.1. Simulation Results
Figure 4.4 shows the comparison between biological recordings and F P G A simulation of

individual N M D A channels, and miniature EPSCs, which sums A M P A and N M D A currents.

The behavior of N M D A and A M P A current from the F P G A simulation are shown to be

qualitatively similar to the experimental data in (Renger, Egles et al. 2001) in a.). Ion channels

and the resulting membrane potential dynamics modeling using F P G A leads to a real time

response to the input spikes and the membrane voltage modification.

The F P G A is driven by a global clock signal. Therefore, the computational speed of the model

is dependent on the frequency of the digital clock f and the complexity of the model equations.

The amount of time it takes to evaluate our model equations can be expressed as p'\/f, where p

the number of clock cycles needed to compute an answer. In our design, the maximum

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 69

frequency is 57MHz. The model requires 4950 clocking cycles to generating an output, which

means that each presynaptic pulse generates postsynaptic signals in 87 |is.

f

E P S C 細 p 為 崎 晚 t

« .
“•�“. '<" '��� ' * •�：《>、...v.. <»./•.”..:？>• ••？>.....�-.,”�- .w.”v..*".v,. “ “ I “ ― I • I I

t- r
c NMDA
I ； I 10pA

P O Q P ""“AMPA 10ms
tHb^dual ；' ；一 I I

• r~ 'I -- ^ ‘ ‘ -
録 " ^ 、 〜 — [\

I： EPSC
|i 2 D d A (NMDA+AMPA)
I 65 m s ‘ ‘ ‘ ‘

time (us)

Figure 4.4 a.) Biological Recordings of individual NMDA channels, and miniature EPSCs which sum AMPA and
NMDA currents, adapted from (Renger, Egles et al. 2001). b.) Simulation of FPGA circuit for the AMPA and

NMDA current (upper) and the EPSC (below), which are qualitatively similar to the experimental data in (Renger,
Egles et al. 2001) in a.).

In addition, we implemented the design using a Xilinx-Virtex-XC2V2000 F P G A prototyping

board with A D C / D A C on the board. Figure 4.5 shows the screen capture from the output of an

oscilloscope. The spikes is generating from the F P G A in real-time with the square train input.

W e found that the spikes are qualitatively similar to the biological measure.

L i j ‘ . 『 I ? 攀 I i j Tfgi n t ^ ,

: ‘ J ； i j J } ! t ； I t ； \

： I ^ ^ ： 11 1 I ^^ f I ‘ I 著

I , . 1 4 i f 4 i f I 1 jl ^ ^ ！ i I i| ‘

1 ； - i I i I I f i ！ I = I I ： I J l i

4 游 缺 欢 族 • 々 夕 场 … 一 … 众 ‘ ‘ 么 〜 " ' " � 斗 ’ " ' 1 “ — - - - — i * p " " " , r ™ " I I 英 f

I I i I ' I ! . I I t , I f ^ ；

一 + �A ' “ ‘ " . � " ' ' " -f--寸…I" ” ‘“r‘‘‘f〜.�‘'…I n T 1 妥 i I I … 1 . . < 禱

真 蕭 I 會 籍 』 � " ‘ I ： ！舊、 , �I —丄-复一— — � -
Figure 4.5 Image capture from the output of an oscilloscope. The square wave in the bottom is emulating the input

signal before entering the ion channel, while the spike is emulating the action potential of from the ion channel (left)
EPSC (NMDA+AMPA) spike, (right) membrane potential

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 70

Figure 4.5 shows the comparison between software and F P G A simulations of ion channel

dynamics. Software computation of the model equations took 4.7 milliseconds, making F P G A

faster by two orders of magnitude. This speed enhancement suggests that an F P G A system is

capable of interacting with millisecond neuronal signals in real time. Additionally, the F P G A

system can be configured as a stand-alone computation system without consuming any

computational resources of the host computer.

^WM
SOFTWARE FPGA

Figure 4.6 Comparison between software and FPGA for the post-synaptic ion channel simulation
4.5 Discussion

Digitally, a number is represented as bit string with fixed length and binary position. This is

called fixed point representation. Some operations may cause overflow, a situation where the bit

stream is longer than the allocated fixed length. This situation causes bit truncation leading to

bounded numerical errors. In F P G A design, flexible bit length assignment allows us to overcome

this problem and capture the output signals with any desired resolution.

The synaptic weight vector W in our proposed model is used to control the non-NMDA current

magnitude. It is represented by digital bits. The F P G A allows a simple W-vector implementation

because the fixed-point representation is matched with the k non-NMDA channels. Moreover,

the synaptic weight can be stored indefinitely using either registers or using on-chip non-volatile

Block R A M , leading to long-term memory.

Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 11

Table 4.1 Comparison of resource utilization on different FPGAs

F P G A Logics Memory I/O Embedded Number of
models (slice) (RAMs) multipliers ion channels

XC2V1000 1848 (5120) 36 (40) 180 (432) 20 (40) 4

XC2V2000 2772(10752) “54 (56) 190 (624) 30 (56) 6

XC2V4000 ~ 1 1 7 (1 2 0) 1 9 5 (912) 65 (120) 13
(23040)

XC2V6000 ~ T ^ 144(144)240(1104)“80 (144) 16
(33792)

Hardware resource (i.e. Multipliers, logic gates and R A M) in a single F P G A chip is limited,

leading to tradeoffs between the resources, computational speed and accuracy. In our design, a

single post-synaptic neuron consumes 26% of logic resources and 96% of the internal R A M、 B y

judiciously assigning resources, and implementing more efficient algorithms, a larger model may

be designed.

4.6 Conclusion

An FPGA-based architecture for the numerical computation of N M D A and non-NMDA

receptors activities and resultant synaptic plasticity has been presented. The F P G A realization

computes with comparable accuracy to software implementations while operating at a much

higher speeds. Additionally, the programmability of the F P G A system allows it to prototype

analog circuit designs with a much shorter design cycle. Therefore, F P G A technology can be

used to fill the gaps between software and hardware simulations. This technology can potentially

be used as a tool suitable for dynamic clamp experiments, or to control neuro-prosthetic devices

for chronic replacement of damaged neurons in central regions of the brain.

1 The data is reference to a Xilinx Virtex-II FPGA with 24K logic resources and IMbits memory

Chapter 5. Inference Network for Distributed Dynamic Programming 72

(

Chapter 5

Continuous-Time and Discrete-Time

Inference Networks for Distributed

Dynamic Programming

Dynamic programming is a step of crucial importance in real-time decision making

reinforcement learning problem where problem solution time can be an implementation

bottleneck. W e consider a distributed computational framework for continuous-time inference

network for solving dynamic programming problems. Interconnected computational units,

forming a network, participate simultaneously in the computation while maintaining

coordination by information exchange via continuous communication link. The implementation

of the value-iteration algorithm of dynamic programming for the expected average cost criterion

is presented. W e show that the inference network converges to the optimal Bellman optimality

condition, for which the convergence rate can be made arbitrarily fast and is practically

independent of the discounting factor and the number of states. Numerical simulation of using

such continuous-time inference network for random-walk and stochastic shortest path problems

are also described and compared. W e also derived a discrete-time version of the inference

network that the network can be well mapped to FPGAs for solving dynamic programming.

Chapter 5. Inference Network for Distributed Dynamic Programming 73

Nomenclatures and definitions

M D P s Markov decision process

s state at M D P s

a action

aik taking action at current state i and state k is the desirable state at the next

transition

next state, after taking action a

I a set of state

A a set of actions

R(s, a) reward function, given set of states and action

T{s, a, s，) the probability of making a transition from state s to state s ‘ using action a

y discount rate for the long-term reward

V(s) expected reward at state s

71 policy, the rule to infer action from the value V(s)

BRIN Binary relation inference network

[/(s) computational unit corresponding to the state s at the original problem

g(i,f) output of the unit function at each computational unit, which is the binary relation

for objects i and j.

g{s) output of the computation unit for value at state s with an implicit reference state

G(.) The unit function, which is the "min" operator，designated for the M D P s problem

•

Chapter 5. Inference Network for Distributed Dynamic Programming 74

5.1 Introduction
Dynamic programming is an important step in time-critical decision making, such as real-time

path planning and route finding. Autonomous robots and vehicles are assigned to perform

missions in highly hazardous and extreme environments. In most of the time, good path planning

and quick reaction to avoid dangerous spots can increase the chance to reach the target or

accomplish a mission, as in the cases of gathering scientific information from a distant planet or

searching and rescuing life from a mass casualty incident site (Rover Team 1997; Volpe, Estlin

et al. 2000; Casper and Murphy 2003). On the other hand, exploration of the surface of a distant

planet by networks of autonomous cooperating vehicles would be an effective alternative

approach. Collective information from a distributed environment would increase the content of

the information and increase the chance of survival of the robots. Given this option, distributed

approaches for rapid learning in an uncertain environment and for making real-time decision is in

great demand (Williams, Kim et al. 2001).

Among the examples of real-time path planning and decision making is the development of

intelligent Unmanned Aerial Vehicles (UAVs) for future combat to reduce human causalities.

The major challenge for intelligent U A V s development is path planning in uncertain and even

adversarial environments, for which the objective is to complete the given mission, to arrive at

the given target within a pre-specified time, while maximizing the safety of the UAVs. The

problem can be modeled as a typical stochastic learning and sequential decision problem (Jun

and D'Andrea 2003). However, in practice, the U A V s path planning is difficult because of two

main reasons. Firstly, in the adversarial environment, information is always incomplete and is

highly uncertain. It is difficult to acquire knowledge to decide on a reasonably well trajectory of

the flight. Secondly, the computational load grows quickly as the number of radar sites increases.

Delay in the decision making, due to heavy computational burden, would be disastrous. The

distributed and parallel computational learning architecture could circumvent the limitation of

the sequential computation machineries (Tin 2004).

The optimal decision making problem is formulated based on a well defined Markov decision

process, in which the set of states, actions, rewards and probability distributions are given. It is

aimed to find a value function, which can correctly give the expected reward at each state. In

theory, the optimality condition is defined by the Bellman equation. It has been shown that the

guarantee of optimality and efficiency for complex decision making problems using dynamic

Chapter 5. Inference Network for Distributed Dynamic Programming 75

programming. However, in many practical scenarios, the dynamic programming (also known as

Value Iteration), which works by producing successive approximations of the optimal solution,

suffers from the high computational load. Not only is it computationally intensive within each

iteration, unfortunately, the number of iterations required can also grow exponentially (Condon

1992). Modification of algorithm looking for computational trade-off between cost per iteration

and the number of iterations was proposed, along with boundary improvement for some

problems.

Besides, by applying linear programming and conic optimization techniques, the problem can

be solved by general-purpose linear programming packages (D'Epenoux 1963; Hoffman and

Karp 1966; Derman 1970). An advantage of this approach is that commercial-quality linear

programming packages are available. From a theoretic perspective, linear programming is the

only known algorithm that can solve the optimal decision problem in polynomial time, although

the theoretically efficient algorithms have not been shown to be efficient in practice.

Despite decades of study, stochastic optimization problems remain far more computationally

challenging than their deterministic counterparts. For the problem with high dimension and large

number of states, it takes a relatively long time to obtain the optimal solution. The high

computational load delays the decision making process to the extent that time-critical decision

application becomes infeasible. A distributed and parallel approach can potentially circumvent

the computational obstacle as an efficient alternative.

The structure of dynamic programming naturally lends itself well to distributed computation.

The former involves calculations and so can be carried out in parallel to a great extent. In

(Bertsekas 1982), Bertsekas proposed a model of asynchronous distributed computation for

dynamic programming. The proposed model considered a broad range of problems and includes

shortest path problems, finite and infinite horizon stochastic optimal control problems. Later,

Jalali and Ferguson proposed a distributed computational model for Value Iteration algorithm

(Jalali and Ferguson 1992). In line with Bertseka's work, they derived a distributed version of

the algorithm, which compute the optimal expected average cost based on the Bellman

optimality criterion. Theoretical analysis showed that the distributed approaches gain speed-up

by taking advantage of the intrinsic independencies from the Bellman optimally criterion.

Among the previous analytical works of distributed dynamic programming, which was assumed

to have unpredictable delay in communication between different processors, practical

Chapter 5. Inference Network for Distributed Dynamic Programming 76

applications are sparse. While the work in [11] is dedicated and limited to the network of general

purpose computers and assumes loose and delayed communication, computationally inefficiency

might be expected in real time application.

Alternatively, heuristic approaches concentrate computational effort on the areas of the state-

space that is most likely to be visited. This approach was proposed as a way of approximately

solving the Bellman optimality equation. In (Barto, Bradtke et al. 1995), Real-Time Dynamic

Programming (RTDP) was proposed. It is specific to problems in which the agent is trying to

achieve a particular goal state and the reward everywhere else is zero. Further, implementation of

R T D P using embedded dedicated processor provides further speed-up for the optimization of the

dynamic programming. However, the optimality of the solution is not always guaranteed and the

approach is limited to a fine scope of problems. In general, the approaches mentioned above all

fall into the category of digital computation, in which the intrinsic difficulties and limitations are

largely inherent in the digital and sequential computation paradigm.

When comparing to the digital computation paradigm, natural biological and physical systems

provide an effective and collective environment to solve difficult computational problem in high

speed. The computational powers routinely used by biological nervous system to solve

perceptual problems must be truly immense, given the massive amount of sensory data

continuously being processed, the inherent difficulty of the recognition tasks to be solved and the

high performance speed, for which answers must be found (Mead 1989). Parallel processing in

the nervous systems provides computational speed and power, which allows mammalian visual

system perform elementary feature recognition massively in parallel (Ballard, Hinton et al. 1983).

The major feature of neural organization can act synergistically with parallel feedback and

connectivity to greatly enhance computational power. This feature enables the biological system

to operate in a collective analog mode (Hopfield 1982; Hop field 1984), with each neuron

summing the inputs of hundreds or thousands of others in order to determine its graded output.

The parallel analog computation in a network of neurons is thus a natural way to organize a

nervous system to solve optimization problems in continuous-time processing. However, the

basic formulation of Bellman optimally criterion is in discrete-time. There is still an opening

between the basic Bellman equation formulation and the continuous-time collective network

solution which requires extra effort and formulation. In contrast, continuous-time network has

shown to be an effective solution for deterministic shortest path problem (Lam 1991).

Chapter 5. Inference Network for Distributed Dynamic Programming 93

Optimization of shortest distance between cities are considered and mapped to a continuous-time

dynamic network. It can be readily realized using analog design and drastic acceleration was

found when compared to the conventional sequential dynamic programming approach (Lam and

Tong 1996).

In this chapter, we present a distributed continuous-time inference network for dynamic

programming problems. W e show that the inference network converges to the optimal Bellman

optimality condition, for which the convergence rate can be made arbitrarily fast and is

practically independent of the discounting factor and the number of states. Further, an analog

VLSI C M O S circuit has been developed to realize the inference network and to demonstrate its

optimization for the dynamic programming problem. The following two sections discuss the

theoretical foundation of such network and the numerical simulation results are discussed in

section 4. When comparing to the counterpart of the discrete-time asynchronous dynamic

programming (Bertsekas 1982; Jalali and Ferguson 1992), the continuous-time inference

network provides a general concurrent mechanism to find the optimal solution based on the

Bellman equation.

5.2 Background

Reinforcement learning (RL) is learning from interaction with an environment, from the

consequences of action, rather than from explicit teaching. The learning algorithm is inspired by

observing animal learning and being formulated within the mathematical framework of Markov

decision process. R L algorithms are methods for solving this kind of problem, that is, problems

involving sequences of decisions in which each decision affects what opportunities are available

later, in which the effects need not be deterministic, and in which there are long-term goals. R L

methods are intended to address the kind of learning and decision making problems that people

and animals face in their normal, everyday lives.

In the standard reinforcement learning model, the learning system (or agent) is connected to its

environment via perception and action, as depicted in the Figure 5.1. The agent interacts with the

environment by receiving cost and state after perform an action. The uncertainty, which might be

noise, can be modeled as perturbation on the return of state form the environment. In other words,

when taking an action a at state s, the descendent state measure from the environment would be

Chapter 5. Inference Network for Distributed Dynamic Programming 78

state s’ with probability T{s, a, s'). Thus the stochastic model is powerful, as captures the

variability of the uncertainty of the system dynamic using probability models, which is called

Markov decision process i (MDP).

N o i s e . q f a t 〜I L e a _ _ ^ ^
^ r r SySteiTl V i

i i

C o s t

‘ /', ‘ /

E n v i r o 聊 ； ~
/\ction

Figure 5.1 Learning system interacting with its environment. Action is applied to the environment while the

corresponding cost and new state are feedback to the learning system afterwards. However, at the path from the

environment to the learning system, noise is introduced resulting state perturbation. State can be regarded as

measurement from the learning system. Thus, the measure can be sometime deviated.

5.2.1 Markov decision process (MDPs)

^ ^ Updating

E(Small reward) Small reward
A C

K!)

D
• Q

E(large reward) ,, “ Large reward
Updating J

(backward)/

Figure 5.2 In reinforcement learning problem, the agent will get the reward after taking the action. Assume that the

agent want to maximize the reward, the agent will have no idea in the beginning which decision would return a

1 Markov decision process has more rigid definite in the perspective of optimal control. An MDP consists of states, actions, reward function
and state transition function, which is a probability distribution over the state. It also follows the Markov criterion, in which the state
transitions are independent of any previous environment states or agent actions.

Chapter 5. Inference Network for Distributed Dynamic Programming 79

larger reward. Fortunately, the agent can still make decision based on the expected reward of the node, which is an

attribute or record attaching at the node. Agent will prefer the action with high expected reward. In the figure,

following the pathway A, the agent will get a smaller reward while following the pathway B will get a larger reward.

The expected reward of the node A and B can be computed by backward updating. The expected reward of previous

state (A) is updated when the agent reach state (C) and obtain the reward. Thus, to update the expected reward in

previous state requires information about reward in the next state. Always, the reward is uncertain, and modeled as

Markov decision process.

The agent can making decision based on the expected reward (or value). Expected reward is

the expectation of reward the agent will receive in a long run. Usually, the agent will be more

willing to choose a state with high reward expectation. In Figure 5.2, an agent has to make

decision to choose between pathway A and B. As the expected reward at node B is larger than

node A, the agent will prefer to choose the node B. The next question would be how to evaluate

the expected reward? It can be evaluated by backward updating based on the expected reward in

the successor state. For example, in Figure 5.2, the reward at state D is larger than at state C. By

using backward updating, the expected reward at state B is, therefore, larger than at state A.

While more solid definition of backward updating is defined by Bellman, with his famous

Bellman optimality equation (or simply Bellman equation). With iteratively applying the

Bellman equation on all nodes repeatedly, the expected reward can be obtained.

The reinforcement learning problem with computation expected reward are well modeled as

Markov decision process (MDPs). An M D P consists of

• a set of state Z,

• a set of action A,

• a reward function R{s, d), and

• a state transition function T , where a member of T is a probability distribution over

the set S (i.e. it maps state and action pair to probabilities). W e write T{s, a, s,) for the

probability of making a transition from state s to state s ‘ using action a.

The state transition function probabilistically specifies the next state of the environment as a

function of its current state and the agent's action. The reward function specifies expected

instantaneous reward as a function of the current state and action. There are many good

references to M D P models (Bellman 1957; Bertsekas 1987).

5.2.2 Learning in the MDPs

Chapter 5. Inference Network for Distributed Dynamic Programming 80

In the M D P environment, the agent's goal is to maximize the reward it received in a long run.

In previous chapter, we have mentioned that the uncertain environment is unknown.

Reinforcement learning is primarily concerned with how to obtain the optimal policy when such

a model is not known in advance. Therefore, interaction between the agent and the environment

is necessity to obtain the stochastic distribution of the environment n(S) and to find an optimal

policy. In other words, reinforcement learning consists of two tasks, which are 1.) to explore and

leam a probabilistic model and 2.) to use the model to derive an optimal policy. This kind of

reinforcement learning approach is called the model-based method (Kealbling, Littman et al.

1996; Sutton and Barto 1998).

Learning a probabilistic model from an unknown uncertain environment can be

straightforward by exploring the environment and keeping statistics about the results of each

action. While given the statistical model of an environment, derivation of an optimal policy is a

computational intensive task and requires parallel processing to speed up. In the coming section,

we will focus on the optimization of policy based on the probabilistic model (Kealbling, Littman

et al. 1996).

5.2.3 Bellman optimally criterion

The objective of an agent is to maximize the received reward in a long run. Alternatively, it

can be thought as to find a rule for the agent to take action that the long term reward can be

maximized. The sequence of rewards receives after time step t is denoted r什 i,厂什 2,厂/+3, ... while

the total expected return at time t\sRt = n+i + n+i + 厂什3 + ... + "r，where T is a final time step.

In some aspect, the reward in the future is not as important as the immediate reward. This is the

discounting of future reward, that the total expected return at time t can be written as
00

Rt = ,(+1 + "/+2 + + ... = E (5.1)

k=Q
Where / is a parameter, 0<y<\, called the discount rate.

The received reward in a long run is considered as the expected return for the agent staying at

the M D P s infinitely long. At each state, which associates with an expected reward (or value); the

value is the expected infinite discounted sum of reward that the agent will gain if it starts in the

Chapter 5. Inference Network for Distributed Dynamic Programming 81

state and executes the optimal policy. Using ；r as a complete decision policy, the expected

reward (value) at state s equals to the sum of the actual received reward and the best expected

reward in the subsequent state.

expected reward at state s - reward + min(discount x expected reward at state s) (5.2)
n

The equation 1 1 outlines the basic idea of the Bellman optimality equation, which defines the

relationships of the expected reward between different states. Suppose the expected reward at

state s is denoted by V{s) and the actual received reward after taking action a from state s is

denoted as R(s, a). The Bellman equation for optimal value function F(-) is unique and can be

defined as the solution to the recursive equation

/ \

V\s) = mm R{s,a) + YTT{s,a,s')V\s') , V^ g S (5.3)

“I t^s J

which assert that the value of a state s is the expected instantaneous reward plus the expected

discounted value of the next state, using the best available action. Given the optimal value

function, we can specify the optimal policy as
f \

；r*0) = argmin + (5.4)
a V 5'6S J

The formulation of optimal policy depends on the optimal expected V* reward in every states.

After obtain the optimal expected reward, computing the optimal policy is straightforward, by

applying equation 1.4 on all states. However, it is not trivial to evaluate the optimal expected

reward. The equation 1.3 only specifies the interrelationships of the optimal reward between

states. But equation 1.3 indeed is not an algorithm to optimize the value.

5.2.4 Value iteration
To find the optimal expected reward in an M D P s is a well-studied problem. Among the huge

literatures on the discussion of the optimization algorithm, value iteration is simple and effective

and can be shown to converge to the optimal V* values (Bellman, 1957, Bersekas 1987). The

value iteration is simply applying the Bellman equation (equation 1.3) for all possible state and

Chapter 5. Inference Network for Distributed Dynamic Programming 82

actions over and over again, until the value is converged. The algorithm can be expressed as

three levels of iterative loops.

t

Algorithm 5.1 Value Iteration

Initialize V(s) arbitrarily
loop until policy good enough

loop for 5 e S

loop for a e A

“）= R(s, a) + � s)厂* ’）

end loop

V(s) = min^ Q(s,a)
end loop

end loop

It is not obvious when to stop the value iteration algorithm. One intuitive approach is to stop

when the maximum difference between successive value function is less than a small number.

This could be an effective criterion to stop.

It can be noted that the value iteration algorithm consists of three iteration loops. For the

innermost loops, the evaluation of the summation exhausting all possible states, thus, the

computational complexity, per iteration, is quadratic in the number of states and linear in the

number of actions. In addition, the number of the iterations is uncertain, and could be increasing

exponentially with the number of states. The algorithm is computationally intensive and we are

looking for distributed approaches to speed up the computation.

5.3 A Computational Framework for Continuous-Time

Inference Network

Although the Bellman optimization algorithms were originally developed for sequential

computation, most of the research efforts in their parallel implementation focus on the distributed

discrete-time asynchronous design, based on the Bellman optimality criterion (Bertsekas 1982;

Jalali and Ferguson 1992). In such a case, significant computational burden at processors and

communication delays were expected to be encountered. Slow convergence rate might be

Chapter 5. Inference Network for Distributed Dynamic Programming 83

expected in large network. Connectionist approach with interconnected simple computational

units provides distributive computational power. This kind of computational paradigm provides

collective computational power could significant be better performance than sequential execution

or computation.

For example, in the biological nervous system, signal propagation with high speed

performance even the network is huge and complex, that the electrical and chemical signal

transmitted in massively parallel and under the continuous-time physical dynamic. The

continuous-time systems with collective analog computational circuits dynamically provide

speed, needed for real-time processing. Pioneers, such as Hopfield and Tank, by mapping

difficult combinatorial optimization problem, traveling salesman problem (TSP), to continuous-

time analog circuit demonstrated collective computational abilities of power and speed, which

digital computer would fail to provide (Hopfield and Tank 1985).

In the continuous-time network, the optimization problem was formulated as a set of

differential equations, which is essentially being well mapped to the circuit differential equation

and the circuit differential equation is essentially a program by which an answer to a question

can be found. The converged results of the circuit following the differential dynamics would

eventually become the solution of the optimization problem. The M D P s Bellman optimization

can also be solved using the dynamic network approach to gain speed through the collective

power of a network of computational units.

5.3.1 Binary relation inference network
Mapping Bellman recursive dynamic programming to a continuous-time computation

paradigm can be realized and boosted with the introduction of a connectionist network

architecture, called Binary relation inference network (BRIN). The network has a parallel

architecture, and can be used to derive unknown binary relations through the simultaneous

propagation of successive inferences. Originally, it provides an efficient platform for checking

data inconsistancy due to results from different inference paths (Lam 1996). In (Lam and Tong

1996), with close resemblance to the deterministic type dynamic programming formulation on

closed semiring, Lam and Tong introduced BRIN to solve a set of graph optimization problems

with an asynchronous and continuous-time computational framework. In contrast to its close

counterpart, discrete-time BRIN, in which some significant limitations about the network

Chapter 5. Inference Network for Distributed Dynamic Programming 84

instability and oscillation under specific circumstances, and the slow convergence rate

commonly observed in large network were found (Lam 1996). This new class of continuous-time

inference network is inherently stable in all cases and it has been shown to be robust and with

arbitrarily fast convergence rate (Lam 1991; Lam 1996). In addition, the continuous-time

network is readily leads to real-time application using analog VLSI circuit (Ng 1996).

A binary relation inference network is formed by the interconnection of self contained

computational units. Figure 5.3 shows the structure of a unit and the connections in a general

inference network. Each unit is to represent a binary relation {ij) between two objects i and j. In

each unit, there are N sites to carry out the inference operations as defined in the site function

S(-). The value of the corresponding relation between i and j is then determined by resolving the

conflict among all of the site outputs. In essence, if Sk{i, j) represents the site output at the k-ih

site and g{ij) stands for the unit output of unit (/,/), then

S,{iJ) = gihk)og(k,j) (5.5)

g(hJ) = [jS,(i,j) (5.6)
\/k

where。is the inference operator for the site function (which is usually the same at all of the

sites) and U is the conflict-resolution operator for the unit function. Also the computational unit

U(iJ) denotes the unit which resolves the binary relation (i,j).
unit output function

, — — - — — / n

3 C \ ： C
�： (i . k) J • 广 \ (i.k)

O 麵 《
3 C ^ �: (i j) C
、•： (kj) J / •‘ [i (k j) ,

site
1 < i, J,k<N;k^ i, j

Figure 5.3 Unit interconnection in a general binary relation inference network

Chapter 5. Inference Network for Distributed Dynamic Programming 85

5.3.2 Binary relation inference network for MDPs

Markov decision process (MDPs) optimization based on the Bellman criterion is

particularly well suited to be solved on the binary relation inference network. The optimal value

for state s, V(s) is the expected discounted sum of reward that the agent will gain if it starts in

that state. Considered that a typical M D P to be a single-destination stochastic shortest path

problem. Each state represents a city and there are m cities, where the m-th city is referred to the

destination. The optimal value of each city, v\s), is referring to the expected shortest distance

from the city 5 to the destination city.

The M D P s shortest path problem can be mapped to the inference network. For the original

problem graph, each node or state refers to a city. But in the inference network, each

computational unit U(i, j) represents the binary relation, thus the shortest distance between city i

and city j. Thus, when the network has converged, the solution of the problem would be found at

the output of each computational unit. For the stochastic shortest path problem, g(i,f), the output

of each computational unit, take the semantic meaning of the expected shortest distance between

cities i and j. Since, the destination city is fixed, as we consider a multiple-source and single

destination case, city j always refers to the destination city. Thus, g(i, j) can be simply denoted

by g(z). Also the computational unit is simply denoted by U(i). In general, if there are m states in

the original graph, then the BRIN network (based on the Bellman-Ford single destination (or

source) formulation) will have m-1 value function units U{i) with reference to a designated

reference state, the destination, which is "implicit" in the U{i) notation.

Consider a specific unit U(J), the output of U{i) is denoted by g(z), where each unit only has

one and only one output function. Each unit has k sites, and each site has site function

fp{i), p -1,..., A:. The site function fp{i) computes the expectation of reward based on the value of

at unit U(p). Thus, for mapping the Bellman equation to the inference network, the site function,

which defines the computational expectation of rewards for taking the action a can be stated as

f,(i) = R{i,a) + r-E[g(p)l Va e A, (5.7)

where E[.] is the expectation. Further, given the probability distribution, the site function fa(i) for

each state i can be stated as

Chapter 5. Inference Network for Distributed Dynamic Programming 86

fad) 二 R{i,a) + yiT{i,a,i，)g(i，), \fa e A^ (5.8)

i'eS

where R(i, a) is the reward received when taking action a at state i, and T(i, a, /，) is the

probability of arrived at state z' when taking action a at state i.

According to the Bellman optimality criterion, for the optimal decision would be the one with

the least cost. Therefore, the unit function is defined as

gi}) = G{f,{iJ)J,{iJ\,..J,{iJ)} (5.9)

= mm{f^(i\a = \,...,k] (5.10)

= m 〜 “ 綱 (5.11)

Considers a typical 6-state M D P example, where 6-th state F is considered as the destination

or terminal. The state graph topology is shown in figure 5.4. Each node represents one state and

the arc is the possible path between two nodes. If there is no arc in between two node, it means

that the cost between these two nodes is infinite. It is aiming to determine the value of each node,

which is the expected shortest path cost to the destination city.

B D

^ ^ (destination)

C E
a.) A typical 6-state MDPs problem, where state F is the regarded as destination and state

A is regarded as start.

_ D f ^)

‘ ） (i L R(E, F)

b.) Inference network for the state graph in a.), where U{i) refers to the value function unit i
and g{i) refers to the output of the unit function at U{i). g{i) takes semantic meaning of the

minimum expected cost between states / and the destination.

Figure 5.4 a.) Original problem state graph b.) inference network for solving graph in a.)

Chapter 5. Inference Network for Distributed Dynamic Programming 87

The corresponding inference network has only five computational units. A close resemblance

can be found between the inference network and the original state graph. Computational unit U{i)

represents the expected shortest distance from city i to the destination. Therefore, the unit for city

F, t/(F), which is always zero, can be omitted. W e have assumed that the distance between two

cities are infinite if there is no directed path between them. Then each unit is not connected to all

other units, but only connects to its neighborhood units, which is the decedent state from the

original graph. For the units, ？7(D) and t/(E), which the site function simply equals to the

received reward to city F,

5.3.3 Continuous-time inference network for MDPs

Assume that the min operator requires an infinitesimal time (St) for evaluation, then it seems

to be straightforward to use

= (5.12)

Let's make a further assumption that each individual unit behaves dynamically as a first-order

system, described by the differential equation

^ = -^.gt (0 + 义丨{miiv { f p (0}} (5.13)

=-又�g, (i) + minV“ R(i, / ’) + [T(i, a, i ’)，） （5.14)
I "eS 一

where A. is the open-loop system pole for unit (/) which controls the rate of how gt(i) may

change. If A. = 0 then dg^^^ jjdt = 0 and gt(i) is a constant the unit is said to be fully

constrained and has a fixed memory. Whereas for a memoryless unit with A. =oo, it has infinite

power to change because | dĝ ^̂ jjdt | can be made arbitrarily large.

A computational framework for solving the optimal policy problem can be formulated as

follows:

1. Construct a m-unit continuous-time inference network, where the dynamic behavior of

each individual unit is governed by a parameterized differential equation of the form of

equation (1.11).

Chapter 5. Inference Network for Distributed Dynamic Programming 88

2. The network has a complex but regular interconnection structure following the

topological structure of the given by the problem or graph. Each unit U{i) sends its output

to a set of neighborhood units, which is the decedent state in the original problem graph,

can reach the unit state i by taking proper action. Each unit received at the same time the

outputs from the set of neighborhood units，which can be reached from state i by taking

proper action.

3. Initialize the network units with randomized the output value of each unit go(i).

4. The network will converge to a global optima arbitrarily fast, at a rate dependent on all

distinct A. parameters. The converged output g^ (/) from each individual unit (/) is the

incurred minimum expected reward according to the definition based on the Bellmen

optimality criterion.

5. Using a tag processor to keep track of the site functions at each individual unit (/), such

that TuJJ) = argmin•“{/“（/)}, where 7i(i) is the optimal action at state i, can be obtained.

5.4 Convergence Consideration

There are two important considerations in using the inference network for dynamic programming.

Firstly, will the network always converge to the desired solution? Secondly, what are the

parameters or conditions that affect the convergence rate of the network? The answer to the first

question is an affirmative ‘yes，，because it follows directly from the principle of Bellman

optimality equation that all constituent optimal expected value of all states are optimal. The local

minimization based on the Bellman equation performed at each distinct unit, in fact, is driving

the network to a global optimal state, which is the desired solution. To measure the ‘distance’ of

the network from this global minimum, we can define the following computational energy E(t),

where For the continues time dynamic equation, which can be stated as

「 r 2

^ = : i U W — m m i?(/,0 + 2]r(/,a"、(0 , V/ (5.15)
. VaeA

‘I L 'eS J

To determine the convergence rate of the network, we need to derive an explicit expression for

dE(t)ldt. Using Eq. ((5.13)-(5.14)) and noting that

Chapter 5. Inference Network for Distributed Dynamic Programming 89

dE{t)^dE{t) dg,{i) (5 16)
dt dg^ii) dt

W e have

^ = Z -2A te,�—I耶，+ X T(i, a, i •)g(/ ’) >
dt i v-z I ki J

• g,⑴-mm R(i, O + X Tii, a, i ')g(/ ’） >

dgX^) I V 叫 it? J,
r f -N

• < gt (s) - min R(i,+ X m, a, i ,)g(/ ’) （5.17)

I 叫 � JJ

In order to resolve Eq. (5.16), a necessary condition is required. In this case, we simply assume

i丰iThe meaning of this assumption is that, if the current node is i, the next node should not be i

itself. Then the above expression equals to one.

Thus, we hava

dE(t) — dE(t) dg�(i)
dt dgt (i) dt

^ Z —2义,te ⑴—niin{C(5,") + r I； PsA^) • ')} }2
s ys'eS

<0

The non-negative parameters A. for all distinct units, can therefore be used to achieve

arbitrarily fast convergence for the inference network.

Chapter 5. Inference Network for Distributed Dynamic Programming 90

5-5 Numerical Simulation
5.5.1 Example 1: Random walk

Figure 5.5 A small Markov process for generating random walks. The chain has 11 states in total, while the state 'K '

is the terminal state. Transitions would result zero reward except the "right" action at state J would result reward of

one, as shown in the arcs in the figure. The semantic meaning is that one would move to the left state with

probability 0.8 given taking the action "left", or one will arrive at the states on the right with probability 0.2. The

objective of dynamic programming is to evaluate the discounted expected reward at each state from A to J.

A 10-State random walk problem can be solved by a 10-unit continuous-time inference

network. The 10 state indexed by {A, B, C, D, E, F, G, H, I, J}. The 10 units output of the

network are described by a vector Xt= [gt(A), gt(B), g,(C), gt(D), gt(E), gt{F),纷(G), gt(H), g,(I),

gt{J)\, which has semantic meaning of expected reward of VX=[VJ, Vb, Vc,...,Vj]. The underlying

transition probability distribution of the environment is defined as follows. For state i, the

available actions is denoted by A. = {a.^}, where the second subscript k in action aik taken by the

learning system indicates the availability of more than one possible action when the environment

is in state i and state k is the desirable next state. The transition of the environment from the state

i to the new state j, for example, due to action a汝 is probabilistic in nature. The transition

probability of the environment from state i to state j by taking action Uik be defined as T{i, a认,/).

In our experiment, probability T{Ua^,,i') = 0.9 ifk=i' and ̂ ^^T(i,a汝，i’)
=0.1 \^k丰 i’, where

i is the current state, i ‘ is the next state and atk is the action with k is the desirable next state.

The continuous-time inference network can be modeled by a set of differential equations on

the 10 nodes A,B, J. The expected rewards Va, Vb,…，Vj evolve as first-order lag controlled

by X (a system or implementation related parameter which is non-problem related), y and p

are two problem-related parameters, defined as the discount factor for multistage reward and the

transition probability, respectively.

Chapter 5. Inference Network for Distributed Dynamic Programming 91

^ = (5.18)

dVr '”， 1 f r\pV.+(\-p)VA for left;

= B V yj D\ , (5.19)
dt [r for right.

� I" J

dVj 竹， 1 f \ - p + ypVj for left;
= 一 ; +义 m a x " , (5.20)

dt 尸 + 厂(1 —厂)厂, for right. ^ 乂

Eq,(5.18) describes Va of the boundary node A which has a single "right" action of zero

reward. For nodes B,C, /, they are having both left and right actions and can be readily shown

to follow equations as typified in Eq.(5.19) for C. A： is a goal state which should have its

expected reward Vk defined as zero. A goal state has no associated actions and zero reward as the

"goal" is reached. Eq.(5.20) describing Vj can thus be derived. Note that the non-zero immediate

expected rewards from J to K and from J to I are obtained as (yoxl + (l-/7)x0) and

(p X 0 + (1 — p) X1), respectively.

Given arbitrary positive initial values of Va, ...，Vj, the converged values of the respective

differential equations (Eqs.(5.18)-(5.20)) can be verified to be identical with the optimal values

(K'K'-"^^*} governed by the Bellman equations. Figure 5.6 shows the case for the problem

defined by p = / = 0.9 , and using 义=0.9 . The converged values are found to be [0.3160,

0.3511, 0.3984, 0.4528, 0.5147, 0.5852, 0.6652, 0.7563, 0.8597, 0.9774]. For cases with p and

y close to 1, the optimal policy is quite straightforward as each state will take an action to the

right. The Bellman equations then reduce to a much simpler set of linear equations, given by:

(5.21)

(5.22)

= p (5.23)

For simplicity, only Eq.(5.22) is given for node C; similar equations can readily be obtained for

nodes B,D, L By solving this tridiagonal equation set (Eqs.(5.21)-(5.23)), V*,...,Vj* are

determined and found to be the same as the converged values of the differential equations.

Chapter 5. Inference Network for Distributed Dynamic Programming 92

Continuous time res pones of inference network on random walk
6 - I I 1 1 I r- 1 1 1

t

5 - 一

\

‘i

4I

I
m

\ :
1 - -

、％.::;:::

二 …二.••..二.....二… ••.....•.........二：…...…..

0 1 1 I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

time

Figure 5.6: Convergence of the differential equations for

It is interesting to consider a slight variation of the problem by the inclusion of an arc (with

zero reward) from node K to node J, and to find out how the continuous-time network adapts to

the changes of optimal solution. Noting that K is now not a goal state with a possible left action,

VK is not necessarily zero. The Bellman equation for V: is modified, together with the inclusion

of a new equation for V;.

-r(i-p)v; + v;-rpv^=p (5.24)

-rv;+v*=o (5.25)

The optimal values for V*,..,,Vj,V* can be found from the modified tridiagonal equation set, to

give [1.5169, 1.6854, 1.9122, 2.1735, 2.4708, 2.8089, 3.1933, 3.6302, 4.1269, 4.6916, 4.2224].

For the differential equations of the continuous-time inference network, the essential changes are

given in Eq.((5.26)-(5.27)). Figure 5.7 shows the network adapts well to the problem change and

gives converged values which agree with the new optimal values.

dVj 丄】 I l - P + rlp^f+a-pWK] for left;
- = -AVr + A max < 「 ^ 」 (5.26)

dt J [P + r[pV^+{\-p)Vj] for right.

Chapter 5. Inference Network for Distributed Dynamic Programming 93

警义厂《 +々厂 V (5.27)

‘Continuous time respones of inference network on random walk
81 I I I 1— 1 1 1 1 1

: :

itk
像\、〜-..--一 -

霞 二 二 ^ ^ ^ —_…_—.：：；..；；：：；：
4 4 一 一 〜 ：

、：N̂ ~、、 一^ -
i \ :、、--.....—.. — „

. — -

V� .� . - •.....‘
\ \ 、 . .…… 一 — —

%：::::: :rzi=:=:::::::::::::::=:
2 _ —

^̂ ：:--一 __.：.…===::::::==::::::::::::=:::...
‘ … -

1 1 1 1 I I I I I I
0 10 20 30 40 50 60 70 80 90 100

time

Figure 5.7: Convergence of the differential equations for V^, . . . , V j

Continuous time respones of inference network on random walk with lamda=0.5
10 1 1 1 1 1 1 1 1 1

E 8\ -

I epi -

- t \ \
m 2/ _ -

0 I I I _j I —n I I I
0 10 20 30 40 50 60 70 80 90 100

time
Continuous time respones of inference network on random walk with lamda=0.9
10 1 1 1 1 1 1 1 1 1
8「 -

i ii

0 4 忆 -
1 2 ^ ^ 、
LU 2 � � � � � . � -

Q I I T" _I I I I I I
0 10 20 30 40 50 60 70 80 90 100

time

Figure 5.8 Simulation of a 10-unit inference network for 10-state random walk (upper: A. =0.5, ；^=0.9, below:

A, =0.9, /=0 .9 ,)

Chapter 5. Inference Network for Distributed Dynamic Programming 94

Further, the difference control parameter A，the convergence of the network would be different.

The I is machine dependent, which is a parameter depends on the implementation

methodologies. Figure 5.8 depicts the results of simulation of a 10-unit inference network for 10-

state random walk with different parameter setup.

5.5.2 Example 2: Random Walk on a Grid
0 0 一 0

/ \ / 1 / i 丨、I \
I I I I I
I I I I I
I / • I ,。 1 , \ / 丨

Figure 5.9 A small Markov process for generating random walks. The Markov chain has 100 states in total. The

transition probability given T(i,,z.') = 0.8 ifk=i' and ^ ^ ^ T { i , ’ z _ ,) = 0.2 i^ki^iwhere i is the current state, i‘

is the next state and a is the action.

Consider random walk on a 100-state with 10 by 10 grid-world. Each state only connects to at

most 4 adjacent states, while states at edge connect to three and states at comer connect to two.

States are orientated as a perfect square. All transitions would result zero reward except

transition to the state at the north-east comer would return reward of one.

Similar to the random walk example, the continuous-time inference network can be modeled

by a set of differential equations on the 100 nodes Sij, i j = 1,2,. ..,10. The expected rewards Vij’

i’ j : 1,2,...,10 evolve as first-order lag controlled by k. When the network state is close to the

optimal solution, presumably, we have the linear Bellman equations. The Bellman equations for

2-node (two adjacent nodes), 3-node, and 4-node:

K = r [p K , , + { i - p) v l ,] (5.28)

厂 宁 厂 “)] (5.29)

Chapter 5. Inference Network for Distributed Dynamic Programming 95

— I

厂2:2=, ><3+宁(<2+厂2:1+厂2:3) (5.30)
— 一

For those boundary nodes

+ r (5.31)

K n - P ^ r > < + 宁 (厂 二 + 厂 (5 . 3 2)

(5.33)

The network can be modeled by using differential equations. Differential equations for 2-node,

3-node and 4-node:

dVu 竹， 1 [r[/̂「2，i 「1,2] for down;

dt , ,[广厂i —p)厂2’i] for right.

,广厂1，1+"̂ (̂厂1，3+厂2’2) for left;

dVn 「 （ 1 - y c O / \一

=]厂 12+义 max , 尸 厂 11+厂2，2) for right; (5.35)

y for down.

y 广厂2’i +^^(^1,2+^2,3+^3,2) for left;

欢 y PV2, +^^(^1,2+^2.1+^3,2) for right;

^ ^ 代’2+A max < 4 (5.36)

dt r P ^ i , 2 1 + ^ 2 , 3 + ^ 3 , 2) for up;

y 厂厂3’2+"̂ (̂厂1，2+厂2，3+厂2’1) for down;
V —

For those boundary nodes, the differential equations:

^ — _

d K , r 厂厂—厂)「u—1 for down;
= +/lmax^ ^ ：̂ (5.37)

论 ， for left.
V ^ —

Chapter 5. Inference Network for Distributed Dynamic Programming 96

‘ (l - p) 「 （1-ycO/ 、"！
. + r ^r Icft；

^ ^ 二一义厂M-1+义 max< p + r 厂 厂 1 ， „ + " ^ ^ (‘ _ 2 + 厂2，“) for right; (5.38)

(l-p) 「 （1-/^)/ 、1
+ ,广厂2，“ for down.

V L . 一

The computational units are arranged and connected to form a square matrix following the

topology as shown in Figure 5.9. Consider ；I, =0.5, /=0.9 we obtained the estimates of the state-

value function shown in Figure 5.10. It showed that the parallel computation of the inference

network. Value at each grid converges to the optimal solution in a parallel and synchronize way.

Figure 5.10 Computation of state-value functions for the random walk in the grid-world using the continuous-time

inference network with 100 units

Convergence of the inference network in two dimensional grid-world problem is controlled by

lambda. When comparing to the previous 10-state random walk problem, the network settles to

the desired solution after t » 40, which is more or less the same as that for the 10-state problem.

In addition, by increasing the value of A, the time needed for the network settled decreased.

Also, when A increases to a large value (says 0.9), the network still converge to the optimal

solution. It implies that the network converges to the optimal solution independent on the rate of

convergence.

Chapter 5. Inference Network for Distributed Dynamic Programming 97

2.5-| A.=0.3
« ® 入=0.5

2-0-I - X=0.7

0 • ① 1.5-默

s I I - h
2 ^ 1 n- T̂ ® •

1 ? 0 •。；^ \ g § § 。： ； ^ \
^ u.o- V A, y

• \ ^ : 、 、 、

0 20 40 60
time

Figure 5.11 Learning curves for continuous-time inference network for 100-state random walk in the grid-world

problem, for various values of X . The performance measure shown is the root mean-square (RMS) error between

the value function leaned and the true value function, averaged over 100 states.

5.5.3 Example: 3 Stochastic Shortest Path Problem

Figure 5.12 The flow-graph for stagecoach problem (Haykin 1999).

W e consider a stagecoach problem. A fortune seeker in Missouri decided to go west to join the

gold rush in California in the mid-nineteenth century. The journey required traveling by

stagecoach through unsettled country, which posed a serious danger of attack by marauders

along the way. The starting point of the journey (Missouri) and the destination (California) were

fixed, but there was considerable choice as to which other eight states to travel through the route,

as shown in Figure 5.12.

There is also cost of life insurance policy for taking any stagecoach run based on a careful

evaluation of the safety of that run. The problem is to find the route from the starting point to the

Chapter 5. Inference Network for Distributed Dynamic Programming 98

destination with the cheapest insurance policy. To find the optimal route, we consider a

continuous-time inference network with 10 units. The units connected following the topology

given in the figure. Also the transition probabilities of the problem is given as 认，/’）= 0.8 if

k = i' and = 0.2 i\ where i is the current state, i' is the next state and a is

the action.

While similar convergence to the optimal expected cost at each state are obtained and shown

in Figure 5.13. W e varied the discounted factor, which signifies the importance of the long term

reward when approaches to one. W e found that though both cases converges to the optimal

expected reward. But the convergence time of the continuous-time inference network decreases

as the discounted factor approaches to one.

The discounting factor is significant parameters to the computational load of value iteration

and other dynamic programming. For value iteration, the number of iterations required to obtain

the optimal value increases exponentially when increases the discounting factor (Kealbling,

Littman et al. 1996). The continuous-time network suffers more or less the computational burden

of the discounting factor.

Continuous time response of inference network on stagecoach problem with cliscount=0.3
20 1 1 1 1 1 1 1 1 1

�

i i 5 办 -
CO

0 1 0 -
。 V A

1 … 一

- o k z :， : : 7 = . . , -… = : . I n , , ~ 一
0 2 4 6 8 10 12 14 16 18 20

time
Continuous time response of inference network on stagecoach problem with discount=0.9

20 1 1 1 1 1 1 1 1 1

1 1 5 \ __.�一 -

呂 1 0氏 \犬、 .、 \、〜、、一一 一一 —_

^ /\ \、、、、、、、、_ - - - - - 一 ::::......=:-
-»—» / \ \ . � � - � � ‘ “ —

Q. / ：：……..... “ ― ― 一 一

X m
Q I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20
time

Figure 5.13 Simulation of a inference network for the stagecoach problem (upper: A- =0.9, / =0.3, below:

A. =0.9,厂=0.9’).

Chapter 5. Inference Network for Distributed Dynamic Programming 99

5.5.4 Relationship between 义 and /

Since A is the open-loop system pole for the computational unit,义 increases leads to the

increasing of the network convergence. Considers fixed discount factor / for a typical random

walk problem, we vary ；L from 0.1 to 0.9. By measuring the averaged R M S error over all states

at a fixed time, convergence time is exponentially decreasing while X is increasing. By adjusting

the discount factor from 0.3 to 0.9, the exponentially decreasing of convergence time still

observed but with a slower rate (See Figure 5.14).

Figure 5.15 shows the plot of R M S error against A and y at the same time. It showed

interesting relationships that R M S error decreases exponentially when 义 increases while R M S

error increases exponentially when / increases. The results suggest that given the discount

factor approaches to one, using an arbitrarily large X would result in a fast convergence to

compensate.

16- I T

！ 1 4 : : : 、 卜 4 、 l

导 12: ...V. 1 1 � � 1 T y=0.9
•N \ � \

旨完 10: \ \ t --、、、1 T
1- J- o " \ XT 、
①① 8 - 入 \ t \ 丄 、

i o e： \ 丄

r - 卜 、

0.0 0.2 0.4 0.6 0.8 1.0

人

Figure 5,14 Comparison of convergence speed for continuous-time inference network for the random walk problem,

for various values of X and discount factor y. The performance measure shown is the root mean-square (RMS)

error between the value function leaned and the true value function, averaged over all states. It showed that

exponentially decreasing of RMS when ？i increases. By increasing discount factor y , it decreases the rate of

convergence.

Chapter 5. Inference Network for Distributed Dynamic Programming 100

y • 0.8 Q 9

Figure 5.15 Comparison of convergence speed for continuous-time inference network for the random walk problem,

for various values of A and discount factor / on an alternative view. Interesting relationships between ？i and y

can be found. The RMS error shows relatively symmetric between large X , large y and small X，small y . Long

convergence time for large y (discount factor) and be compensated by using large X in the continuous-time

inference network.

5.6 Discrete-Time Inference Network
Modified Eq. ((5.13)-(5.14)) that consider 5t is an arbitrarily small time interval. W e have Eq.

(5.39) as the differences equation for the output of each computational unit that is derived from

the differential equations Eq. ((5.13)-(5.14)).

r f ��

(0 - (0 = -Kg.(0 + 义 , m i〜。 0 + 2]T�,a,i’)仏a’).份（5.39)
I t ''̂s J J

For simplicity, considered that 5t equals to one, we have
广 、

(0 = (1 — A , (/) + A^min,, R{U+ E TU, a, i ’)g, (/ ’) （5.40)

I i'eS ,
and we can consider an arbitrarily fast system that A. equals to one for all i.

(0 = mi〜“ R(i,n + ^nua,i’)(/')[(5.41)
� /’eS .

Chapter 5. Inference Network for Distributed Dynamic Programming 101

Noticed that Eq. (5.41) has a similar form as the Bellman optimality equation Eq. (5.3), but in Eq.

(5.41) discrete time relationships between the outputs of each computational unit are defined by t.

Supposed that there is a memory elements at each computational unit that the output g{i) at time t

is registered, the discrete-time inference can be readily implemented by using digital logics.

In discrete time system, such as digital logics system or FPGAs, the time variable t can be

implemented using a system clock with known or controllable frequency. Each clock tick can be

considered as ^+1. But in most of the time, it is not sufficient for only one clock tick to have

finished all computation from Eq.(5.41). So, several clock ticks can be considered for 什1.

5.6.1 Results
The architecture can be readily realized using digital FPGAs. The convergence of output of

computational units based on the FPGAs implementation is compared against the software^

implementation. Figure 5.16 shows the results. From the figure, “*，’ represents the software

results while “-，’ represents FPGAs results. Both software and FPGAs network converge to the

optimal value within 10 iterations. The iteration in software refers that all states and all actions

has been gone through exactly once. However, in the F P G A distributed implementation, all

states value is updated simultaneously.

1 厂

t Software
0.8 — F P G A

I 0.6 - i

V
0 2 I ‘ 1 1 1 - L - 1 I I I I

‘ 0 10 20 30 40 50 60 70 80 90 100
Trial

1 厂

0 . 8 4

：> 0.4 - \

0.2 - 本 本 本 卓 • • 本 本 • 本 本 • • 本 • 本 • • 本 本 • 本 本 本 本 本 • 本 本 本 本 本 本 • 本 本 m

n l I 1 1 1 1 1 I I I I
0 10 20 30 40 50 60 70 80 90 100

Trial

1 厂

0 . 8 4

i 0.6 -

!。大

n l I ！ 1 1 1 1 1 I I I
0 1U 20 30 40 50 60 70 80 90 100

Trial

Figure 5.16 Verification of the network convergence on FPGAs implementation with referring to the software
computation.

2 Matlab is used as software programming

Chapter 5. Inference Network for Distributed Dynamic Programming 102

It is interesting to find out the hardware computation error when using software results as

reference. The multiplication in hardware would be the major source of error. W e have the

absolute error against iteration loops in the figure 5.17. The error is small as in in the order of 10'

6，when 16-bit fixed-point is used. Also, it shows that when the network converges, the hardware

would have less error.

I i 1 1 1 1 1 1 1 1

3 - _

h
- -^ 1 J

i i n ：

1.5 - _

1 - -

0 5 I 1 1 1 1 1 1 1 I I

D 10 20 30 40 50 60 70 80 90 100
Trial

Figure 5.17 Bit truncation error in the 16-bit FPGA inference network computation

5.7 Conclusion
This chapter describes a novel connectionist approach for mapping the value iteration

algorithm to a continuous-time inference network solving the dynamic programming in the

continuous-time domain. Some of the limitations for the conventional heuristic search techniques,

such as increased inefficiency for problem with large m, and the discrete time asynchronous

distributed approach with requirement for the synchronization of control flags between

processors, exponentially increasing of computational loads when discount factor approaches

one, have been effectively overcome. Numerical simulations have been used to demonstrate the

salient features of such type of continuous-time inference network, for which fully-analog

parallel implementation can be made arbitrarily fast and its required computational time is

practically independent of m. W e also derived a discrete-time version of the inference network

that the network can be well mapped to FPGAs for solving dynamic programming. This opens

up the possibility for future realization of this class of optimization and learning circuits for real-

Chapter 5. Inference Network for Distributed Dynamic Programming 103

time decision making applications, such as rover path planning and trajectory design for U A V s

for surveillance mission.

r

Chapter 6. On Distributed Q-learning Network 104

t

Chapter 6

On Distributed 0麵Learning Network

In a Markov decision process, knowledge of the state transition probability function T(s,a,s)

and the reinforcement reward R(s,a) is not always available. The agent must interact with its

environment directly to obtain information, which by means of an appropriate algorithm, can be

processed to produce optimal decisions. To circumvent the limitation of the dynamic

programming, g-leaming, proposed by Watkins, as a simple yet striking powerful learning

algorithm contributes the on-line reinforcement learning with assuming the probability and

rewards are unknown. However, the slow sequential learning process under the conventional Q-

leaming algorithm would have delayed the solution time for many of the time-critical and real-

time decision making problems. Based on the framework of the Bellman Inference Network, a

novel g-leaming network architecture is proposed. W e introduce the exploration and memory

components to the original Bellman inference network to form a connectionist network with

together the capability of parallel learning and optimization. W e found that the g-leaming

network outperforms significantly the conventional g-1 earning algorithm under a distributed

unknown environment. W e also proposed two design alternatives for the realization of Q-

leaming network using Field Programmable Gate Array (FPGA) that the network would be

dedicated to fit different applications.

•

Chapter 6. On Distributed Q-learning Network 105

6.1 Introduction

f

Dynamic programming can efficiently solve reinforcement learning problem, as optimal

decisions can be found given prior information about the environment, such as rewards and

probability distribution. The policy iteration or value iteration dynamic programming algorithm

requires prior knowledge of the underlying Markov decision process. That is, for the

computation of an optimal policy to be feasible, we require that the state-transition probabilities

and the observed rewards to be known. However, considering the fact that prior information is

not always available and the cost to obtain such information is exceptionally high under certain

circumstances, the dynamic programming approach may not always be feasible or easily being

adopted (Haykin 1999).

To circumvent the limitation of the dynamic programming approach, learning from on-line

experience requiring no prior knowledge of the environment's dynamic would be striking

(Sutton and Barto 1998). A simple yet powerful algorithm, called g-leaming, has been proposed

by Wilkins (Watkins 1989), g-leaming uses simulation or experimental information to compute

estimates of the expected value as a function of the initial state. It is an incremental dynamic

programming procedure that determines the optimal policy in a step-by-step manner. It is highly

suited for solving Markovian decision problems without explicit knowledge of the transition

probabilities. It was found to be an effective endeavor with capability to deal with the learning

under situations with incomplete information. It allows the learning agent to explore the

environment by making trials, while performing optimization to find the best decision at the

same time.

2-leaming has been extensively studied and applied across a broad domain, such as control

and decision making. However, the original g-leaming formulation only considers a single

learning agent exploring the environment and making a single decision at a time (Sutton and

Barto 1998). Many interesting problems that have properties favoring the use of distributed

solution can be solved by reinforcement learning. Whenever the state and action space is large, a

distributed approach to perform the computation is desirable because it makes computational

speedups from parallelism possible. In general, distributed learning could not only release natural

constraints like the limited processing power of a single agent or the geographical distribution of

data but also benefit from the inherent properties of distributed systems like robustness,

Chapter 6. On Distributed Q-learning Network 106

parallelism and scalability. Although 0-leaming is fairly well understood, distributed

reinforcement learning is a much less mature concept (Tsitsiklis 1994; Weib 1995; Schneider,

Wong et al. 1999). ‘

Theoretical study of the asynchronous mathematical model of 0-leaming, developed by

Tsitsiklis (Tsitsiklis 1994), forms the basis of parallel and distributed realization of 0-leammg.

He proposed a mathematical model to analyze and prove the convergence of g-leaming under

asynchronous updating and delayed information. Though with the elegant theoretical analysis,

there has been few realization and implementation for the distributed g-leaming until recent

years. The needs for distributed approach emerge along with the rapid growth of internet and

communication network technologies.

For example, the problem of routing packets efficiently in a communication network with an

irregular topology and unpredictable usage patterns can readily adopt a distributed reinforcement

learning model (Littman and Boyan). The g-leaming can adapt to changes in network traffic and

is constructed from a distributed collection of learners, each of which is responsible for a

partition of the problem. The distributed approach appears to be very effective in routing packets

under high load. The other approaches with similar idea of distributed computational learning

also apply on the network and communication systems (Caro and Dorigo 1998) to obtain higher

throughput.

In contrast to computer network or communication problems, real-time decision making

applications such as autonomous robots and UAVs, requires efficient computation that the

software approach is not sufficiently fast enough to provide (Cauwenberghs and Bayoumi 1999;

Williams, Kim et al. 2001; Jun and D'Andrea 2003). VLSI hardware allows efficient high speed

on-chip communication between processing units which provides powerful collective

computation and hardware realization. However, learning algorithms that are efficiently

implemented on general-purpose digital computers do not necessarily map efficiently onto VLSI

hardware (Cauwenberghs 1997). There are different design constraints imposed by the hardware

VLSI that are absent in software implementation.

In (Cauwenberghs 1997), Cauwenberghs proposed a hardware perturbative model for model-

free gradient decent implementation that reinforcement learning can be mapped onto analog

VLSI based on the hardware model. The architectural VLSI design retains desirable properties of

a modular and cellular structure, model-free distributed representation and robustness to noise

Chapter 6. On Distributed Q-learning Network 107

and mismatches in the implementation. The hardware architecture demonstrates the feasibility

and effectiveness using silicon solution for real-time learning and decision making. In line with

Cauwenberghs’ work, the hardware architecture can be further extended and modified to handle

more complicated and effective decision making model.

The connectionist architecture proposed by Sutton in the 80，s, called the Critic and Actor

architecture, first demonstrated the capability of reinforcement and exploration learning

mechanism and had shown that the model could solve difficult control task (Barto, Sutton et al.

1983). The first remarkable success of the proposed algorithm, Critic and Actor architecture, is

now regarded as a rather sophisticated approach, in which the performance might be limited by

its high computational complexity (Kealbling, Littman et al. 1996). On the other hand, Q-

leaming emerges as an effective alternative because of its simplicity and effectiveness. Previous

implementation of the perturbative model realized the Critic and Actor model based on a

connectionist approach (Cauwenberghs 1997). However, in spite of the compact architecture, the

implementation would inherit the limitation of the computational complication. Alternatively,

realization of the Q-leaming would inherit the compactness and efficient architecture which

might improve from the original Critic and Actor architecture.

In the previous chapter, a distributed continuous-time inference network for dynamic

programming problems has been proposed. It has shown that the inference network converges to

the optimal Bellman optimality condition, for which the convergence rate can be made arbitrarily

fast and is practically independent of the discounting factor and the number of states. Further, an

analog VLSI C M O S circuit has been developed to realize the inference network and to

demonstrate the inference network optimization for the dynamic programming problem. By

adopting the collective computational paradigm of the inference network, in addition to the

original architecture, we introduce the component of stochastic exploration. It would enable the

learning capability of the connectionist network beside the optimization capability. W e consider

each computational unit as a learning unit, in which the architecture is defined by the g-leaming

formulation and the stochastic elements for exploration.

In this chapter, we propose a novel architecture of distributed g-leaming network. In line with

the spirit of the Binary relation inference network (BRIN), a collective connectionist network

approach could solve the reinforcement learning problem by introducing the component of

stochastic exploration. The g-leaming network would be shown efficient to solve benchmark

Chapter 6. On Distributed Q-learning Network 108

Markov decision process problem with unknown prior transition probability distribution and

rewards. Also realization of the g-leaming network using Field Programmable Gate Array

(FPGA) will be discussed with alternatives design approach compared.

6.2 Distributed g-learning Network

The behavioral task of the reinforcement learning system is how to find an optimal policy after

trying out various possible sequences of actions, and observing the costs incurred and the state

transitions that occur, ^-learning defines a procedure of taking sample of the environment and

associating the action with the observed reward. The formulation follows a well-known Bellman

optimality equation that Q-leaming use a simple sample to replacing the probability distribution

from the original Bellman equation. In other word, g-leaming can be considered as a sampling

approach that the learner directly taking samples from the environment instead of assuming a

probability distribution is given.

Bellman equation defines the optimal criterion for the Markov decision process, such that the

expected reward V(s) at each state s can be found by applying the Bellman equation iterative!y.

Recalled that the optimal decision n{s) at state s can be computed based on the expected

reward F(s). It seems that the decision variable n and expected reward V is two separated

concepts while they are related due to Eq. 5.4. Along the introduction of the concept state-action

pair {s, a), the value or the expected reward for taking action a at state s is quantitatively defined

by the term Q(s, a), or called g-factor (Watkins 1989). Function Q{s, a) is used to memorize the

expected reward for the action a and the state s. Thus, there are direct measures of all possible

actions at all states, while the best decision can be found simply the Q{s, a^ with highest score

for all i. Evaluation of Q-factor would benefit the reinforcement learning approach, such that the

complicated evaluation of decision tt from V is not a necessity.

Let Q*{s, a) be the expected discounted reinforcement of taking action a in state s, then

continuing by choosing action optimally. Note that V*(s) is the value of s assuming that best

action is taken initially, so V*(s) = min^ . Following Bellman equation, Q*(s,a) can

hence be written recursively as

Chapter 6. On Distributed Q-learning Network 109

Q*(s,a) = R(s,a)^ry T{s, a, s，) min Q*(s \ a，） （6.1)

I

Note that, since V\s) = min^ Q*(s,a),we have 7r\s) = argmin“ Q\s,a) as an optimal policy.

Because the Q function makes the action explicit, we can estimate the Q values on-line by

taking samples of rewards from the environment. Following (Kealbling, Littman et al. 1996)，we

define� s , a , r , s � �, which is called experience tuple summarizing a single transition in the

environment. Here s is the agent's state before the transition, a is its choice of action, r the

instantaneous reward it receives, and s ‘ its resulting state. The g-factor is learned using the Q-

leaming (Watkins and Dayan 1992) which uses the updating rule

a)=以•s, a) + a (r + min Q{s ’, a ’）— a)] (6.2)
\ V f l ' /

V(s) = mm^^ Q(s,a) (6.3)

where y is the discount factor. Also, it has been shown that if each action is executed in each

state an infinite number of times on an infinite run and a is decayed appropriately, the Q value

will converge with probability 1 to Q* (Watkins 1989; Watkins and Dayan 1992; Tsitsiklis 1994).

6.2.1 Distributed g-learning network

As a parallel extension, sampling the environment can be executed in parallel or in a

distributed process. It is no necessarily to keep trying each action in a sequential manner, given

that it is feasible to the environment. In other words, the sampling and updating procedure of the

g-leaming can be achieved in parallel by independent units, which represent agents at different

states. In (Tsitsiklis 1994), Tsitsiklis showed that Q-leaming would converge to the optimal

solution under asynchronous updating and sampling. It provided a solid mathematical foundation

for the formulation of the distributed Q-leaming network.

In previous chapter, we have shown that the optimal policy or the optimal solution based on

Bellman optimality criterion can be computed using a continuous-time inference network

architecture. In the inference network, each computational unit represents a binary relation

Chapter 6. On Distributed Q-learning Network 110

between the corresponding state and the destination (or goal) state. The Bellman equation can be

mapping to the site functions and unit function in the computational unit, and the network

converges to the optimal solution. It has been proved that the energy function of the network is

decreasing and will converge to the optimal solution.

In general, the Bellman inference network is performing optimization based on the Bellman

optimality criterion. However, probability distribution and rewards are simply assumed to be

known in prior. Following the idea of 2-leaming, we can introduce the Q(s, a) function into the

Bellman inference network to memorize the expected reward for the action a and the state s.

Also, stochastic exploration mechanism can be introduced in the network, so that the

computational unit can interact with the environment to obtain information about the reward and

state transition.

2-leaming algorithm is less computational intensive than the Bellman dynamic programming,

as the intensive probabilistic expectation computation is omitted. However, as samplings from

the environment, elements of memories are required in extra, in contrast, which is not necessary

in Bellman inference network.

A 2-leaming network is formed by interconnection of self contained computational units.

Figure 6.1 shows the structure of a unit and the connections in a general learning network. Each

unit is to represent a binary relation between the state i and the destination state d. In most cases,

destination state d is simply omitted and implicitly assumed. So for each unit, which is denoted

as L{i) for state i. Each unit, there are N inputs for carrying out the g-leaming updating. For each

epoch, only one input is selected, based on the state transition s ‘ feedback from the environment,

to execute the updating. The value function of the corresponding relation for state I is then

determined by resolving the conflict among all of the Q{s, al), for all i.

In addition, there is an interaction between the computational unit and the environment to be

leamt. The unit L(i) will generate an action a to the environment, which represents the agent (or

learner) at state i taking action a. Consequently, reward r and state transition result s，would be

received after taking action a. There is a close analogue between the learning network and the

learning agent. Considered that there is a stationary agent at each of the state in the original

problem graph. The agent keeps trying different actions at the same time and updating the

corresponding g-factor. At the mean time, the inference network is performing optimization via

the interconnected computational unit architecture.

Chapter 6. On Distributed Q-learning Network 111

L(Sd〗) k Computational Unit L{s) V{s)/\ [(s p � �

/ I I I LjSpn)

\ Environmeni

Figure 6.1 A typical computational unit in the learning network depicts the input and output of the learning

network architecture. For computational unit L(s), which represents the binary relation between state s and the

destination state, inputs the value V(s') from the decedent units. However, in contrast to the Bellman network, s' is

determined by the environment. Therefore, all possible decedent units output V(s') to unit L(s), and is being selected

by the environment. Within the unit L(s), Q-factor for all possible action are stored and being updated accordingly.

The unit L(s) outputs the action, and inputs the reward for the Q-leaming rule updating. The unit also outputs the

V(s) to the predecessor units.

6.2.2 0-learning network architecture

Considered a specific unit L{s), the output is denoted p(s), where each unit only has one and

only one output function. Each unit has component of state exploration , g-factor table 平2,

and exploitation logics .

To choose an action a in a state s, the exploration component 平！ uses the action-value

estimations Q(s, a) and an exploration strategy called cr. The selected action is then:

a = cT(s,Q) (6.4)

Following (Sutton and Barto 1998; Haykin 1999), cr is the s -greedy searching strategy: most of

the time, the greedy action is selected (the action for which Q(s, a) is maximum) and sometimes,

Chapter 6. On Distributed Q-learning Network 112

a random action is selected with a small probability £ , independently of the action-value

estimations. This strategy allows us to control exploration rate. The component ^^ maps states
I

to actions, is fully defined by the action-value function Q in addition with the exploration

strategy a .

The state exploration component requires the g-factor for all possible actions. Therefore, we

have the other component g-factor table to store the Q values. This is one of the major different

between the previously introduced Bellman inference network. In the inference network, there is

no memory component, as inputs such as probabilities and rewards are assuming constantly

supply. The 2-factor table is needed for updating the g-factor by the Q-leaming rule. A

minimum operator is following the outputs of the g-factor table. It summarizes the g-factor

values and output the minimum value, as the expected reward F(s) from the Eqs.((6.2)-(6.3)).

The last component is the exploitation, which realizes the Q-leaming rule. Given that the Q-

factor table with the minimum operator, we have the expected reward of the state, V(s). Then the

(2-leaming rule can be modified accordingly for the architecture as follow

Q(s, a) = (l-a)Q(s, a) + a[r + rV(s)] (6.5)

where a is the learning rate, s is the state, a is the action generated from Tj, r is the reward

received from the environment and V(s) is the expected reward from the minimum operator.

Figure 6.2 shows the architecture of a g-leaming computational unit L(s) with all components.

The unit inputs a set of V(s，) from other m computational units, which are the adjacent states of

state s. The output a, input s ‘ and r are action, next state and reward respectively interacting with

the environment. The V(s) is the output of the unit to other units.

Chapter 6. On Distributed Q-learning Network 113

r

fv vjy

v(s，2卜 h f \ A ^ ^ f f — I

作 , 々 i K ' �I I = t � r ~ n p min

I rr 丨！ ： i •,
I r ^ x(l-a)l p I a r g m i n v ,

平 1 Rand()>g 11

I J/i 1
a I f < ~ RandO I

^ 1
-MMCW «««««<• < -iSUttM' 44<M»4M. •»Me4t>- ^

Figure 6.2 Schematic of a typical computational unit, in which consists of three major components, 1.) state

exploration ,for determining the action a to the environment; where rand() represents a random number between
zero and one. 2.) Q-factor table 乎之，for storing the Q-factor and 3.) exploitation logics ，for updating the Q-

factor. There is also a minimum operator following the outputs of the Q-factor table. It is used for summarizing the

state-action pairs and finding the best expected reward.

A distributed learning network approach for solving the reinforcement learning problem can

be formulated as follows:

1. Construct a m-unit g-leaming network, where the architecture of each computational unit

is defined by a set of equations Eqs.((2.4)-(2.5)).

2. The network has a complexity but regular interconnection structure following the

topological structure of the given problem or graph. Each unit L(i) sends its output V(i) to

a set of neighborhood units, which is the decedent state in the original problem graph.

Each unit received at the same time the outputs from the set of neighborhood units, which

can be reached from the state i taking proper action.

3. Each unit L(i), interacts with the environment with regarding the variables, a, r and s\

where a is the action, r is the reward received and s ‘ is the next state returned from the

environment.

Chapter 6. On Distributed Q-learning Network 114

6.3 Experimental Results
f

6.3.1 Random Walk

Figure 6.3 A small Markov process for generating random walks. The chain has 5 states in total, while the state

'K ' is the terminal state. Transitions would result zero reward except the "right" action at state E would result

reward of one, as shown in the arcs in the figure. However, unlike in the Bellman dynamic programming, the

probabilities and the rewards are unknown to the learner or agent. Distributed learning network takes samples, such

as rewards and state samples, from the environment by issuing actions to the environment.

Random walk problem can be solved efficiently using distributed (Q-leaming network

approach. Consider a 6-state random walk problem, that the states are labeled by “{A, B, C, D, E,

K}, where state “IC, is the terminal state. Since the Markov decision process environment is

unknown to the learner at the beginning. The underlying transition probability distribution of the

environment is defined as follows. For state I, the available actions is denoted by A. = [â ,̂],

where the second subscript k in action ciik taken by the learning system indicates the availability

of more than one possible action when the environment is in state i and state k is the desirable

next state. The transition of the environment from the state i to the new state y, for example, due

to action Uik is probabilistic in nature. The transition probability of the environment from state i

to state j by taking action a," be defined as J\i, atk, j). In our experiment, probability

T(i,a^j^,i') = 0.9 if A:=广 and = 0.1 k 丰 V, where i is the current state, i' is the

next state and Uik is the action with k is the desirable next state.

One computational unit is used to represent one state whereas the terminal state “IC, can be

omitted. Each computational unit would interact with the environment independently by issuing

an action and receiving the reward and state transition information. There is intensive

communication between the units. Interconnection between units follows the original graph from

Chapter 6. On Distributed Q-learning Network 115

the random walk problem to form a learning network. The detailed of the network architecture is

presented at Figure 6.4.

门 • r s’ Environment ‘ O
L l j ^ o j - 4 / 4 4 - r

I 日2丨 as, I as
I t • I ” _ V I w _ y 己4 丨 ” _ y ” _ y

~ ~ n \V{S2)\ 陶 I \V(S4)\

^s^) 二 L{S2) 二 L (S 3) 二 L (S 4) 二 L (S 5)

h ^ h ^
Figure 6.4 A distributed Q-leaming framework to solve the random walk problem. The computational units, L(si),

L(S2), L(S3)，L(S4) and L(S5) are corresponding to state A, B, C, D and E, forms a learning network. Each

computational unit issue an action to the environment, and reward and next state are received. There is intensive

communication between computation units for updating the expected reward of the adjacent states.

Figure 6.5 shows the results generated from the 2-leaming network with learning rate a

equals to 0.2 (upper) and 0.5 (lower). The network converges to the optimal expected reward,

which is the Bellman optimality criterion, for both cases. Also, it can be found that perturbation

around the optimal solution appeared after the network had converged. It is because the

stochastic exploration component in the computational unit trying to search better optimal

solution. For the case of larger learning rate, more vigorous perturbation is found. Higher

convergence rate is found for the larger learning rate, though a vivid perturbation at the optimal

solution.

Chapter 6. On Distributed Q-learning Network 116

I 0.6- — V{ŝ)

<D —1 , 1 . ,

0 100 200 300

1 1.0 ——— WSi)

Q- ‘ 1 ‘ 1 ‘ 1
55 0 100 200 300

number of trials

Figure 6.5 Learning curve of the distributed Q-leaming network, the (upper) graph is with learning rate a equals to

0.2 and the (lower) graph is with learning rate a equals to 0.5. In both cases, the learning network converges to the

optimal solution, while small perturbations around the optimal solution are found after converged. It is because the

introduction stochastic exploration at each computational unit, the network is still looking for possible better

solution. The one with larger learning rate has larger perturbation. The learning rate serves as step size, as the larger

learning rate will result larger perturbation.

6.3.2 The Shortest Path Problem

Start Z � l > < / \dest inat ion

Figure 6.6 The flow-graph for stagecoach problem(Haykin 1999). In this case, the transition probability distribution

and the rewards are unknown to the traveler or learning agent. The information can be obtained by experiencing,

which is taking actions and receiving rewards and observing state transitions.

W e consider a stagecoach problem. A fortune seeker in Missouri decided to go west to join the

gold rush in California in the mid-nineteenth century. The journey required traveling by

Chapter 6. On Distributed Q-learning Network 117

stagecoach through unsettled country, which posed a serious danger of attack by marauders

along the way. The starting point of the journey (Missouri) and the destination (California) were

fixed, but there was considerable choice as to which other eight states to travel through the route,

as shown in Figure 6.6.

There is also cost of life insurance policy for taking any stagecoach run based on a careful

evaluation of the safety of that run. The problem is to find the route from the starting point to the

destination with the cheapest insurance policy. Also, the transition probabilities and the reward

of the environment are unknown. To find the optimal route, we consider a Q-leaming network

with 10 units. The units connected following the topology given in the figure. Also the transition

probabilities of the problem is given as = 0.8 ifk=i，and = 0.2 if k

i ,，where i is the current state, i ‘ is the next state and Uik is the action with k is the desirable next

state.

Forming a network of nine computational units, and each of the units communicates with the

environment for taking reward samples. It is assumed that the environment is able to respond to

the learning network with different independent actions. The unit for the destination can be

omitted, as the expected reward at the destination state is simply assumed to be zero.

Comparing to the typical single agent g-leaming algorithm, the g-leaming network converged

at around the 30-th epoch, while the typical g-1 earning algorithm converged at around 600-th

epoch (See Figure 6.7). The learning network approach is at around 20 times faster than the

conventional approach. This result demonstrates the high performance of collective network

approach for learning and optimization. Further, vivid perturbations around the optimal solution

are found after the learning network converged. This can be attributed to the large learning rate,

a 二 0.5，in this case. Considered a smaller learning rate, a = OA, a much smoother learning

curve was found with less perturbation (See Figure 6.8).

Chapter 6. On Distributed Q-learning Network 118

, 1 . 6 -

妄 i.2-\

2 o I I

^ "S 5 SQ-learning
CO g) w 0.8- I ^

^ o S distributed
ro 0.4- I Q-learning

U.U H 1 1 1 1 1 ‘ 1
0 200 400 600 800

number of trials
Figure 6.7 Comparison between typical Q-leaming and the distributed Q-leaming network approach. The graph

shows the Root-mean-square (RMS) error with averaged over all states against the number of trials. For one trial, in

the Q-leaming case, the agent makes one decision whereas in the distributed Q-leaming case, all computational units

issue one action. It can be observed that the distributed Q-leaming approach converges much faster (at around 30

trials) while Q-leaming approach converges at around 600 trials. The sharp perturbative peaks from the distributed

Q-leaming curve can be explained by the large learning rate (i.e. a =0.5).

1.6-^

. o 1.2- \

I I I - \
^ 0.8- \ ^ a r n i n g

圣i V
. I distributed Q-learning

U.UH ‘ 1 1 — ^ 1 • 1 1

0 200 400 600 800 1000

number of trials
Figure 6.8 This is the experiment for comparison of convergence between Q-leaming and distributed Q-leaming

the with smaller learning rate (i.e. Ot =0.1). It shows that the distributed Q-leaming network converges much faster

than typical Q-leaming. Also the perturbation because of the learning rate becomes smaller.

Chapter 6. On Distributed Q-learning Network 119

Learning rate is critical in affecting the convergence rate of the 2-leaming network. W e

examined network for convergence at different learning rate defined. Figure 6.9 shows the

results of the experiment； It shows that the network converges to the optimal solution for

different learning rate. Also, for larger learning rate, the network converges faster. But,

perturbation at the optimal solution is expected for network with larger learning rate. This can be

explained by the stochastic exploration energy of the network is larger with larger learning rate.

One of the modification can be made is that to assign a decreasing function for the learning rate

parameter, such that the network will stop perturbation after it has converged to the optimal

result.

二 （/) I \
2 芸 • I V o - 0 1

i M \ \
Q： ̂ O 0.4- \a=0.05

••0- a=0.1
1 1 1 1 1 1 1 1

0 200 400 600 800

Number of trials

Figure 6.9 the convergence of the distributed Q-leaming network can be varied with different learning rate. The

larger learning rate would result a faster convergence and a vigorous perturbation around the optimal solution. The

one with smaller learning rate would result a slower but smooth convergence.

One of the interesting observations for the g-leaming network is about the discount factor.

Since, in the continuous-time Bellman inference network, discount factor /, which defines the

importance of the longer term reward, would affect the convergence time of the network. It was

found that the larger discount factor, the longer convergence time. However, in the case of Q-

leaming network, it was found that the discount factor y plays no significant in the convergence

time of the network. Figure 6.10 shows the learning curve of the network with difference

discount factor. There is no conclusive observation can be found in the figure that there is no

Chapter 6. On Distributed Q-learning Network 120

correlation between the convergence time and the discount factor. One of the possible

explanation is that the Q-leaming is a sampling approach, which the stochastic exploration of the

network overwhelms the effect of discount factor in the optimization.

2.0- y=0.1

丫=0.3

1.5- .•…y=0.5

„ o \ — Y二0.8

1.0-1

i ^ ^ \ \ i I ^ 0.5- I

U . U i 1 1 ‘ 1 1 ‘ 1

0 200 400 600 800

number of trials

Figure 6.10 For the Bellman inference network, the network needs longer convergence time for a larger discount

factor / . However, for the distributed Q-leaming network, there are no big differences in the convergence time for
different discount factors.

6.4 Discussion

Distributed g-leaming network demonstrates the high performance of learning a Markov

decision process via a collective mechanism with a network of interconnected computational

units. Results show that the g-leaming network algorithm outperforms the conventional Q-

leaming implementation in term of learning speed. The design takes the advantage of given the

distributive characteristic of environment. The g-leaming network can also applied for

sequential decision making problems. However, to gain the full capability and the highest

performance of the network convergence rate, parallel accessing to the environment would

definite boost the throughput of the learning system based on the g-leaming network

architecture.

Chapter 6. On Distributed Q-learning Network 121

6.4.1 Related work
There are close resembles of distributed reinforcement learning designs available. The

I

architectural designs found are typically dedicating for specific needs and can be categorized into

three application domains, which are 1.) multi-agents reinforcement learning, 2.) computer

network and communication application and 3.) autonomous robot path planning.

The area of multi-agent reinforcement learning is growing rapidly in recent years and

appearing as an interdisciplinary subject attracts attention of researchers from the domains of

computer science, economic (Kealbling, Littman et al. 1996; Shoham, Powers et al. 2004).

Agents in the multi-agent system know little about other agents, and the environment changes

during learning. The framework adopted is stochastic games (also called Markov games) (Filar

and Vrieze 1997), which are the generalization of the Markov decision process to the case of two

or more controllers. The stochastic game is thought to be a close resemble of Nash-type games,

that a Nash equilibrium, each agent's choice is the best response to the other agents' choices.

Thus, no agent can gain by unilateral deviation. The principle of the multi-agents reinforcement

learning is interestingly contributes to the design of artificial intelligence system with applying

basic principle from Economic. However, it is still controversial the clarity on the formulation of

the basic multi-agents systems and the potential of the design on real world applications

(Shoham, Powers et al. 2004).

The application of distributed reinforcement learning in network adaptive routing problem

abound. The approaches and the degree of modifications from the original g-leaming scheme are

varied. Peshkin and Savova (Peshkin and Savova 2002) proposed a multiple agents

reinforcement learning architecture for telecommunication systems, where an individual router is

an agent which makes its routing decisions according to an individual policy. Their approach

allows update the local policies while avoiding the necessity for centralized control or global

knowledge of network structure. A rather sophisticated gradient decent learning algorithm is

adopted for the agents to find the optimal routing policy. Similarly, Druschel and Chen

(Subramanian, Druschel et al. 1997) adopt an approach from ant colonies, that is very similar in

spirit of Peshkin,s work, for network routing problems. The routing information is periodically

updated by "ants", as agents, for minimizing the network loading. A more general and simple

distributed value functions approach demonstrate the collective power of the reinforcement

learning in a power grids design problem (Schneider, Wong et al. 1999).

Chapter 6. On Distributed Q-learning Network 122

The distributed value function approach has some degree of similarity with the distributed Q-

leaming network approach, in term of the formulation of 0-leaming in distributed context. Yet,

the distributed value function approach does not incorporate the component of state exploration,

that it is aimed for the purpose of optimization with given transition probabilities and rewards.

Further, the Q-leaming network is realized in VLSI circuit, where high bandwidth processor

communication is provided while the distributed value function approach is targeting to the

network of general purpose computers with lower communication bandwidth.

Lastly, parallel Q-leaming architecture is proposed for autonomous robotic application. In

(Laurent and Piat 2001), in order to increase the speed of learning regarding a large state space,

the robotic controller was designed to parallelize the maximum/minimum operator using

hardware. Unlike the g-leaming network approach, the single decision and reward is received by

the robot in the parallel 2-leaming approach. The parallel paradigm proposed in (Laurent and

Piat 2001) would introduce speed-up and fit for the application of single learning agent or

environment for sequential decision making as the typical Q-leaming algorithm.

6.5 FPGA Implementation
In recent years, Field Programmable Gate Array (FPGA) technology has emerged as a high-

speed digital computation platform. The flexibility of the FPGA's programmable logic combined

with its high-speed operation potentially allows it to making decision and performing

optimization in real time. Additionally, FPGAs can be used to accelerate prototyping of analog

hardware models of brain processes by quickly building a simulation platform to study the

functional behavior of the proposed model in a much shorter design cycle.

Our logic-level design makes extensive use of Xilinx's System Generator (SG) that works

under MATLAB's Simulink environment (Hwang, shirazi et al. 2001). Simulink provides a

schematic design environment of logic gate blocks with which to implement the FPGA model.

SG then automatically converts the simulink code from the schematic design to a bit stream file

to configure the F P G A hardware.

In Recent advance of Field Programmable Gate Arrays technology, Vertex-class F P G A

introduced block Read-only-memory (BRAM) and multipliers as embedded elements in the

FPGA. The embedded dedicated multipliers and B R A M offer a wide alternative of resources

Chapter 6. On Distributed Q-learning Network 123

management from mapping the arithmetic unit into the dedication circuit instead of distributed

logics. The dedicated circuits, such as 18-bit by 18-bit multipliers provide much higher

performance than multipliers constructed using F P G A logics. Besides, since the ̂ -learning

network architecture requires memory storage for the 0-factor table, embedded B R A M in F P G A

provides excellent design alternative. Instead of having the Q-factor table distributing among the

parallel registers, the g-factor can be stored in the B R A M .

Adapting to the F P G A architecture, there are two difference approaches that can map the

distributed 0-leaming network to F P G A hardware. The two approaches are 1.) distributed

registering approach and 2.) BRAM-based approach.

6.5.1 Distributed registering approach
(reward and state transition

from the environment)
s, r

I [3 .
① L

X M 1 W.NW -iWWW W W W mWW>、 •*>K̂ Ŵ» «

——^ I ~ E N n ^ l F — " R
: , > -I I I ——i

ViS'mY^ / ——• ： ： ： H ~ • • 叙 I
rTt ^ ： ： ： I • I

p v ^ : : ： I ： • > i V{s)
： : . • u - ^ r n ^ H / i ^

~ » - > 进 卸 r+^AfR ••• 1
——•Pen I ^]• I

I I : J I I ~ T ^ — 卿 础 — — 」

[h — — 「 一
J argminv"

a . y . L ^ 1 RandO
(action to the environment) ^

Figure 6.11 Schematic design for the computational unit which represents state s and n actions. For the sake of

clarity, the state exploration and exploitation logics are simply denoted by and 中3. The Q-factor table are

mapping to an array of registers in parallel. Each register has an enable input, which is controlled by the exploration

unit. It is to control only one Q-factor would be updated with corresponding action. The unit O j is the minimum

operator, which is implemented in parallel by a set of comparator and multiplexer. Besides, there are registers, "z"'",

Chapter 6. On Distributed Q-learning Network 124

to keep the input information from the environment, such as state s' and reward r. The action a is also registered, as

it is used to select the corresponding "old" Q-factor from the array of factors for the updating.

t

Registers and logics are abundance in the F P G A chip that distributed design can be benefited

from the distributed resources and the high performance of the parallel computation. The Q-

factor table component 平2 can be parallelized in such way that the Q factors are storing using

distributed registers and the minimum operator is realized using parallel design. Figure 6.11

depicts the schematic design of the computational unit based on the distributed registering

approach.

The major characteristic of the design is to map the Q-factor to an array of distributed registers

and using a parallel minimum operator. There is less design effort on the control logics while

more logics are expected for the parallelism. Besides, suppose that the computational time for

state exploration and exploitation 平3 is constant with regarding to the number of action, the

computational complexity for the A actions state would be reduced to 0(1) from 0(A). It is

because the parallelism applied on the minimum operator, which would take A steps if computes

in serial. On the other hand, the resources consumption would grow linearly with the number of

actions. Further empirical analysis would be done in the following section.

6.5.2 Serial BRAM storing approach
In contrast to the parallel registering approach, design can take advantage of the availability of

the embedded memory in the FPGA. Based on the Xilinx Virtex-II XC2V-2000 FPGA, there are

56 embedded Block R A M (BRAM) available, each with 1 Skbits storage. As an alternative to the

distributed registering design, the g-factor table can be mapped to be stored in the R A M . The

schematic design is depicted in Figure 6.12.

The BRAM-based design consumes less logic resources in the minimum operator and the

resources consumption would be fixed with regarding to the increasing number of actions. For

one B R A M , it would be able to store 1125 g-factor for 16-bit precision and 562 g-factor for 32

bit precision based on the XC2V2000 FPGA. On the other hand, longer computational delay

would be expected for the sequential BRAM-based design.

Chapter 6. On Distributed Q-learning Network 125

(reward and state transition
from the environment)

r

} r

I

v(s’i 水 丫 ① 1
Ws'z)~ ^S, 丄

: ^ BRAM i :l i
J > • — D a t a I 广 吟 I

vis'^y-- / • I
广 Z t _ J ^ I I o I m

* ^ C o u n t - » — 一 Addr | - J . •

^ ^ ^ V — I V

r ^ I r z n

p < Counter
J arg miiiv “

M
a L ——RandO

(action to the environment)

Figure 6.12 In this design, the Q-factor table are mapping to the internal RAM and addressed by the action index.

For computing the minimum value, all values from the RAM are needed to be evaluated. The minimum operator

O j , which is implemented in serial by evaluating all Q-factor from the RAM. The minimum operator consists of a

comparator, multiplexer and a register. The register stores the most updated minimum value and being used to

compare with the values from the RAM. If there is another value smaller found, it would be registered. Further,

there are two inputs for the address of the RAM. One is used for the minimum operation, as which is the counter

output to enumerate all addresses of the RAM. The other input is the action index which is outputs from the

exploration component.

6.5.3 Comparison

Current design have that each computational unit represents a binary relation between a state

and the destination, whereas the number of state increases linearly with the number of

computational units in trivial. In contrast, the possible actions can be taken at a state can be

varied according to the problem specification. The distributed register approach and the B R A M

approach might dedicate for alternative applications with different needs. Resources utilization

Chapter 6. On Distributed Q-learning Network 126

includes B R A M consumption and slice (i.e. logic resources), updating rate, which is the

maximum speed the system can perform, would directly correlates to the architectural design.

Table 6.1 Comparison between the two approaches on the consumption of logic slice with respect to the number

of actions and bit length

Number of actions

Bit 2 4 8 16

length

Distributed 16 143 731

Registering 24 164 276 531 1059

Approach 32 200 356 771 1387

64 381 676 1331 2699

^ B R A M - b a s e d 16 146] M 208

Approach 24 182 186 216 276

32 218 226 288 344

64 386 386 456 616

Both distributed and BRAM-based design increases linearly in resources consumption with

increased number of actions. Though the BRAM-based approach consumes more resources in

the case of small number of actions (i.e. binary actions), BRAM-based approach increases much

slower in the logic usage than the distributed approach with increased number of action. It is

simply because the parallel distributed approach requires more logics for the parallelism design.

The exceptional case for the binary actions in BRAM-based approach is because that there are

extra logics for controlling the read/write process of R A M . Since these logics would not increase

with increased number of action, the BRAM-based approach shows more efficient in logic

utilization by storing the g-factor in the memory, provided that sufficient embedded R A M s are

available.

Chapter 6. On Distributed Q-learning Network 127

The pay-off for the efficient logic utilization for the RAM-based approach is the

computational speed. W e compared the updating rate, which is the reciprocal of the time from

receiving rewards and new transition states to the 2-factor is updated and stored, between two

approaches. The higher updating rate shows a design with higher capability of reacting to the

changes of environment in real time. The distributed approach has higher updating rate than the

BRAM-based approach. For the larger number of actions, the parallel approach has over 12

times faster updating rate than the BRAM-based approach. For larger number of actions, the

BRAM-based approach requires more iteration loops to enumerate the values from the B R A M ,

which is computational expensive.

Table 6.2 Maximum updating rate'

Number of actions

2 4 8 16

^ D i s t r i b u t e d 14.02 M H z 1 3 . 9 8 M H z 1 3 . 8 7 M H z 1 2 . 2 8 7 M H z

Registers

Approach

BRAM-based 7.75 M H z 4.31 M H z 1.91 M H z 1.1 M H z

Approach

6.5.4 Discussion

Mapping the distributed g-1 earning network to F P G A can have two difference approaches

with benefited from the characteristic of FPGA. The distributed approaches benefited from the

distributed logics and registers in the FPGA that massive parallelization would provide

significant acceleration to the g-1 earning computation. However, the resources consumption

would be a threat for application with a large number of possible actions, as the logic

consumption increases linearly with the increases number of actions. Alternatively, a B R A M -

based approach can be more effective in term of logics utilization. The g-factor table can be

‘The maximum updating rate is referring to the Xilinx Virtex-II XC2V-2000 FPGA. The rate is based on the maximum frequency reported
by the Xilinx-ISE software. Usually, this is maximum frequency is underestimating, as it is computed based on the worst condition of the
FPGA board. In practical uses, 20 to 50 percentage improvement can always be found.

Chapter 6. On Distributed Q-learning Network 128

storing at the internal B R A M of the F P G A with a sequential procedure for the arithmetic

computation. Though a slower updating rate are recorded for the BRAM-based approach, it

would be suitable for applications with large number of actions.

6.6 Conclusion
To improve the speed of learning under an unknown environment, a distributed Q-leaming

network approach is proposed. As a substantial extension of the Bellman inference network, the

2-leaming network realizes the architecture of parallel learning and optimization simultaneously.

It has been shown a highly efficient approach in solving on-line reinforcement learning problem.

W e found that the g-leaming network has been greatly improved and outperformed the

conventional Q-leaming in term of learning speed and adaptation to distributed environment. In

addition, we studied the Field Programmable Gate Array (FPGA) implementation of the Q-

leaming network. Two approaches, distributed registering and BRAM-based, are found for

dedicating the FPGAs resources for different applications, such as high speed and problems of

high dimension.

Chapter 7 Summary 129

(

Chapter 7

Summary
W e proposed a hybrid GA-DP approach to solve the computational intensive equivalence set

search problem. The idea is to convert a searching problem to an optimization problem by

considering the equivalence set criterion as the heuristic fitness measure in genetic algorithm.

W e found that the hybrid approach is a more efficient method to locate the equivalence set of

genes from a large genetic network, especially when searching small equivalence set from large

genetic network. W e also offer an efficient FPGAs implementation, based on the Xilinx F P G A

prototyping board. The F P G A system can speed-up the computation. Over thousand times

acceleration could be achieved over software approach (Lam and Mak 2002). The hybrid GA-DP

paradigm would benefit and greatly enhance the computational efficiency of the equivalence sets

genes searching and help the development of large-scale genetic network and genetic network

dynamics.

Evaluation of a given phylogenetic tree based on the maximum-likelihood criterion is

computational intensive. It is also challenging for FPGAs implementation. It is because, 1 •) fix-

point architecture in FPGAs fails to support the precision demanding probabilistic computation;

2.) the recursive routine based on the tree data structure of the "pruning" algorithm is difficult to

realize in FPGAs, as there is no such a F P G A equivalence data structure; 3.) basic computation

such as logarithm and exponentiation, which is part of the maximum-likelihood computation, is a

challenging task in F P G A implementation.

To circumvent the limitations mentioned above, we, firstly, proposed a simplified floating

point architecture based on fixed-point arithmetic. The new architecture could dedicatedly

support the probabilistic computation up to 16 significant figures while maintained economic

hardware area. Secondly, we developed a recursive architecture based on the "stack" scheme.

The recursive architecture supported the realization of the parallel maximum-likelihood

Chapter 7 Summary 130

evaluation algorithm. Lastly, we studied the implementation of logarithm and exponentiation

using the factoring approach; this turned out to be a hardware area and computational speed

efficient approach. The FPGA-based maximum-likelihood hardware showed significant speed-

up, from 3Ox to lOOx, comparing to software implementation (Mak and Lam 2004; Mak and

Lam 2004a.).

The FPGA-based system provides significant speed-up in the maximum-likelihood phylogeny

evaluation. It can be regarded as a coprocessor in accelerating the phylogenetic tree evaluation

and the microprocessor is dedicated for tree topology searching. However, there is a

communication cost between the software and hardware. This might affect the speed-up ratio.

The latency in communication is technology dependent. In (Mak and Lam 2003), we have shown

that using H W / S W (Hardware/Software) codesign for G A M L implementation can provide

speedup over software implementation. The H W / S W approach is benefited from high

performance hardware and the flexibility of software. In our preliminary design, the G A M L is

divided into two parts: the genetic algorithm (excluding the fitness evaluation) and the tree

topology evaluation. Since the tree evaluation process is repeated extensively, the overall G A M L

runtime is reduced tremendously. It is also shown that our H W / S W system can scale up for real

applications.

In (Mak and Lam 2004), the H W / S W co-design system has been extended to a more powerful

embedded computing platform. In this platform, a microprocessor is immersed into F P G A fabric

for realizing an effective environment for H W / S W co-design implementation. Significant

improvements in data transmission between hardware and software and higher clock frequency

of F P G A have been realized when compared to the parallel port interface in (Mak and Lam

2003).

An FPGA-based architecture for the numerical computation of N M D A and non-NMDA

receptors activities and the resultant synaptic plasticity has been presented. The accuracy of the

F P G A realization is comparable to software implementations and yet it operates at a much higher

speeds. Additionally, the programmability of the F P G A system allows it to prototype analog

circuit designs with a much shorter design cycle. Therefore, F P G A technology can be used to

fill the gaps between software and hardware simulations. This technology can potentially be used

as a tool suitable for dynamic clamp experiments, or to control neuro-prosthetic devices for

Chapter 7 Summary 131

chronic replacement of damaged neurons in central regions of the brain (Mak, Rachmouth et al.

2005).

W e describes a novel connectionist approach for mapping the value iteration algorithm to a

continuous-time inference network solving the dynamic programming in the continuous-time

domain. Some of the limitations for the conventional heuristic search techniques, such as

increased inefficiency for problem of larger scale, and the discrete time asynchronous distributed

approach with requirement for the synchronization of control flags between processors,

exponentially increasing of computational loads when discount factor approaches one, have been

effectively overcome. Numerical simulations have been used to demonstrate the salient features

of such type of continuous-time inference network, for which fully-analog parallel

implementation can be made arbitrarily fast and its required computational time is practically

independent of problem size. This opens up the possibility for future realization of this class of

optimization and learning circuits for real-time decision making applications, such as rover path

planning and trajectory design for U A V s for surveillance mission.

Previous work on FPGAs implementation for shortest path problem using the Inference

network ravels the high performance parallel architecture (Ng, Mak et al. 2003). W e also derived

a discrete-time version of the inference network that the network can be well mapped to FPGAs

for solving dynamic programming.

To improve the speed of learning under an unknown environment, a distributed g-leaming

network approach is proposed. As a substantial extension of the Bellman inference network, the

g-leaming network realizes the architecture of parallel learning and optimization simultaneously.

It has been shown a highly efficient approach in solving on-line reinforcement learning problem.

W e found that the g-learning network has been greatly improved and outperformed the

conventional g-leaming in term of learning speed and adaptation to distributed environment. In

addition, we studied the FPGAs implementation of the g-leaming network. Two approaches,

distributed registering and BRAM-based, are found for dedicating the FPGAs resources for

different applications, such as high speed and problems of high dimension.

Bibliography 132

Bibliography
Adachi, J. and M . Hasegawa (1996). M O L P H Y version 2.3, program for molecular

phylogenetics based on Maximum Likelihood. Tokyo, Japan, The Institute of Statistical

Mathematics.

Akutsu, T., S. Kuhara, et al. (1998). Identification of gene regularity networks by strategic gene

disruptions and gene over expressions. Proc. 9th A C M - S I A M Symp. Discrete Algorithm.

Alter, O., P. O. Brown, et al. (2000). "Singular value decomposition for genome-wide expression

data processing and modeling." proc. Natl. Acad. Sci. U S A 97(10): 101-106.

Andraka, R. (1998). A survey of C O R D I C algorithms for FPGAs. 1998 A C M / S I G D A sixth

international symposium on Field programmable gate arrays, Monterey, CA.

Bader, D. A., B. M . E. Moret, et al. (2001). Industrial Applications of High-Performance

Computing for Phylogeny Reconstruction. SPIE ITCombv: Commercial Applications for

High-Performance Computing.

Ballard, D. H., G. E. Hinton, et al. (1983). "Parallel visual computation." Nature 306: 21-26.

Baltimore, D. (2001). "Our genome unveiled." Nature 409("Feb. 15").

Barto, A., S. J. Bradtke, et al. (1995). "Learning to Act Using Real-Time Dynamic

Programming." Artificial Intelligence 72(1): 81-138.

Barto, A., R. S. Sutton, et al. (1983). "Neuronlike adaptive elements that can solve difficult

learning control problems." IEEE Transactions on Systems, Man, and Cybernetics 13(5):

834-846.

Baturone, I., J. L. Huertas, et al. (1994). "Current-mode Multiple-input Max circuit." Electronic

Letters 30: 678-680.

Bellman, R. (1957). Dynamic Programming. Princeton, NJ, Princeton University Press.

Berger, T. W., Baudry M., Dias Brinton, R., Liaw, J-S, Marmarelis, V. Z., PARK, A.Y., B J.

Shell, B.J.， and T A N G U A Y , A.R.，JR. (2001). "Brain-implantable Biomimetic

Electronics as the Next Era in Neural Prosthetics." Proceedings of the IEEE 89(7): 993-

1013.

Bertin, P. and H. Touati (1994). P A M Programming Environments: Practice and Experience.

Bibliography 133

IEEE Workshop FPGAs for Custom Computing Machines, Los Alamitos, Calif.，CS

Press.

Bertsekas, D. (1982). "Distributed Dynamic Programming." IEEE Transactions on Automatic

Control 27(3).

Bertsekas, D. (1987). Dynamic Programming: Deterministic and Stochastic Models. Englewood

Cliffs, NJ, Prentice-Hall.

Bi, G. Q. and M . M . Poo (2001). "Synaptic modification by correlated activity: Hebb's postulate

revisited." Annual Review of Neuroscience 24: 139-166.

Bienenstock, E. L., L. N. Cooper, et al. (1982). "Theory for the development of neuron

selectivity: orientation specificity and binocular interaction in visual cortex." Journal of

Neuroscience 2(1): 32-48.

Bliss, T. V. and T. Lomo (1973). "Long-lasting potentiation of synaptic transmission in the

dentate area of the anaesthetized rabbit following stimulation of the perforant path."

Journal of Physiology 232: 331-356.

Burke, G., S. Cozy, et al. (2004). Operation of FPGAs at Extremely Low Temperatures. 2004

M A P L D International Conference.

Butera, R. J., and M . L. McCarthy, (2004). "Analysis of real-time numerical integration methods

applied to dynamic clamp experiments." IEEE Journal of Neural Engineering 1: 187-194.

C. Chen, R. c. a. C. Y. (2000). "Pipelined Computation of Very Large Word-Length LS

Addition/Subtraction with Polynomial Hardware Cost." IEEE Trans. Compu. 49(7).

Canham, R. O. and A. M . Tyrrell (2003). "A hardware artificial immune system and embryonic

array for fault tolerant systems." Genetic Programming and Evolvable Machine 4: 359-

382.

Caro, D. and M . Dorigo (1998). "AntNet: Distrbuted Stigmergetic Control for Communications

Networks." Journal of Artificial Intelligence Research 9: 317-365.

Casper, J. and R. R. Murphy (2003). "Human-Robot Interactions During the Robot-Assisted

Urban Search and Rescue Response at the World Trade Center." IEEE Transactions on

Systems, Man, and Cybernetics - Part B: Cybernetics 33(3): 367-385.

Cauwenberghs, G. (1997). "Analog VLSI Stochastic Perturbative Learning Architecture."

Analog Integrated Circuits and Signal Processing 13: 195-209.

Cauwenberghs, G. and M . Bayoumi (1999). Learning on Silicon— Adaptive VLSI Neural

Bibliography 134

Systems. Norwell M A , Kluwer Academic.

Chan, C. F., H. S. Ling, et al. (1995). "A one volt four-quadrant analog current mode multiplier."

IEEE Journal of Solid-state circuits 30(9): 1018-1019.

Chen, T. C. (1972). "Automatic computation of logarithms, exponentials, ratios and square

roots." I B M j. Res. and Dev 16: 380-388.

Cheng, S.-T. (1998). "Topological optimization of a reliable communication network." IEEE

Transactions on Reliability 47(3): 225-233.

Condon, A. (1992). "The Complexity of Stochastic Games." Information and Computation

96(2): 203-224.

International Human Genome Project Consortium. (2001). "Initial sequencing and analysis of the

human genome." Nature 409(Feb. 15): 860.

Cormen, T., C. Leiserson, et al. (1990). Introduction to Algorithm, MIT Press.

Crair, M . C. and R. C. Malenka (1995). "A critical period for long-term potentiation at

thalamocortical synapses." Nature 375: 325-328.

D'Epenoux, F. (1963). "A Probabilistic Production and Inventory Problem." Management

Science 10: 98-108.

D'haeseleer, P., S. Liang, et al. (2000). "Genetic network inference: from co-expression

clustering to reverse engineering." Bioinformatics 16(8): 707-726.

D. DasSama, D. W . m . (1994). "Measuring the accuracy of R O M reciprocal tables." IEEE Trans.

Comput. 43: 932-940.

Darwin, C. (1929). the Origin of Species. London, Watts and Co.

Davis, L. (1991). Handbook of Genetic Algorithm. N e w York, van Nostrand Reinhold.

Derman, C. (1970). Finite State Markovian Decision Process. N e w York, Academic Press.

Drosten C., e. a. (2003). "Identification of a Novel Corona vims in Patients with Severe Acute

Respiratory Syndrome." N e w England Journal of Medicine 348(20): 1967-1976.

Drummond, A. and K. Strimmer (2001). "PAL: An object-oriented programming library for

molecular evolution and phylogenetics." Bioinformatics 17: 662-663.

Dudek, S. M . and M . F. Bear (1992). "Homosynaptic long-term depression in area CAl of

hippocampus and effects of N-methyl-D-aspartate receptor blockade." Proceedings of the

National Academy of Sciences U S A 89: 4363-4367.

Dydek, S. and P. Bala (2004). Large Scale Protein Sequence Alignment. Field Programmable

Bibliography 135

Logic and Applications.

Eisen, J. A. and C. M . Fraser (2003). "Phylogenomics: Intersection of evolution and genomics."

Science 300(300): 1706-1707.

Eisen, M . B.，B. T. Spellman, et al. (1998). "Cluster analysis and display of genome-wide

expression patterns." Proc. Natl. Acad. Sci. U S A 95(25): 12863-14868.

Ercegovac, M . and T. Lang (2004.). Digital Arithmetic. San Francisco, Morgan Kaufmann.

Ewe, C. T., P. Y. K. Cheung, et al. (2004). Dual Fixed-point: An Efficient Alternative to

Floating-Point Computation. Field Programmable Logic and Applications.

Felsenstein, J. (1981). "Evolutionary trees from D N A sequences: a maximum likelihood

approach." J. Mol. Evol. 17: 368-376.

Felsenstein, J. (1989). PHYLIP - Phylogeny Inference Package (Version 3.2).

Filar, J. and K. Vrieze (1997). Competitive Markov Decision Process, Springer-Verlag.

Frazier, M., D. Thomassen, et al. (2003). Stepping up the pace of discovery: the Genomes to life

program. Computational Systems Bioinformatics, Stanford University.

George A. Constantinides, Peter. Y. K. Cheung, and Wayne Luk (2004). Synthesis and

Optimization of DSP Algorithms. Dordrecht, The Netherlands, Kluwer Academic

Publishers.

Gilbert, B. (1968). ”A Precise Four-Quadrant Multiplier with Subnanosecond Response." IEEE

Journal of solid-state circuits 3(4): 365-373.

Graham, P. and B. Nelson (1996). Genetic algorithms in software and in hardware - a

performance analysis of workstation and custom computing machine implementations.

Fourth Annual IEEE Symp. on FPGAs for Custom Computing Machines.

Guccione, S. A. and E. Keller (2002). Gene matching using JBits. Field-Programmable Logic

and Applications, Montpellier, France.

Han, G. and S. Edgar (1998). " C M O S Transconductance Multipliers: A Tutorial." IEEE Trans,

on circuits and systems - II: Analog and digital signal processing 45(12): 1550-1563.

Hasegawa, M., H. Kishino, et al. (1985). "Dating of the human-ape splitting by a molecular

clock of mitochondrial DNA." Journal of Molecular Evolution 21: 160-174.

Haykin, S. (1999). Neural Network: A Comprehensive Foundation, Prentice Hall.

Hebb, D. (1949). The Organization of Behavior. New York, Wiley.

Hoffman, A. and R. Karp (1966). "On Nondeterminating Stochastic Games." Management

Bibliography 136

Science 12(359-370).

Hop field, J. J. (1982). "Neural networks and physical systems with emergent collective

computational abilities." Proc. Natl. Acad.Sci. U S A 79: 2554-2558.

Hopfield, J. J. (1984). "Neurons with graded response have collective computational properties

like those of two-state neurons." Proc. Natl. Acad.Sci. U S A 81: 3088-3092.

Hopfield, J. J. and D. W . Tank (1985). ""Neural" computation of decisions in optimization

problems." Biological Cybernetics 52: 141-152.

Horowitz, E., S. Sahni, et al. (1996). Fundamentals of Data Structure in C. N e w York, Computer

Science Press.

Hwang, B. M . J., N. shirazi, et al. (2001). System Level Tools for DSP in FPGAs. Fied

Programmable and Logic Applications 2001.

IBM (2002). "[IBM CoreConnect Bus Architecture, in web http://www-

3, ibm. c om/ chip s/techlib/.‘ ’

Intel (2005). Intel® Pentium® 4 Processor 670, 660, 650, 640, and 630A and Intel® Pentium® 4

Processor Extreme Edition Datasheet.

Isaacs, R., Weber, D., and A. Schwartz (2000). "Work Toward Real-time Control of a Cortical

Neural Prosthesis." IEEE Transactions on Rehabilitation Engineering 8(2).

J. Hwang, B. M., N. shirazi and J. Stroomer (2001). System Level Tools for DSP in FPGAs.

FPL'Ol.

J. Pineiro, M . D. E. J. B. (2004). "Algorithm and architecture for logarithm, exponential, and

powering computaiton." IEEE Trans. Compu. 53(9): 1085-1096.

J. Pineiro, S. F. O., J. Muller and J. Bruguera (2005). "High Speed Function Approximation

Using a Minimax Quadratic Interpolator." lEE Proceedings Comput. Digit. Tech. 54(3):

304-318.

Jalali, A. and M . J. Ferguson (1992). "On Distributed Dynamic Programming." IEEE

Transactions on Automatic Control.

Jukes, T. H. and C. R. Cantor (1969). Evolution of protein molecules. Mammalian Protein

Metabolism. H. N. Munro. New York, Academic Press: 21-123.

Jun, M . and R. D'Andrea (2003). Path Planning for Unmanned Aerial Vehicles in Uncertain and

Adversarial Environments, Springer.

Kandel, E. R., J. H. Schwartz, et al. (2000). Principles of Neural Science, McGraw-Hill

Bibliography 137

Companies, Inc.

Karp, R. M . (2003). Keynote Address: The Role of Algorithmic Research in Computational

Genomics. Computational Systems Bioinformatics, Stanford University.

Kauffman, S. A. (1969). "Metabolic stability and epigenesis in randomly connected netws." J.

Theoret. Biol. 22: 437-467.

Kealbling, P. L., M . Littman, et al. (1996). "Reinforcement Learning: A Survey." Journal of

Artificial Intelligence Research 4: 237-285.

Kimura, S., M . Hatakeyama, et al. (2003). Inference of S-system models of genetic networks

using a genetic local search. The 2003 Congress on Evolutionary Computation.

Kishino, H., T. Miyata, et al. (1990). "Maximum Likelihood Inference of Protein Phylogeny and

the Origin of Chloroplasts." J. Mol. Evol. 31: 151-160.

Kitajima, T. and K. Hara (1990). "A model of the mechanisms of long-term potentiation in the

hippocampus." Biological Cybernetics 64(33-39).

Kostopoulos, D. K. (1991). "An algorithm for the computation of binary logarithms." IEEE

Trans. Compu. 40(11): 1267-1270.

Lam, K. P. (1991). A Continuous-time inference network for minimum cost path problems.

IEEE/INNS International Joint Conference on Neural Network, Seattle.

Lam, K. P. (1996). "A Binary Relation Inference Network (Part 2)." Int. J. Systems Science

27(4): 399-404.

Lam, K. P. (1996). "A Continuous-time Inferece Network and its Hybrid Implementation." Int. J.

Systems Science 27: 1425-1433.

Lam, K. P. and S. T. Mak (2002). On computing transitive-closure equivalence sets using a

hybrid GA-DP approach. Field Programmable Logic and Applications, Montpellier,

France.

Lam, K. P. and C. J. Su (1996). "A Binary Relation Inference Network (Part 1).” Int. J. Systems

Science 27(4): 387-398.

Lam, K. P. and C. W . Tong (1996). "Closed semiring connectionist network for the Bellman-

Ford computation." lEE Proc. Comput. Dig. Tech. 143 (3).

Lam, K. P. and C. W . Tong (1997). "Connectionist network for dynamic programming." lEE

Proceedings, Computer and Digital Techniques(144): 163-168.

Langdon, W . B. (1998). Genetic Programming and Data Structures: Genetic Prgramming + Data

Bibliography 138

Structures = Automatic Programming. Boston, Kluwer.

Laurent, G. and E. Piat (2001). Parallel Q-leaming for a block-pushing problem. International

conference on intelligent robots and systems, Havaii, USA.

Lemmon, A. and M . Milinkovitch (2002). "The metapopulation genetic algorithm: An efficient

solution for the problem of large phylogeny estimation." Proceedings of the National

Academy of Sciences 99(16).

Leong, N. M . P. (2001). F P G A Design Methologies for High Performance Applications,

department of Computer Science and Engineering. Hong Kong, The Chinese University

of Hong Kong.

Leung, Y., G. Li, et al. (1998). "A genetic algorithm for the multiple destination routing

problems." IEEE Transactions on Evolutionary Computation 2(4): 150-161.

Lewis, P. (1998). ”A Genetic Algorithm for Maximum Likelihood Phylogeny Inference Using

Nucleotide Sequence Data." Mol. Biol. Evol. 15(3): 277-283.

Littman, M . and J. Boyan A distributed reinforcement learning scheme for network routing.

Liu, S.-C., J. Kramer, et al. (2002). Analog VLSI: Circuits and Principles. Cambridge,

Massachusetts, The MIT Press.

Loeb, G. E. (1990). "Cochlear prosthetics." Ann. Rev. Neurosci. 13: 357-371.

Lugish, B. D. (1970). A class of algorithms for automatic evaluation of functions and

computation in a digital computer. Dept. of Comput. Sci. Univ. of Illinois. Urbana.

Mak, T. and K. P. Lam (2004). Embedded Computation of Maximum-Likelihood Phylogeny

Inference Using Platform FPGA. IEEE Computer Society Bioinformatics Conference.

Mak, T. S. and K. P. Lam (2004). FPGA-based Computation for Maximum-Likelihood

Phylogenetic Tree Evaluation. Field Programmable Logic and Applications, Antwerp,

Belgium.

Mak, T. S. and K. P. Lam (2004.). On Maximum-Likelihood Phylogeny Using FPGA. PhD

Forum of Field Programmable Logic and Applications, Antwerp, Belgium.

Mak, T. S., G. Rachmouth, et al. (2005). Field Programmable Gate Array Implementation of

neuronal Ion Channel Dynamics. The 2-nd International IEEE E M B S Conference on

Neural Engineering, Arlinton.

Mak, T. S. T. and K. P. Lam (2003). High Speed GAML-based Phylogenetic Tree

Reconstruction Using H W / S W Codesign. IEEE Computer Society Bioinformatics

Bibliography 139

Conference.

Maki, Y., D. Tominaga, et al. (2001). Development of a system for the inference of large scale

genetic network. Prbc. Pacific Symposium on Biocomputing.

Martin, P. (2001). "A hardware implementation of a genetic programming system using FPGAs

and Handle-C." Genetic Programming and Evovable Machines 2: 317-343.

Mauritz, K. H. and H. P. Peckham (1987). "Restoration of grasping functions in quadriplegic

patients by functional electrical stimulation (FES)." Int. J. Rehab. Res. 10: 57-61.

Mead, C. A. (1989). Analog VLSI and Neural System.

Mead, C. A. (1990). "Neuromorphic electronic systems." Proceedings of the IEEE 78: 1629-

1636.

Mencer, O.’ M . Morf, et al. (1998). PAM-Blox: High Performance F P G A Design for Adaptive

Computing. IEEE Symposium on FPGAs for Custom Computing Machines.

Milos D. Ercegovac, T. L. (2003). Digital Arithmetic, Morgan Kaufmann.

Mjolsness, E., T. Mann, et al. (1999). From coexpression to co-regulation: an approach to

inferring transcriptional regulation among gene classes from large-sclae expression data,

Jet Propelsion Laboratory.

Mulkey, R. M . and R. C. Malenka (1992). "Mechanisms underlying induction of homosynaptic

long-term depression in area CAl of the hippocampu." Neuron 9: 967-975.

Muller, J. M . (1985). "Discrete basis and computation of elementary functions." IEEE Trans.

Compu. C34(9): 857-862.

Ng, H. S. (1996). Applications and Implementation of Neuro-Connectionist Architectures.

Systems Engineering. Hong Kong, The Chinese University of Hong Kong.

Ng, H. S. and K. P. Lam (1996). Current-mode optimiaztion circuits for minimax path problems.

IEEE International Symposium in Circuits and Systems, Atlanta.

Ng, H. S. and K. P. Lam (2003). "Analog and digital F P G A implementation of BRIN for

optimization problems." IEEE Transactions on Neural Networks 14 (5): 1413-1425.

Ng, H. S., S. T. Mak, et al. (2003). Field Programmable Gate Array and Analog Implementation

of BRIN for Optimization Problems. International Symposium on Circuit and Systems,

Bangkok, Thailand.

Olsen, G. J., H. Matsuda, et al. (1994). "fastDNAml: A tool for construction of phylogenetic

trees of D N A sequences using maximum likelihood." Comput. Appl. Biosci. 10: 41-48.

Bibliography 140

Peshkin, L. and V. Savova (2002). Reinforcement learning for adaptive routing. Joint conference

on Neural Network.

Peterson, W . W . and E. J. W . Jr. (1972). Error-Correction Codes. Boston, M A , MIT Press.

Rachmuth, G.，and Poon, C-S., (2004). In-Silico model of N M D A and non-NMDA receptor

activities using analog VLSI circuis. Post Genomic Perspectives in Modeling and Control

of Breathing. J. Champagnat, Kluwer Academic/Plenum Publishers. 551: 171-175.

Rachmuth, G. and C.-S. Poon (2003). Design of a neuromorphic Hebbian synapse using analog

VLSI. Neural Engineering, 2003. Conference Proceedings. First International IEEE

E M B S Conference on, Capri, Italy, IEEE.

Rambaut, A., D. Posasa, et al. (2004). ”The causes and consequences of HIV evolution." Nature

Reviews Genetics 5: 52-61.

Renger, J. J., C. Egles, et al. (2001). "A Developmental Switch in Neurotransmitter Flux

Enhances Synaptic Efficacy by Affecting A M P A Receptor Activation." Neuron 29: 469-

484.

Sasaki, M., J. Inouk, et al. (1990). "Fuzzy multiple-input maaximum and minimum circuits in

Current mode and their analyses using bounded-different equations." IEEE Trans, on

Computers 39: 768-774.

Schneider, J., W . Wong, et al. (1999). Distributed Value Functions. 16th International

Conference on Machine Learning.

Shackleford, B., G. Snider, et al. (2001). "A high-performance, pipelined, FPGA-based genetic

algorithm machine." Genetic Programming and Evovable Machines 2(33-60).

Sharp A., O. N. M., Abbott LF, Marder E. (1993). "Dynamic clamp: computer-generated

conductances in real neurons." Journal of Neurophysiology 69(3): 992-995.

Shoham, Y., R. Powers, et al. (2004). Multi-agent reinforcement learning: a critical survey.

A A A I Fall Symposium on Artificial Multi-Agent Learning.

Shouval, H. Z., M . F. Bear, et al. (2002). "A unified model of N M D A receptor-dependent

bidirectional synaptic plasticity." Proceedings of the National Academy of Sciences U S A

99(16): 10831-10836.

Smyth, G. K.，Y. H. Yang, et al. (2002). Statistical Issues in c D N A microarray Data Analysis,

Functional Genomics: Methods and Protocols, Totowa, NJ, Humana Press.

Stamatakis, A., T. Ludwig, et al. (2002). AxML: A Fast Program for Sequential and Parallel

Bibliography 141

Phylogenetic Tree Calculations Based on the Maximum Likelihood Method. Proceedings

of 1st IEEE Computer Society Bioinformatics Conference, Palo Alto, California.

Strimmer, K. and A. Haeseler (1996). "Quartet Puzzling A Quartet Maximum-Likelihood

Method for Reconstructing Tree Topologies." Mol. Biol. Evol. 13(7): 964-969.

Strimmer, K. and A. V. Haeseler (2003). Nucleotide Substitution Models. The Phylogenetic

Handbook. A. M . V. M . Salemi. Cambridge, U K , Cambridge University Press.

Subramanian, D., P. Druschel, et al. (1997). Ants and reinforcement learning: A case study in

routing in dynamic networks. Fifteenth International Joint Conference on Artificial

Intelligence.

Sutton, R. and A. Barto (1998). Reinforcement Learning: An Introduction, MIT Press.

Swofford, D. L. (2003). PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods).

Version 4. Sunderland, Massachusetts, Sinauer Associates.

Swofford, D. L., G. J. Olsen, et al. (1996). Phylogenetic Inference. Molecular Systematics. D. M .

Hillis, C. Moritz and B. K. Mable. Sunderland, Mass., Sinauer.

Takagi, H. H. a. N. (1995). Function Evaluation by Table Look-up and Addition. 12th

Symposium on Computer Arithmetic.

Taylor D M , H. T. S., and Schwartz A B (2002). "Direct Cortical Control of 3D Neuroprosthetic

Devices." Science 296: 1829-1832.

Team, R. (1997). "Characterization of the Martian Surface Deposits by the Mars Pathfinder

Rover, Sojourner." Science 278: 1765-1767.

TimeLogic (2002). World Wide Web site http://www.timelogic.com.

Tin, C. (2004). Robust Multi-UAV Planning in Dynamic and Uncertain Environments.

Department of Aeronautics and Astronautics. Massachusetts, Massachusetts Institute of

Technology.

Toumazou, C., F. J. Lidgey, et al. (1990). Analog IC design: the current-mode approach.

London, Peter Peregrinus Ltd.

Trimberger, S., R. Pang, et al. (2003). A 12 Gbps DES Encryptor/Decryptor Core in an FPGA.

Cryptographic Hardware and Embedded Systems - C H E S 2000: Second International

Workshop.

Tsitsiklis, J. (1994). "Asynchronous Stochastic Aproximation and Q-leaming." Machine

Learning 16: 185-202.

http://www.timelogic.com

Bibliography 142

Venter, J. C. and e. al. (2001). "The sequence of the human genome." Science 291(Feb. 16):

1304.

Villalba, J. H. a. J. (2000). A hardware algorithm for variable-precision logarithm. IEEE

International Conference on Application-Specific Systems, Architectures, and Processors.

Vittoz, E. A. (1994), "Analog VLSI signal processing: Why, Where, and How?" Journal of VLSI

signal processing 8: 27-44.

Volpe, R., T. Estlin, et al. (2000). Enhanced Mars Rover Navigation Techniques. Proceedings of

the IEEE International Conference on Robotics and Automation, San Francisco CA.

Wall, M . E.，P. A. Dyck, et al. (2001). "SVDMAN-Singular value decomposition analysis of

micro array data." Bioinformatics 17(6): 566-568.

Watkins, C. (1989). Learning from Delayed Rewards. Cambridge, University of Cambridge.

Watkins, C. and P. Dayan (1992). "Q-leaming." Machine Learning 8(3): 279-292.

Weib, G. (1995). "Distributed reinforcement learning." Robotics and Autonomous Systems 15:

135-142.

Whitman, W . B., D. C. Coleman, et al. (1998). "Prokaryotes: The unseen majority." Proc. Natl.

Acad. Sci. U S A 95: 6578.

Williams, B. C.，P. Kim, et al. (2001). Model-based Reactive Programming of Cooperative

Vehicles for Mars Exploration. Int. Symp. on Artificial Intelligence, Robotics and

Automation in Space, St-Hubert, Canada.

Worobey, M., M . L. Santiago, et al. (2004). "Origin of AIDS: Contaminated polio vaccine theory

refuted." Nature 428: 820.

Xilinx (2002). "Virtex-II Pro(TM) Platform F P G A Handbook."

Xilinx (2003). Xilinx FPGAs Aboard Mars 2003 Exploration Mission.

Yang, Z. H. (2001). Maximum Likelihood Analysis of Adaptive Evolution in HIV-1 GP120

E N V Gene. Pacific Symposium on Biocomputing, Hawaii.

Yu, C. W., K. H. Kwong, et al. (2003). A Smith-Waterman Systolic Cell. Field Programmable

Logic and Applications, Lisbon.

Zador, A., C. Koch, et al. (1990). "Biophysical model of a Hebbian synapse." Proceedings of the

National Academy of Sciences U S A 87: 6718-6722.

Appendix A. Simplified Floating-Point Arithmetic 143

Appendix A

Simplified Floating-Point Arithmetic

For any real positive number A, which can be represented as the simplified floating-point

based on the fixed-point architecture, that A = A'x 2_〃 where A，and R ‘ are represented in fixed-

point. Thus R，(exponent) and 乂’ 二 J] 二以/.2一' (mantissa), where at and r, is

either zero or one and m is the word length. In addition, the number A is normalized that A ‘ is

always a number between 0.5 and 1. The implementation of multiplying two numbers is as

follow:

'[Ax if/X >0.5 (A.l)
二 <

(yi. X 政 X 2). , otherwise

where the number in the blanket is the mantissa and the superscripts are the exponent. The

mantissa of the product A，xB' will be within the range of 0.25 and I, as A and B were

normalized. Simple logic to detect whether the product is larger than 0.5 is required.

In addition operation, assumed that the input number is normalized:

A + B = A''2-'+B'-2-'

(A'. 2-1 + B'. 2) . 2-奸 1, if overflow occurs (A.2)
= <

(/ +政 . 2 -卞 2 、 otherwise

where 15 |<| /1 and overflow occurs if A'+B ’. 2—出 > 1. The mantissa B，is shifted in order to have

the same exponent as A，.

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 144

Appendix B

FPGA Implementation for Logarithm,

Exponentiation, and Division

B.l Introduction
Evaluation of basic functions, such as logarithm logJf, exponentiation e and division YIX are

in great demand in many application of the Field Programmable Gate Array (FPGA) system

design, such as computer 3D graphics, digital signal processing (DSP), scientific computation

and biomedical signal processing (Constantinides et al. 2004). Architecture for basic function

evaluation becomes a critical issue, as design trade-off landscape in digital hardware is generally

more complicated than traditional software approach. Because of the limited hardware resources,

hardware system design usually comprises multiple design objectives, such as hardware area,

memory and power consumption minimization. In contrast, optimization of the computational

speed and accuracy appears to be critical in software approach, of which memory and power is

not a critical concern.

Since F P G A allows flexible allocation of on-chip hardware resources, such as Block-Random-

access-memory (B R A M) and logic gates, approach or architecture for basic function evaluation

permits flexible trade-off on hardware area, computational time and accuracy are highly

preferred and in great demand for the optimization of the multiple objectives in FPGA system

design.

Traditional software routines provide accurate results in elementary function computations

given enough time for iterations. For example, the shift-and-add method employs only the

addition and shift operations (i.e. multiplications by a power of the radix of the number system

used) that slowly converges to the desired approximated solution (Lugish 1970; Chen 1972;

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 145

Muller 1985; C. Chen 2000). For example, Coordinate Rotation Digital Computer (CORDIC)

iterative solutions for trigonometric and other transcendental functions that use only shifts and

adds to perform. The trigonometric functions are based on vector rotations, while other function

such as square root are implemented using an incremental expression of the desired function

(Andraka 1998). C O R D I C generally produce one additional bit of accuracy for each iteration.

The other example is the multiplicative/additive normalization, which has been proposed to

compute natural exponential function (Chen 1972). In additive normalization for evaluating the

e', input operand Xo=X is normalized to zero by successively subtracting the yth normalization

term log(l+5yr") from the yth remaining term Xj. In each step, the methods also evaluates the yth

partial result term ej=ej{\+Sjf̂) that is the partial result of the exponential function with accuracy

up to f j . Suppose the base r equals to two, the evaluation for the yth partial result would be

simply addition and shifting. Similar idea is used for the multiplicative normalization to compute

the logarithm. But the input operant would be normalized to one with multiplying the

normalization tern {l+s/^) while the partial result term is evaluated by subtracting the term

log(l+5/r") is theyth operation.

Alternatively, table based approach provides faster computation with the approximate or

exact solution directly looked up from the pre-computed table stored in Read-only-memory

(ROM) or Random-access-memory (RAM) (D. DasSama 1994; Takagi 1995; Villalba 2000).

However, the R O M / R A M space increases exponentially with the word length or number of

accurate bits. While interpolation techniques with table-driven algorithm based on an enhanced

minimax quadratic computation reduces the table size in single-precision floating-point format (J.

Pineiro 2004; J. Pineiro 2005). However these routines generally numerical intensive requires

high precision multiplier, which consumes a lot of hardware resources in FPGA. Though a very

high precision can be obtained, the hardware resources hungry algorithm make the

implementation not suitable (Kostopoulos 1991).

B.2 Approximation Scheme

B.2.1 Logarithm
Multiplicative normalization has been used for reciprocal, for division and for logarithm. In all

cases, there is a sequence that converges towards one, and this controls the convergence of

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 146

another sequence towards the result linearly (Milos D. Ercegovac 2003).

The iterative algorithm consists of determining a sequence f.n such that the sequence y.n-

converges to one, where

(B . i)

where we set y.o=X and

+ (B.2)

where r is the radix of the algorithm and s.n. = s.o.,s.i.,...,s.m.i is a sequence that controls the

multiplication of factor fj.. If we define s. e {0,1},/ = 1,2,...,«，then s.i. is regarded as a factor

selection variable controlling the multiplication of factor fj.. Note that with careful selection of 5./,

the multiplicative normalization produces a continued product representation of the reciprocal of

X, that is

去 尸 (B.3)
^ 7=1 j=\

where this normalization can be used to produce an approximation of the reciprocal function.

With little modification on Eq.(B.3), we can approximate the logarithm values. Suppose we take

logarithm on Eq(B.3), such that it becomes

log Z « - X log fj = log(l +) (B.4)
7=1 7=1

However, n iterations are required for the multiplicative normalization converging to a solution

with error less than log(l+2"). For given available of larger memory storage, that tradeoff

between computational time and memory consumption is feasible.

B.2.1.1 Integrate Direct Table Look-up and Computation

Suppose for taking the logarithm of a number X, which can be written as X=l+b+c，where b>c.

The term b and c can be expressed as a fixed point representation with binary number x/ equals

to either zero or one. Thus we have b= O.x.ox.ijc.2.…x.k-i. and c= 0.00…Ox.k...x.n. In other words, b

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 147

can be represented by k-h\X with all bits are fractional bits. Then the logarithm of X can be

expressed as the sum of two terms,

log(l + b + c) = log(l + b) + log(l + —) (B.5)
\ + b

The first term log(l+Z?) can be exactly evaluated by Look-Up-Table of k-h\i address and w-bit

word length. W e denote the L U T by F{w.k) = log(Wvt), w". is any input number with /c-bit

representation. The results from the table look-up can be directly fed into the multiplicative

normalization to approximate the function for the remaining term.

Since the logarithm of 少 has been changed to log(l + c/(l + Z?)), the original formulation of

normalization is not applicable. It is difficult to evaluate the input value, there is a division

operation involved in the expression log(l + c/(l + b)). But the function approximation can be

modified, such that l + c/(l + Z)) is multiplied by a sequence of factors with converging to one as

follow

1 , L I ^ m m

丄十D十c) — 1 , if(i +办+ +〜2—勺—1 + (B.6)
1 +办今 i j=T

m m
such that + ̂ + (1 + 5.2-0^(1 + ̂) and + + + — The

j=k j=k

algorithm is as follows. W e set the initial inputyo = 1+办andxo. = log(l+Z?) = F{\^b).

for j from kiom

_J0, if J；. •(l + 2-O-(l + Z?)>0

j [l, otherwise

where/, 二 1 + 力.

〜+i=x厂 log(l +〜.2-")

end

B.2.2 Exponentiation
Additive normalization is used for exponentiation approximation. Similar to the method to

compute logarithm, exponential is approximated by the product of a sequences. Note that the

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 148

exponential is with base 2 in our discussion. The method is applicable for other baseA. In this

case, the input value Z is converging to zero by adding a sequence of -fi., as follows

X - f j j ->0, f \ f . = n (l +〜2-") —2义 （B.7)
7=1 7=1 7=1

The exponential value is a product of/i.

B.2.2.1 Integrate Direct Table Look-up and Computation

Unlike the method on computing the logarithm, the hybrid approach is to partition the

exponential function into two product terms. The first term consists of the first k bit of the

exponential X, and the second term consists of the remaining bits, such that X = b + c, where

b=0.x0xix.2,..”x々 -i and c 二 0.00,...fix.kx.k+ix.k+i,• • • ̂ n. Therefore we can look up the exponential

value of the first term with k bit from a table. A table of 2,̂. depth and m-bit word length can be

designed for the function G{X) = 2^-1 that the value will be all less than one. Since evaluation of

exponential of X has been changed to the evaluation of the 2⑶。。¥“•〜+2” ’％，the original

formulation of normalization is not applicable. Thus we can set the initial input y.o. = b and xq.=
G{b)+\.

for j from kiom

0, if>, - log(l + 2 ") < 0

s • — \
•‘ [1, otherwise

= - f j , where /, = 1 + Sj 1:丨

end

B.2.3 Division
Multiplicative normalization is used for approximating the division YIX, Reciprocal is a special

case of division that Y equals to one. The approximation formulation has been shown in

Eq.(B.3). W e now consider the hybrid solution with considering the first 众-bit of X is a table

A The other common bases are e, 10, 8, etc

Appendix B. FPGA Implementation for Logarithm, Exponentiation and Division 149

look-up instead of computation.

Suppose for taking the division YIX, that Xcan be written as X=\+b+c, where b>c. The term b

and c can be expressed as a fixed point representation with binary number x, equals to either zero

or one. Thus we have b= Ojc.ox.ix.2..,,x‘k-i. and c= O.OO...Ox.k...x.n.. In other words, b can be

represented by A:-bit with all bits are fractional bits. Then the division of X can be expressed as

the product of two terms,

(B.8)
X l + + c \ + b l + + c

The first term 1/(1+̂ ?) can be directly by Look-Up-Table of k-h\t address and m-bit word

length. W e denote the L U T by H{w.k) = l/(l+w.yt.), w.k. is any input number with 々 -bit

representation. The results from the table look-up can be directly fed into the multiplicative

normalization to approximate the function for the remaining term.

Since the division been changed to ̂ (1 +列，the original formulation of normalization is not
1 + b + c

applicable. Similar to the method used in the logarithm, the function approximation can be

modified, such that

1 丄 m 1 m

Thus we set the initial inputyo = and x。= YxH{\ + b) •

for j from kXom

'0, i f > , . (l + 2 — +
j j^. Otherwise

、 川 w h e r e 力 二 1 + 力.

end

Appendix C. Analog VLSI Implementation 150

Appendix C

Analog VLSI Implementation

In a standard-IC implementation of the binary relation inference network (Lam and Tong

1997), it was shown that it was possible to implement the inference network with analog

processing units. However, with practical problems that involve large number of nodes, this

implementation would have problems in building a network with reasonable size. The simple

computations involved in the units and the regular interconnection in the network are very

suitable for a VLSI implementation. The following describe a VLSI design in solving M D P s

Bellman optimization problems with binary relation inference network.

C.l Site Function

In the last few decades, the vast majority of analog circuits have used voltages to represent

and process relevant signals. However, recently, current-mode signal processing circuit, in

which signals and state variables are represented by currents rather than voltages (Toumazou,

Lidgey et al. 1990), have shown advantages over their voltage-mode counterparts. Their

advantages include higher bandwidth, higher dynamic range, and they are more amenable to

lower power suppliers (Liu, Kramer et al. 2002). A number of possible current-mode

configurations are feasible to define the arithmetic operations in the site function describe in

Eq. 1.8. As signal is presented in the form of current, they can be added by simply

connecting them together. However, analog multiplication is still a challenging subject (Han

and Edgar 1998), as noise and low bandwidth often diminish the performance of the

multiplier.

Appendix C. Analog VLSI Implementation 151

C.1.1 A multiplication cell

The Gilbert multiplier cell (Gilbert 1968) has been the most popular multiplier circuit for

the past three decades. Taking advantages of the current-mode approach, the original voltage-

mode design has been modified and several current-mode forms multiplier cell (or Gilbert

cell) emerge (Toumazou, Lidgey et al. 1990). In line with Gilbert's work, Chan et. al,

proposed a simple layout circuit with high dynamic range to achieve the multiplication

function.

中 i x 2 (j),.’•工 1 (j)i2

I x l

I 13202 I H03I0： I 13X02 J I lll)3Jl02 ^ 1)03x02 � [_ 8031102

u ^ u
is(l)‘.. 工 y 吟

Figure C.l. Four-quadrant current-mode multiplier cell (Chan, Ling et al. 1995)

Fig. C.l illustrate the architecture of the multiplier cell The relationships for the important

signals /xl, 1x2, Is, Iyljy2,11 and 12 are described as

(Iyl-fy2XM-Ix2)
I � - h 二 ^ (。1)

Is = (1x1 + 1x2) (C.2)

The multiplication performs by (1x1-1x2) and (Iyl-Iy2), where Ix and ly are current inputs.

Is is another current-input which equals to the current Ix\+Ix2. To fit our inference network

application, modification of the circuit is required that the circuit is expected able to perform

simple two quadrant multiplication where Z = K-XY with Xand Y are inputs, K is constant.

The modifier multiplier cell is shown in Fig. C.2. W e introduce a pair of current mirror Ql,

which are mirroring currents Ixl and 1x2. The sum of the two currents from Ql is connected

to Is, which is another current source equaling to the sum of Ixl and 1x2 as in Eq. C.2. The

Appendix C. Analog VLSI Implementation 152

other pair of current mirrors Q 2 are used for mirroring the output currents II and 12. Also

current mirror Q3 is used to invert the current of 12 following Eq 1.1.

1 x 1 1 x 2 Q 2

I'J v̂'R' n I ̂ ^ ^^ ’ r n 厂 n _
I T L^ J)31f02 I j

t" ？h •• ^ ^ —

I N03X02

f- 」广 1 二 Q 3
• 门 T - X

113X02 1 _ N 3W _ _ H03K02 N03lf02 」 [j]^‘0Jilf& I L ！ • J = ' 8 * 1 ' f \ " T ，， 4 —

I_Jf i p t-Jf 1 f 們'(v：：̂ 丄〇U[
U [J L J U 1-1 I r-l I V V V 去 , ^ ^

⑷ , ⑷ . 工 y 丄 (p . - 工 y 邻

Figure C.2. Current-mode multiplier cell

Following the circuit in Fig. C.2, the multiplication can be easily realized with letting Iy2

equals to zero. For simplicity, we let Ixl equals to 1. Consider z = x''y that equation C.l can

be modified as

Iout = Iy2'x' (C.3)

where

Iy\ = 0, 7x1 = 1 (C.4)

\-Txl
= (C.5)

1 + 7x2

Following Eq. C.5, the required input for 1x2 can be easily computed. For example, x =0.5,

1x2 二 0.5/1.5 二 0.3333.

Because of the current-mode design, a wider operation range can be found when

comparing to the voltage-mode design (Chan, Ling et al. 1995). Response of the multiplier

was shown in Figure 3 for between zero and one, which is range of probability values. A

fairly good performance of the multiplication results is shown in the circuit response figure. It

can be observed that the multiplication of two larger numbers would give a better accuracy.

Appendix C. Analog VLSI Implementation 153

10.0i.L-,
x'=0.9

8.0^1- 神 . 8

口 ^̂̂̂；；：；̂；̂；̂.；(地 7

§
3 4.��

0.0-……-

0.0 2,0[1 4,0[1 6.0[1 8.0[1 lO.Ofi

/乂1-/乂2 (current)

Figure C.3 Current-mode multiplier cell response

C.2 The Unit Function

A minimum selecting function block is required in the unit output function. Several circuits

are reported in finding the maximum or the minimum from a group of signals. In (Baturone,

Huertas et al. 1994), a current-mode minimum circuit was reported. The circuit can be

constructed by the addition and subtraction of replicas of two currents. Also they can be

expressed as bounded-difference and algebraic sum (Sasaki, Inouk et al. 1990).

Following the proposed minimum circuit in (Vittoz 1994), we construct the unit function,

which is used to resolve the outputs from the site functions. The schematic is shown in Fig. 4.

The circuit was shown with a large dynamic range and with best performance in the 0 - 17

j^A (Ng and Lam 1996). The minimum circuit response was shown in Fig. 5.

Appendix C. Analog VLSI Implementation 154

T O r-9 O
J T w='2on' w=' 20*1'

- L LA h L r L='ion' r ion'
一 一 9 >9-0 r-O [> '
T L:'io*r

i 厂 Y w:’2�*r r • I n T i f -

M) ' " ^ _ _ W o u t
^ ^ I

W='20*r 1 wk;20*] ‘ I W=' >0*1' J W='20 '̂
L='10*1' | | j L W | r L : ' [叫 厂 L='l|(|n' L='10*1'

(> CI () CI (>

Figure C.4 Current-mode minimum circuit

n)inii>iiiin ciicuit inputs

- B g
TM*
minimum circuit ompiit

Tl« -.It：'

Figure C,5 Minimum circuit response to a sinusoid and constant inputs. The circuit delay can

be found at around 80ns

C.3 The Inference Network Computation

Considered a 6-node shortest path problem in Fig. 6, in which node A represents the

starting city and node F represents the destination. There are arc costs associating with each

pair of states. Further, probability T(i, cuk, /，)=0.8 i f k = i' and T{i, cuk, i')=02 V. The

semantic meaning is that one can reach the next city, which would be the desire city with

probability 0.8, or one will arrive at some other random states with probability 0.2. The

Appendix C. Analog VLSI Implementation 155

problem is mapping to the BRIN computational network using C M O S transistor based on the

description of unit construction discussion above.

B D

C 3 E

Figure C.6 A typical 6-state M D P s problem, where state F is the regarded as destination and

state A is regarded as start. There are arc costs associating with each pair of states. Further,

probability T{i, a 汝，i >0.8 ifk=i' and T{i, a 汝，i >0.2 '•dk 丰 i，. The semantic meaning is that

one can reach the next state, which would be the desire state with probability 0.8, or one will

arrive at some other random states with probability 0.2

The worst case propagation delay of a unit, r"”" is given by the sum of delays in the

multiplication circuit and the minimum circuit. For a 6-node network, assuming that the

discount factor ；I equals to 0.5, r画 i s 300ns. The results are shown in Fig. 7. The figure on

left is the numerical simulation of the 6-node single-destination inference network based on

solving first-order ordinal differential equation using Matlab. The figure on the right is the

inference network circuit simulation for the same problem. The expected value for state A, B

and C (referring to Fig. C.6) is [4.2, 4.8, 6.4], as shown in the left figure. In the circuit

simulation, expected values are presented by current in the /jA operational range. The results

obtained is [3.95 JUA , 4.83 JUA , 6.74 JUA]. The results from the circuit simulation can accurate

compute the optimal value based on the Bellman formulation, as it realized the Bellman value

iteration, but using a continuous-time inference network approach. Both numerical simulation

and the circuit simulation show a similar behavior of the typical network convergence to the

desired optimal solution based on the Bellman criterion.

Appendix C. Analog VLSI Implementation 156

10.0|j-|

I
§ I 8.0M- S ,

r V I �
I 6- ^ ^ state C 卜 — C

1 ^ state B O state B

4- ^ ^ state A 4.0|j- ^

0 10 20 30 40 0.0 200.0n 400.0n 600.0n
Time Time (second)

Figure C.7 (left) Numerical simulation of the 6-node single-destination inference network based on solving first-

order ordinal differential equation (right) Inference network circuit simulation for the same problem. The

expected value for state A, B and C (referring to Fig. 6) is [4.2, 4.8, 6.4], as shown in the left figure. In the

circuit simulation, expected values are presented by current in the JuA operational range. The results obtained

is [3.95 JuA , 4.83 JuA , 6.74 juA]. Both numerical simulation and the circuit simulation show a similar

behavior of the typical network convergence to the desired optimal solution based on the Bellman criterion.

From the numerical simulation in previous chapter, we know that the discount factor y

affects the convergence rate of the network. From the inference network circuit, we confirm

that the discount factor would affect the conference of the inference network as shown in the

numerical simulation. Fig. C.8. A similar variations are shown when comparing to the

numerical simulation in previous chapter. The network with larger discount factor y shown

slower convergence rate (See y =0.9) while a smaller discount factor shows faster

convergence rate (See 厂=0.1).

10.0|j-|
CO

i t ^ ^ ^
CO

0.0 200.0n 400.0n

time (second)

Appendix C. Analog VLSI Implementation 157

Figure C.8 Root-mean-square (RMS) errors with averaged over all states are computed for the inference

network with different discount factor y . Similar variations are shown when comparing to the numerical

simulation in previous chapter. The network with larger discount factor / shown slower convergence rate (See

/ =0.9) while a smaller discount factor shows faster convergence rate (See / =0.1).

I

C.4 Layout
The analog VLSI design layout for a current mirror is shown figure C.9. In order to gain high

symmetric for against the defect in the fabrication process, the current mirror consists of four

transistors with organized in a square shape.

lllllllll BBBBHI

丨 ； 編 , ：

Figure C.9 Layout of a n-type current mirror

/ 象::::蟹.彳:::::aBB:SSSBBBSBBB:8BBBI:丨丨：)均

餐 _ _ : ^ 8 _ _ _ |
I丨:
• 證 _ 鑑 纖

Figure C.IO Layout of a p-type current mirror

Appendix C. Analog VLSI Implementation 158

The two-input minimum operator consists of three n-type, p-type current mirror, and one

p-type transistor.

' * ‘ ' vcid' \

* * * * ^ * 吹'«；!〈、'，：； * • • *

. . . • . .

: : : : _ _ _ _ _ _
. • • 早 - 』 — _ i _ i i 丨 lUii .III iiiWÎ ;.

Z P liniwun 々 ：

: _ 纏 糖 ：

•mm mm：.咖:：：
und

Figure C.ll The two-input minimum operator

For realizing the Binary Inference Network for shortest path problem, we have finish the

layout of the circuit. For each computational unit, there are 34 transistors including both p-

type and n-type. The layout is shown in C.12. The inference network is arranged vertically

with the metal on the right-hand side is ground. Each computational unit is corresponding to a

node from the graph in Fig. 5.12.

Appendix C. Analog VLSI Implementation 159

O

. J M M ^ S ^ I M
— , 二二二：：二 , ««««m H

工 龜糊」 — … … I
‘ _ •• 1

u WW • I
一 lui.、L;、、A、；jrl、、、、丄士 二、、…二二二-二：二、慮

(1 箱 — 淡 1

ri

F 、 ！ ? f M 将 齊 w . . . 嗎
• ^ ^ 、 « ^ wv ‘ «• S % XM. < ̂ ov^ V s s V 、 他 、 * ‘ ‘ ^ ^ ^ ^ ^ ^

o

E i m 纖 翻 • . . i

J 丨 戮 瑜 、 i

、聊 l i l ^ 销 （ 、 �I
一 ： 一 一 ？ 裕 貧 斜 一 、 ^ (々、》！一 、総一 f * I

B . W K W f , 侧 I

.總雜• 1
-A « » • » • < � * » VS V « s w.

Figure C.l2 Binary Relation Inference Network for 10-node Shortest Path Problem

C.5 Fabrication
The goal of this fabrication of the first stage of the design which will consist of a network

of computational units that are connected in a network on a large die that has a larger number

of pins, such as the 4.6mm x 4.6mm chip that contains 116 pins. This design will allow the

user to build high performance computational systems for reinforcement learning and able to

run large scale simulations of neural learning model in real time.

The overall design consists of about 500 M O S transistors, the vast majority measuring

Appendix C. Analog VLSI Implementation 160

X 込jum each. The design includes larger transistors when used in critical nodes, such as

current mirrors, to approximately 2800 in order to achieve better matching. Since the

goal of this iteration is to show proof of principle, no attempt was made to optimize transistor

sizes. There are also six capacitors, each of IpR The main system components and their size
(

is shown in table C.l

The BRIN for reinforcement learning is composed two separate subsystems: a shortest path

circuit, and a drug addiction modeling circuits. The shortest path circuit measures 500jum x

900jum, or an area of OASmm^. At this size, a conservative estimate of 20 BRIN circuits can

be fit on half of a 4.6mmx4.6mm die. This is already a very large network in computational

terms, and can be useful in computing shortest path for 80 cities.

Table C.l Main system component in the circuit fabrication

Shortest path circuitQ-leaming circuit Whole system

Number of 50 M O S 45 M O S -500 M O S

transistors ipFx6 cap 6 Cap

Size 240,000 260,000 1.5mm'

The sum of the layout area of the learning subcircuits’ is 1 mm〗. This conservative

estimate takes into account wiring to the pads. The entire reinforcement learning system is

approximately 1.5mm .

The circuits are laid out using Tanner L-Edit software in a hierarchal fashion. D R C

checks are performed on each of the smaller subcircuits to make sure that no design rules are

violated. The design is laid out inside an Pad frame generated by Tanner. The layout for the

pad frame is shown in Figure C.13. There are five sub-circuits, current-mirrors, minimum

circuit, Binary Inference Network for shortest path problem, Q-leaming network circuit and

one of the units from the Q-leaming network, in the overall padframe layout sending for

fabrication. In total,

Appendix C. Analog VLSI Implementation 161

f ^ L i j 戮 丨 1 彳 夢 T i 舰 舰 職 a m 舰 l E u u m 舰 i i j j ^ l .

11 i
I I I 屬 T r i ^ ' E r s
l i a l a E ̂^ I . S i S i C J i l H 二； il. ，舊；S

_ I i J

• I I I „ ::二 J f l l l f i ^ ^ ^ K ^ 權 … . i ；

令,\ z fci ^
P i — 一 . I I. m

S i m 】I I I ! 1 ! I 】I 1 1 1 I I 1 1 i i 復 1 羅 f 身 1 省 1 晋、意 n M
_ _ • • • • • _ _ _ 瞧 _ _ _ _ _ _ _ _ _ _ _

Figure C.13 Overall design with the padframe
C.5.1 Testing and Characterization

The process chosen for fabrication is the A M I 1.5 process. The choice of this

conservative process is to address the issue of circuit performance, which will invariably

differ from simulation results. Analog designs are dependent on good matching for optimal

performance. In this iteration, the most critical transistors of the design are made especially

big so that the AL and AW are small, which will help the circuits operate near the ideal case

of perfect matching.

Simulations of the chip were performed on Tanner's T-spice and included the pad frame

and other off chip circuits. All circuits have been optimized and seem to work fine. Important

Appendix C. Analog VLSI Implementation 162

layout techniques, such as the use of guard rings to protect against latchup, and optimal

placement of critical nodes on the die, is implemented in this design as well.

The layout plan for this chip requires a large number of pins in order to be able to build a

functional network. Special care will be taken to protect critical nodes with guard rings,

although it is recognized that the 1.5|i process is not optimized for guard ring design. Careful

layout techniques will be used to separate digital and analog components, as well as design

larger dimension mirrors and other circuit elements to achieve good matching.

.

-

I

.
:
,

 ..

:
,
.

.
K
l

 f

 -、
s
i

,

 -：：-

 ,,

-

-

：

J

/

I

⑷

.

.

.

.

.

.

.

.
 .

^
 ̂

 -
I

i
,

、A

！

H.

_
 •
？

-
 .

>

 «

.

.

.

.
 .
.

.
 ,

 _

,
 ..
.

.

.

,
.
.
.
.
【
一

I

-
1
.

...

.
 .

 :
•
:

•
 ！
"

.

.

.

 -
、

r
 V..-J

.—

^

..
 ,

---.syf..

*

M

>

 .

.

-
-
-

.
-
V

.

^

•
 .

 :.、-

...

•
、
.
.

.

.

.
;

 -

 •

 .
.
.

 、

..
 ...

、

：

.

.

.

.

.

.

.

.

.

:

:

;

•

•

•

-

 ,
,

-

 ..一

.
 •
•
•

.

？•、

•

 ；
"

-

 -
说
.

：

,

.

-

.

 ‘

I

.
,

-

•

4

1

.

,

"

.

.

；

,

-
v
>

^
 i
K
-

..
 •

 •

r

-
 _
 .

 i
j
I
T
 .V

•
 •

-
h

毛
：
,
.
.

•
•

:
-
T
.

」
、
.
I

.
、
•
•

...

 ,c

y
r
 •

 .

 -

X
 J

 念

f
h
^
^

/
 :
:

 .

r
k

^
 ¥
 .

:

—

.

.

.

^
 ̂

f
t
-
广
山

-

,

,
.

.

.

,̂

、
？
：

 \

,
 -

c

 ;

二

 r
f
』

？
、
I
r

，
琴
、r

.
—
—
’

-

.

 .
.

 .

:

i

-

:

.

:

•

>

 .
“
謹

广
•
s
w

 ̂：

J
.

 -

 —‘

I

 ‘
 (

 .

 .

 ,

k

-

’=.

 -
 .

V
 i

I

CUHK Libraries

0 0 4 2 7 8 9 3 1

