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Abstract 

Along with the remarkable success of Human-Genome-Project and the launch of Genome-to-

Life project, voluminous biological data was accumulated and the secrets of life were yet to be 

deciphered. Innovations and implementations of high performance computing infrastructure to 

support the computational analysis of large-scale data set, complex model simulations and 

achieving effective access to biological data are considered to be equally important as continuing 

to generate new biological data from pipelining biotechnological machineries. 

In parallel with the development of the computational bioinformatics, neural prosthetics, on 

the other hand, emerges as an innovative and interdisciplinary subject, in which the need of real-

time performance is critical. Neuron-machine interfaces such as dynamic clamp and brain-

implantable neuro-prosthetic devices require real-time simulations of neuronal ion channel 

dynamics, in which silicon devices mimic the living cell mechanics. A hardware-based, 

application-specific implementation of the neuronal ion channel dynamics would circumvent the 

limitations of computational speed and flexibility in general-purpose computers. 

Further, for future combat to reduce human causalities, gathering scientific data from distant 

planets or in extreme environments, intelligent robots such as Unmanned Aerial Vehicles 

(UAVs), and Mars Rover, should be equipped with capability learning and real-time decision 

making, which are both computational intensive tasks. Delay in the decision making, due to 

heavy computational burden, would be disastrous. The distributed and parallel computational 

learning architecture could circumvent the limitation of the sequential computation machineries. 

Field programmable gate array (FPGA) has emerged as a high-speed digital platform for 

application-specific computation devices. However, it is a challenge to have efficient design with 

good mapping from algorithms to hardware logics, due to the design complexity and the 

algorithm complexity. The objective of this thesis is to investigate and develop efficient methods 

to address the computational and implementation challenges in FPGA The research covers area 

from computational genomics, neural prosthetics applications to theoretical reinforcement 
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learning implementation in a distributed environment, with a goal to improve existing software-

based implementation methodologies and sequential computational framework. 

In light of the advance ‘ programmable distributed logics technology, we have worked on the 

FPGAs designs based on three different application-oriented examples. Firstly, we propose a 

novel approach for searching equivalence set from genetic network and offer an efficient FPGAs 

implementation. The approach is beneficial to genetic network dynamics development. Secondly, 

we propose a FPGA-based architecture for computational intensive phylogenetic tree topology 

evaluation. Significant acceleration for the tree evaluation can be obtained based on the proposed 

hardware architecture. Thirdly, we present an FPGA design of a neuromorphic Hebbian synapse 

which mimics the NMDA and non-NMDA ion channel dynamics observed experimentally in 

hippocampal neurons. The proposed design can be readily extended to high-speed 

implementations of dynamic clamp and neuro-prosthetics as replacements for damaged neurons 

in the brain. 

In addition, we consider a distributed computational framework for continuous-time inference 

network for solving dynamic programming problems. It is a computational intensive task which 

becomes the bottleneck of real-time reinforcement learning and decision making. We offer an 

FPGAs implementation scheme with distributed arithmetic with adaptation of the embedded 

multipliers and logics. We also consider an analog Very Large Scale Integrated (VLSI) design 

for the realization and verification of the theoretical formulation. We show that the inference 

network converges to the optimal Bellman optimality condition, for which the convergence rate 

can be made arbitrarily fast and is practically independent of the problem size. Lastly, based on 

the framework of the Bellman Inference Network, a novel g-leaming network architecture is 

proposed. We introduce the exploration and memory components to the original Bellman 

inference network to form a connectionist network with the capability of parallel learning and 

optimization. We found that the g-leaming network significantly outperforms the conventional 

g-leaming algorithm under a distributed unknown environment. We also proposed two design 

alternatives for the realization of g-leaming network using FPGAs with the network dedicated to 

fit different applications. 
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摘要 

t 

隨著「人類基因組計劃」革命性的成功和近期展開的大規模微生物基因排序「從基因硏 

究了解生命」，國際基因庫屯積了大量生物數據，但是我們對生命密碼的破解還是處於起 

步的階段。高效能計算分析、複雜模型運算，及有效存取生物數據的創新性實現方法硏究 

應和繼續採集生物數據有相同的重要性。在生物計算高速發展的同時，腦一機界面(或稱 

神經義肢)成爲對實時計算有高要求的新興學科。當中，以動態鉗和腦部可植入晶片的硏 

究對高效能實時運算有最高要求。通過在專用硬件上實現，此硏究可用作模擬真細胞的運 

作和模擬腦細胞離子通道運作並可改善普通電腦在運算速度和彈性上的限制。另外，爲應 

付未來戰爭或到外星極地進行科學硏究，智能機械人，例如無人駕駛飛機，火星挑戰者 

號，應具備實時學習及決策的能力。但這些都是需要大量運算的。如果因要應付大量運算 

而延誤了決策，可能導致嚴重的後果。 

近&，現場可編程門陣列已成爲現代專門高速運算硬件平台。但因爲硬件設計和算法的 

複雜性，令算法在硬件實現上出現很大的困難。本論文的目的是硏究在生物信息、腦一機 

界面、及機器學習的問題上如何有效地實現分怖式硬體以達到提高單以軟體爲基礎的實現 

方法。我們針對三個不同的領域的問題進行現場可編程問陣列硬件實現的硏究。第一’我 

們提出遺傳算法及動態規劃的綜合算法以解決同類基因搜索的問題。此新算法對建造基因 

動態模形有很大幫助。此外，我們還對算法提供了硬體的實現方法’以大大縮短所需計算 

時間。第二，我們提出了以並行硬件實現模式以加快基因遺傳樹重建的密集計算。第三， 

我們提出一套對腦細胞離子通道模擬的硬件實現方法。硬件設計對高速互動鉗和腦一機介 

面的建造有極大的幫助。 

除此以外，本論文也針對增強式學習問題提出了間斷性和連續性推理網絡的理論基礎及 

實現方法。該方法可以突破實時學習的計算速度瓶頸。我們提供了現場可編程門陣列及模 

擬電路在超大規模集成電路的實現。最後爲解決在信息不全的情況下增強學習的問題，我 

們提出了 2-學習網絡的構想。從初步的模擬測試中，0-學習網絡表現了較有效率的學習 

及優化計算。此外，我們也提出了不同的硬件實現方法以應付不同的需求° 
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Chapter 1. Introduction 1 

I 

Chapter 1 

Introduction 

1.1 Bioinformatics 

February 2001, it was the landmark of human technological advance, the remarkable success 

of Human Genome Project (Baltimore 2001; Consortium 2001; Venter et al. 2001), by raveling 

the underpinning of numerous genomes and DNA sequences from microbes to plants to 

mammals, have created a revolution in biology that has no equal in the history of science. 

Genomics is now the starting point for studies in biology, making tractable for the first time a 

systematic and deep understanding of life's process. While stunning in the impact of the human 

genome project, our foray into genomes has touched upon only the tiniest fraction of life on earth. 

The diversity and range of the environment adaptations of microbes mean that they long ago 

evolved solutions to many problems that scientists must now address. Comprising about fifty 

percent of the earth's biomass (Whitman, Coleman et al. 1998), microbes are in consequence the 

foundation of the biosphere, controlling earth's biogeochemical cycles and affecting the 

productivity of the soil, quality of water, and global climate. The desire and aspiration of 

understanding the life in the microbe's would, leads to the launch of another project, Genome to 

Life, with scale equivalent to the Human Genome Project (Frazier, Thomassen et al. 2003). 

The advent of the Human Genome Project and Genome to Life projects have impacted all of 

the biomedical research and brought the exhilaration and celebration of the entering of post-

genomic era. However, the development of large sets of genomic data has challenged biologists 

who as a rule have never encountered data of this scale. The secrets of life are yet to be 
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deciphered. Implementations of conventional statistical techniques have brought a level of order 

and results to the biologist's desktop. But significant problems remain to be solved. The 

challenge remains to extract the maximum useful information from genomic data. Consider 

biology is awash by the amount of data and its complexity, which demands increasing 

computation power. In addition to generation new data from pipelining biotechnological 

machineries, innovations and implementations of computing infrastructure to support the 

computational analysis of large-scale data set, complex model simulations and achieving 

effective access to biological data are equally important. 

Starting from gene sequencing, the combination of DNA base pairs of thousands genes can be 

identified, and clues for a variety of structural and functional features might be provided. 

However, to our knowledge, only molecular machinery of the cell can interpret the encrypted 

sequences to determine the complex biochemical mechanism and to define the organism 

behavior (D'haeseleer, Liang et al. 2000). Analysis of genomic sequences aims to understand 

mechanisms of molecular machinery. Data mining and modeling approaches try to conceptualize 

and unravel the functional relationships implicitly indicated in the genetic data set. Clustering 

algorithms are typically popular on automatically grouping of genes based on their expression 

measure and prior knowledge of the biological experiments. Some of these techniques, such as 

Singular Value Decomposition (SVD) for genes clustering (Alter，Brown et al. 2000; Wall, Dyck 

et al. 2001), expectation-maximization algorithm to cluster yeast data (Mjolsness, Mann et al. 

1999), standard agglomerative hierarchical clustering algorithm for average-linkage analysis on 

gene expression data (Eisen, Spellman et al. 1998), are considered as popular unsupervised 

learning methods, from the engineering perspective. 

Still, clustering approach typically only tells us correlative information, but not causality and 

regulating models about genes, though it is a relatively easy way to extract useful information 

out of large-scale gene expression data sets (D'haeseleer, Liang et al. 2000). More advance 

analysis aims to infer causal connections between genes and network dynamics. One way to 

make progress in understanding the principles of network dynamic is to radically simplify the 

individual molecular interactions, and focus in the collective outcome (D'haeseleer, Liang et al. 

2000; Maki, Tominaga et al. 2001). Boolean network (Kauffman 1969) represents such a 

simplification: each gene is considered as a binary variable — either ON or OFF 一 regulated by 

other genes through logical or Boolean functions. Although there are effective measurements of 
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genetic data from the microarray experiments, computational analysis is complex and is a serious 

bottleneck in the study of genetic network using contemporary computing technology. New 

computational paradigm of massive parallel and high performance computers are therefore in 

great demand. 

Among the computational genomic examples, evolutionary studied of different organisms, 

through the judicious evaluation of DNA or protein sequences, is still the main stream in biology. 

This is because an organism is best understood in the light of its evolutionary relationship to 

other organisms (Karp 2003). Comparative study based on the theory of evolution can be traced 

back to Charles Darwin (Darwin 1929). Instead of comparing the phenotype, such as size of eye 

ball, or palm and height, nowadays, metrics based on DNA sequences are applied for 

evolutionary studies. Computational model and methods to infer (or reconstruct) the evolutionary 

history of organism, namely phylogentic tree reconstruction, becomes everyday practices of 

biologists in many laboratories. 

Phylogenetic tree study is one of the most fundamental bases in biology. It has been shown 

that phylogeny analysis has its profound implication in pharmaceutical research which focus on 

the evolution of virus for the purposes of drug-resistance prediction, immune-escape of 

mutations (Rambaut, Posasa et al. 2004), etc. Also the strong drug adaptation of HIV virus can 

be explained by its fast mutation rate. In (Worobey, Santiago et al. 2004), the origin of HIV is 

using meticulous phylogeny analysis. To decipher HIV interaction with the immune system and 

to develop effective control strategies, close relatives of the virus are studied using phylogeny 

(Rambaut, Posasa et al. 2004). Besides virology and pharmaceutical applications of phylogeny, 

recently, it has been shown that evolutionary studies of species can benefit the genomic studied 

and the regulatory genetic network prediction as well (Eisen and Fraser 2003). 

Phylogenetic tree reconstruction is computational intensive. Especially for recent advance 

probabilistic-based model, phylogeny computation becomes a challenging engineering issue and 

considered intractable for desktop computers. It is a difficult task to find the optimal solution 

based on the maximum likelihood criterion, simply because of the exponentially growth of the 

possible tree topologies with the number of taxa^. The possible unrooted, bifurcating w-taxa tree 
84 

topologies is corresponding to nearly 16 billion different trees for 12 taxa and 3x10 trees for 

55 taxa. The optimal phylogenetic tree search problem is regarded as NP-hard (Lemmon and 

1 Taxa is a general term referring to any kind of taxonomic unit including DNA sequences and nucleotide site. 
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Milinkovitch 2002) which implies that no known algorithm can find the optimal solution in 

polynomial time. Heuristics are often used to search the near optimal tree within a reasonable 

time, which essentially applies hill climbing or genetic algorithm approaches as the search 

strategies (Strimmer and Haeseler 1996; Swofford, Olsen et al. 1996; Lewis 1998; Lemmon and 

Milinkovitch 2002). The heuristics can reduce the search space for a near-optimal solution. The 

tree evaluation is computationally demanding and is used repeatedly in the search. In general, the 

computational cost of likelihood, accounts for the greatest portion of the execution time (i.e. 95% 

in sequential execution) (Stamatakis, Ludwig et al. 2002). The computational intensive fixed-

topology tree evaluation is time consuming and this would result in the reduction of the overall 

search speed. 

12 Neural Prosthetics 

In parallel with the success of computational genomics, neural science, is another important 

subject in biology and medical science. Tremendous efforts have been put on innovation and 

development in this area in the past two decades (Kandel, Schwartz et al. 2000). One of the 

frontiers is repair of the human brain: developing prosthetics for the central nervous systems to 

replace higher thought processes that have been lost due to damage or disease. The type of neural 

prosthetic that performs or assists a cognitive function is qualitatively different from the cochlear 

implant or artificial retina, in which transducer converts physical energy from the environment 

into electrical stimulation or nerve fibers (Loeb 1990), and qualitatively different from functional 

electrical stimulation (FES), in which preprogrammed electrical stimulation protocols are used to 

activate muscular movement (Mauritz and Peckham 1987). Although there is still a long way 

before the ultimate goal is achieved, neural prosthetic silicon neurons would have functional 

properties specific to those of the damaged neurons, and would both receive as inputs and send 

as output electrical activities to regions of the brain with which the damaged region previously 

communicated (Berger et. al.2001). 

Real-time simulation is an important step in the implementation of brain-machine interaction 

(BMI), and is fundamental to several emerging neuromorphic, biomimetic and prosthetics 

applications. For example, in electrophysiological studies of neuronal membrane properties using 

the dynamic clamp technique (Sharp et. al. 1993; Butera et. al. 2004) , a digital computer is used 
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to generate virtual ion channel conductance which continuously interacts with a biological 

neuron in real time. Such software-based experimental applications are highly computation-

intensive and often require judicious choice of operating system (Sharp et. al. 1993) and 

numerical procedures (Butera et. al. 2004) to improve the computational speed and flexibility. A 

hardware-based, application-specific implementation of the dynamic clamp technique would 

circumvent the limitations of general-purpose computers. 

Another example of neural prosthetics brain-machine-interface (BMI) is real-time neuronal 

ion channel dynamics computation. For example, a robotic arm controlled by central brain 

activities have been shown to be capable of generating complex motions (Taylor 2002), and such 

capability may find important applications in patients with Parkinson's disease, Essential Tremor, 

and dystonia (Isaacs et. al. 2000). One such technology is neuromorphic analog VLSI circuits 

(Mead 1990). Towards this end, Rachmuth and Poon have previously proposed neuromorphic 

Hebbian synapse design using analog CMOS circuits operating in subthreshold regime 

(Rachmuth and Poon 2003; Rachmuth and Poon 2004). However, the relatively long design and 

fabrication cycle for analog CMOS circuits is a bottleneck in the development of such devices. 

1.3 Learning in Uncertainty 

Besides the real-time requirement of the brain-machine-interface application, rapid learning 

under stochastic and uncertainty is also important. This is widely used in knowledge acquisition 

for making time-critical decision in real-time. Autonomous robots and vehicles are assigned to 

perform missions in highly hazardous and extreme environments. In most of the time, good path 

planning and quick reaction to avoid dangerous spots can increase the chance to reach the target 

or accomplish a mission, as in the cases of gathering scientific information from a distant planets 

or searching and rescuing life from a mass casualty incident site (Team 1997; Volpe, Estlin et al. 

2000; Casper and Murphy 2003). One of the examples is the design of Mars rover, which is used 

for exploration of Mars. Robust navigation through rocky terrains by small mobile robots is 

challenging as little information about the uncertain environment at extreme conditions and there 

is only limited number of communication with earth controller, i.e. twice a day (Volpe, Estlin et 

al. 2000). Highly autonomous robots with intelligent and capability of learning and making 

decision for path planning, execution are acquired for maximizing scientific data return from the 
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Mars exploration mission. Sojourner, the Mars Pathfinder rover was sent to Mars making 

observations on the rocks and other deposits at the Ares site to collect information and prior 

knowledge to increase the chance for latter rover success (Rover Team 1997). 

Since the environment is highly dynamic and unpredictable, path planning relying only on the 

prior knowledge is risky. Several real-time and on-line planning navigation techniques are 

proposed to enhance the intelligence and on-line decision making capability of the rover for the 

coming projects (Williams, Kim et al. 2001). On the other hand, exploration of the surface of a 

distant planet by networks of autonomous cooperating vehicles would be an effective alternative 

approach. Collective information from a distributed environment would increase the content of 

the information and increase the chance of survival of the autonomous robots. Given this option, 

distributed approaches for rapid learning in an uncertain environment and for making real-time 

decision is important (Williams, Kim et al. 2001). 

Among the examples of real-time path planning and decision making is the development of 

intelligent Unmanned Aerial Vehicles (UAVs) for future combats to reduce human causalities. 

The major challenge for intelligent UAVs development is path planning in uncertain and even 

adversarial environments, for which the objective is to complete the given mission, to arrive at 

the given target within a pre-specified time, while maximizing the safety of the UAVs. The 

problem can be modeled as a typical stochastic learning and sequential decision problem (Jun 

and D'Andrea 2003). However, in practice, UAV path planning is difficult because of two main 

reasons. Firstly, in the adversarial environment, information is always incomplete and is highly 

uncertain. It is difficult to acquire knowledge to decide on a reasonably well trajectory of the 

flight. Secondly, the computational load grows quickly as the number of radar sites increases. 

Delay in decision making, due to heavy computational burden, would be disastrous. The 

distributed and parallel computational learning architecture could circumvent the limitation of 

the sequential computation machineries (Tin 2004). 

1.4 The Field Programmable Gate Array (FPGAs) 

The latest high-end microprocessors utilize 90nm complementary metal oxide semiconductor 

(CMOS) technology with 64-bit data bus, multiple functional units and megabytes of integrated 
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cache packed on a single die with up to a hundred million transistors operations at clock 

frequencies over 3 GHz (Intel 2005). Although the computational abilities of these advanced 

microprocessors are useful'to a wide range of civil, business and engineering applications, they 

cannot always fulfill the needs of real-time signal processing, high-throughput computational 

genomic systems and large-scale optimization, which require even higher computational power. 

High power requirements and large heat dissipation are also shortcomings of microprocessors. 

Essentially, the limitation of microprocessor system is due to the nature that software programs 

executing follows a sequential operation within a microprocessor (Leong 2001). In contrast, 

hardware implementation would utilize hardware parallelism and dedicated logic leading to 

performance improvement over a microprocessor. The dedicated hardware architecture can be 

designed to be more power and computational efficient. 

Field Programmable Gate Array (FPGAs) becomes unique, power efficient, robust and high 

performance computation engine. Originally FPGAs simply regarded as a fast prototyping tool 

for microprocessor design in early 80，s. Evolution of silicon reconfiguration technology leads to 

revolutionary replacement of legacy microcontroller. When comparing to traditional 

microprocessors, the FPGA allow parallel implementation of computational logics and 

arithmetic. Given a judicious design, throughput of the applications can be greatly enhanced. For 

example, FPGA-based computing platform called a Programmable Active Memory (PAM) 

machine (Bertin and Touati 1994; Mencer, Morf et al. 1998) achieved the fastest reported 

encryption/decryption rate in history. In their work, it has been shown that an implementation of 

the International Data Encryption Algorithm (IDEA) on a Xilinx Virtex-XCV300 FPGA 

achieved 10 times faster than software implementation on a Sun Enterprise E4500 machine 

equipped with twelve 400 MHz processors. In (Trimberger, Pang et al. 2003), implementation of 

the Data Encryption Standard (DES) on a Xilinx XCV-300 device achieved 12Gbits/sec 

encryption rate while only 9.3Gbits/sec was reported in the fastest ASIC implementation. 

The technological advancement of FPGAs does not limited to civil applications, but 

aeronautic and military applications are abounded. Mars Exploration Rover mission utilizes 

Xilinx FPGAs in critical applications for both the lander and rover vehicles. According to 

NASA's Jet Propulsion Laboratory in Pasadena, the Spirit Mars Exploration Rover (MER) 

launched June 10, 2003 and the Opportunity MER launched July 7, 2003 employed some of the 

most advanced radiation tolerant Xilinx Virtex FPGAs once they reached Mars. The Xilinx 
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devices was used to control the pyrotechnic devices on the lander, and several motor control 

functions on the rover, including controllers for the wheels, steering, and antenna gimbals 

(Xilinx 2003). In (Burke, Cozy et al. 2004), it was found that the operation of FPGAs, both Actel 

and Xilinx parts, is in good condition at very low temperatures e.g. down to -165°C. 

Investigation and implementation of control logics using FPGAs would greatly enhance its 

robustness and speedup the development cycle. This would greatly benefit the autonomous 

robotic and aeronautic machineries design application for distant planet exploration. 

The capacity, functionalities and efficiency of FPGAs technologies does not stop evolving in 

recent years. The earliest architecture XC4000 FPGAs had up to 180 thousands system gates. 

Programmable floating gate transistor can be programmed becomes non-volatile memory 

together with programmable switches form a network of programmable logics. Thousands of 

logic operators could be connected together. Early architecture performance was limited by its 

capacity. The later Xilinx Virtex series FPGAs had up to 4 millions system gates and 832 Kbytes 

embedded memory. It was the first reconfigurable architecture with embedded memories, which 

had greatly enhanced the competitiveness of FPGA to other signal processing and ASIC 

processors. Later, Virtex-II series architectures were proposed. It was considered that signal 

processing performance required large volume of arithmetic operator. Introduction of 18-bit 

embedded multipliers increased the computational speed of the application. Further, it facilitated 

higher robustness, power efficiency and logic utilization. More recently, Virtex-II Pro and 

Virtex-4 FPGAs series enabled with IBM PowerPC immersed into the FPGAs fabric while high 

performance internal bus architecture dedicating for the communication between the distributed 

logics, embedded memory, multipliers and the embedded microprocessor (Xilinx 2002). The 

platform offers great flexibility for users to define task partitioning between the FPGA hardware 

logic and software running on the embedded microprocessor. It also provides a tightly-coupled 

HW/SW computing environment and supports a high-speed internal bus, which significantly 

reduces communication overhead. A central bus infrastructure with dedicated sub-buses and 

interconnected bridges is essential for providing a high throughput communication gateway 

connecting the microprocessor and FPGA. More specifically in (IBM 2002), the PowerPC core 

accesses high-speed system resources (such as instructions and data) through the Processor Local 

Bus (PLB); and On-Chip Peripheral Bus (OPB) provides the connectivity to the FPGA. As 
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integrated circuit technology continue to improve at a noticeable rate, one could be assured that 

even more powerful FPGA devices would be available in the future. 

Accumulation of biological data, leads scientists and biologists to look for effective 

alternatives to process the stacking data and to circumvent the computational problem attributed 

to desktop computers. FPGAs, on the other hand, would be an effective implementation platform 

for tackling the computational problem by its distributed architecture and effective use of 

parallelism. It is only the beginning to apply FPGA technology on biomedical, bioinformatics 

and even neural prosthetics. Pioneer TimeLogic Inc. commercially provides solutions to the 

problem of searching genetic databases (TimeLogic 2002), in which 160 FPGAs are used to 

form a powerful cluster of computational system. Although the system is only one fifth of the 

computational speed of the machines used in the Human Genome Project, it is more power 

efficient and inexpensive. (Guccione and Keller 2002) found that, over ten times acceleration 

achieved for using more advance FPGA processors. In that case 4000 processing units were used 

to match gene sequences in parallel. This showed that FPGAs was an excellent solution to the 

bioinformatics applications. Few of the latest achievements in DNA sequence alignment were 

presented in (Yu, Kwong et al. 2003; Dydek and Bala 2004), where different systolic array 

parallelization schemes were adopted to gain higher acceleration. 

In addition, FPGA implementation is an effective solution to neural prosthetics and 

reinforcement learning problems mentioned above. Based on the programmable distributed logic 

cells and other embedded resources, algorithms can be mapped to FPGA. The reconfigurable 

nature of FPGAs enables multiple designs to be programmed on the same hardware device at 

different times. Thus the costly design and fabrication process delay associated with Very Large 

Scale Integration (VLSI) design are avoided. The continuous improvement in silicon technology 

offers faster and larger FPGA devices over time. Design based on FPGA is versatile. With 

improved density and shorter design time in the future, designers may implement more 

sophisticated algorithms leading to further improvement in system performance. 

Unfortunately, the FPGAs design and mapping of algorithms to FPGAs are always not 

straightforward. It is challenging to have efficient design with good mapping from the algorithms 

to the hardware logics. This is always due to the design complexity and the algorithm complexity. 

Efficient and simple algorithms are not necessarily efficient to be executed in hardware with 

trivial implementation. Besides, one difficulty in designing FPGA applications is that hardware 
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resources are strictly limited. Hardware area efficiency is still a major issue, even though density 

of FPGA devices has improved substantially. Very often, performance is sacrificed to fit a design 

into a given FPGA device. It is important to able to explore the tradeoff between area and 

performance, and a single design description can lead to multiple implementations with area and 

performance tradeoff. 

1.5 Scope of the Thesis 

The objective of this thesis is to investigate and develop efficient methods to address the 

computational challenges, from bioinformatics, neural prosthetics problems to theoretical 

reinforcement learning implementation in a distributed environment. Our goal are to explore new 

applications and to improve the performance based on software-based implementation 

methodologies and sequential computational framework. 

Reverse engineering of genetic network is one of the greatest challenges in today's 

bioinformatics. In (Akutsu, Kuhara et al. 1998; Maki, Tominaga et al. 2001; Kimura, 

Hatakeyama et al. 2003), the idea of partitioning genes into equivalence sets, from a large 

genetic network and with reference to a Boolean matrix obtained from the gene expression 

patterns resulted from microarray experiments was proposed. The equivalence sets facilitate 

effective grouping of "closed-loop" genes, and can be derived from transitive-closure 

computation. Subsequently, dynamic models are estimated from the identified equivalence sets 

for capturing network behavior. Therefore, computation of the transitive-closure for the 

equivalence sets is as an important step for building static and dynamic models of genetic 

network (Maki, Tominaga et al. 2001). In Chapter 2, we present a hybrid method, which 

integrates genetic algorithm (GA) with dynamic programming approach address the 

computational intensive equivalence sets search problem. This approach converts a high 

dimension computation problem into a search problem which is solved by GA using dynamic 

programming. The computation of transitive-do sure forms the basic fitness evaluation in GA. 

This is used for selecting candidate chromosomes generated by applying basic genetic operators. 

Small transitive-closure equivalence sets can be found from large genetic network with less 

computational effort. We also offer an efficient Field Programmable Gate Array (FPGAs) 

implementation platform for the required computation. Application of FPGA processors for 
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searching equivalence set minimizes experimental delay due to computational intensive data 

analysis. 
t 

Chapter 3 addresses the computational problem in the evolutionary study of DNA sequences. 

We specifically study different approaches to speedup the phylogenetic tree reconstruction. 

Phylogeny (phylogenetic tree) is a meaningful representation for the evolutionary history of 

different organisms and it had been shown tremendous impact to the biological and medical 

science. Due to the exponentially increasing search space for the optimal Maximum Likelihood 

(ML) criterion, the phylogeny inference is classified as NP-hard. Heuristic search makes use of 

the likelihood evaluation function extensively to give score for the candidate solutions. This tree 

evaluation process is a critical but computationally demanding task. We present the design of a 

dedicated FPGA-based hardware system that performs ML tree evaluation in a more efficient 

manner than a software implementation. With simplification of the ML function, a recursive ML 

evaluation algorithm is proposed. This algorithm can be mapped to FPGAs using digital logics. 

In addition, based on the DNA state and nucleotide site independence, fine-grained parallelism is 

introduced into the proposed FPGA-based architecture to provide significant speed-up. 

In Chapter 4, we study the FPGAs implementation for one of the basic mechanisms in neural 

prosthetics. Neuron-machine interfaces such as dynamic clamp and brain-implantable neuro-

prosthetic devices require real-time simulations of neuronal ion channel dynamics. We present 

an FPGA design of a neuromorphic Hebbian synapse, which mimics NMDA and non-NMDA 

ion channel dynamics observed experimentally in hippocampal neurons. The proposed design 

can be readily extended to high-speed implementations of dynamic clamp and neuro-prosthetics 

for replacements of damaged neurons in the brain. 

Dynamic programming is a step of crucial importance in real-time decision making 

reinforcement learning problem where problem solution time can be an implementation 

bottleneck. In Chapter 5, we consider a distributed computational framework for both discrete-

time and continuous-time inference network for solving dynamic programming problems. 

Interconnected computational units, forming a network, participate simultaneously in the 

computation while maintaining coordination by information exchange via continuous 

communication link. The implementation of the value-iteration algorithm of dynamic 

programming for the expected average cost criterion is presented. We show that the inference 
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network converges to the optimal Bellman optimality condition, for which the convergence rate 

can be made arbitrarily fast and is practically independent of the discounting factor and the 

number of states. Numerical simulation of using such continuous-time inference network for 

random-walk and stochastic shortest path problems are also described and compared. We also 

derived a discrete-time version of the inference network that the network can be well mapped to 

FPGAs for solving dynamic programming. Besides, we investigate the realization of continuous-

time inference network using analog CMOS VLSI. Inference cell with embedded computational 

units based on analog arithmetic components would be developed for verification and realization 

of the continuous-time inference network model. 

In a Markov decision process, knowledge of the state transition probability function and the 

reinforcement reward is not always available. The agent must interact with its environment 

directly to obtain information. This is by means an appropriate algorithm, to produce optimal 

decisions. In Chapter 6 assuming the probability and rewards are unknown, to circumvent the 

limitation of the dynamic programming, Q-leaming, proposed by Watkins, as a simple yet 

strikingly powerful learning algorithm contributes the on-line reinforcement learning. However, 

the slow sequential learning process under the conventional g-leaming algorithm would delay 

the solution time for many time-critical and real-time decision making problems. Based on the 

framework of the Bellman Inference Network, a novel g-leaming network architecture is 

proposed. We introduce the exploration and memory components to the original Bellman 

inference network to form a connectionist network with together the capability of parallel 

learning and optimization. We found that the Q-leaming network outperforms significantly the 

conventional Q-leaming algorithm under a distributed unknown environment. We also proposed 

two design alternatives for the realization of g-leaming network using FPGAs. The network 

would be dedicated to fit different applications. 
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In Chapter 7, we summarize and conclude our studies on FPGA-based architecture design with 

respect to the problems in the area of bioinformatics, neural prosthetics and reinforcement 

learning. 
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Chapter 2 
t 

A Hybrid GA-DP Approach for 

Searching the Equivalence Sets 

The computation of transitive-closure equivalence sets has recently emerged as an important step 

for building static and dynamic models of genetic network. We present a hybrid method of 

integrating genetic algorithm (GA) with dynamic programming (DP) approach and offer an 

efficient Field Programmable Gate Array (FPGA) implementation platform for the required 

computation. This approach converts a computational problem of high dimension into a search 

problem with DP embedded in GA. The DP computation of transitive-closure forms the basic 

fitness evaluation in GA, for selecting candidate chromosomes generated by applying basic 

genetic operators. Small transitive-closure equivalence sets can be found from large genetic 

network with less computational effort. Mutation and crossover operators are specially designed, 

that always keeps the chromosome in feasible solution domain. The results show that GA-DP is 

able to locate the small equivalence set from a large network with less than 100 generation even 

with a small population size (i.e. 30). In our FPGA implementation, a Boolean Relation 

Inference Network (BRIN) is embedded in the hardware GA that realizes the parallel transitive-

closure computation. Implementation of parallel mutation and crossover operation will also be 

discussed. 

Keywords: Equivalence Set, Genetic Algorithm, Transitive Closure, FPGA 

Abbreviations and Acronyms 

GA Genetic Algorithm 

ES Equivalence set 
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GA-DP Genetic Algorithm and Dynamic Programming 

FPGA Field Programmable Gates Array 

BRIN Boolean Relation Inference Network 

RNG Random Number Generator 

Nomenclature 

R Boolean matrix representing the genetic network 

R{iJ) The accessibility from gene i to gene j 

R ‘ Transitive-closure of the genetic network R 

R \i, j) The accessibility from gene i to gene j in the transitive-closure R ‘ 

N The genetic network 

n The size of the genetic network (i.e. the number of nodes in N) 

A The sub-matrix that representing the Boolean relationships of elements in 

M 

A ‘ The transitive-closure of A 

ER(iJ) The evaluation of the element i and j, whether they belong to the same 

equivalence set 

M The equivalence set 

m The number of elements in the equivalence set 

P Population size of GA 

CR the population of GA, that it is P x M matrix 

CR{c) the c chromosome in the population 

CR(c, g) gene g from the chromosome c 
• 



Chapter 2. A Hybrid GA-DP Approach for Searching Equivalence Sets 16 

2.1 Introduction 

The rapid advance in technology such as DNA microarrays makes available voluminous 

experimental data (Smyth, Yang et al. 2002) for the analysis and development of models for 

large scale genetic network comprising several thousands of genes. Information extraction and 

reduction to meaningful patterns from the data has become an urgent but rather computationally 

demanding task. In (Akutsu, Kuhara et al. 1998; Maki, Tominaga et al. 2001; Kimura, 

Hatakeyama et al. 2003) the idea of partitioning genes into equivalence sets, from a large 

network was proposed, with reference to a Boolean matrix R obtained from the gene expression 

patterns resulting from disruption or forced expression. The equivalence sets allow effective 

grouping of "closed-loop" genes (where the effects of gene on gene ‘b, and gene 'Z?' on gene 

‘a, coexist in the set), and can be derived from transitive-closure computation (See Figure 2.1). 

Subsequently, dynamic models are estimated from the identified equivalence sets for capturing 

network behavior (Maki, Tominaga et al. 2001). 

While the transitive-closure computation for an «-node genetic network N can be readily 

obtained by sequential dynamic programming techniques such as Floyd-Warshall or Bellman-

Ford algorithm (Cormen, Leiserson et al. 1990), the procedure is computationally intensive for 

practical network size where the network size is large. Subsequent search to obtain all possible 

m-node (where m is much smaller than n) equivalence sets is needed based on the result of 

transitive-closure computation. Since the transitive closure computation is a computational 

intensive task with O(n^), it is not efficient and wasting computation effort to find a m-node 

equivalence sets from a large «-node genetic network (n » m) that requires the computation of 

transitive-closure for the whole genetic network as an initial step. 

Instead of locating the equivalence set by applying dynamic programming on the network, we 

introduce a searching strategy based on an equivalence set criterion. It is only required to 

compute the transitive-closure for a candidate solution M, which is a small sub-network from N. 

The high dimension computational intensive task is broken down into smaller pieces, such that 

only a small sub-network transitive-closure computation is required instead of a large network. 

However, an exhaustive Brute-Force search for testing all the possible m-node sets of 

candidates solutions on the equivalence criterion from an «-node genetic network is not viable, 

simply because that the number of combinations increases drastically. However, Genetic 
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Algorithm (GA) has long been known to be a highly efficient global search procedure than 

Brute-Force, provided that a meaningful fitness evaluation for candidate solutions (or so-call 

chromosome in a population) is known (Cheng 1998; Langdon 1998; Leung, Li et al. 1998). In 

this chapter, we introduce a hybrid genetic algorithm, dynamic programming (GA-DP) approach, 

which provides an efficient alternative solution to search the equivalence genes from a network 

of genes. The specific problem in this chapter is to maximize the equivalence set criterion for an 

m-node network, which is selected by GA from the whole w-node network. The equivalence set 

is found when GA converges to the optimal solution. Instead of locating the equivalence set in a 

network by an exhaustive computation, the GA-DP approach can reduce the computation effort 

in transitive-closure computation and offers a fast searching strategy. 

Equivalence set 

Figure 2.1 A 30-node genetic network, in which node represents gene and solid edges represents the causality 

relations between genes, while the dotted edges represented the transitive-closure relationships. An equivalence sets 

{1, 5, 6，9, 14} is shown, where within this set every gene is affecting the others directly or by transitive-closure. 

In addition, we have implemented the hybrid GA-DP algorithm using Field Programmable 

Gates Arrays (FPGA), a real-time custom computing platform that has seen growing usage for 

GA (Graham and Nelson 1996; Martin 2001; Shackleford, Snider et al. 2001; Canham and 
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Tyrrell 2003). Intrinsic fine-grained parallelism for the genetic operators, such as mutation and 

crossover, in GA-DP are exploited in digital hardware. In addition, a Boolean Relation Inference 

Network (BRIN) is realized for the parallel transitive-closure computation. This design can 

effectively reduce the computation complexity of transitive-closure to 0(\ogi{n-\)) from 0{n) 

(Ng and Lam 2003). With these hardware designs, the GA-DP in hardware can outperform the 

speed performance of GA-DP in software. 

In section 2, we give an introduction of the equivalence set problem. In the section 3, the GA-

DP algorithm is presented. The overview of the GA-DP architecture is presented, with further 

details of individual GA and DP block given in section 4. The simulation results and discussion 

are in section 5. Limitations and future works are presented in section 6, while conclusion is in 

section 7. 

2.2 Equivalence Set Criterion 
In line with the work in (Maki, Tominaga et al. 2001), the accessibility relationships of genes 

can be represented as an w x w Boolean matrix [Rij\nxn where Rij = 1 when gene ‘/，and gene ‘f 

affect each other, otherwise Rij = 0. Let the node of network Â  be F = {v!, V2, ..., v„}, and 

consider a subset M= {v\, V2, ..., v^} of vertices for some m. An equivalence set M is introduced, 

in which a set of genes are affecting each other in a group and the group is assumed to be one 

gene. To evaluate the equivalence relationships, we can base on the transitive-closure matrix [Tuv_ 

of the original matrix where there is a path from vertex v“ to vertex Vv in G denoted as r“v二 1, 

otherwise r^y^O. 

Then, we can use the transitive-closure relationship to evaluate a set of genes in the genetic 

network, whether they belong to the same equivalence set. Suppose, we have two genes, gene 

and gene ‘b,, if the two genes are forming an equivalence set ER(a, b), that their corresponding 

transitive-closure will be Tab 二 1 and Tba � 1. This can be extended to an equivalence set with m 

genes, such that all pairs of elements in M are fulfilled the conditioned of an equivalence set 

which is given as follows, 

= 》 二 ^ (2.1) 

Making partition genes into equivalence set, all genes are included in only one group. In other 

words, there are no repeating genes in an equivalence sets and no one genes belongs to more than 
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one equivalence set. The partitioning of a set of equivalence genes is represented as S = {^Sj, 

such that the sets are pairwise disjoint, that is Si, Sj e S and i * j imply A 乂 = 0 . 

To determine whether a set of genes M from the genetic network N is an equivalence set, Eq. 

(2.1) is readily applied. Firstly, a sub-matrix A is constructed from R, where A is the Boolean 

relation matrix for elements in M. Then A , which is the transitive-closure of A, is computed by 

using dynamic programming. Then, we can use A to evaluate whether the set M is an 

equivalence set. If two genes are in the same equivalence set, the sum of their corresponding 

entries in the transitive-closure matrix will be two). As there are m{m-\)/2 pairs of the 

elements in M, and if M is an equivalence set, the sums of all entries in the transitive-closure 

matrix A will be m{m-\). In other words, the optimal condition is, that all the entries in A , 

excluding the diagonal, are one (See Figure 2.2). 

Figure 2.2 A sub-network, which consists of node {1, 5，6，9，14} is extracted from the genetic network N. 

Transitive closure computation is applied to the sub-network, then the total number of edges is 20, as this sub-

network forms an equivalence set. 

2.3 Genetic Algorithm and Dynamic Programming 

In (Maki, Tominaga et al. 2001), the procedure based on dynamic programming to infer 

equivalence set from a network has been outlined that the transitive closure of the whole network 

has to be derived as the first step. After that equivalence sets are extracted from the transitive-

closure network subsequently by identifying groups of genes affecting each others. It happens to 

be the equivalence set searching becomes a time consuming process due to the computationally 

intensive transitive-closure inference. As an alternative, the equivalence set problem can be 

formulated into a search problem, that the algorithm intents to search a set of node from the 

genetic network that the equivalence criterion is maximized. 

1 If the set [a, b] is an equivalence set, then the transitive-closure R'(a, b) = 1 and R'(fl, b) = 1, thus R'(a, b) + R'{b, a) = 2 
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The computation of transitive-closure from the candidate set M is only based on the 

connectivity of vertexes in M. Therefore, we can construct a Boolean matrix [QST]MXM represents 

the accessibility between genes in M. Also an indexing function ^(v/) is introduced that re-index 

the vertex v/ in M where v； g M, Therefore the relationship between matrix Q and R is given as 

We also denote the transitive-closure of 0 as 0，. Based on the definition of equivalence set 

given in Eq. (2.1), the objective of the optimization is to maximize the number edges in the 

transitive-closure of the sub-graph M that is given as 

m m 

max V V Q. 
观 台 4 (2.3) 

where i j 二 众）and v̂  e M ’VA: = l,2,.",m 

Under this objective function, the evaluation of the candidate solution, only the transitive-

closure of the candidate of equivalence sub-network is necessary to compute while the sub-

network is much smaller than the network {n»m). However, the number of possible solutions is 

increasing exponentially^ with the network size, though the dimension of the transitive-closure 

matrix is reduced. It will also be time consuming to use the Brute-force approach to enumerate 

all possible solutions. 

2.3.1 Genetic Algorithm Formulation 

Genetic Algorithm (GA), which is a well-known efficient heuristic search algorithm, which is 

adopted to search the equivalence set from the network. The idea is that we let the fitness 

function as the objective function in Eq. (2.3) and using genetic operators to search equivalence 

sets from the network. Candidate with higher fitness score indicates that the transitive-closure of 

the chromosome has larger number of edges. Thus GA tends to leave more offspring, which is 

with large number of edges, in the next generation, and natural selection increases the average 

density of the chromosomes in the population. At the same time, the mutation and the crossover 

operators in GA will explore the search space looking for alternative solution. 

There is an interesting class of partitioning problems, which require partitioning n object into k 

categories. One of the categories of evolution programs was based on representing all objects as 

2 The possible solutions equals to select m genes from n genes, therefore the solution space equals to „C„. 
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a permutation list; special operators can be applied and a decoder makes the decisions on the 

assignments (Davis 1991). However, in genetic network equivalence set search problem, there 

are thousands objects to be partitioned. This leads to a very long chromosome string and a 

possibly slow convergence, as there are many objects to be partitioned. A straightforward 

approach is to encode the equivalence set as a chromosome, as the size of the equivalence set is 

much smaller. The partition can be represented as m-strings of integer numbers, C/ = (xi, X2, 

Xm) where the j-th. integer Xj e M as a gene in the genetic network. Chromosome C/ is candidate 

equivalence set of the network. Therefore, the size of the chromosome only is the size of the 

equivalence set, which is much smaller than the network. 

2.3.2 Bounded Mutation 

Integer chromosome representation is common used in many evolutionary algorithms. 

However, most of the operators are dedicatedly designed for meeting the constraint of the 

problem or objective formulation. For the equivalence criterion in Eq. (2.2), the most important 

constraint for the candidate solution is that there are no repeating genes in an equivalence sets. 

As there is no existing genetic operator that can provide mutation and crossover operation that 

the chromosome will not violate the constraint. Therefore, we develop the bounded mutation and 

conditioned crossover operator, which provide genetic operation on the chromosomes while the 

offspring chromosome is within the feasible domain. 

A bounded mutation operator is developed that makes the new offspring not violating the 

equivalence set constraint. As in an equivalence set, there is no repeating gene within one 

equivalence set. If we replace the gene randomly in the mutation process, there is a chance for a 

gene to appear within one chromosome more than once. It is an infeasible solution for the fitness 

evaluation function. The idea is to randomly replace a node in the chromosome by a new node, 

which is different from all existing nodes in the chromosome. 

It is defined as follows. For a parent jc, if the element Xk was selected for this mutation, the 

result isx' = (x\, ...,Xk, ..-j^m) where, 

X; =y, whQrGyeV-{x^,X2,...,xJ (2.4) 
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where V is the complete set of nodes in network N and y belongs to the set of nodes, that the 

nodes in the parent chromosome are removed. The bounded mutation generates offspring with no 

repeating genes as the new gene jc�belongs to the set that offspring genes are removed. 

2.3.3 Conditioned Crossover 

The crossover operation has a similar problem that is faced in the mutation, as random genes 

exchanging between two chromosomes will probably result in gene duplication in the offspring. 

For two parents are defined as follows: if xi = {^i, …，Xm) and X2 = [ y i ,少 2， y m ) are 
t > 

crossed after the A:-th position, the resulting offspring are: x； = {xi, Xk,少众+/,...,少m} and 

= [ y i , yi, ym, Xk+i,..., X^}- However, if { xi, X2, Xk } fl (y/H/,...,少m}关0 and [yi,少2,..., 

yk} n Xm}̂  0 , the offspring x/ and X2 will be infeasible solution. Therefore, 

comparison is applied between every element of the two parents. If there is a gene Xi in Xi equals 

to yj in X2, crossover will be prohibited in the i-th position of chromosome xi. Thus, we denote 

the single offspring from the two parent chromosomeXi andxzs i sx = {^1, X2, s!,..., s^-k}, 

such that Si is given as 

^ 似 ， ( 2 5 ) 

The offspring from the two parents generates offspring in a domain of the feasible solution 

that can be evaluated by the equivalence criterion given the parents are feasible set. The 

following example is used to illustrate the idea of conditioned crossover 

Example: Suppose we have two parent chromosomes, x! = {1, 3, 7, 11, 19} and = {2, 14, 

19, 23, 3}. A condition crossover is applied directly on these two chromosomes, and X2. 

Suppose the crossover is at the first position, which means starting from the second genes in x j 

can be exchanged to xj. As the gene 19 and 3 in the 3-rd and 5-th position of x j that are 

appearing in JC2. Then the offspring is 二 {1, 14, 7, 23, 19}, in which no crossover on the 3-rd and 

5-th position. 

2.3.4 Implementation 
A implementation for bounded mutation would be start with preparing a list, in which is 

indexes of all nodes. Then remove the node, which can be found in the chromosome, from the 
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list. Lastly, a node is randomly drawn from the list to replace one of gene in the chromosome. 

However, this approach could be slow and memory consuming, as the length of the list could be 

lengthy once the network is large. An alternative approach is to apply a sorting operation on the 

chromosome as first step. After that a new gene can be generated based on any interval between 

two genes, which the new gene is not repeating with the existing genes. The alternative approach 

does not require prepare a lengthy list. 

The chromosome is sorted as the first step. Then there will be m+1 intervals between the m 

sorted genes], as each gene CR(c, g) in chromosome c is represented by an integer value from 1 

to n. Then two random numbers are generated, that rand_pos is for deciding which interval to 

use and the rand—node is used for generating new integer between the chosen intervals. Lastly, 

one of the nodes from chromosome is chosen randomly to be replaced by this new node. The 

process is repeated for all the chromosomes, which are subjected to mutate. The pseudo-code of 

the bounded mutation is presented in Figure 2.3. 

Bounded Mutation (CR) 
For c � 1 to P 
Sort(CR) 
If (rand > m_rate) 
rand_pos := round(rand*(m+l)) 

if (randj)os� 1) 
rand_node=round(mnd*( CR(c, rand_pos))) 

else if (randj)OS=l) 
rand_node=round(mnd*( n-CR(c, rand_pos+l)) 
else 
rand_node=round(rand'^( CR(c, rand_pos)-CR(c, randjws+l))) 
end 
rand_pos wund(mnd*m) 
CR(c, rand_pos) = rand—node 
end if 
Return CR; 
end 

Figure 2.3 The pseudo-code of bounded mutation. In all pseudo-code, we use rand to represent random generated 

number in (0,1). 

Conditioned crossover is performed with probability c—rate. After a first parent CR(c) has been 

chosen and given rise to an offspring chromosome in the next generation, a decision is made 

whether or not to allow a second parent to recombine with this new offspring individual. With 

3 We represent each gene as a positive integer from 1 to n. Once m genes in the chromosome are sorted, we can have m+1 interval, which is 

the difference between two genes (integers). 
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the probability c—rate for each chromosome, a second chromosome CR(p-c-^\) is selected from 

the parental population. A preprocessing task is performed before the crossover operation is 

applied on these two chromosomes that it is to ensure that the offspring will not violate the 

equivalence set constraint. A temporary array CR，，which records whether the elements in the 

first chromosome has elements appearing in the second chromosome. The array CR’ can be 

accomplished by comparing the two parent chromosomes and if the element in the z-th position 

of the first chromosome appearing in the second chromosome, CR '(i) =\, otherwise, CR，(/)=0, 

Crossover (CR) 
For c = 1 to P 

If (rand > c_rate) 
For i = I to m 

For j = 1 torn ^ 
If(CR(c, i)=CR(p-c+lJ)) Preposessmg task to 

CR'(i) = l I prepare CTT 
Else 

CR'(i) = 0 
endif 

endfor 
new_CR(c) = Condition_Crossover(CR(c), CR(p-c+l), CR’) 

End 
End 
Return new CR; 

End 一 

Condition_Crossover(CR\, CR2, CR’) 
for i = I to rand_pos 

if(CR'=0) 
CRj(i) = CR2(i); 

end if 
endfor 
Return CRj； 

Figure 2.4 The pseudo-code of the conditional crossover 

2.4 Digital Implementation of GA-DP 
The GA-DP approach can be implemented using digital logic, which provides efficient 

hardware logical operation and parallel computation. In this section, we present the hardware 

implementation of the GA-DP algorithm, that (1) system architecture overview, (2) parallel 

computation for transitive-closure and (3) the design of the genetic operators will be discussed 

specifically. 
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2.4.1 System Overview 

Figure 2.5 shows a GA7DP system overview. It consists of 2 major components: (1) the GA 

and (2) the fitness evaluation. There are three GA operators, which are selection, crossover and 

mutation, and they are working independently and sharing with the same memory. Data 

communication relies on the temp_RAM, which stores the chromosomes. Each operator retrieves 

the chromosomes from the temp—RAM before execution, and stores the results back to the 

temp RAM after finishing the work. An asynchronous mechanism is adopted, that there are an 

enable input and a ready output within each functional block. The genetic operators will start to 

run only after the enable signal is 1, and its ready output will be 1, once it has finished the work. 

Theses control signal are centralized and controlled by the System Controller. It ensures the 

functional blocks are executed sequentially. 

_ Boo lean 
她 P 剛 Network 

Matr ix (ROM)  

… A . Fitness Value GAOpjrators J J . Computation 

Select ion — ^ Crossover Mutation 一 卜 LUT BRIN Summat ion _ 

4 ^ ^ + ^ ^ f ^ ^ A f i  

^ 1 t r 
System Controller 

— i Elite RAM — — — — 

Figure 2.5 The architecture of the GA-DP hardware system 

The fitness value computation module is comprised of 3 sub-modules, which are the sub-

matrix construction, transitive-closure computation and the summation operation. The first sub-

module is to reconstruct the sub-matrix from the chromosome, that it requires reading the values 

from Boolean matrix. It is tightly coupled with the ROM, which stores the Boolean matrix R. 

The Boolean Matrix is mapped to a vector with aligned by rows while storing in the ROM. The 
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address for the accessibility value in the Boolean matrix can be easily calculated by the Eq. (2.6), 

where i and j are the row and column of the Boolean matrix respectively. 

,RiiJ)A ) + , (2.6) 
[y + / X w +1 , otherwise 

where n is the network size. 

The sub-matrix is readily used for transitive-closure computation. Though it is possible to use 

the Floyd-Warshall algorithm as implemented in the software, it cannot utilize the parallelism 

capability in hardware. A Boolean Relation Inference Network (BRIN) is realized, that it 

provides a parallel architecture for the required computation. We will discuss the design in the 

next section in details. BRIN inputs the sub-matrix and outputs its transitive-closure. The last 

step is to sum up all values from this output. Then the result, which is the fitness value of the 

chromosome, is stored in the RAM. 

2.4.2 Parallel Computation for Transitive-Closure 

Floyd-Warshall algorithm is adopted in software programming for GA-DP. The 

computation complexity is in 0{r?). A Boolean Relation Inference Network (BRIN) is 

introduced, that in the hardware implementation the transitive-closure computation can be 

efficiently parallelized. The computation complexity is reduced to 0(log2(«-l)). BRIN is able to 

solve different optimization problems, which included critical path, and transitive closure 

problem (Lam and Tong 1996; Ng and Lam 2003). The architecture has been found to show 

promise in obtaining the global optimal solution in logarithm time in the FPGA implementation 

(Lam 1996; Lam and Su 1996). 

Transitive closure is a special case of the general shortest path problem, in which one has to 

find a route between two nodes with minimum arc cost when given a set of nodes and arcs. 

However, in a transitive closure calculation, the arc cost in the network becomes a binary 

representation. For all-pairs transitive closure problem, the transitive-closure has to be derived by 

dynamic programming like Bellmen-Ford and Floyd-Warshall (Cormen, Leiserson et al. 1990). 

The complexity of these algorithms is O(n^), which is computation costly. An «-node network is 

represented in n row square matrix R form with entries for n^ times either 1 or 0. For the 

Bellmen-Ford algorithm, network cost is updates sequentially by the relaxation equation. 
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However this is only for the single-destination problem. When considering the all-pair problem, 

the network update is repeated n times. 
f 
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Figure 2.6 Connectionist network topology diagram of BRIN. The diagram shows three computation units of 

BRIN, which consists of the unit function and the site function. For transitive closure calculation, site function is 

implemented by an AND-gate while the unit function is implemented by an OR-gate. 

A Boolean Relation Inference Network (BRIN) was implemented with a parallelized Bellmen-

Ford algorithm to speedup the calculation from O(n^) to 0(log2(n-l)). A connectionist network, 

which can realize the network updating process, parallelizes the required network relaxation step. 

One way to compute the transitive closure is based on the Bellman-Ford formulation, that the 

transitive-closure can be stated in the semi-ring form 二 ® ® where © is the 

summary operator and % is the extension operator and dy is the cost for the path from i to j. In 

the transitive closure problem, ‘OR, operator substitutes � and ‘AND, substitutes ® . The 

transitive pathway from node x to z (dxz) is the binary arc cost from node x to node y (dxy) and 

from node y to node z (dyz), the ‘AND，operator ensures there is a possible path from x to z 

through 

The general BRIN framework in Figure 2.6 can readily implement the semi-ring structure 

stated. There is a site function and an unit function in a BRIN computational unit. The unit 

function implements the OR-gate while the site function implements the AND-gate. The n-l 

units can be constructed in a parallel way such that the output of a unit is a feedback to the input 

of other units. In the worst case, the computation time for such parallel processing is 0(hg2(n-
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1)). On a higher level, Bellmen-Ford modules can be run in parallel for all-pairs transitive 

closure computation since all BRIN computational units are independent. Therefore even for 

computing all-pairs transitive closure, a complexity of 0(log2(n-l)) is required. 

2.4.3 Genetic Operation Realization 

As there are no repeating elements within one equivalence set, the mutation and crossover 

operator are designed that the offspring generated will not infringe the constraint. The mutation 

operator consists of 3 major components, which are the random number generator (RNG), node 

generator and the mutation position decision unit. The RNG is comprised of an XOR gate and a 

circuit of linear feedback shift registers. Using feedback from the various stages of an k-hit shift 

register, connected to the first stage with an XOR gates, a sequence of 2^-1 patterns that have the 

characteristics of randomly generated numbers (Peterson and Jr. 1972). The pseudorandom 

binary sequence generation gives a simple method of generating random number for the 

mutation operation. This random number is readily mapped to the zero to one interval, that the 

number is used as the random number rand from Figure 2.7. 

Random I , Mutaton Number ~ - M p�诵q^^ Generator 
T """" 

Genes ::: 二 
input in \ "。气 广小一 
paraHel 一 genemtor N Genes 丨叩ut 

—知 ~ o u t p u t  
� z sequential 

Figure 2.7 The data flow of the mutation operator 

The node generator comprises of a sorting network and the new node generation circuit. The 

sorting network sorts the genes in the chromosome in ascending order. As applying parallelism, 

the sorting can be finished in logarithm time (Cormen, Leiserson et al. 1990). Then, the genes are 

inputted into the new node generation circuit, which generate new node as the sequential 

execution in software algorithm. The new node will replace the once of the gene from the parent 

chromosome to produce an offspring with mutated gene. 
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The crossover unit inputs two chromosomes in parallel and output a new offspring. The unit 

has two sub-module, which the first sub-module is to find the repeating elements in the two 

parent chromosomes, while the second sub-module is for realizing the condition crossover. We 

have m comparison units (CM) for testing all combinations of genes between the two parent 

chromosomes. There are m-I comparison modules in each CM, thus the comparison can be done 

in parallel. The output of each CM/ will be either 1, if there exists a gene in the second 

chromosome, which equals to the i gene in the first chromosome, or otherwise 0. This signal will 

inform the conditional crossover unit which gene in CR(c) is not viable for the crossover to the 

CR(p-c+l). 
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C_ �� RNG 

CR(p~c+1) • 
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CM  

- • 

Figure 2.8 Data flow of the Crossover operation 

The uniform crossover unit comprises m new gene generation circuit running in parallel, that 

one of them has been shown in Figure 2.8, The crossover happens following simple rule, that the 

gene i from CR(c) will appear in the offspring only if the rand_pos^ is greater than i and CMi is 1. 

If these conditions are satisfied, the multiplexer will choose the CR(c), otherwise, CR(p-c^\) will 

be chosen. 

4 rand—pos is the position, which begins the crossover. It is generated by round(rancN), where rand is the random number between 0 and 
1 . 一 
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Figure 2.9 The schematic for generating one new_gene in the crossover unit 

For each comparison unit (CM), there are m-\ comparators running in parallel, and followed 

by the OR operators. 

2.5 Discussion 

We investigate the potential of the GA-DP algorithm in searching small equivalence set from a 

large genetic network. Consider a typical network of 30-node with one 5-node equivalence set. 

Let us relate the problem with using GA-DP algorithm for searching the equivalence set. In this 

case, the size of the chromosome equals to five, and hence the genes are labeled from one to 

thirty. Hence, the optimal criterion for this problem becomes twenty. 

As observed from a typical run (Figure 2.10) under 100 GA generations, the GA-DP converges 

to the optimal solution at the 40-th iteration^. In this example, GA-DP is able locate the 

equivalence set from the network, which is much large than the equivalence set. The result is 

encouraging as GA-DP is very effective in searching the equivalence set from a 30-node 

network. 

5 The population size is 50, the mutation rate is 0.05 and the crossover rate is 0.2. 
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Figure 2.10 Software simulation result of the GADP on searching the 5-node equivalence genes from a 30-node 

network. The dotted line is the best fitness value while the solid curve is average fitness value among the population 

in every iteration. 

On another experiment, we investigate the relationship between the number of GA generations 

required to find the equivalence set and the population size of GA. Consider two experimental 

setups with networks in size 30 and 50. We change the population size from 10 to 100. The 

generations, which the GA-DP locates the equivalence set, is measured. We randomly generate 

network of different topology and the equivalence set is placed randomly in the network. For 

each population size, we test on 50 different networks. Figure 2.11 shows the averaged results of 

50 runs. It can be observed that the generation number decreases with the population size for 

both setups. The curve decreases rapidly when the population size is ranged from 10 to 30. After 

that, the generation number decreases slightly. In most of cases, it appears that if the population 

size of GA-DP is greater than 30, the GA-DP is able to locate the solution within 100 generations 

for a network size of 30 and 50. This is attributes to the fact that the large population size can 

largely diversify the search space of equivalence set from a network, and GA-DP can be more 

effective to locate the optimal solution with larger population size. 
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Figure 2.11 The number of generations versus population size on the GA-DP algorithm. Two experimental setups 

were tested, that the network size are 30 and 50 respectively. 

Furthermore, experiments have confirmed that GA-DP scales well with respect to the size of 

the network. Figure 2.12 presents the results of the computation time for GA-DP to find the 

equivalence set from a network of size varied from 30 to 500. The GA-DP algorithm shows little 

increase in time for handling larger network. On the other hand, we found that the computation 

time for original approach^, which evaluates the transitive-closure of the whole network before 

extracting the equivalence set, increases rapidly with the network size. From the Figure 2.12, it is 

interesting to find out that when the network size smaller than 150, TC spends less time than 

GA-DP. Since the fitness evaluation and the genetic operations of GA-DP is approximately a 

constant time, the TC spends less time than this constant when network size is smaller than 150. 

6 We called it the TC approach, which TC stands for transitive-closure 
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Figure 2.12 The comparison on the computation time between the GA-DP and the transitive-closure approach 

from (Maki, Tominaga et al. 2001) for searching the equivalence set from network of different size 

We had successfully implemented the GA-DP system into the one FPGA processor. The 

hardware system is tested on a 30-node genetic network problem. The system found the 

equivalence set using 0.01361 seconds while the 0.26 second is used in the software for the same 

problem. The hardware system offers 20 times acceleration in this example. This is mainly 

attributed to the fine-grained parallelism on the operations in GA-DP. The system consumes 64% 

of the FPGA resources called slices? in the XESS XSV-800 FPGA prototyping board with a 

Virtex-800 devices. 

2.6 Limitation and Future Work 

So far the GA-DP approach has been shown that is able to find the equivalence set of small 

size from a large network. Currently, we only investigate the case of single equivalence set 

existing in the network. In a more practical manner, multiple equivalence sets can be identified, 

which seems to be a more difficult problem than single equivalence set searching. This is 

because the existing design of GA-DP will converge to one equivalence solution only. Also 

'Slice is regarded as a measure of hardware logic consumption in FPGA. 
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multiple equivalence sets may create a more complicated landscape of search space, that GA-DP 

may not always reach the optimal solution, has been considered as future work. 
t 

In addition, the work on digital FPGA implementation indicated that performance of GA-

DP can be improved through parallel digital implementation. In reviewed work concerning 

FPGA for GA implementation, indicated that performance improvement over a software 

implementation of two or three orders of magnitude can be achieved by introducing GA in 

hardware. Though we have realized fine-grained parallelism in the system, our work described 

so far has not achieved this level of improvement. This is probably due to the fact that 

parallelism has not been introduced in the chromosome mutation and fitness evaluation, that 

chromosomes are mutated and evaluated sequentially. The hardware implementation shows that 

64% of slice (i.e. equivalent to the number of logic gates) has been used in a XCV-800 FPGA 

device. There is room for improvement on GA-DP with more parallelism implemented in FPGA. 

2.6 Conclusion 

The search of equivalence sets in large scale genetic network emerges as an important step in 

gene expression data analysis. Our proposed GA-DP algorithm has shown to give an efficient 

solution to the rather computation demanding problem. A bounded mutation and conditional 

crossover operator are introduced to constrain the offspring of GA within the feasible solution 

domain. We found that the GA-DP algorithm can effectively locate the small equivalence set 

from large genetic network in few generations. Also, the GA-DP is more efficient than mere the 

dynamic programming approach, which requires to derived the transitive-closure of the whole 

genetic network, when the network size is large (>150 nodes). We also provide a realization of 

GA-DP algorithm and Boolean Relation Inference Network (BRIN) for the required dynamic 

programming embedded in GA using FPGA platform. Study was shown that performance of 

GA-DP can be improved through parallel digital implementation significantly. 
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Chapter 3 

An FPGA-based Architecture for 

Maximum-Likelihood Phylogeny 

Evaluation 
Study the evolutionary history of organism, namely phylogeny or phylogenetic tree 

reconstruction, is an important but computational intensive task. Due to the exponentially 

increasing search space based on the optimal criterion, maximum-likelihood, the phylogeny 

inference is classified as NP-hard. Heuristic search makes use of the probabilistic evaluation 

function repeatedly to give score for each candidate solution. The evaluation becomes a 

critical but computationally demanding task. We propose a dedicated FPGA-based hardware 

design for the critical computation. Modified floating point arithmetic and parallel recursive 

architecture are proposed for supporting the precision demanding probabilistic computation 

and the basic data structure operation of phylogenetic tree respectively. The bit-error 

computation of the proposed arithmetic system has been studied and the error formula has 

been derived. Significant acceleration for the tree evaluation can be obtained based on the 

proposed hardware architecture. 

Keywords一phylogenetic tree reconstruction, maximum-likelihood, pruning algorithm, 

hardware architecture, Field Programmable Gate Array (FPGA) 

• 
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3.1 Introduction 
t 

Molecular phylogeny studies the evolutionary processes of different organisms using 

molecular data (i.e. DNA and protein), which provides significant information for molecular 

biologists to understand bacteria and virus behaviors (Yang 2001; Rambaut, Posasa et al. 2004). 

Numerous interesting and important examples of evolutionary studying based on DNA analysis 

were presented during the last few decades. Such studies often have significant implications on 

virus identification, drug design and genomic analysis (Kishino, Miyata et al. 1990; Bader, 

Moret et al. 2001; Yang 2001). In (Drosten et al. 2003), a phylogenetic tree was generated from 

DNA sequences of Severe Acute Respiratory Syndrome (SARS) virus and other coronavirus. By 

using phylogeny analysis, the SARS virus was identified as a novel virus that is a close relative 

to some known coronavirus. Besides, Rambaut et. al, showed that phylogeny analysis has its 

profound implication in the pharmaceutical research that to study the evolution of virus can 

predict drug-resistance and immune-escape of mutations (Rambaut, Posasa et al. 2004). Also the 

strong drug adaptation of HIV virus can be explained by its fast mutation rate. In (Worobey, 

Santiago et al. 2004), the origin of HIV is studied and found through meticulous phylogeny 

analysis. To decipher HIV interaction with the immune system and developing effective control 

strategies, close relatives of the virus are studied using the phylogeny (Rambaut, Posasa et al. 

2004). In addition, for the virology and pharmaceutical application of phylogeny, it has been 

shown that evolutionary studies of species can benefit the genomic studied and the regulatory 

genetic network as well (Eisen and Fraser 2003). 

The evolutionary relationships between organisms are often encoded as a bifurcating 

unrooted^ tree, which are made by meaningful arrangement of nodes and branches (See Figure 

3.1). Nodes at the tips of the branches (external node) correspond to a gene or an organism while 

internal nodes usually represent an inferred common ancestor, which gives rise to two 

independent lineages at some point in the past. In Figure 3.1, node A, B, C and D are external 

nodes that represent species of which molecular sequence data is available. In contrast, the 

internal node E and F represent inferred ancestors for which empirical data is not available. A 

phylogenetic tree can be inferred from nucleotide sequences, or DNA (Deoxyribonucleic acid), 

1 In rooted trees a single node is assigned as a common ancestor, while unrooted trees only specify the relationship between nodes and say 
nothing about the direction in which evolution occurred. 
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in which each DNA only exists as one of the four possible bases or so-called "states": guanine 

(G), adenine (A), thymine (7) and cytosine (Q. 

e r � 

Figure 3.1 A 4-taxa' unrooted bifurcating tree 

Although there are a variety of methods for phylogenetic tree reconstruction, Maximum 

Likelihood (ML) becomes one of the most popular approach for phylogeny analysis (Felsenstein 

1981). The ML approach reduces the complexity of biological mutation process to simple 

stochastic models with small number of parameters. The likelihood value under the ML model 

offers an evaluation for the phylogenetic trees, which is a probability of the observed DNA 

sequences conditioned on tree topology T and model parameter M. The likelihood Z is a 

conditional probability P(D\T,M) where D is the observed nucleotide sequences given as an n xl 

matrix with its elements D^^ e {A,T,G,C}. The ML methodology is then used to determine the 

best match for the tree topology T and model parameters M’ such that it can maximize the 

likelihood probability to give the observed nucleotide sequences under the ML criterion. 

However, it is a difficult task to find the optimal solution based on the ML criterion, simply 

because of the exponentially growth of the possible tree topologies with the increasing number of 

taxa^. The possible unrooted, bifurcating «-taxa tree topologies S is 

— ( 2 " (3.1) 

corresponding to nearly 16 billion different trees for 12 taxa and 3x10 "̂̂  trees for 55 taxa. The 

optimal phylogenetic tree search problem is regarded as NP-hard (Lemmon and Milinkovitch 

2 Taxa is a general term referring to any kind of taxonomic unit including DNA sequences and nucleotide site. 
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2002) which implies that no known algorithm can find the optimal solution in polynomial time. 

Heuristics are often used for searching a near optimal tree within a reasonable time, which 

essentially apply hill climbing or genetic algorithm approaches as the search strategies (Strimmer 

and Haeseler 1996; Swofford, Olsen et al. 1996; Lewis 1998; Lemmon and Milinkovitch 2002). 

Applying the heuristics can reduce the search space for a near-optimal solution; the tree 

evaluation is computationally demanding and is being used repeatedly. In general, the 

computational cost of the likelihood, which accounts for the greatest portion of the execution 

time (i.e. 95% in sequential execution) (Stamatakis, Ludwig et al. 2002). 

Overall computational cost for the phylogeny solution consists of two parameters: (1) 

evaluation time per tree topology and (2) number of candidate solutions to evaluate, which can 

be simply modeled as 

Overall time = Evaluation time per tree topology x number of tree topologies (3.2) 

If the tree evaluation process can be speedup, the overall searching time can be reduced. In this 

chapter, we address this issue where a speed-up strategy is proposed by introducing dedicated 

hardware for the computational intensive evaluation function. 

I ^ Sfngie-CPŷ  Singlfe-CPu/ T 

I / 1 
I / I Z � / / f p g a 

‘‘̂ ' ^ ® « ' * .��“� ，《 H H 7 « » ” TTTTTT r 
numltei of taxa (n) number of taxa number of taxit(n) 

Figure 3.2 a.) The topological space of the phylogenetic tree grows exponentially with the problem size, b.) the 

FPGA-based processor for ML evaluation provides hundreds acceleration when comparing to the software 

implementation, c.) The overall time in phylogeny reconstruction can be reduced that in a reasonable time, the 

FPGA solution can handle problem of larger size. 

The idea is illustrated in Figure 3.2. The first diagram is the number of tree topologies against 

the number of taxa. It grows exponentially even using heuristics search strategy, which is the 

same regardless of the implementation platform. The second diagram shows the computation 

time for tree evaluation against the number of taxa. By using dedicated hardware device, the tree 
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evaluation time can be reduced. As a result, the overall computation time can be reduced (in the 

third diagram). Though the computation time is still growing exponentially with dedicated 

hardware, the curve is delayed. It implies that the solution with dedicated hardware would have 

potential to solve problem of larger scale in reasonable time which is not feasible using desktop 

computers. 

However, it is challenging to implement the evaluation function in hardware. Firstly, the 

probabilistic maximum-likelihood evaluation is precision demanding. The fixed-point arithmetic 

architecture in FPGAs would be difficult to support the precision requirement. Secondly, in 

hardware, there is lack of dynamic data structure, such as binary tree and stack, which are trivial 

basics in software implementations. Thus, it is difficult to implement the basic phylogenetic tree 

operations, such as binary tree traversal, which is a critical step in the tree evaluation. Thirdly, 

logarithm and exponential evaluation are required, which are essentially difficult to be 

implemented in hardware with high precision requirement and with limited hardware resources. 

To circumvent the limitations and difficulties, we simplified the phylogeny likelihood 

evaluation function as recursive routine. A pseudo-binary tree data structure is used to represent 

a phylogeny that can be mapped to the memory effectively. Parallelization is introduced in the 

hardware architecture that provides significant speedup when comparing to the sequential 

execution in desktop computers. On the other hand, we introduce a simplified floating point 

number representation scheme, in which a high precision and dedicated for the probabilistic 

computation can be obtained. The dedicated processor may be readily adapted to the heuristics 

search algorithms to improve the computational speed of the tree evaluation, and thus the overall 

phylogenetic tree reconstruction task can be speedup. 

3.2 Maximum-Likelihood Model 

We consider the likelihood value of interest as a probability function which has three inputs: 

an unrooted bifurcating tree J\ a molecular substitution model M, and n aligned DNA sequences 

with I based pairs (i.e. each individual base pair is called a site), given as an « x / matrix D. The 

substitution model has a set of parameters that defines the rate of mutation from one base DNA 

to another. Following (Felsenstein 1981), the probabilistic likelihood is defined as 
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/ 

Ini： = I r , M ) = I n ( 3 . 3 ) 
5= 1 

where D= [Drsjnxi，D^^ ^ (A,T,G,C}，Ds is the site pattern of D at site s (i.e. the s^ column of 

D), and P(D\T,M) is the conditional probability calculated from the specified substitution model. 

M and tree T are yet to be determined. 

Although the likelihood probability P(D\T,M) can be expressed in a general form, it is 

presented here with an example. Consider a given tree T with 4 taxa (see Figure 3.1) with 

reference to the site pattern A； the lengths of the branches of the tree are ft. All nodes in the tree 

are labeled {A, B, C, D, E, F), as there is a total of 2n-2 nodes in an unrooted bifurcating tree. 

The specific states (here the number of possible states for DNA is four) of nodes A, B, C and D 

are simply denoted as xi, X2, xs and X4 as given in A , and the states of nodes E and F are denoted 

as ；cj and respectively. The likelihood probability for site pattern Ds equals to 

PiD,\T.M) = t t �W ) 户 ¥ 2 (⑴尸納(幻户納⑷户义(《） (3.4) 
义5=1义6=1 

where Py is the transition probability which represents the probability of a nucleotide changing 

from state i to j (e.g. if i equals to state A and j equals to state C then P” equals to the probability 

of a nucleotide mutate from state A to C). tt/ is the priori probability for state i. The likelihood 

P(Ds\TM) is the product of five transition probabilities and the prior probability representing 5 

incurred mutations (see Figure 3.1). The expression will have 16 terms, and in general the 

expression for n taxa will have terms, which can be increasing exponentially. Fortunately, 

Eq. (3.4) can be simplified by moving the summation signs rightwards (See Eq. (3.5)) to reduce 

the number of terms. Eq. (3.5) gives an exact evaluation of the tree topology which equals to Eq. 

(3.4). 

I T , M � : f ^ � �I \ �( ^ 2 X 1 尸 納 ⑷ 户 而 ( 幻 尸 納 ⑷ ） (3-5) 
；(5=1 -^6=1 

A "pruning" algorithm described in (Felsenstein 1981) can effectively compute the likelihood 

value based on this idea and it is formally formulated by introducing the idea of partial 

likelihood (Adachi and Hasegawa 1996). The likelihood value can be computed by using a 

recursive routine, which the expression is evaluated by working outwards from the innermost 

summation sign. The detail of the algorithm is described below. 
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3.3 Hardware Mapping for Pruning Algorithm 
3.3.1 Related Works 

t 

Early work of Maximum-likelihood tree evaluation implementation can be traced back to the 

DNAml software, which is bundled in the phylogeny package Phylip (Felsenstein 1989). The 

software implements the "pruning" algorithm proposed by Felsenstein in (Felsenstein 1981). In 

the last decade, many software packages for ML phylogenetic tree reconstruction are released as 

introducing new search strategies or implemented in new programming languages. For examples, 

MORPHY proposed a complicate date structure of phylogeny that is dedicated for an effective 

branch length optimization (Adachi and Hasegawa 1996) and Phylogenetic Analysis Library 

(PAL) is package for phylogeny reconstruction written in Java (Drummond and Strimmer 2001). 

Besides, a commercial version phylogeny package PAUP is very popular among biologist 

(Swofford 2003) and fastDNAml is an improved version of DNAml (Olsen, Matsuda et al. 

1994). 

A few reasons that make the hardware implementation become difficult. Firstly, the 

maximum-likelihood computation involves large amount of floating-point multiplications and 

additions. Floating-point computation in hardware is expensive, in terms of speed and area, to 

many current digital technologies while most of the current custom digital hardware designs are 

in fixed-point due to its simplicity. Large truncation error will be introduced on the ML 

computation that makes the design is difficult to scale-up handle problem of larger dimension. 

For example, in (Ewe, Cheung et al. 2004), a dual fixed-point scheme provides a wider dynamic 

range number representation method was proposed. On the other hand, it is not flexible as 

software for developing hardware with dynamic data structure, of which it is widely available in 

software (Horowitz, Sahni et al. 1996). Effort of engineering reduction should be spent to 

simplify the procedure that the algorithm can be implemented in hardware efficiently. In this 

section, we present the methodologies on hardware design for the ML computation. Details about 

number representation, tree representation and traversal and the hardware-based recursive 

algorithm are presented. 

3.3.2 Number Representation 

Fixed-point architecture commonly used in FPGA digital logic design, provides the 

advantages of economic hardware resource consumption and high speed arithmetic. However, 
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the number range for a fixed-point architecture can represent is rather limited. Particularly, when 

we deal with probability numbers, which would be a small number in many case. Based on the 

idea of floating point, we issue a dynamic range of number representation with based on the 

existing fixed-point arithmetic. As the numbers are always between zero and one that generally a 

probability number F is represented by a pair (M, E) having the value 

F = M-2' (3.6) 

where M is the significant (or mantissa), E is the exponent. In our design, the base is 2 as it is 

convenient in digital logics design. In addition, E is always a non-positive integer and M is 

between 0.5 and 1. This is because F is always between zero and one in our case, and M is 

assumed to be normalized (shifting the leading 1 to the leftmost bit). Then we can use two fixed-

point numbers to represent a simplified floating-point representation in hardware as assigning a 

m-bit string with binary point at zero position to represent M and a p-h\i string to represent E as 

the first sign bit can be ignored as we have assumed the exponent term is always negative. 

It is flexible in reconfigurable computing design that the number of bits assigned to represent a 

number or the arithmetic operations. Suppose, m bits are used to represent the mantissa M and p 

bits used to represent the exponent term E. Dynamic range is defined by the ratio between the 

largest and the smallest absolute number in the data format. The smallest absolute value of the 

representation on Eq. (3.6) is 二—广‘+‘ while the largest absolute value is (1-2"'"), hence the 

dynamic range of this number representation is given as 

Dynamic range = 201og��(22"i( l-2-")) dB (3.7) 

Having two number of bits realization gives the proposed number representation is better range 

of capability than fixed-point as shown in Table 3,1. 

Table 3.1 Dynamic range comparison between Simplified Floating Point (SFPT), Fixed-point and 
Single Precision Floating Point (FPT) 

Number representation SFPT SFPT Fixed-point Floating Point 

Format' 32—16 32-bit 32-bit IEEE 

Dynamic Range 767dB 394kdB 187dB 1529dB 

3 For the format x_y, where x is the number of bits assigning to mantissa and y is the number of bits assigning to the exponent. 
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The proposed number representation can handle a much larger number range when comparing 

to fixed-point number representation. This is importation in the maximum-likelihood 

computation, as there are many multiplication operations on the probability values, which is a 

number less than one (See Eq. (3.4)). Large truncation is expected on the fixed-point number, 

that the system requires large number of bit assigning to the binary representation, which is 

hardware costly. Noted that the simplified floating-point representation with 16 exponent bits has 

a larger number range than the single precision floating point representation. In other words, this 

representation has potential for handling very large scale phylogeny maximum-likelihood 

computation. 

Modification on the fixed-point arithmetic operators can handle the SFPT arithmetic. In 

addition, only additions and multiplications are required in the system for the probability 

calculation. The design of the SFPT arithmetic operators is referring to the appendix. 

3.3.3 Binary Tree Representation 

Binary tree is one of the most fundamental and important data structure in computer science, 

that it also has been investigated intensively in the field of computer science for a very long time 

(Horowitz, Sahni et al. 1996). Binary tree is a finite set of nodes that is either empty or consists 

of a root and two disjoint binary trees called the left subtree and the right subtree. A lot of tree 

operations based on the binary tree are well studied. 

Binary tree is similar to a phylogenetic tree, excepting that the root node in the phylogenetic is 

unknown. In most of the case, the tree is unrooted. To represents a phylogeny using a binary tree, 

we can arbitrary assign an imaginary root to the phylogeny, that root is the parent of two 

neighboring internal node. It can be done by split the tree by removing any one edge between 

two nodes. Then add another node as root, and which is also the parent of the two nodes (See 

Figure 3.3). This can convert a phylogeny to a binary tree. On other hand, the binary tree can be 

easily converted back to the phylogeny by removing the root. 

An unrooted tree can be converted into a pseudo-rooted binary tree with one additional root 

node. An unrooted bifurcating phylogenetic tree has n leaf nodes (or taxa) and n-2 internal nodes. 

There are a total of 2n-2 nodes with 2n-3 branches. The pseudo-rooted binary tree then has a 

total of 2n-l nodes (one root, n terminals, and n-2 non-terminals). FPGA implementation should 

use either a ROM (or RAM) or fast registers. A binary tree node should have five address 

attributes: node index or address (AO, parent address (P), left child address (L), right child 
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address {R). Information of a node can be accessed through the node index, e.g., 

branch_length(AO. A 2«x24-bit RAM/ROM table is used for the «-taxa rooted or unrooted tree, 

each row has 3 column fields each with 8 bits, storing P, L, and R, respectively. Row 0 (or node 

index 0) should not be used for valid node indexing. The unsigned 8-bit field then implies that a 

maximum node index of 2^=196 can be referenced. The depth of the RAM/RAM should be 2n 

for an w-taxa tree. For a general number of taxa, the size of the ROM/RAM is 6n log�^ . 

(7) 
) T v 
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( } / i \ . c 
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Figure 3.3 A 8-node unrooted tree, which is used to illustrate the pseudo-binary tree data structure. The root r is an 

arbitrary root adding between the node n and o. The edge between n and o is replaced by the edge between r and n. 

The edge between r and o is an imaginary branch. 

Node Address P L R 

Null 0 0 0 0 ~ 
a 1 9 0 0 

b 2 9 0 0 

c 3 10 0 0 

d 4 1 1 0 0 

e 5 12 0 0 

f 6 13 0 0 

g 7 14 0 0 

h 8 14 0 0 

I 9 10 1 2 

m 10 11 9 3 

n 11 15 10 4 

o 12 15 5 3 

p 13 12 6 14 

q 14 13 8 7 

r 15 0 11 12 

Figure 3.4 An example of tree represented in a ROM/RAM that the tree is in Figure 3.3 
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3.3.4 Binary Tree Traversal 

The tree traversal is required to determine the correct operation sequence in evaluating tree T. 
I 

Pre-order traversal generates a Polish expression from the tree, while a post-order traversal 

generates a reverse-Polish expression. Pre-order traversal is defined recursively, starting from the 

root r of r w i t h its left subtree T\ and right subtree 72, as follows: 

Pre-order(r) - r, Pre-order(2；), P r e - o r d e i U J (3.8) 

Example: 8-taxa unrooted phylogenetic tree. The given data structure of a RAM/ROM table for 

the example tree is assumed. Pre-order tree traversal will generate the node sequence [15，11, 10, 

9，1,2,3,4, 12,5, 13,6，14，8, 7]. 

(Begin ) 

n ^ ^ f e ^ False  
l e a f ^ 

True 1 
V [ p l | T ‘ ‘~‘ “ 

~ n o d e := Sw.popO 
next—node := current_node->left_child  

I � _ _ _ - I  
S..push{GU:rrenLnode) nexLnode := node->right_child 

I T 
current—node := next_node  

T  

Sr.add(current—node) 

False ^ - - ^ i t e d a i r \ 

nodes 
I True 

C^D 
Figure 3.5 The flowchart for pre-order tree traversal with using stack 
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Recursive algorithm is not straightforward in hardware implementation while it can be 

implemented using software in a straightforward way. The Pseudo code for finding pre-order 

sequence for a binary tree T with root r is presented in a flowchart in Figure 3.5，which can be 

implemented in hardware. The code is developed using operation on two stacks, working stack 

(Sw) and result stack (Sr). The working stack supports the recursion while the results stack stores 

the polish expression. 

3.3.5 Maximum-Likelihood Evaluation Algorithm 

Likelihood probability evaluation takes exponential time in the number of unknown nodes, as 

the number of terms in Eq. (3.4) increases exponentially in the unknown variables. However, 

there exist economics way for computing these probabilities based on variable elimination 

(Homer's rule) that rearrange the individual terms in Eq. (3.5). One of the realization can be 

referring to the "pruning" algorithm proposed by Felsenstein. It is based on a reverse-polish 

expression to evaluate the likelihood of a given tree. In order to evaluate the likelihood value of a 

tree based the Pseudo-Binary tree data structure, the likelihood function can be formulated as a 

recursive function. In line with the works of (Adachi and Hasegawa \996), partial likelihood is 

defined as the probabilistic likelihood of a node conditioned on a state. We can express the 

partial likelihood values for site pattern A as a matrix Q=[Qik\cxd, where c is the number of 

states and d is the nodes index. Following the definition of a binary tree, which is defined 

recursively as Eq. (3.8), we denote Q(尸）as the partial likelihood of a parent node and g尸）and 

� as the partial likelihood of left and right child nodes respectively (See Figure 3.6). 

Figure 3.6 The partial likelihood Q is defined recursively based its parent-children relationships, where the 

superscripts (P) is the parent, (R) is the right child and (L) is the left child. The subscript of Q is the conditional 

state. 6i is the branch length with respect to node i. 
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The partial likelihood can be computed recursively based on the reverse-polish expression (Eq. 

(3.9)-(3.12)). The recursion starts from one of the leaf node, where the partial likelihoods for this 

node are computed by using Eq. (3.12). As this is a leaf node, the partial likelihood simply 

equals to the corresponding transition probability of the D N A state of the node (i.e. Ds of the 

node). Partial likelihoods of any internal nodes are computed based on Eq. (3.11). Note that the 

formulation of Eq. (3.9) is in a similar form of Eq. (3.11), in which defines a binary tree. Based 

on the polish expression given by the Eq. (3.8), the Q⑷ and Q � )h a s been computed based on 

previous visit. As we are using a Pseudo-binary tree and one of the branch is imaginary branch 

that the partial likelihood value in corresponding to this node should be using Eq. (3.11) to 

compute. Finally, when visiting the root node, the overall likelihood probability is evaluated 

based on Eq. (3.9). 

jT,M) = 驗 ) = . Q⑷• G 严 ） （3.9) 
i=l 

g厂)二 Q 严 i f p is the root node (3.10) 

Q ⑵ 尸 . 0 广 ， ifP is the internal node (3.11) 
7=1 

= PJPk), if 户 is the leaf node (3.12) 

A n algorithm is introduced to implement the tree evaluation with input the reverse-polish 

expression, where we introduce four kinds of operations that working on pseudo-binary tree data 

structure. They are given as: 1. Terminal Node Operation (TNO) for Eq. (3.12), 2. Internal Node 

Operation (INO) for Eq. (3.11)，3. Imaginary Branch Node Operation (IMBO) for Eq. (3.10) and 

4. Root Node Operation (RTO) for Eq. (3.9). There are c working stack (Si) are introduced to 

accommodate the recursive computation, where i is the index of the stack. As we are working on 

the D N A , there are 4 stacks are prepared and each stack is for each state. 

The four kinds of operations becomes the basic function on the tree evaluation application. W e 

propose a dedicate architecture that provides the four basic instructions (TNO, INO, I M N O and 

RNO). The processor is designed, so that the computation speed is optimized providing parallel 

execution. Also, block floating point number representation is adopted that a high accuracy can 

be obtained. 



Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8 

1 • Terminal Node Operation (TNO), with node h 
For each state i 

im = i) 
Push (Pii(Gj) into Si 

Else 
Push (Pij(ej) into Si 

end 
End 

2. Internal Node Operation (INO), internal node q with children nodes g and h 
For each state i 

QJeft[i] = Pop S, 
Q_nght[i] = Pop Si 
Qj)roduct[i] 二 Q_left[i] 乂 Q_right[i] 

Q_parent[i]=0 
For each state j 

VM) 
Q_parent[i] Q_product[i] x PuiOj 

Else 
Q_parent[i] += Q_product[i] x Pi/6J 

endif 
endfor 

End 

3. Imaginary Branch Node Operation (IBNO), internal node o with children nodes I a n d p 
For each state i 

QJeftfiJ = Pop Si 
Q_right[i] = Pop Si 
Q_product[i]= QJeftfiJ^ Q—right[i] 
Push (Q_product[iJ) 

End 

4. Root Node Operation (RNO), root node r with children nodes n and o 
Qj)arent[0]=0 
For each state i 

QJeft[i] 二 Pop Si 
Q_right[i] = Pop Si 
Q_product[i]= QJeft[i]^ Q—right[i] 
Q_parent[i] += Q_product[iJ x TT-

End 

Figure 3.7 The pseudo-code of four basic routines that is the realization of Eq. 9-12 of four basic routines from 

Figure 3.7. 
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Function Comp—likelihood (r jjolish, root, imaginary—node, N) 
-root stored the root node address 
-imaginary node is the imaginary branch node address 
-r_polish is the stack storing the reverse polish expression 
-N is the total number of nodes 

begin 
while(r jjolish is not empty) 

n = pop(r_polish) 
\fn>N 

If (n = root) 
RNO 

Else if (n = imaginary—node) 
IBNO — 

Else 
INO 

End 
Else 

TNO 
End 

End 
end 

Figure 3.8 The pseudo-code of the recursive maximum-likelihood evaluation algorithm based on the four basic 

routines from Figure 3.7 

3.4 System Architecture 

The data path diagram for maximum-likelihood tree evaluation is shown in figure 3.9. The 

transition probability unit evaluates the probability from the tree branch length and model 

parameters. The probabilities will be stored in R A M s that is to be retrieved by the state parallel 

computational unit. The tree traversal unit outputs the reverse polish expression of the pseudo 

binary tree. As the probability computation and the tree traversal are independent tasks, they can 

be executed in parallel with independent hardware. The state parallel computation unit 

implements the recursive maximum-likelihood evaluation algorithm with input the reverse polish 

expression and the transition probability and output the likelihood value. As likelihood value of 

sites are assumed independent, we can introduce an array of state-parallel computational units 

and each responsible for a sub-sequence of data. The overall likelihood is just summed over all 

computational units after taking the logarithm ̂  and accumulated. The designs of these 

computational units are presents in the following sections. 

4 Multiplicative normalization approach is adopted on the logarithm implementation [23]. 
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Figure 3.9 The data path diagram of likelihood evaluation for a given tree topology, branch lengths and model 

parameters. The state-parallel computational unit (SPCU) realize the recursive ML evaluation algorithm. Based on 

the site independent assumption, each SPCU evaluates a partial sequence and the overall likelihood can be obtained 

by adding up all the results from each SPCU. 

3.4.1 Transition Probability Unit 

The transition probability unit computes the state transition probability based on the input 

branch length and the model parameters. For simple models, such as Juke-Canter, the 

computation is realized using hardware. For instance, if we assumed that the sequences are 

evolving according to the Jukes Cantor model (Jukes and Cantor 1969). Following (Strimmer 

and Haeseler 2003), the probability can be computed based on two functions. W e apply the 

addictive normalization unit to approximate the exponentiation value in the function (Ercegovac 

and Lang 2004.). 

For more complicated modal, like H K Y (Hasegawa-Kishino-Yano modal), spectral 

factorization is required (Hasegawa, Kishino et al. 1985). It is complicated and can be expensive 

in hardware implementation in terms of hardware resources. A hardware/software partitioning 

approach can be adopted to deal with the computation. The transition probability evaluation is 

then completed by the software (i.e. microprocessor). After obtaining the transition probability, 

F P G A read back the data from a commonly shared R A M . As this the transition probability 

values are the same for all nucleotide sites, this computation step only required in the 

initialization step. The probability values can be stored in the internal R A M of FPGA for the 

remaining computation. 
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3.4.2 State-Parallel Computation Unit 

Consider the evaluation of a fixed-topology phylogeny as a recursive evaluation of the partial 

likelihood matrix Q, where the columns are nodes and rows are states. There exists data 

dependency on the columns, as the evaluation following a reverse-polish expression. But, entries 

with respect to each state are independent. In other words, the evaluation of each row of the 

matrix Q is independent. Therefore, parallelization can be applied on computing the partial 

likelihood matrix Q. Figure 3.10 shows the sequential and parallel ways to obtain the partial 

likelihood. The sequential and parallel implementations are shown on the left and right 

respectively. The calculation of partial likelihood in Figure 3.10 refers to the tree in Figure 3.1, 

which consists of 4 taxa. The nodes in the figure represent the process of computing the 

corresponding entry in matrix Q. Each of these nodes is evaluated by Eq. ((3.9)-(3.12)). 

Tree traversal order (k) Tree traversal order (k) ^ 

A B C D E F A B O D E F 

A , - Q Q o o Q O 

i r c f c / � : / ( # 0 j p O Q O Q O O 
叠 i �c m q c m o i t O G O O G e 
� ( 3 0 ( ^ 6 0 0 ^ ^ - 0 0 0 0 0 0 

Figure 3.10 Comparison of the execution order for the partial likelihood matrix entries between software and 

hardware implementation. The left diagram is the software implementation that one entry of the partial likelihood 

matrix is computed each time. The right diagram is the hardware implementation that parallelism offers four entries 

are evaluating each time. 

As shown in Figure 3.10, four independent processors can execute in synchronized to compute 

each entry of the partial likelihood. The realization is shown in Figure 3.11 that the 

computational unit is called State-Parallel Computational Unit. As its name implied, the partial 

likelihood of different states are evaluated in parallel. The basic building blocks of the unit are 

multiply-and-accumulation block (MAC), stack, multiplexer (MUX), registers (R) and the 

probability matching logics (P). The figure shows four identical state processors working in 

parallel and only the detail of the first one is shown for the sake of space saving. The 
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computational unit realizes the recursive maximum-likelihood computation algorithm with four 

different instructions are used repeatedly. There are n External Node Operation (ENO), n-3 

Internal Node Operations (INO), one Imaginary Node Operation (IMNO) and one Root Node 

Operation (RTO). 

Each processor is responsible for the partial likelihood of one state. The E N O requires only 

simple matching of the states that is realized by the probability matching logic. The comparator 

controls the selection of probability value based on whether the incoming D N A state is 

equivalence to the state index (S). Each processor has different S for distinguish the state they 

corresponding for. The Internal Node Operation (INO) is more time consuming as it requires 

addition and multiplications. The M A C unit is specially designed that not only outputs the 

multiply-and-accumulation results, but also output the product of two inputs. This design is 

dedicated for the evaluating of internal node partial likelihood and the imaginary branch node as 

which requires the only the product. The stack is for the recursive computation that four stacks 

are implemented for parallel data retrieval. The M U X block is the multiplexer, which is for the 

purpose of control. There are three registers in each processor to store the intermediate values. 

‘,,””, ,„„„ 'tmrf ”””.TOW yrrwrrr. -rnnir mm. .,””,’ rmrr. .,””” ”，,•”、. ^ww ”””''- _""»_.’ •+•'..”” ">""•• ，. •"••">'• 4 
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Figure 3.11 FPGA architecture of the State-Parallel Computational Unit (SPCU), which implements the recursive 

maximum-likelihood evaluation algorithm. There are four identical processors in the unit and each processor is 

responsible for computing the partial likelihood value conditioned on one state. 



Chapter 3. An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation 3 8 

The likelihood probabilities evaluation requires —3).4”—2 multiplications (See Eq. (3.4)). 

By applying the recursive routine with "pruning" algorithm, the number of multiplications are 

greatly reduced. There are 8 multiplications for evaluating each Qi and there are 4 states, thus 32 

multiplications in total for one internal node. Therefore, the total number of multiplications 

becomes to 32(«-3)+12. For the above evaluation of number of multiplications, single processor 

architecture (sequential realization) is assumed. Suppose an architecture, which is presented in 

Figure 3.11, with 4 parallel multipliers, the overall time is reduced and only 8(«-3)+3 is required. 

Table 3.2 shows that the number of multiplications required for case of 8 and 16 multipliers 

parallel implementation also. 

Table 3.2 Timing analysis based on the number of multiplications 
Number of Total time of multiplication Total time of Number of RAMs 

parallel for direct implementation of multiplications with required in the 

multipliers Eq. (3.4) implementation of architecture 

Pruning algorithm 

(2"-3).4"-2 32(«-3)+12 1 

4 (2n-3)4”_i 8(n-3)+3 4 

8 (2«-3)-4" 4(n-3)+2 8 

16 - 2{n-2>)+2 16 

Parallelism on sites 

The likelihood values for each site are adding up to be the overall likelihood. Parallelization 

can be applied on computing the overall likelihood value. Since the sites are assumed to be 

independent^ to each other in the nucleotide sequences, the overall likelihood value is obtained 

by simply adding up the likelihood value of each site (See Eq. (3.3)). In sequential 

implementation, only one site can be evaluated each time. In the parallel implementation, more 

than one site can be computed at the same time. 

More than one state-parallel computational unit, which can be used to calculate the likelihood 

values of the sequences with any length (See Figure 3.9). The parallelism idea is to slice the 

input data into many equal length “partial sequence". Each "partial sequence" is computed by 

one computational unit, where they are running in parallel. The speed-up factor (i.e. the ratio of 

5 We are woking on homogeneous model that sites are assumed to be independent to each other. 
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sequential computation time to parallel computation time) equals to the number of computation 

units implemented. Certainly, the speed-up factor is limited by the availability of F P G A 

resources, where the resources consumption is also directly proportional the speed-up factor. 

Pipelining 

The partial likelihood evaluation and the logarithm computation (See. Figure 3.9) can be 

regarded as two independent tasks. There are registers for storing the results from the partial 

likelihood evaluation (first module) that will be used by the logarithm taking (second module). 

The two modules can be working independently. Therefore, pipelined can be applied on 

computing the likelihood and log-likelihood value of every site to achieve higher throughput. 

3.4.3 Error Computation 

The precision of the likelihood value computation obtained by the recursive maximum-

likelihood algorithm can be calculated taking into account the two main error sources: 1.) the 

error in the transition probability representation that is due to the finite word length 

representation in digital logics and 2.) Truncation error accumulates at the multiplication of 

internal node operation and addition operations of those products with the limited bit length m of 

mantissa. The first source of error, which can be considered as a number representation problem, 

can be overcome by simply assigning more bits in mantissa. The maximum error on the 

transition probability number representation can be estimated as , where m is the mantissa 

bit length and p is the exponent. 

The second source of error correlates to the problem size that is more important to understand. 

The analysis is discussed as follows. Suppose real number A and B on the interval of zero and 

one are represented as A '•2''̂  and B '-2'^ where r and s are non-negative integer and A ‘ and B ‘ are 

real number between 0.5 and one. Suppose there are m bits on representing the mantissa that A ‘ 

and B ‘ can be given as ̂：】以,2—' and XI二i 〜2 " where a, and bi is either zero or one. As A，and 

B ’ are number between zero and one, thus aj and bj must be one. The product of A and B can be 

given as: 
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where the ||二 is the number can be represented by the mantissa and s公 is the truncation error 

due to the limited bit range. Suppose all the truncated bits are one, the maximum error for s汤 is 

given as 

/=i 

Since there are 2n-3> multiplications for each internal node, the overall error attributes to the 

mantissa during multiplication can be estimated as 

f 2 . - 5 i \ 
error�=1- X F l ^ 

V 7=1 J 

where P is general term referring to the transition probability values. 

Besides the multiplications, additions operation on these products are considered. For each 

addition operation of A and B, that is represented as A -2'^ and B -2'^ the error can be estimated as 

follows with assuming 缔|: 

= 义 … “ + c � + s③.(1 + )) 
trun 

Suppose s = t, so that the worst case of the error on the addition operation of two terms can be 

known as + . There are 4n-S additional operations, the overall error can be known as 
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^likelihood = — 9)�+ - 8)6•� 

The number of significant decimal digits for the likelihood computation in this system can be 

estimates using the results in Eq. (3.13) as follows: 

significant digits — log〗（-9)2"" + {4n — 8).(m + — 1).)|/3 (3.14) 

Suppose we assign 32 bits for the mantissa representation, where m=32, and there are 8 taxa, 

where n = S. Then we have the error bound equals 1.7858e-7 and the significant number of valid 

digits is estimated as 7.47 ~ 7 digits are valid. For using 32-bit mantissa assignment, we can still 

have valid significant digits larger than 6 for 128 taxa. 

Note that only error of computing likelihood for one site pattern is estimated. The probability 

likelihood is taking the logarithm and accumulated with number of sites. Suppose there is 

number loss of precision on logarithm and we assume that the precision error accumulates over 

site likelihood accumulation, the over error can be the accumulated with the number of sites, in 

which only four decimal significant digit can be found for one thousand sites. The precision is 

greatly reduced in our number system. In order to reduce the precision loss in this step, we 

suggest adopting the fix-point number system with a very long word length, such as 48-bit or 64-

bit, at this step. Once the site likelihood taking the logarithm, the number is naturally converted 

the result into a fixed-point number representation. The number can be simply represented I 

fixed-point without extra effort. In contrast, extra logics are required to convert the number into 

floating point representation. Also, only addition operations are applied on this fixed-point 

number, the precision loss can be reduced to 2—" simply increasing the word length to q, where q 

is number much larger than m, says 64. 

3.5 Discussion 

3.5.1 Hardware Resource Consumption 

There are three different kinds of hardware resources, which are 1.) Logic slices, 2.) Internal 

Block R A M ( B R A M ) and 3.) Embedded multipliers, available within current FPGA^ technology. 

6 We refer current FPGA as Xilinx Virtex-II FPGA 
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These are called on-chip hardware resources that are particularly more efficient in data 

communication and operation when comparing with the off-chip hardware. As different F P G A 

technology offers different combination of number of embedded multipliers, B R A M and slices. 

To our design, the overall number of memory consumption is correlated to the problem size (i.e. 

number of taxa), as the maximum depth of the working stack is n-\. Also, the D N A sequences 

are stored in internal R A M . The number of R A M can be estimated as equals to 0.125^+19 that is 

linearly proportional to the problem size. (See Table 3.3, the number R A M required is linearly 

proportional to the number of taxa) Only 4 multipliers are required, as there are 4 M A C units in 

one computational unit that is independent to the problem size. (See Table 4, the number of 

multipliers are always constant) The adder, multiplexer, comparators, registers and controls are 

consuming logics in the FPGA. The logic consumption can be regarded as constant in our 

hardware model, as increasing the problem size will introduce little extra logic to the recursive 

algorithm. (See Table 3. The logic increase 0.35 percent in average when the number of taxa is 

double) 

Table 3.3 Hardware resource consumption with increasing number of taxa 
Number of RAM Logic Multiplier 

taxa 

8 20 45T2 ^ 

\6 21 4535 20 

32 ^ 4542 20 

M 27 4 5 ^ 20 

128 JS 4576 ^ 

3.5.2 Evaluation Delay 
The F P G A design computational time can be estimated based on the product of total number 

of clock cycles and the minimum clocking period. The total number of clock cycles depends on 

the design that more parallelism applied fewer clock cycles required. In our proposed design, the 

total estimated computational time is the sum of the transition probability computation (2n-2), 

recursive M L evaluation (33«-27). The recursive M L evaluation is repeated /+1 times for the I 

nucleotide sites and the extra cycle is for completion the logarithm as which is computed in 

pipeline. On the other hand, the D N A sequences can be equally partitioned into K subsequences 

and distributed to the K independent SPCUs to provide speed-up of K times. The FPGA-based 
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system evaluation M L evaluation time is given as: 

Evaluation Time (FPGA) = [107«-101+/(33^-27) ] x 1/frequency x MK (3.15) 

Comparison of computational time between the software and F P G A implementation is 

presented in Figure 3.12. The time is measured by varying the number of taxa on a fixed length 

(/=500) sequence. Hence, we can find out the relationships between the computation time and the 

problem size {n). The X-axis is the dimension of the number of taxa while the Y-axis is the time 

measured in seconds. The time scale on the left is for the FPGA-based implementation while the 

time scale on the right is for the software implementation. The line is the result from the software 

while the bars are the F P G A results. There are two different cases for F P G A are presented which 

are differs from the number of computation units used. F P G A with single computation unit 

offers around 20 times speed-up when compared to the software computation. For higher degree 

of parallelism, five computation units are implemented in the F P G A design and 180 times 

acceleration can be achieved. In average, 21.9 and 175.6 speed-up can be found for using one 

and eight SPCUs for evaluating the M L phylogeny respectively. 

0 . 0 1 8 - - - 0 . 4 

nniR ^ FPGA with 1 SPCU 

0,016 -- / - 0.35 
$0,014-- • FPGA with 8 SPCU / 03 | 
2 0.012 - 念 softw沉e W • I 
u. • - 0.25 o 
r 0.01 -— z 省 • Q 2 忽 
:0.008 -- /flfZ • • 2 

I 0.006 - I I 

0.002 - 1 B ™ , B - n B - l — 0.05 

0 M U ^ I M w i I m n I _•::“,I I • 」 I •丨 I 0 
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number of taxa 

Figure 3.12 Comparison of the computation time between software and FPGA implementation. The FPGA 

implementation result is referring to the left time scale while the software results are referring to the right time scale. 

Two cases, within one FPGA processor one and eight SPCU are implemented, are shown for the FPGA 

implementation. 
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The FPGA-based system provide significant speed-up on the maximum-likelihood phylogeny 

evaluation. It can be regarded as a coprocessor in accelerate the phylogenetic tree evaluation 

while the software (microprocessor) is searching the tree topology with heuristics. However, 

there is communication cost between the software and hardware, which might decrease the 

speed-up ratio that the hardware provided. The latency in communication is technology 

dependent. In (Mak and Lam 2003), we have shown that using H W / S W (Software/Hardware) 

codesign for G A M L implementation can provide significant speed up when compared with 

software-only implementation. The H W / S W approach is benefited from high performance 

hardware and the flexibility of software. In our preliminary design, the G A M L is divided into 

two parts: the genetic algorithm (excluding the fitness evaluation) and the M L tree topology 

evaluation. Since the tree evaluation process is repeated extensively, which has been speed-up by 

using FPGA, the overall G A M L runtime is reduced tremendously. It is also shown that our 

H W / S W system acquires a high potential for scaling up the problem domain for real applications. 

In (Mak and Lam 2004), the H W / S W co-design system been extended to a more powerful 

embedded computing platform. In this platform, a microprocessor is immersed into F P G A fabric 

for realizing an effective environment for H W / S W co-design implementation. Significant 

improvements in data transmission between hardware and software and higher clock frequency 

of F P G A have been realized when compared to the interface in (Mak and Lam 2003). 

3.6 Conclusion 
This was the first attempt to investigate the problem of dedicated hardware realization for 

maximum-likelihood D N A phylogenetic tree evaluation. Hardware architecture for the 

evaluation algorithm has been proposed. FPGAs realization can provide significant acceleration, 

from 2Ox to 18Ox times, when comparing to software implementation. The hardware acceleration 

for the maximum-likelihood computation is attributed to the fine-grained parallelism based on 

the D N A state and nucleotide site independency, and the parallel recursive scheme proposed in 

this chapter. W e also found that the logic utilization increases only 0.35 percent in average when 

the number of taxa is double. The number of multipliers used is always a constant. It implies that 

the design can be applicable to handle problem of larger scale. However, the internal memory 

requirement is linearly proportional to the problem scale. Therefore, FPGAs with larger internal 

memory is needed for handling large scale phylogeny analysis. In addition, we developed a 
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simplified floating-point number representation scheme, which is well adaptable for the precision 

demanding probabilistic computation. W e also derived a formula on the error computation 

dedicating for the maximum-likelihood evaluation. The relationship between the number of 

significant decimal digits and the bit length assignment has been shown. 
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Chapter 4 

Field Programmable Gate Array 

Implementation of Neuronal Ion 

Channel Dynamics 

Neuron-machine interfaces such as dynamic clamp and brain-implantable neuro-prosthetic 

devices require real-time simulations of neuronal ion channel dynamics. Field programmable 

gate array (FPGA) has emerged as a high-speed digital platform for application-specific 

computation devices. Here, we present an F P G A design of a neuromorphic Hebbian synapse 

which mimics the N M D A and non-NMDA ion channel dynamics observed experimentally in 

hippocampal neurons. The proposed design can be readily extended to high-speed 

implementations of dynamic clamp and neuro-prosthetics as replacements for damaged neurons 

in the brain. 

Keywords - Ion channel dynamics; dynamic clamp; brain-machine interface; brain-implantable 

neuro-prosthesis; neuromorphic synapse; Field Programmable Gate Array 

• 
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4.1. Introduction 
r 

Real-time simulation of neuronal ion channel dynamics is an important step in the 

implementation of neuron-machine interaction, which is fundamental to several emerging 

neuromorphic and biomimetic applications. For example, in electrophysiological studies of 

neuronal membrane properties using the dynamic clamp technique (Sharp 1993; Butera 2004), a 

digital computer is used to generate virtual ion channel conductances which continuously interact 

with a biological neuron in real time. Such software-based experimental applications are highly 

computation-intensive and often require judicious choice of operating system (Sharp 1993) and 

numerical procedures (Butera 2004) to improve the computational speed and flexibility. A 

hardware-based, application-specific implementation of the dynamic clamp technique would 

circumvent the limitations of general-purpose computers. 

Another example of real-time neuronal ion channel dynamics computation is found in neuro-

prosthetic devices using brain-machine interface (BMI). For example, a robotic arm controlled 

by central brain activity has been shown to be capable of generating complex motions (Taylor 

2002), and such capability may find important applications in patients with Parkinson's disease, 

Essential Tremor, and dystonia (Isaacs 2000). Future applications of such neuro-prosthetic 

devices might incorporate brain-implantable biomimetic electronics as chronic replacements for 

damaged neurons in central regions of the brain (Berger 2001). One such technology is 

neuromorphic analog VLSI circuits (Mead 1990). Towards this end, we have previously 

proposed a neuromorphic Hebbian synapse design using analog C M O S circuits operating in 

subthreshold regime (Rachmuth and Poon 2003; Rachmuth 2004). However, the relatively long 

design and fabrication cycles for analog C M O S circuits can be a bottleneck for the development 

of such devices. 

In recent years, Field Programmable Gate Array (FPGAs) technology has emerged as a high-

speed digital computation platform. The flexibility of the FPGA's programmable logic combined 

with its high-speed operation potentially allows it to control neuro-prosthetic devices and 

dynamic clamp systems in real time. Additionally, FPGAs can be used to accelerate prototyping 

of analog hardware models of brain processes by quickly building a simulation platform to study 

the functional behavior of the proposed model in a much shorter design cycle. 
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In this chapter, we show that F P G A is an effective prototyping or permanent platform for 

hardware modeling and simulation of neuronal ion channel dynamics. Specifically, FPGAs offer 

an advantage of high-speed signal processing which could be orders of magnitude faster than 

software-based approaches to interfacing biological neuronal signals. 

4.2 Background 

4.2.1 Analog VLSI Model for a Hebbian Synapse 
Previously, we described a biologically isomorphic (or 'neuromorphic' (Mead 1990)) 

implementation of various biophysical models of synaptic adaptation, using M O S transistor 

circuits designed in the analog (subthreshold) regime (Rachmuth and Poon 2003; Rachmuth 

2004). The system design is based on a biophysical model of Hebbian synapse in area CAl area 

of the hippocampus (Kitajima and H a m 1990; Zador, Koch et al. 1990). 

The model features two types of ionotropic glutamate receptors: N-methyl-D-aspartate 

( N M D A ) and non-NMDA ( A M P A and kainate) receptors (See Figure 4.1). The current flow 

through an ion channel can be thought of as an ohmic relationship with a time varying 

conductance level, which is modeled as an alpha function. N o n - N M D A channels, which carry 

the majority of the excitatory synaptic current, are modeled as: 

Inon一腿DA (0 = gsyn W(厂.(0 " Kyn ) (4」） 

gsyrM = const,te-山一 (4.2) 

where gsyn is the ligand-dependent conductance of the channel, Fm is the membrane potential, 

and £'syn is the reversal potential of the synapse. 
广 
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Figure 4.1 Biological synapse with glutamate activating AMPA and NMDA channels, and generating an EPSP. 
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N M D A channels are the major source of Ca+2 influx into the postsynaptic cell. They have the 

interesting property that their gating is jointly controlled by neurotransmitter binding and by a 

voltage-dependent blockage of the channel by Mg+2 ions. This bi-variate gating function is 

modeled by the following equation: 

mN画二 (E-—V歲 二]二-：二 (4.3) 

where gn is the maximal channel conductance, n and T2 are the channel's activation and 

deactivation time constants, [Mg] is the extracellular magnesium concentration, rj and y are 

constants, Esyn is the membrane reversal potential, and Vm is the synaptic membrane potential. 

Because of their unique dependence on both presynaptic and postsynaptic activation, N M D A 

channels are generally thought to be a biophysical implementation of the Hebbian adaptation rule 

(Hebb 1949). 

4.2.2 A Unifying Model of Bi-directional Synaptic Plasticity 
Hippocampal long-term potentiation (LTP) and depression (LTD) can be induced 

experimentally by varying: (1) the membrane potential of the postsynaptic neuron during 

presynaptic stimulation at a constant frequency (Crair and Malenka 1995); (2) the rate of 

presynaptic stimulation (Bliss and Lomo 1973; Dudek and Bear 1992; Mulkey and Malenka 

1992); and (3) the relative timing of presynaptic action potentials and postsynaptic 

backpropagating action potentials while holding stimulation rate constant (Bi and Poo 2001). 

Recently, a model proposed by Shouval et. al. (Shouval, Bear et al. 2002) has attempted to unite 

the various induction protocols of synaptic plasticity into a single Hebbian mechanism that is 

controlled mainly by intracellular calcium dynamics. This biophysical learning rule is 

represented by the following equation: 

^ = n{[Ca]){a{[Ca])-W) (4.4) 

where W represents the synaptic strength, 77 is a calcium-dependent learning rate, and [Ca+2: 

denotes the calcium level in the postsynaptic neuron. The function Q, which represents the 

Bienenstock, Cooper, Munroe (BCM) sliding threshold adaptation model (Bienenstock, Cooper 

et al. 1982), defines the sign and magnitude of synaptic plasticity. 
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4.2.3 Non-NMDA Receptor Channel Regulation 
Biologically, synaptic strength is often measured as the amplitude of excitatory postsynaptic 

I 

current (EPSC) that is elicited by a presynaptic spike. Synaptic current is mediated 

predominantly by multiple non-NMDA receptor channels acting in parallel, each opening and 

closing randomly in an all-or-none fashion. The total synaptic current is determined by the 

average number of channels that are active at any instant. Hence, synaptic weight changes can 

be thought of as an average increase or decrease in the number of non-NMDA receptor channels 

activated for a given presynaptic stimulus. 

3. FPGAs Implementation 

4.3.1. FPGAs Design Flow 
Our logic-level design makes extensive use of Xilinx's System Generator (SG) that works 

under MATLAB's Simulink environment (J. Hwang 2001). Simulink provides a schematic 

design environment of logic gate blocks with which to implement the F P G A model. SG then 

automatically converts the simulink code from the schematic design to a bit stream file to 

configure the F P G A hardware. 

F P G A as a standalone simulation device is properly interfaced with different kind software, 

such as Matlab and Lab View. Analog signal can be converted to digital by using an external 

Analog-to-Digital conversion (ADC) chipset before inputting to FPGA. 

4.3.2 Digital Model of NMDA and AMPA Receptors 
The N M D A and non-NMDA ion channels dynamics can be modeled by using F P G A that 

makes use of digital logic blocks to evaluate the characteristic equations of receptors, and a 

differences equation for the membrane voltage dynamics. The dynamic membrane potential can 

described as a differences equation as follows 

V 画 = V 讓 ( t ) - f ^ - ( y 圆 ( 0 — ) + 〒⑴(5) (4.5) 
^MEM ^MEM 



Chapter 4, FPGAs Implementation of Neuronal Ion Channel Dynamics 66 

where the CMEM is the membrane capacitance, gieak is the leak conductance of the membrane 

patch, and IEXE is the excitatory current sources, which are the / n m d a and / n o n - N M D A described in 

Eq. (4.1) and Eq. (4.3). 

In the biological system, the post-synaptic activities are initiated by a presynaptic pulse. 

However, in the functional description of the N M D A and non-NMDA ion channel dynamics, the 

input is implicit. The function takes two inputs, the membrane voltage V^ and time t. In our 

design, time is emulated by using a counter, which is reset to zero at each presynaptic pulse, and 

then outputs integers from zero to a large integer as a function of internal clock frequency. The 

other input of the receptors function is the membrane voltage V^. It is initially set to the resting 

membrane potential, F r e s t -

Following (Rachmuth 2004)，an input pulse triggers N M D A and non-NMDA currents. The 

output currents are integrated on C m e m , which depolarizes membrane potential. The resulting V^ 

value will be used as an input for evaluating the N M D A and non-NMDA channel currents in the 

next time step. 

In our proposed design, we are using a register to store the membrane voltage and the value in 

the register is updated with a feedback loop from the output of the N M D A and non-NMDA 

functional block. Also the leak conductance of the membrane can be regulated by the differences 

between the membrane potential and the rest potential. 

Figure 4.2 shows the schematic of an F P G A design of a synaptic compartment containing 

N M D A and non-NMDA receptors. The implementation also has a control block to enable the 

counter, and a register R to store Fm. R is initially set to F r e s t , and is then updated accordingly 

throughout the iteration loping. The N M D A and non-NMDA blocks implement Eq. ((4.1)-(4.3)) 

in parallel and generate output currents with respect to the input time and membrane voltage. The 

accumulator converts the charge into a voltage, acting as an R C circuit modeling the effects of 

Cmem and gieak-
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Figure 4.2 Schematic design of the NMDA and non-NMDA synapse using FPGA. 

The implementation of the N M D A and non-NMDA channel function using digital logic is 

nontrivial because of the presence of exponential functions and divisions in the equations. W e 

studies several possible methods to implement these function evaluations. W e chose to 

implement the functions using direct table look-up for simplicity. The basic N M D A and 

n o n N M D A values are pre-computed and stored in the memory. The two inputs, time and V^, 

are mapped to the R A M address, and looked-up as needed. 

Future implementations that need to minimize R A M consumption require alternative 

implementations. For example, the Coordinate Rotation Digital Computer (CORDIC) algorithm 

provides an effective solution for basic function evaluations, such as logarithms and division. It 

evaluates the basic function with using one adder, shifters, and a small look-up-table (Andraka 

1998). For greater precision, the gradient of the function can be stored for interpolation. 

4.3.3. Synapse modification 
Following (Kitajima and Hara 1990), we considered synaptic weight changes as an average 

increase or decrease in the number of active non-NMDA receptor channels. The digital 

implementation for this model is shown is Figure 4.3. The digital representation uses n ON/OFF 

gated channels. A n-h\X synaptic weight vector W controlled their gating, with “1” representing 

the O N state and "0" representing the OFF state. Thus, the sum of all n channels bits was the 

amplifying factor of the non-NMDA current. 
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The synaptic weight is controlled by the calcium current which generated by the N M D A block. 

Icl is accumulated as V^^ which is then used to drive synaptic plasticity learning rule described 

by Eq. (4.4). The updated weight is multiplied with a unitary non-NMDA current to magnify the 

non-NMDA current according to the learning rule. 

NMDA  
,ca+2 

\ t 

accumulation 丄  
^ ^ ^ Non-NMDA 

I — ^ y 
” Magnifying non-

： ^ ^ NMDA current 
Learning rule ~ • ； ( S ~ • O K ) based on the 

. ^ - r ^ synaptic weight 

/non-NMDA 

Figure 4.3 Schematic design of the NMDA and non-NMDA synapse using FPGA. 

4.4 Results 
4.4.1. Simulation Results 
Figure 4.4 shows the comparison between biological recordings and F P G A simulation of 

individual N M D A channels, and miniature EPSCs, which sums A M P A and N M D A currents. 

The behavior of N M D A and A M P A current from the F P G A simulation are shown to be 

qualitatively similar to the experimental data in (Renger, Egles et al. 2001) in a.). Ion channels 

and the resulting membrane potential dynamics modeling using F P G A leads to a real time 

response to the input spikes and the membrane voltage modification. 

The F P G A is driven by a global clock signal. Therefore, the computational speed of the model 

is dependent on the frequency of the digital clock f and the complexity of the model equations. 

The amount of time it takes to evaluate our model equations can be expressed as p'\/f, where p 

the number of clock cycles needed to compute an answer. In our design, the maximum 
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frequency is 57MHz. The model requires 4950 clocking cycles to generating an output, which 

means that each presynaptic pulse generates postsynaptic signals in 87 |is. 
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Figure 4.4 a.) Biological Recordings of individual NMDA channels, and miniature EPSCs which sum AMPA and 
NMDA currents, adapted from (Renger, Egles et al. 2001). b.) Simulation of FPGA circuit for the AMPA and 

NMDA current (upper) and the EPSC (below), which are qualitatively similar to the experimental data in (Renger, 
Egles et al. 2001) in a.). 

In addition, we implemented the design using a Xilinx-Virtex-XC2V2000 F P G A prototyping 

board with A D C / D A C on the board. Figure 4.5 shows the screen capture from the output of an 

oscilloscope. The spikes is generating from the F P G A in real-time with the square train input. 

W e found that the spikes are qualitatively similar to the biological measure. 
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Figure 4.5 Image capture from the output of an oscilloscope. The square wave in the bottom is emulating the input 

signal before entering the ion channel, while the spike is emulating the action potential of from the ion channel (left) 
EPSC (NMDA+AMPA) spike, (right) membrane potential 
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Figure 4.5 shows the comparison between software and F P G A simulations of ion channel 

dynamics. Software computation of the model equations took 4.7 milliseconds, making F P G A 

faster by two orders of magnitude. This speed enhancement suggests that an F P G A system is 

capable of interacting with millisecond neuronal signals in real time. Additionally, the F P G A 

system can be configured as a stand-alone computation system without consuming any 

computational resources of the host computer. 

^WM 
SOFTWARE FPGA 

Figure 4.6 Comparison between software and FPGA for the post-synaptic ion channel simulation 
4.5 Discussion 

Digitally, a number is represented as bit string with fixed length and binary position. This is 

called fixed point representation. Some operations may cause overflow, a situation where the bit 

stream is longer than the allocated fixed length. This situation causes bit truncation leading to 

bounded numerical errors. In F P G A design, flexible bit length assignment allows us to overcome 

this problem and capture the output signals with any desired resolution. 

The synaptic weight vector W in our proposed model is used to control the non-NMDA current 

magnitude. It is represented by digital bits. The F P G A allows a simple W-vector implementation 

because the fixed-point representation is matched with the k non-NMDA channels. Moreover, 

the synaptic weight can be stored indefinitely using either registers or using on-chip non-volatile 

Block R A M , leading to long-term memory. 
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Table 4.1 Comparison of resource utilization on different FPGAs 

F P G A Logics Memory I/O Embedded Number of 
models (slice) (RAMs) multipliers ion channels 

XC2V1000 1848 (5120) 36 (40) 180 (432) 20 (40) 4 

XC2V2000 2772(10752) “54 (56) 190 (624) 30 (56) 6 

XC2V4000 ~ 1 1 7 ( 1 2 0 ) 1 9 5 (912) 65 (120) 13 
(23040) 

XC2V6000 ~ T ^ 144(144)240(1104)“80 (144) 16 
(33792) 

Hardware resource (i.e. Multipliers, logic gates and R A M ) in a single F P G A chip is limited, 

leading to tradeoffs between the resources, computational speed and accuracy. In our design, a 

single post-synaptic neuron consumes 26% of logic resources and 96% of the internal R A M、 B y 

judiciously assigning resources, and implementing more efficient algorithms, a larger model may 

be designed. 

4.6 Conclusion 

An FPGA-based architecture for the numerical computation of N M D A and non-NMDA 

receptors activities and resultant synaptic plasticity has been presented. The F P G A realization 

computes with comparable accuracy to software implementations while operating at a much 

higher speeds. Additionally, the programmability of the F P G A system allows it to prototype 

analog circuit designs with a much shorter design cycle. Therefore, F P G A technology can be 

used to fill the gaps between software and hardware simulations. This technology can potentially 

be used as a tool suitable for dynamic clamp experiments, or to control neuro-prosthetic devices 

for chronic replacement of damaged neurons in central regions of the brain. 

1 The data is reference to a Xilinx Virtex-II FPGA with 24K logic resources and IMbits memory 
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( 

Chapter 5 

Continuous-Time and Discrete-Time 

Inference Networks for Distributed 

Dynamic Programming 

Dynamic programming is a step of crucial importance in real-time decision making 

reinforcement learning problem where problem solution time can be an implementation 

bottleneck. W e consider a distributed computational framework for continuous-time inference 

network for solving dynamic programming problems. Interconnected computational units, 

forming a network, participate simultaneously in the computation while maintaining 

coordination by information exchange via continuous communication link. The implementation 

of the value-iteration algorithm of dynamic programming for the expected average cost criterion 

is presented. W e show that the inference network converges to the optimal Bellman optimality 

condition, for which the convergence rate can be made arbitrarily fast and is practically 

independent of the discounting factor and the number of states. Numerical simulation of using 

such continuous-time inference network for random-walk and stochastic shortest path problems 

are also described and compared. W e also derived a discrete-time version of the inference 

network that the network can be well mapped to FPGAs for solving dynamic programming. 
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Nomenclatures and definitions 

M D P s Markov decision process 

s state at M D P s 

a action 

aik taking action at current state i and state k is the desirable state at the next 

transition 

next state, after taking action a 

I a set of state 

A a set of actions 

R(s, a) reward function, given set of states and action 

T{s, a, s，) the probability of making a transition from state s to state s ‘ using action a 

y discount rate for the long-term reward 

V(s) expected reward at state s 

71 policy, the rule to infer action from the value V(s) 

BRIN Binary relation inference network 

[/(s) computational unit corresponding to the state s at the original problem 

g(i,f) output of the unit function at each computational unit, which is the binary relation 

for objects i and j. 

g{s) output of the computation unit for value at state s with an implicit reference state 

G(.) The unit function, which is the "min" operator，designated for the M D P s problem 

• 
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5.1 Introduction 
Dynamic programming is an important step in time-critical decision making, such as real-time 

path planning and route finding. Autonomous robots and vehicles are assigned to perform 

missions in highly hazardous and extreme environments. In most of the time, good path planning 

and quick reaction to avoid dangerous spots can increase the chance to reach the target or 

accomplish a mission, as in the cases of gathering scientific information from a distant planet or 

searching and rescuing life from a mass casualty incident site (Rover Team 1997; Volpe, Estlin 

et al. 2000; Casper and Murphy 2003). On the other hand, exploration of the surface of a distant 

planet by networks of autonomous cooperating vehicles would be an effective alternative 

approach. Collective information from a distributed environment would increase the content of 

the information and increase the chance of survival of the robots. Given this option, distributed 

approaches for rapid learning in an uncertain environment and for making real-time decision is in 

great demand (Williams, Kim et al. 2001). 

Among the examples of real-time path planning and decision making is the development of 

intelligent Unmanned Aerial Vehicles (UAVs) for future combat to reduce human causalities. 

The major challenge for intelligent U A V s development is path planning in uncertain and even 

adversarial environments, for which the objective is to complete the given mission, to arrive at 

the given target within a pre-specified time, while maximizing the safety of the UAVs. The 

problem can be modeled as a typical stochastic learning and sequential decision problem (Jun 

and D'Andrea 2003). However, in practice, the U A V s path planning is difficult because of two 

main reasons. Firstly, in the adversarial environment, information is always incomplete and is 

highly uncertain. It is difficult to acquire knowledge to decide on a reasonably well trajectory of 

the flight. Secondly, the computational load grows quickly as the number of radar sites increases. 

Delay in the decision making, due to heavy computational burden, would be disastrous. The 

distributed and parallel computational learning architecture could circumvent the limitation of 

the sequential computation machineries (Tin 2004). 

The optimal decision making problem is formulated based on a well defined Markov decision 

process, in which the set of states, actions, rewards and probability distributions are given. It is 

aimed to find a value function, which can correctly give the expected reward at each state. In 

theory, the optimality condition is defined by the Bellman equation. It has been shown that the 

guarantee of optimality and efficiency for complex decision making problems using dynamic 
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programming. However, in many practical scenarios, the dynamic programming (also known as 

Value Iteration), which works by producing successive approximations of the optimal solution, 

suffers from the high computational load. Not only is it computationally intensive within each 

iteration, unfortunately, the number of iterations required can also grow exponentially (Condon 

1992). Modification of algorithm looking for computational trade-off between cost per iteration 

and the number of iterations was proposed, along with boundary improvement for some 

problems. 

Besides, by applying linear programming and conic optimization techniques, the problem can 

be solved by general-purpose linear programming packages (D'Epenoux 1963; Hoffman and 

Karp 1966; Derman 1970). An advantage of this approach is that commercial-quality linear 

programming packages are available. From a theoretic perspective, linear programming is the 

only known algorithm that can solve the optimal decision problem in polynomial time, although 

the theoretically efficient algorithms have not been shown to be efficient in practice. 

Despite decades of study, stochastic optimization problems remain far more computationally 

challenging than their deterministic counterparts. For the problem with high dimension and large 

number of states, it takes a relatively long time to obtain the optimal solution. The high 

computational load delays the decision making process to the extent that time-critical decision 

application becomes infeasible. A distributed and parallel approach can potentially circumvent 

the computational obstacle as an efficient alternative. 

The structure of dynamic programming naturally lends itself well to distributed computation. 

The former involves calculations and so can be carried out in parallel to a great extent. In 

(Bertsekas 1982), Bertsekas proposed a model of asynchronous distributed computation for 

dynamic programming. The proposed model considered a broad range of problems and includes 

shortest path problems, finite and infinite horizon stochastic optimal control problems. Later, 

Jalali and Ferguson proposed a distributed computational model for Value Iteration algorithm 

(Jalali and Ferguson 1992). In line with Bertseka's work, they derived a distributed version of 

the algorithm, which compute the optimal expected average cost based on the Bellman 

optimality criterion. Theoretical analysis showed that the distributed approaches gain speed-up 

by taking advantage of the intrinsic independencies from the Bellman optimally criterion. 

Among the previous analytical works of distributed dynamic programming, which was assumed 

to have unpredictable delay in communication between different processors, practical 
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applications are sparse. While the work in [11] is dedicated and limited to the network of general 

purpose computers and assumes loose and delayed communication, computationally inefficiency 

might be expected in real time application. 

Alternatively, heuristic approaches concentrate computational effort on the areas of the state-

space that is most likely to be visited. This approach was proposed as a way of approximately 

solving the Bellman optimality equation. In (Barto, Bradtke et al. 1995), Real-Time Dynamic 

Programming (RTDP) was proposed. It is specific to problems in which the agent is trying to 

achieve a particular goal state and the reward everywhere else is zero. Further, implementation of 

R T D P using embedded dedicated processor provides further speed-up for the optimization of the 

dynamic programming. However, the optimality of the solution is not always guaranteed and the 

approach is limited to a fine scope of problems. In general, the approaches mentioned above all 

fall into the category of digital computation, in which the intrinsic difficulties and limitations are 

largely inherent in the digital and sequential computation paradigm. 

When comparing to the digital computation paradigm, natural biological and physical systems 

provide an effective and collective environment to solve difficult computational problem in high 

speed. The computational powers routinely used by biological nervous system to solve 

perceptual problems must be truly immense, given the massive amount of sensory data 

continuously being processed, the inherent difficulty of the recognition tasks to be solved and the 

high performance speed, for which answers must be found (Mead 1989). Parallel processing in 

the nervous systems provides computational speed and power, which allows mammalian visual 

system perform elementary feature recognition massively in parallel (Ballard, Hinton et al. 1983). 

The major feature of neural organization can act synergistically with parallel feedback and 

connectivity to greatly enhance computational power. This feature enables the biological system 

to operate in a collective analog mode (Hopfield 1982; Hop field 1984), with each neuron 

summing the inputs of hundreds or thousands of others in order to determine its graded output. 

The parallel analog computation in a network of neurons is thus a natural way to organize a 

nervous system to solve optimization problems in continuous-time processing. However, the 

basic formulation of Bellman optimally criterion is in discrete-time. There is still an opening 

between the basic Bellman equation formulation and the continuous-time collective network 

solution which requires extra effort and formulation. In contrast, continuous-time network has 

shown to be an effective solution for deterministic shortest path problem (Lam 1991). 
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Optimization of shortest distance between cities are considered and mapped to a continuous-time 

dynamic network. It can be readily realized using analog design and drastic acceleration was 

found when compared to the conventional sequential dynamic programming approach (Lam and 

Tong 1996). 

In this chapter, we present a distributed continuous-time inference network for dynamic 

programming problems. W e show that the inference network converges to the optimal Bellman 

optimality condition, for which the convergence rate can be made arbitrarily fast and is 

practically independent of the discounting factor and the number of states. Further, an analog 

VLSI C M O S circuit has been developed to realize the inference network and to demonstrate its 

optimization for the dynamic programming problem. The following two sections discuss the 

theoretical foundation of such network and the numerical simulation results are discussed in 

section 4. When comparing to the counterpart of the discrete-time asynchronous dynamic 

programming (Bertsekas 1982; Jalali and Ferguson 1992), the continuous-time inference 

network provides a general concurrent mechanism to find the optimal solution based on the 

Bellman equation. 

5.2 Background 

Reinforcement learning (RL) is learning from interaction with an environment, from the 

consequences of action, rather than from explicit teaching. The learning algorithm is inspired by 

observing animal learning and being formulated within the mathematical framework of Markov 

decision process. R L algorithms are methods for solving this kind of problem, that is, problems 

involving sequences of decisions in which each decision affects what opportunities are available 

later, in which the effects need not be deterministic, and in which there are long-term goals. R L 

methods are intended to address the kind of learning and decision making problems that people 

and animals face in their normal, everyday lives. 

In the standard reinforcement learning model, the learning system (or agent) is connected to its 

environment via perception and action, as depicted in the Figure 5.1. The agent interacts with the 

environment by receiving cost and state after perform an action. The uncertainty, which might be 

noise, can be modeled as perturbation on the return of state form the environment. In other words, 

when taking an action a at state s, the descendent state measure from the environment would be 
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state s’ with probability T{s, a, s'). Thus the stochastic model is powerful, as captures the 

variability of the uncertainty of the system dynamic using probability models, which is called 

Markov decision process i (MDP). 
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Figure 5.1 Learning system interacting with its environment. Action is applied to the environment while the 

corresponding cost and new state are feedback to the learning system afterwards. However, at the path from the 

environment to the learning system, noise is introduced resulting state perturbation. State can be regarded as 

measurement from the learning system. Thus, the measure can be sometime deviated. 

5.2.1 Markov decision process (MDPs) 
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Figure 5.2 In reinforcement learning problem, the agent will get the reward after taking the action. Assume that the 

agent want to maximize the reward, the agent will have no idea in the beginning which decision would return a 

1 Markov decision process has more rigid definite in the perspective of optimal control. An MDP consists of states, actions, reward function 
and state transition function, which is a probability distribution over the state. It also follows the Markov criterion, in which the state 
transitions are independent of any previous environment states or agent actions. 
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larger reward. Fortunately, the agent can still make decision based on the expected reward of the node, which is an 

attribute or record attaching at the node. Agent will prefer the action with high expected reward. In the figure, 

following the pathway A, the agent will get a smaller reward while following the pathway B will get a larger reward. 

The expected reward of the node A and B can be computed by backward updating. The expected reward of previous 

state (A) is updated when the agent reach state (C) and obtain the reward. Thus, to update the expected reward in 

previous state requires information about reward in the next state. Always, the reward is uncertain, and modeled as 

Markov decision process. 

The agent can making decision based on the expected reward (or value). Expected reward is 

the expectation of reward the agent will receive in a long run. Usually, the agent will be more 

willing to choose a state with high reward expectation. In Figure 5.2, an agent has to make 

decision to choose between pathway A and B. As the expected reward at node B is larger than 

node A, the agent will prefer to choose the node B. The next question would be how to evaluate 

the expected reward? It can be evaluated by backward updating based on the expected reward in 

the successor state. For example, in Figure 5.2, the reward at state D is larger than at state C. By 

using backward updating, the expected reward at state B is, therefore, larger than at state A. 

While more solid definition of backward updating is defined by Bellman, with his famous 

Bellman optimality equation (or simply Bellman equation). With iteratively applying the 

Bellman equation on all nodes repeatedly, the expected reward can be obtained. 

The reinforcement learning problem with computation expected reward are well modeled as 

Markov decision process (MDPs). An M D P consists of 

• a set of state Z, 

• a set of action A, 

• a reward function R{s, d), and 

• a state transition function T , where a member of T is a probability distribution over 

the set S (i.e. it maps state and action pair to probabilities). W e write T{s, a, s,) for the 

probability of making a transition from state s to state s ‘ using action a. 

The state transition function probabilistically specifies the next state of the environment as a 

function of its current state and the agent's action. The reward function specifies expected 

instantaneous reward as a function of the current state and action. There are many good 

references to M D P models (Bellman 1957; Bertsekas 1987). 

5.2.2 Learning in the MDPs 
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In the M D P environment, the agent's goal is to maximize the reward it received in a long run. 

In previous chapter, we have mentioned that the uncertain environment is unknown. 

Reinforcement learning is primarily concerned with how to obtain the optimal policy when such 

a model is not known in advance. Therefore, interaction between the agent and the environment 

is necessity to obtain the stochastic distribution of the environment n(S) and to find an optimal 

policy. In other words, reinforcement learning consists of two tasks, which are 1.) to explore and 

leam a probabilistic model and 2.) to use the model to derive an optimal policy. This kind of 

reinforcement learning approach is called the model-based method (Kealbling, Littman et al. 

1996; Sutton and Barto 1998). 

Learning a probabilistic model from an unknown uncertain environment can be 

straightforward by exploring the environment and keeping statistics about the results of each 

action. While given the statistical model of an environment, derivation of an optimal policy is a 

computational intensive task and requires parallel processing to speed up. In the coming section, 

we will focus on the optimization of policy based on the probabilistic model (Kealbling, Littman 

et al. 1996). 

5.2.3 Bellman optimally criterion 

The objective of an agent is to maximize the received reward in a long run. Alternatively, it 

can be thought as to find a rule for the agent to take action that the long term reward can be 

maximized. The sequence of rewards receives after time step t is denoted r什 i,厂什 2,厂/+3, ... while 

the total expected return at time t\sRt = n+i + n+i + 厂什3 + ... + "r，where T is a final time step. 

In some aspect, the reward in the future is not as important as the immediate reward. This is the 

discounting of future reward, that the total expected return at time t can be written as 
00 

Rt = ,(+1 + "/+2 + + ... = E (5.1) 

k=Q 
Where / is a parameter, 0<y<\, called the discount rate. 

The received reward in a long run is considered as the expected return for the agent staying at 

the M D P s infinitely long. At each state, which associates with an expected reward (or value); the 

value is the expected infinite discounted sum of reward that the agent will gain if it starts in the 
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state and executes the optimal policy. Using ；r as a complete decision policy, the expected 

reward (value) at state s equals to the sum of the actual received reward and the best expected 

reward in the subsequent state. 

expected reward at state s - reward + min(discount x expected reward at state s) (5.2) 
n 

The equation 1 1 outlines the basic idea of the Bellman optimality equation, which defines the 

relationships of the expected reward between different states. Suppose the expected reward at 

state s is denoted by V{s) and the actual received reward after taking action a from state s is 

denoted as R(s, a). The Bellman equation for optimal value function F(-) is unique and can be 

defined as the solution to the recursive equation 

/ \ 

V\s) = mm R{s,a) + YTT{s,a,s')V\s') , V^ g S (5.3) 

“I t^s J 

which assert that the value of a state s is the expected instantaneous reward plus the expected 

discounted value of the next state, using the best available action. Given the optimal value 

function, we can specify the optimal policy as 
f \ 

；r*0) = argmin + (5.4) 
a V 5'6S J 

The formulation of optimal policy depends on the optimal expected V* reward in every states. 

After obtain the optimal expected reward, computing the optimal policy is straightforward, by 

applying equation 1.4 on all states. However, it is not trivial to evaluate the optimal expected 

reward. The equation 1.3 only specifies the interrelationships of the optimal reward between 

states. But equation 1.3 indeed is not an algorithm to optimize the value. 

5.2.4 Value iteration 
To find the optimal expected reward in an M D P s is a well-studied problem. Among the huge 

literatures on the discussion of the optimization algorithm, value iteration is simple and effective 

and can be shown to converge to the optimal V* values (Bellman, 1957, Bersekas 1987). The 

value iteration is simply applying the Bellman equation (equation 1.3) for all possible state and 
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actions over and over again, until the value is converged. The algorithm can be expressed as 

three levels of iterative loops. 

t 

Algorithm 5.1 Value Iteration 

Initialize V(s) arbitrarily 
loop until policy good enough 

loop for 5 e S 

loop for a e A 

“）= R(s, a) + � s )厂* ’） 

end loop 

V(s) = min^ Q(s,a) 
end loop 

end loop 

It is not obvious when to stop the value iteration algorithm. One intuitive approach is to stop 

when the maximum difference between successive value function is less than a small number. 

This could be an effective criterion to stop. 

It can be noted that the value iteration algorithm consists of three iteration loops. For the 

innermost loops, the evaluation of the summation exhausting all possible states, thus, the 

computational complexity, per iteration, is quadratic in the number of states and linear in the 

number of actions. In addition, the number of the iterations is uncertain, and could be increasing 

exponentially with the number of states. The algorithm is computationally intensive and we are 

looking for distributed approaches to speed up the computation. 

5.3 A Computational Framework for Continuous-Time 

Inference Network 

Although the Bellman optimization algorithms were originally developed for sequential 

computation, most of the research efforts in their parallel implementation focus on the distributed 

discrete-time asynchronous design, based on the Bellman optimality criterion (Bertsekas 1982; 

Jalali and Ferguson 1992). In such a case, significant computational burden at processors and 

communication delays were expected to be encountered. Slow convergence rate might be 
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expected in large network. Connectionist approach with interconnected simple computational 

units provides distributive computational power. This kind of computational paradigm provides 

collective computational power could significant be better performance than sequential execution 

or computation. 

For example, in the biological nervous system, signal propagation with high speed 

performance even the network is huge and complex, that the electrical and chemical signal 

transmitted in massively parallel and under the continuous-time physical dynamic. The 

continuous-time systems with collective analog computational circuits dynamically provide 

speed, needed for real-time processing. Pioneers, such as Hopfield and Tank, by mapping 

difficult combinatorial optimization problem, traveling salesman problem (TSP), to continuous-

time analog circuit demonstrated collective computational abilities of power and speed, which 

digital computer would fail to provide (Hopfield and Tank 1985). 

In the continuous-time network, the optimization problem was formulated as a set of 

differential equations, which is essentially being well mapped to the circuit differential equation 

and the circuit differential equation is essentially a program by which an answer to a question 

can be found. The converged results of the circuit following the differential dynamics would 

eventually become the solution of the optimization problem. The M D P s Bellman optimization 

can also be solved using the dynamic network approach to gain speed through the collective 

power of a network of computational units. 

5.3.1 Binary relation inference network 
Mapping Bellman recursive dynamic programming to a continuous-time computation 

paradigm can be realized and boosted with the introduction of a connectionist network 

architecture, called Binary relation inference network (BRIN). The network has a parallel 

architecture, and can be used to derive unknown binary relations through the simultaneous 

propagation of successive inferences. Originally, it provides an efficient platform for checking 

data inconsistancy due to results from different inference paths (Lam 1996). In (Lam and Tong 

1996), with close resemblance to the deterministic type dynamic programming formulation on 

closed semiring, Lam and Tong introduced BRIN to solve a set of graph optimization problems 

with an asynchronous and continuous-time computational framework. In contrast to its close 

counterpart, discrete-time BRIN, in which some significant limitations about the network 
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instability and oscillation under specific circumstances, and the slow convergence rate 

commonly observed in large network were found (Lam 1996). This new class of continuous-time 

inference network is inherently stable in all cases and it has been shown to be robust and with 

arbitrarily fast convergence rate (Lam 1991; Lam 1996). In addition, the continuous-time 

network is readily leads to real-time application using analog VLSI circuit (Ng 1996). 

A binary relation inference network is formed by the interconnection of self contained 

computational units. Figure 5.3 shows the structure of a unit and the connections in a general 

inference network. Each unit is to represent a binary relation {ij) between two objects i and j. In 

each unit, there are N sites to carry out the inference operations as defined in the site function 

S(-). The value of the corresponding relation between i and j is then determined by resolving the 

conflict among all of the site outputs. In essence, if Sk{i, j) represents the site output at the k-ih 

site and g{ij) stands for the unit output of unit (/,/), then 

S,{iJ) = gihk)og(k,j) (5.5) 

g(hJ) = [jS,(i,j) (5.6) 
\/k 

where。is the inference operator for the site function (which is usually the same at all of the 

sites) and U is the conflict-resolution operator for the unit function. Also the computational unit 

U(iJ) denotes the unit which resolves the binary relation (i,j). 
unit output function 

, — — - — — / n 

3 C \ ： C 
�： ( i . k ) J • 广 \ (i.k) 

O 麵 《 
3 C ^ �: ( i j ) C 
、•： (kj) J / •‘ [ i ( k j ) , 

site 
1 < i, J,k<N;k^ i, j 

Figure 5.3 Unit interconnection in a general binary relation inference network 
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5.3.2 Binary relation inference network for MDPs 

Markov decision process (MDPs) optimization based on the Bellman criterion is 

particularly well suited to be solved on the binary relation inference network. The optimal value 

for state s, V(s) is the expected discounted sum of reward that the agent will gain if it starts in 

that state. Considered that a typical M D P to be a single-destination stochastic shortest path 

problem. Each state represents a city and there are m cities, where the m-th city is referred to the 

destination. The optimal value of each city, v\s), is referring to the expected shortest distance 

from the city 5 to the destination city. 

The M D P s shortest path problem can be mapped to the inference network. For the original 

problem graph, each node or state refers to a city. But in the inference network, each 

computational unit U(i, j) represents the binary relation, thus the shortest distance between city i 

and city j. Thus, when the network has converged, the solution of the problem would be found at 

the output of each computational unit. For the stochastic shortest path problem, g(i,f), the output 

of each computational unit, take the semantic meaning of the expected shortest distance between 

cities i and j. Since, the destination city is fixed, as we consider a multiple-source and single 

destination case, city j always refers to the destination city. Thus, g(i, j) can be simply denoted 

by g(z). Also the computational unit is simply denoted by U(i). In general, if there are m states in 

the original graph, then the BRIN network (based on the Bellman-Ford single destination (or 

source) formulation) will have m-1 value function units U{i) with reference to a designated 

reference state, the destination, which is "implicit" in the U{i) notation. 

Consider a specific unit U(J), the output of U{i) is denoted by g(z), where each unit only has 

one and only one output function. Each unit has k sites, and each site has site function 

fp{i), p -1,..., A:. The site function fp{i) computes the expectation of reward based on the value of 

at unit U(p). Thus, for mapping the Bellman equation to the inference network, the site function, 

which defines the computational expectation of rewards for taking the action a can be stated as 

f,(i) = R{i,a) + r-E[g(p)l Va e A, (5.7) 

where E[.] is the expectation. Further, given the probability distribution, the site function fa(i) for 

each state i can be stated as 
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fad) 二 R{i,a) + yiT{i,a,i，)g(i，), \fa e A^ (5.8) 

i'eS 

where R(i, a) is the reward received when taking action a at state i, and T(i, a, /，) is the 

probability of arrived at state z' when taking action a at state i. 

According to the Bellman optimality criterion, for the optimal decision would be the one with 

the least cost. Therefore, the unit function is defined as 

gi}) = G{f,{iJ)J,{iJ\,..J,{iJ)} (5.9) 

= mm{f^(i\a = \,...,k] (5.10) 

= m 〜 “ 綱 (5.11) 

Considers a typical 6-state M D P example, where 6-th state F is considered as the destination 

or terminal. The state graph topology is shown in figure 5.4. Each node represents one state and 

the arc is the possible path between two nodes. If there is no arc in between two node, it means 

that the cost between these two nodes is infinite. It is aiming to determine the value of each node, 

which is the expected shortest path cost to the destination city. 

B D 

^ ^ (destination) 

C E 
a.) A typical 6-state MDPs problem, where state F is the regarded as destination and state 

A is regarded as start. 

_ D f ^ ) 

‘ ） ( i L R(E, F) 

b.) Inference network for the state graph in a.), where U{i) refers to the value function unit i 
and g{i) refers to the output of the unit function at U{i). g{i) takes semantic meaning of the 

minimum expected cost between states / and the destination. 

Figure 5.4 a.) Original problem state graph b.) inference network for solving graph in a.) 
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The corresponding inference network has only five computational units. A close resemblance 

can be found between the inference network and the original state graph. Computational unit U{i) 

represents the expected shortest distance from city i to the destination. Therefore, the unit for city 

F, t/(F), which is always zero, can be omitted. W e have assumed that the distance between two 

cities are infinite if there is no directed path between them. Then each unit is not connected to all 

other units, but only connects to its neighborhood units, which is the decedent state from the 

original graph. For the units, ？7(D) and t/(E), which the site function simply equals to the 

received reward to city F, 

5.3.3 Continuous-time inference network for MDPs 

Assume that the min operator requires an infinitesimal time (St) for evaluation, then it seems 

to be straightforward to use 

= (5.12) 

Let's make a further assumption that each individual unit behaves dynamically as a first-order 

system, described by the differential equation 

^ = -^.gt (0 + 义丨{miiv { f p (0}} (5.13) 

=-又�g, (i) + minV“ R(i, / ’) + [ T(i, a, i ’)，） （5.14) 
I "eS 一 

where A. is the open-loop system pole for unit (/) which controls the rate of how gt(i) may 

change. If A. = 0 then dg^^^ jjdt = 0 and gt(i) is a constant the unit is said to be fully 

constrained and has a fixed memory. Whereas for a memoryless unit with A. =oo, it has infinite 

power to change because | dĝ ^̂  jjdt | can be made arbitrarily large. 

A computational framework for solving the optimal policy problem can be formulated as 

follows: 

1. Construct a m-unit continuous-time inference network, where the dynamic behavior of 

each individual unit is governed by a parameterized differential equation of the form of 

equation (1.11). 
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2. The network has a complex but regular interconnection structure following the 

topological structure of the given by the problem or graph. Each unit U{i) sends its output 

to a set of neighborhood units, which is the decedent state in the original problem graph, 

can reach the unit state i by taking proper action. Each unit received at the same time the 

outputs from the set of neighborhood units，which can be reached from state i by taking 

proper action. 

3. Initialize the network units with randomized the output value of each unit go(i). 

4. The network will converge to a global optima arbitrarily fast, at a rate dependent on all 

distinct A. parameters. The converged output g^ (/) from each individual unit (/) is the 

incurred minimum expected reward according to the definition based on the Bellmen 

optimality criterion. 

5. Using a tag processor to keep track of the site functions at each individual unit (/), such 

that TuJJ) = argmin•“{/“（/)}, where 7i(i) is the optimal action at state i, can be obtained. 

5.4 Convergence Consideration 

There are two important considerations in using the inference network for dynamic programming. 

Firstly, will the network always converge to the desired solution? Secondly, what are the 

parameters or conditions that affect the convergence rate of the network? The answer to the first 

question is an affirmative ‘yes，，because it follows directly from the principle of Bellman 

optimality equation that all constituent optimal expected value of all states are optimal. The local 

minimization based on the Bellman equation performed at each distinct unit, in fact, is driving 

the network to a global optimal state, which is the desired solution. To measure the ‘distance’ of 

the network from this global minimum, we can define the following computational energy E(t), 

where For the continues time dynamic equation, which can be stated as 

「 r 2 

^ = : i U W — m m i?(/,0 + 2]r(/,a"、(0 , V/ (5.15) 
. VaeA 

‘I L 'eS J 

To determine the convergence rate of the network, we need to derive an explicit expression for 

dE(t)ldt. Using Eq. ((5.13)-(5.14)) and noting that 
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dE{t)^dE{t) dg,{i) (5 16) 
dt dg^ii) dt 

W e have 

^ = Z -2A te,�—I耶，+ X T(i, a, i •)g(/ ’) > 
dt i v-z I ki J 

• g,⑴-mm R(i, O + X Tii, a, i ')g(/ ’） > 

dgX^) I V 叫 it? J, 
r f -N 

• < gt (s) - min R(i,+ X m, a, i ,)g(/ ’) （5.17) 

I 叫 � JJ 

In order to resolve Eq. (5.16), a necessary condition is required. In this case, we simply assume 

i丰iThe meaning of this assumption is that, if the current node is i, the next node should not be i 

itself. Then the above expression equals to one. 

Thus, we hava 

dE(t) — dE(t) dg�(i) 
dt dgt (i) dt 

^ Z —2义,te ⑴—niin{C(5,") + r I； PsA^) • ')} }2 
s ys'eS 

<0 

The non-negative parameters A. for all distinct units, can therefore be used to achieve 

arbitrarily fast convergence for the inference network. 
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5-5 Numerical Simulation 
5.5.1 Example 1: Random walk 

Figure 5.5 A small Markov process for generating random walks. The chain has 11 states in total, while the state 'K ' 

is the terminal state. Transitions would result zero reward except the "right" action at state J would result reward of 

one, as shown in the arcs in the figure. The semantic meaning is that one would move to the left state with 

probability 0.8 given taking the action "left", or one will arrive at the states on the right with probability 0.2. The 

objective of dynamic programming is to evaluate the discounted expected reward at each state from A to J. 

A 10-State random walk problem can be solved by a 10-unit continuous-time inference 

network. The 10 state indexed by {A, B, C, D, E, F, G, H, I, J}. The 10 units output of the 

network are described by a vector Xt= [gt(A), gt(B), g,(C), gt(D), gt(E), gt{F),纷(G), gt(H), g,(I), 

gt{J)\, which has semantic meaning of expected reward of VX=[VJ, Vb, Vc,...,Vj]. The underlying 

transition probability distribution of the environment is defined as follows. For state i, the 

available actions is denoted by A. = {a.^}, where the second subscript k in action aik taken by the 

learning system indicates the availability of more than one possible action when the environment 

is in state i and state k is the desirable next state. The transition of the environment from the state 

i to the new state j, for example, due to action a汝 is probabilistic in nature. The transition 

probability of the environment from state i to state j by taking action Uik be defined as T{i, a认,/). 

In our experiment, probability T{Ua^,,i') = 0.9 ifk=i' and ̂ ^^T(i,a汝，i’) 
=0.1 \^k丰 i’, where 

i is the current state, i ‘ is the next state and atk is the action with k is the desirable next state. 

The continuous-time inference network can be modeled by a set of differential equations on 

the 10 nodes A,B, J. The expected rewards Va, Vb,…，Vj evolve as first-order lag controlled 

by X (a system or implementation related parameter which is non-problem related), y and p 

are two problem-related parameters, defined as the discount factor for multistage reward and the 

transition probability, respectively. 
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^ = (5.18) 

dVr '”， 1 f r\pV.+(\-p)VA for left; 

= B V yj D\ , (5.19) 
dt [ r for right. 

� I" J 

dVj 竹， 1 f \ - p + ypVj for left; 
= 一 ; +义 m a x " , (5.20) 

dt 尸 + 厂(1 —厂)厂, for right. ^ 乂 

Eq,(5.18) describes Va of the boundary node A which has a single "right" action of zero 

reward. For nodes B,C, /, they are having both left and right actions and can be readily shown 

to follow equations as typified in Eq.(5.19) for C. A： is a goal state which should have its 

expected reward Vk defined as zero. A goal state has no associated actions and zero reward as the 

"goal" is reached. Eq.(5.20) describing Vj can thus be derived. Note that the non-zero immediate 

expected rewards from J to K and from J to I are obtained as (yoxl + (l-/7)x0) and 

(p X 0 + (1 — p) X1), respectively. 

Given arbitrary positive initial values of Va, ...，Vj, the converged values of the respective 

differential equations (Eqs.(5.18)-(5.20)) can be verified to be identical with the optimal values 

(K'K'-"^^*} governed by the Bellman equations. Figure 5.6 shows the case for the problem 

defined by p = / = 0.9 , and using 义=0.9 . The converged values are found to be [0.3160, 

0.3511, 0.3984, 0.4528, 0.5147, 0.5852, 0.6652, 0.7563, 0.8597, 0.9774]. For cases with p and 

y close to 1, the optimal policy is quite straightforward as each state will take an action to the 

right. The Bellman equations then reduce to a much simpler set of linear equations, given by: 

(5.21) 

(5.22) 

= p (5.23) 

For simplicity, only Eq.(5.22) is given for node C; similar equations can readily be obtained for 

nodes B,D, L By solving this tridiagonal equation set (Eqs.(5.21)-(5.23)), V*,...,Vj* are 

determined and found to be the same as the converged values of the differential equations. 
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Continuous time res pones of inference network on random walk 
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Figure 5.6: Convergence of the differential equations for 

It is interesting to consider a slight variation of the problem by the inclusion of an arc (with 

zero reward) from node K to node J, and to find out how the continuous-time network adapts to 

the changes of optimal solution. Noting that K is now not a goal state with a possible left action, 

VK is not necessarily zero. The Bellman equation for V: is modified, together with the inclusion 

of a new equation for V;. 

-r(i-p)v; + v;-rpv^=p (5.24) 

-rv;+v*=o (5.25) 

The optimal values for V*,..,,Vj,V* can be found from the modified tridiagonal equation set, to 

give [1.5169, 1.6854, 1.9122, 2.1735, 2.4708, 2.8089, 3.1933, 3.6302, 4.1269, 4.6916, 4.2224]. 

For the differential equations of the continuous-time inference network, the essential changes are 

given in Eq.((5.26)-(5.27)). Figure 5.7 shows the network adapts well to the problem change and 

gives converged values which agree with the new optimal values. 

dVj 丄】 I l - P + rlp^f+a-pWK] for left; 
- = -AVr + A max < 「 ^ 」 (5.26) 

dt J [ P + r[pV^+{\-p)Vj] for right. 
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警义厂《 +々厂 V (5.27) 

‘Continuous time respones of inference network on random walk 
81 I I I 1— 1 1 1 1 1  

: : 

itk 
像\、〜-..--一 -

霞 二 二 ^ ^ ^ —_…_—.：：；..；；：：；： 
4 4 一 一 〜 ： 

、：N̂ ~、、 一^ -
i \ :、、--.....—.. — „ 

. . . . . . . . . . . . — -

V� .� . - •.....‘ 
\ \ 、 . .…… 一 — — 

%：::::: :rzi=:=:::::::::::::::=: 
2 _ — 

^̂ ：:--一 __.：.…===::::::==::::::::::::=:::... 
‘ … -

1 1 1 1 I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

time 

Figure 5.7: Convergence of the differential equations for V^, . . . , V j 

Continuous time respones of inference network on random walk with lamda=0.5 
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Continuous time respones of inference network on random walk with lamda=0.9 
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Figure 5.8 Simulation of a 10-unit inference network for 10-state random walk (upper: A. =0.5, ；^=0.9, below: 

A, =0.9, /=0 .9 , ) 
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Further, the difference control parameter A，the convergence of the network would be different. 

The I is machine dependent, which is a parameter depends on the implementation 

methodologies. Figure 5.8 depicts the results of simulation of a 10-unit inference network for 10-

state random walk with different parameter setup. 

5.5.2 Example 2: Random Walk on a Grid 
0 0 一 0 

/ \ / 1 / i 丨、I \ 
I I I I I 
I I I I I 
I / • I ,。 1 , \ / 丨 

Figure 5.9 A small Markov process for generating random walks. The Markov chain has 100 states in total. The 

transition probability given T(i,,z.') = 0.8 ifk=i' and ^ ^ ^ T { i , ’ z _ , ) = 0.2 i^ki^iwhere i is the current state, i‘ 

is the next state and a is the action. 

Consider random walk on a 100-state with 10 by 10 grid-world. Each state only connects to at 

most 4 adjacent states, while states at edge connect to three and states at comer connect to two. 

States are orientated as a perfect square. All transitions would result zero reward except 

transition to the state at the north-east comer would return reward of one. 

Similar to the random walk example, the continuous-time inference network can be modeled 

by a set of differential equations on the 100 nodes Sij, i j = 1,2,. ..,10. The expected rewards Vij’ 

i’ j : 1,2,...,10 evolve as first-order lag controlled by k. When the network state is close to the 

optimal solution, presumably, we have the linear Bellman equations. The Bellman equations for 

2-node (two adjacent nodes), 3-node, and 4-node: 

K = r [ p K , , + { i - p ) v l , ] (5.28) 

厂 宁 厂 “ ) ] (5.29) 
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— I 

厂2:2=, ><3+宁(<2+厂2:1+厂2:3) (5.30) 
— 一 

For those boundary nodes 

+ r (5.31) 

K n - P ^ r > < + 宁 ( 厂 二 + 厂 ( 5 . 3 2 ) 

(5.33) 

The network can be modeled by using differential equations. Differential equations for 2-node, 

3-node and 4-node: 

dVu 竹， 1 [ r[/̂「2，i 「1,2] for down; 

dt , ,[广厂i —p)厂2’i] for right. 

,广厂1，1+"̂ (̂厂1，3+厂2’2) for left; 

dVn 「 （ 1 - y c O / \一 

= ]厂 12+义 max , 尸 厂 11+厂2，2) for right; (5.35) 

y for down. 

y 广厂2’i +^^(^1,2+^2,3+^3,2) for left; 

欢 y PV2, +^^(^1,2+^2.1+^3,2) for right; 

^ ^ 代’2+A max < 4 (5.36) 

dt r P ^ i , 2 1 + ^ 2 , 3 + ^ 3 , 2 ) for up; 

y 厂厂3’2+"̂ (̂厂1，2+厂2，3+厂2’1) for down; 
V — 

For those boundary nodes, the differential equations: 

^ — _ 

d K , r 厂厂—厂)「u—1 for down; 
= +/lmax^ ^ ：̂  (5.37) 

论 ， for left. 
V ^ — 
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‘ ( l - p ) 「 （1-ycO/ 、"！ 
. + r ^r Icft； 

^ ^ 二一义厂M-1+义 max< p + r 厂 厂 1 ， „ + " ^ ^ ( ‘ _ 2 + 厂2，“) for right; (5.38) 

(l-p) 「 （1-/^)/ 、1 
+ ,广厂2，“ for down. 

V L . 一 

The computational units are arranged and connected to form a square matrix following the 

topology as shown in Figure 5.9. Consider ；I, =0.5, /=0.9 we obtained the estimates of the state-

value function shown in Figure 5.10. It showed that the parallel computation of the inference 

network. Value at each grid converges to the optimal solution in a parallel and synchronize way. 

Figure 5.10 Computation of state-value functions for the random walk in the grid-world using the continuous-time 

inference network with 100 units 

Convergence of the inference network in two dimensional grid-world problem is controlled by 

lambda. When comparing to the previous 10-state random walk problem, the network settles to 

the desired solution after t » 40, which is more or less the same as that for the 10-state problem. 

In addition, by increasing the value of A, the time needed for the network settled decreased. 

Also, when A increases to a large value (says 0.9), the network still converge to the optimal 

solution. It implies that the network converges to the optimal solution independent on the rate of 

convergence. 
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Figure 5.11 Learning curves for continuous-time inference network for 100-state random walk in the grid-world 

problem, for various values of X . The performance measure shown is the root mean-square (RMS) error between 

the value function leaned and the true value function, averaged over 100 states. 

5.5.3 Example: 3 Stochastic Shortest Path Problem 

Figure 5.12 The flow-graph for stagecoach problem (Haykin 1999). 

W e consider a stagecoach problem. A fortune seeker in Missouri decided to go west to join the 

gold rush in California in the mid-nineteenth century. The journey required traveling by 

stagecoach through unsettled country, which posed a serious danger of attack by marauders 

along the way. The starting point of the journey (Missouri) and the destination (California) were 

fixed, but there was considerable choice as to which other eight states to travel through the route, 

as shown in Figure 5.12. 

There is also cost of life insurance policy for taking any stagecoach run based on a careful 

evaluation of the safety of that run. The problem is to find the route from the starting point to the 
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destination with the cheapest insurance policy. To find the optimal route, we consider a 

continuous-time inference network with 10 units. The units connected following the topology 

given in the figure. Also the transition probabilities of the problem is given as 认，/’）= 0.8 if 

k = i' and = 0.2 i\ where i is the current state, i' is the next state and a is 

the action. 

While similar convergence to the optimal expected cost at each state are obtained and shown 

in Figure 5.13. W e varied the discounted factor, which signifies the importance of the long term 

reward when approaches to one. W e found that though both cases converges to the optimal 

expected reward. But the convergence time of the continuous-time inference network decreases 

as the discounted factor approaches to one. 

The discounting factor is significant parameters to the computational load of value iteration 

and other dynamic programming. For value iteration, the number of iterations required to obtain 

the optimal value increases exponentially when increases the discounting factor (Kealbling, 

Littman et al. 1996). The continuous-time network suffers more or less the computational burden 

of the discounting factor. 

Continuous time response of inference network on stagecoach problem with cliscount=0.3 
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Figure 5.13 Simulation of a inference network for the stagecoach problem (upper: A- =0.9, / =0.3, below: 

A. =0.9,厂=0.9’). 
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5.5.4 Relationship between 义 and / 

Since A is the open-loop system pole for the computational unit,义 increases leads to the 

increasing of the network convergence. Considers fixed discount factor / for a typical random 

walk problem, we vary ；L from 0.1 to 0.9. By measuring the averaged R M S error over all states 

at a fixed time, convergence time is exponentially decreasing while X is increasing. By adjusting 

the discount factor from 0.3 to 0.9, the exponentially decreasing of convergence time still 

observed but with a slower rate (See Figure 5.14). 

Figure 5.15 shows the plot of R M S error against A and y at the same time. It showed 

interesting relationships that R M S error decreases exponentially when 义 increases while R M S 

error increases exponentially when / increases. The results suggest that given the discount 

factor approaches to one, using an arbitrarily large X would result in a fast convergence to 

compensate. 
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Figure 5,14 Comparison of convergence speed for continuous-time inference network for the random walk problem, 

for various values of X and discount factor y. The performance measure shown is the root mean-square (RMS) 

error between the value function leaned and the true value function, averaged over all states. It showed that 

exponentially decreasing of RMS when ？i increases. By increasing discount factor y , it decreases the rate of 

convergence. 
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Figure 5.15 Comparison of convergence speed for continuous-time inference network for the random walk problem, 

for various values of A and discount factor / on an alternative view. Interesting relationships between ？i and y 

can be found. The RMS error shows relatively symmetric between large X , large y and small X，small y . Long 

convergence time for large y (discount factor) and be compensated by using large X in the continuous-time 

inference network. 

5.6 Discrete-Time Inference Network 
Modified Eq. ((5.13)-(5.14)) that consider 5t is an arbitrarily small time interval. W e have Eq. 

(5.39) as the differences equation for the output of each computational unit that is derived from 

the differential equations Eq. ((5.13)-(5.14)). 

r f �� 

(0 - ( 0 = -Kg.(0 + 义 , m i〜。 0 + 2]T�,a,i’)仏a’).份（5.39) 
I t ''̂s J J 

For simplicity, considered that 5t equals to one, we have 
广 、 

(0 = (1 — A , ( / ) + A^min,, R{U+ E TU, a, i ’)g, (/ ’) （5.40) 

I i'eS , 
and we can consider an arbitrarily fast system that A. equals to one for all i. 

(0 = mi〜“ R(i,n + ^nua,i’)(/')[ (5.41) 
� /’eS . 
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Noticed that Eq. (5.41) has a similar form as the Bellman optimality equation Eq. (5.3), but in Eq. 

(5.41) discrete time relationships between the outputs of each computational unit are defined by t. 

Supposed that there is a memory elements at each computational unit that the output g{i) at time t 

is registered, the discrete-time inference can be readily implemented by using digital logics. 

In discrete time system, such as digital logics system or FPGAs, the time variable t can be 

implemented using a system clock with known or controllable frequency. Each clock tick can be 

considered as ^+1. But in most of the time, it is not sufficient for only one clock tick to have 

finished all computation from Eq.(5.41). So, several clock ticks can be considered for 什1. 

5.6.1 Results 
The architecture can be readily realized using digital FPGAs. The convergence of output of 

computational units based on the FPGAs implementation is compared against the software^ 

implementation. Figure 5.16 shows the results. From the figure, “*，’ represents the software 

results while “-，’ represents FPGAs results. Both software and FPGAs network converge to the 

optimal value within 10 iterations. The iteration in software refers that all states and all actions 

has been gone through exactly once. However, in the F P G A distributed implementation, all 

states value is updated simultaneously. 
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Figure 5.16 Verification of the network convergence on FPGAs implementation with referring to the software 
computation. 

2 Matlab is used as software programming 
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It is interesting to find out the hardware computation error when using software results as 

reference. The multiplication in hardware would be the major source of error. W e have the 

absolute error against iteration loops in the figure 5.17. The error is small as in in the order of 10' 

6，when 16-bit fixed-point is used. Also, it shows that when the network converges, the hardware 

would have less error. 
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Figure 5.17 Bit truncation error in the 16-bit FPGA inference network computation 

5.7 Conclusion 
This chapter describes a novel connectionist approach for mapping the value iteration 

algorithm to a continuous-time inference network solving the dynamic programming in the 

continuous-time domain. Some of the limitations for the conventional heuristic search techniques, 

such as increased inefficiency for problem with large m, and the discrete time asynchronous 

distributed approach with requirement for the synchronization of control flags between 

processors, exponentially increasing of computational loads when discount factor approaches 

one, have been effectively overcome. Numerical simulations have been used to demonstrate the 

salient features of such type of continuous-time inference network, for which fully-analog 

parallel implementation can be made arbitrarily fast and its required computational time is 

practically independent of m. W e also derived a discrete-time version of the inference network 

that the network can be well mapped to FPGAs for solving dynamic programming. This opens 

up the possibility for future realization of this class of optimization and learning circuits for real-
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time decision making applications, such as rover path planning and trajectory design for U A V s 

for surveillance mission. 

r 
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t 

Chapter 6 

On Distributed 0麵Learning Network 

In a Markov decision process, knowledge of the state transition probability function T(s,a,s) 

and the reinforcement reward R(s,a) is not always available. The agent must interact with its 

environment directly to obtain information, which by means of an appropriate algorithm, can be 

processed to produce optimal decisions. To circumvent the limitation of the dynamic 

programming, g-leaming, proposed by Watkins, as a simple yet striking powerful learning 

algorithm contributes the on-line reinforcement learning with assuming the probability and 

rewards are unknown. However, the slow sequential learning process under the conventional Q-

leaming algorithm would have delayed the solution time for many of the time-critical and real-

time decision making problems. Based on the framework of the Bellman Inference Network, a 

novel g-leaming network architecture is proposed. W e introduce the exploration and memory 

components to the original Bellman inference network to form a connectionist network with 

together the capability of parallel learning and optimization. W e found that the g-leaming 

network outperforms significantly the conventional g-1 earning algorithm under a distributed 

unknown environment. W e also proposed two design alternatives for the realization of Q-

leaming network using Field Programmable Gate Array (FPGA) that the network would be 

dedicated to fit different applications. 

• 
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6.1 Introduction 

f 

Dynamic programming can efficiently solve reinforcement learning problem, as optimal 

decisions can be found given prior information about the environment, such as rewards and 

probability distribution. The policy iteration or value iteration dynamic programming algorithm 

requires prior knowledge of the underlying Markov decision process. That is, for the 

computation of an optimal policy to be feasible, we require that the state-transition probabilities 

and the observed rewards to be known. However, considering the fact that prior information is 

not always available and the cost to obtain such information is exceptionally high under certain 

circumstances, the dynamic programming approach may not always be feasible or easily being 

adopted (Haykin 1999). 

To circumvent the limitation of the dynamic programming approach, learning from on-line 

experience requiring no prior knowledge of the environment's dynamic would be striking 

(Sutton and Barto 1998). A simple yet powerful algorithm, called g-leaming, has been proposed 

by Wilkins (Watkins 1989), g-leaming uses simulation or experimental information to compute 

estimates of the expected value as a function of the initial state. It is an incremental dynamic 

programming procedure that determines the optimal policy in a step-by-step manner. It is highly 

suited for solving Markovian decision problems without explicit knowledge of the transition 

probabilities. It was found to be an effective endeavor with capability to deal with the learning 

under situations with incomplete information. It allows the learning agent to explore the 

environment by making trials, while performing optimization to find the best decision at the 

same time. 

2-leaming has been extensively studied and applied across a broad domain, such as control 

and decision making. However, the original g-leaming formulation only considers a single 

learning agent exploring the environment and making a single decision at a time (Sutton and 

Barto 1998). Many interesting problems that have properties favoring the use of distributed 

solution can be solved by reinforcement learning. Whenever the state and action space is large, a 

distributed approach to perform the computation is desirable because it makes computational 

speedups from parallelism possible. In general, distributed learning could not only release natural 

constraints like the limited processing power of a single agent or the geographical distribution of 

data but also benefit from the inherent properties of distributed systems like robustness, 
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parallelism and scalability. Although 0-leaming is fairly well understood, distributed 

reinforcement learning is a much less mature concept (Tsitsiklis 1994; Weib 1995; Schneider, 

Wong et al. 1999). ‘ 

Theoretical study of the asynchronous mathematical model of 0-leaming, developed by 

Tsitsiklis (Tsitsiklis 1994), forms the basis of parallel and distributed realization of 0-leammg. 

He proposed a mathematical model to analyze and prove the convergence of g-leaming under 

asynchronous updating and delayed information. Though with the elegant theoretical analysis, 

there has been few realization and implementation for the distributed g-leaming until recent 

years. The needs for distributed approach emerge along with the rapid growth of internet and 

communication network technologies. 

For example, the problem of routing packets efficiently in a communication network with an 

irregular topology and unpredictable usage patterns can readily adopt a distributed reinforcement 

learning model (Littman and Boyan). The g-leaming can adapt to changes in network traffic and 

is constructed from a distributed collection of learners, each of which is responsible for a 

partition of the problem. The distributed approach appears to be very effective in routing packets 

under high load. The other approaches with similar idea of distributed computational learning 

also apply on the network and communication systems (Caro and Dorigo 1998) to obtain higher 

throughput. 

In contrast to computer network or communication problems, real-time decision making 

applications such as autonomous robots and UAVs, requires efficient computation that the 

software approach is not sufficiently fast enough to provide (Cauwenberghs and Bayoumi 1999; 

Williams, Kim et al. 2001; Jun and D'Andrea 2003). VLSI hardware allows efficient high speed 

on-chip communication between processing units which provides powerful collective 

computation and hardware realization. However, learning algorithms that are efficiently 

implemented on general-purpose digital computers do not necessarily map efficiently onto VLSI 

hardware (Cauwenberghs 1997). There are different design constraints imposed by the hardware 

VLSI that are absent in software implementation. 

In (Cauwenberghs 1997), Cauwenberghs proposed a hardware perturbative model for model-

free gradient decent implementation that reinforcement learning can be mapped onto analog 

VLSI based on the hardware model. The architectural VLSI design retains desirable properties of 

a modular and cellular structure, model-free distributed representation and robustness to noise 
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and mismatches in the implementation. The hardware architecture demonstrates the feasibility 

and effectiveness using silicon solution for real-time learning and decision making. In line with 

Cauwenberghs’ work, the hardware architecture can be further extended and modified to handle 

more complicated and effective decision making model. 

The connectionist architecture proposed by Sutton in the 80，s, called the Critic and Actor 

architecture, first demonstrated the capability of reinforcement and exploration learning 

mechanism and had shown that the model could solve difficult control task (Barto, Sutton et al. 

1983). The first remarkable success of the proposed algorithm, Critic and Actor architecture, is 

now regarded as a rather sophisticated approach, in which the performance might be limited by 

its high computational complexity (Kealbling, Littman et al. 1996). On the other hand, Q-

leaming emerges as an effective alternative because of its simplicity and effectiveness. Previous 

implementation of the perturbative model realized the Critic and Actor model based on a 

connectionist approach (Cauwenberghs 1997). However, in spite of the compact architecture, the 

implementation would inherit the limitation of the computational complication. Alternatively, 

realization of the Q-leaming would inherit the compactness and efficient architecture which 

might improve from the original Critic and Actor architecture. 

In the previous chapter, a distributed continuous-time inference network for dynamic 

programming problems has been proposed. It has shown that the inference network converges to 

the optimal Bellman optimality condition, for which the convergence rate can be made arbitrarily 

fast and is practically independent of the discounting factor and the number of states. Further, an 

analog VLSI C M O S circuit has been developed to realize the inference network and to 

demonstrate the inference network optimization for the dynamic programming problem. By 

adopting the collective computational paradigm of the inference network, in addition to the 

original architecture, we introduce the component of stochastic exploration. It would enable the 

learning capability of the connectionist network beside the optimization capability. W e consider 

each computational unit as a learning unit, in which the architecture is defined by the g-leaming 

formulation and the stochastic elements for exploration. 

In this chapter, we propose a novel architecture of distributed g-leaming network. In line with 

the spirit of the Binary relation inference network (BRIN), a collective connectionist network 

approach could solve the reinforcement learning problem by introducing the component of 

stochastic exploration. The g-leaming network would be shown efficient to solve benchmark 
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Markov decision process problem with unknown prior transition probability distribution and 

rewards. Also realization of the g-leaming network using Field Programmable Gate Array 

(FPGA) will be discussed with alternatives design approach compared. 

6.2 Distributed g-learning Network 

The behavioral task of the reinforcement learning system is how to find an optimal policy after 

trying out various possible sequences of actions, and observing the costs incurred and the state 

transitions that occur, ^-learning defines a procedure of taking sample of the environment and 

associating the action with the observed reward. The formulation follows a well-known Bellman 

optimality equation that Q-leaming use a simple sample to replacing the probability distribution 

from the original Bellman equation. In other word, g-leaming can be considered as a sampling 

approach that the learner directly taking samples from the environment instead of assuming a 

probability distribution is given. 

Bellman equation defines the optimal criterion for the Markov decision process, such that the 

expected reward V(s) at each state s can be found by applying the Bellman equation iterative!y. 

Recalled that the optimal decision n{s) at state s can be computed based on the expected 

reward F(s). It seems that the decision variable n and expected reward V is two separated 

concepts while they are related due to Eq. 5.4. Along the introduction of the concept state-action 

pair {s, a), the value or the expected reward for taking action a at state s is quantitatively defined 

by the term Q(s, a), or called g-factor (Watkins 1989). Function Q{s, a) is used to memorize the 

expected reward for the action a and the state s. Thus, there are direct measures of all possible 

actions at all states, while the best decision can be found simply the Q{s, a^ with highest score 

for all i. Evaluation of Q-factor would benefit the reinforcement learning approach, such that the 

complicated evaluation of decision tt from V is not a necessity. 

Let Q*{s, a) be the expected discounted reinforcement of taking action a in state s, then 

continuing by choosing action optimally. Note that V*(s) is the value of s assuming that best 

action is taken initially, so V*(s) = min^ . Following Bellman equation, Q*(s,a) can 

hence be written recursively as 
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Q*(s,a) = R(s,a)^ry T{s, a, s，) min Q*(s \ a，） （6.1) 

I 

Note that, since V\s) = min^ Q*(s,a),we have 7r\s) = argmin“ Q\s,a) as an optimal policy. 

Because the Q function makes the action explicit, we can estimate the Q values on-line by 

taking samples of rewards from the environment. Following (Kealbling, Littman et al. 1996)，we 

define� s , a , r , s � �, which is called experience tuple summarizing a single transition in the 

environment. Here s is the agent's state before the transition, a is its choice of action, r the 

instantaneous reward it receives, and s ‘ its resulting state. The g-factor is learned using the Q-

leaming (Watkins and Dayan 1992) which uses the updating rule 

a)=以•s, a) + a (r + min Q{s ’, a ’）— a)] (6.2) 
\ V f l ' / 

V(s) = mm^^ Q(s,a) (6.3) 

where y is the discount factor. Also, it has been shown that if each action is executed in each 

state an infinite number of times on an infinite run and a is decayed appropriately, the Q value 

will converge with probability 1 to Q* (Watkins 1989; Watkins and Dayan 1992; Tsitsiklis 1994). 

6.2.1 Distributed g-learning network 

As a parallel extension, sampling the environment can be executed in parallel or in a 

distributed process. It is no necessarily to keep trying each action in a sequential manner, given 

that it is feasible to the environment. In other words, the sampling and updating procedure of the 

g-leaming can be achieved in parallel by independent units, which represent agents at different 

states. In (Tsitsiklis 1994), Tsitsiklis showed that Q-leaming would converge to the optimal 

solution under asynchronous updating and sampling. It provided a solid mathematical foundation 

for the formulation of the distributed Q-leaming network. 

In previous chapter, we have shown that the optimal policy or the optimal solution based on 

Bellman optimality criterion can be computed using a continuous-time inference network 

architecture. In the inference network, each computational unit represents a binary relation 
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between the corresponding state and the destination (or goal) state. The Bellman equation can be 

mapping to the site functions and unit function in the computational unit, and the network 

converges to the optimal solution. It has been proved that the energy function of the network is 

decreasing and will converge to the optimal solution. 

In general, the Bellman inference network is performing optimization based on the Bellman 

optimality criterion. However, probability distribution and rewards are simply assumed to be 

known in prior. Following the idea of 2-leaming, we can introduce the Q(s, a) function into the 

Bellman inference network to memorize the expected reward for the action a and the state s. 

Also, stochastic exploration mechanism can be introduced in the network, so that the 

computational unit can interact with the environment to obtain information about the reward and 

state transition. 

2-leaming algorithm is less computational intensive than the Bellman dynamic programming, 

as the intensive probabilistic expectation computation is omitted. However, as samplings from 

the environment, elements of memories are required in extra, in contrast, which is not necessary 

in Bellman inference network. 

A 2-leaming network is formed by interconnection of self contained computational units. 

Figure 6.1 shows the structure of a unit and the connections in a general learning network. Each 

unit is to represent a binary relation between the state i and the destination state d. In most cases, 

destination state d is simply omitted and implicitly assumed. So for each unit, which is denoted 

as L{i) for state i. Each unit, there are N inputs for carrying out the g-leaming updating. For each 

epoch, only one input is selected, based on the state transition s ‘ feedback from the environment, 

to execute the updating. The value function of the corresponding relation for state I is then 

determined by resolving the conflict among all of the Q{s, al), for all i. 

In addition, there is an interaction between the computational unit and the environment to be 

leamt. The unit L(i) will generate an action a to the environment, which represents the agent (or 

learner) at state i taking action a. Consequently, reward r and state transition result s，would be 

received after taking action a. There is a close analogue between the learning network and the 

learning agent. Considered that there is a stationary agent at each of the state in the original 

problem graph. The agent keeps trying different actions at the same time and updating the 

corresponding g-factor. At the mean time, the inference network is performing optimization via 

the interconnected computational unit architecture. 
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Figure 6.1 A typical computational unit in the learning network depicts the input and output of the learning 

network architecture. For computational unit L(s), which represents the binary relation between state s and the 

destination state, inputs the value V(s') from the decedent units. However, in contrast to the Bellman network, s' is 

determined by the environment. Therefore, all possible decedent units output V(s') to unit L(s), and is being selected 

by the environment. Within the unit L(s), Q-factor for all possible action are stored and being updated accordingly. 

The unit L(s) outputs the action, and inputs the reward for the Q-leaming rule updating. The unit also outputs the 

V(s) to the predecessor units. 

6.2.2 0-learning network architecture 

Considered a specific unit L{s), the output is denoted p(s), where each unit only has one and 

only one output function. Each unit has component of state exploration , g-factor table 平2, 

and exploitation logics . 

To choose an action a in a state s, the exploration component 平！ uses the action-value 

estimations Q(s, a) and an exploration strategy called cr. The selected action is then: 

a = cT(s,Q) (6.4) 

Following (Sutton and Barto 1998; Haykin 1999), cr is the s -greedy searching strategy: most of 

the time, the greedy action is selected (the action for which Q(s, a) is maximum) and sometimes, 
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a random action is selected with a small probability £ , independently of the action-value 

estimations. This strategy allows us to control exploration rate. The component ^^ maps states 
I 

to actions, is fully defined by the action-value function Q in addition with the exploration 

strategy a . 

The state exploration component requires the g-factor for all possible actions. Therefore, we 

have the other component g-factor table to store the Q values. This is one of the major different 

between the previously introduced Bellman inference network. In the inference network, there is 

no memory component, as inputs such as probabilities and rewards are assuming constantly 

supply. The 2-factor table is needed for updating the g-factor by the Q-leaming rule. A 

minimum operator is following the outputs of the g-factor table. It summarizes the g-factor 

values and output the minimum value, as the expected reward F(s) from the Eqs.((6.2)-(6.3)). 

The last component is the exploitation, which realizes the Q-leaming rule. Given that the Q-

factor table with the minimum operator, we have the expected reward of the state, V(s). Then the 

(2-leaming rule can be modified accordingly for the architecture as follow 

Q(s, a) = (l-a)Q(s, a) + a[r + rV(s)] (6.5) 

where a is the learning rate, s is the state, a is the action generated from Tj, r is the reward 

received from the environment and V(s) is the expected reward from the minimum operator. 

Figure 6.2 shows the architecture of a g-leaming computational unit L(s) with all components. 

The unit inputs a set of V(s，) from other m computational units, which are the adjacent states of 

state s. The output a, input s ‘ and r are action, next state and reward respectively interacting with 

the environment. The V(s) is the output of the unit to other units. 
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Figure 6.2 Schematic of a typical computational unit, in which consists of three major components, 1.) state 

exploration ,for determining the action a to the environment; where rand() represents a random number between 
zero and one. 2.) Q-factor table 乎之，for storing the Q-factor and 3.) exploitation logics ，for updating the Q-

factor. There is also a minimum operator following the outputs of the Q-factor table. It is used for summarizing the 

state-action pairs and finding the best expected reward. 

A distributed learning network approach for solving the reinforcement learning problem can 

be formulated as follows: 

1. Construct a m-unit g-leaming network, where the architecture of each computational unit 

is defined by a set of equations Eqs.((2.4)-(2.5)). 

2. The network has a complexity but regular interconnection structure following the 

topological structure of the given problem or graph. Each unit L(i) sends its output V(i) to 

a set of neighborhood units, which is the decedent state in the original problem graph. 

Each unit received at the same time the outputs from the set of neighborhood units, which 

can be reached from the state i taking proper action. 

3. Each unit L(i), interacts with the environment with regarding the variables, a, r and s\ 

where a is the action, r is the reward received and s ‘ is the next state returned from the 

environment. 



Chapter 6. On Distributed Q-learning Network 114 

6.3 Experimental Results 
f 

6.3.1 Random Walk 

Figure 6.3 A small Markov process for generating random walks. The chain has 5 states in total, while the state 

'K ' is the terminal state. Transitions would result zero reward except the "right" action at state E would result 

reward of one, as shown in the arcs in the figure. However, unlike in the Bellman dynamic programming, the 

probabilities and the rewards are unknown to the learner or agent. Distributed learning network takes samples, such 

as rewards and state samples, from the environment by issuing actions to the environment. 

Random walk problem can be solved efficiently using distributed (Q-leaming network 

approach. Consider a 6-state random walk problem, that the states are labeled by “{A, B, C, D, E, 

K}, where state “IC, is the terminal state. Since the Markov decision process environment is 

unknown to the learner at the beginning. The underlying transition probability distribution of the 

environment is defined as follows. For state I, the available actions is denoted by A. = [â ,̂ ], 

where the second subscript k in action ciik taken by the learning system indicates the availability 

of more than one possible action when the environment is in state i and state k is the desirable 

next state. The transition of the environment from the state i to the new state y, for example, due 

to action Uik is probabilistic in nature. The transition probability of the environment from state i 

to state j by taking action a," be defined as J\i, atk, j). In our experiment, probability 

T(i,a^j^,i') = 0.9 if A:=广 and = 0.1 k 丰 V, where i is the current state, i' is the 

next state and Uik is the action with k is the desirable next state. 

One computational unit is used to represent one state whereas the terminal state “IC, can be 

omitted. Each computational unit would interact with the environment independently by issuing 

an action and receiving the reward and state transition information. There is intensive 

communication between the units. Interconnection between units follows the original graph from 
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the random walk problem to form a learning network. The detailed of the network architecture is 

presented at Figure 6.4. 
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Figure 6.4 A distributed Q-leaming framework to solve the random walk problem. The computational units, L(si), 

L(S2), L(S3)，L(S4) and L(S5) are corresponding to state A, B, C, D and E, forms a learning network. Each 

computational unit issue an action to the environment, and reward and next state are received. There is intensive 

communication between computation units for updating the expected reward of the adjacent states. 

Figure 6.5 shows the results generated from the 2-leaming network with learning rate a 

equals to 0.2 (upper) and 0.5 (lower). The network converges to the optimal expected reward, 

which is the Bellman optimality criterion, for both cases. Also, it can be found that perturbation 

around the optimal solution appeared after the network had converged. It is because the 

stochastic exploration component in the computational unit trying to search better optimal 

solution. For the case of larger learning rate, more vigorous perturbation is found. Higher 

convergence rate is found for the larger learning rate, though a vivid perturbation at the optimal 

solution. 
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Figure 6.5 Learning curve of the distributed Q-leaming network, the (upper) graph is with learning rate a equals to 

0.2 and the (lower) graph is with learning rate a equals to 0.5. In both cases, the learning network converges to the 

optimal solution, while small perturbations around the optimal solution are found after converged. It is because the 

introduction stochastic exploration at each computational unit, the network is still looking for possible better 

solution. The one with larger learning rate has larger perturbation. The learning rate serves as step size, as the larger 

learning rate will result larger perturbation. 

6.3.2 The Shortest Path Problem 

Start Z � l > < / \dest inat ion 

Figure 6.6 The flow-graph for stagecoach problem(Haykin 1999). In this case, the transition probability distribution 

and the rewards are unknown to the traveler or learning agent. The information can be obtained by experiencing, 

which is taking actions and receiving rewards and observing state transitions. 

W e consider a stagecoach problem. A fortune seeker in Missouri decided to go west to join the 

gold rush in California in the mid-nineteenth century. The journey required traveling by 
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stagecoach through unsettled country, which posed a serious danger of attack by marauders 

along the way. The starting point of the journey (Missouri) and the destination (California) were 

fixed, but there was considerable choice as to which other eight states to travel through the route, 

as shown in Figure 6.6. 

There is also cost of life insurance policy for taking any stagecoach run based on a careful 

evaluation of the safety of that run. The problem is to find the route from the starting point to the 

destination with the cheapest insurance policy. Also, the transition probabilities and the reward 

of the environment are unknown. To find the optimal route, we consider a Q-leaming network 

with 10 units. The units connected following the topology given in the figure. Also the transition 

probabilities of the problem is given as = 0.8 ifk=i，and = 0.2 if k 

i ,，where i is the current state, i ‘ is the next state and Uik is the action with k is the desirable next 

state. 

Forming a network of nine computational units, and each of the units communicates with the 

environment for taking reward samples. It is assumed that the environment is able to respond to 

the learning network with different independent actions. The unit for the destination can be 

omitted, as the expected reward at the destination state is simply assumed to be zero. 

Comparing to the typical single agent g-leaming algorithm, the g-leaming network converged 

at around the 30-th epoch, while the typical g-1 earning algorithm converged at around 600-th 

epoch (See Figure 6.7). The learning network approach is at around 20 times faster than the 

conventional approach. This result demonstrates the high performance of collective network 

approach for learning and optimization. Further, vivid perturbations around the optimal solution 

are found after the learning network converged. This can be attributed to the large learning rate, 

a 二 0.5，in this case. Considered a smaller learning rate, a = OA, a much smoother learning 

curve was found with less perturbation (See Figure 6.8). 
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Figure 6.7 Comparison between typical Q-leaming and the distributed Q-leaming network approach. The graph 

shows the Root-mean-square (RMS) error with averaged over all states against the number of trials. For one trial, in 

the Q-leaming case, the agent makes one decision whereas in the distributed Q-leaming case, all computational units 

issue one action. It can be observed that the distributed Q-leaming approach converges much faster (at around 30 

trials) while Q-leaming approach converges at around 600 trials. The sharp perturbative peaks from the distributed 

Q-leaming curve can be explained by the large learning rate (i.e. a =0.5). 
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Figure 6.8 This is the experiment for comparison of convergence between Q-leaming and distributed Q-leaming 

the with smaller learning rate (i.e. Ot =0.1). It shows that the distributed Q-leaming network converges much faster 

than typical Q-leaming. Also the perturbation because of the learning rate becomes smaller. 
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Learning rate is critical in affecting the convergence rate of the 2-leaming network. W e 

examined network for convergence at different learning rate defined. Figure 6.9 shows the 

results of the experiment； It shows that the network converges to the optimal solution for 

different learning rate. Also, for larger learning rate, the network converges faster. But, 

perturbation at the optimal solution is expected for network with larger learning rate. This can be 

explained by the stochastic exploration energy of the network is larger with larger learning rate. 

One of the modification can be made is that to assign a decreasing function for the learning rate 

parameter, such that the network will stop perturbation after it has converged to the optimal 

result. 
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Figure 6.9 the convergence of the distributed Q-leaming network can be varied with different learning rate. The 

larger learning rate would result a faster convergence and a vigorous perturbation around the optimal solution. The 

one with smaller learning rate would result a slower but smooth convergence. 

One of the interesting observations for the g-leaming network is about the discount factor. 

Since, in the continuous-time Bellman inference network, discount factor /, which defines the 

importance of the longer term reward, would affect the convergence time of the network. It was 

found that the larger discount factor, the longer convergence time. However, in the case of Q-

leaming network, it was found that the discount factor y plays no significant in the convergence 

time of the network. Figure 6.10 shows the learning curve of the network with difference 

discount factor. There is no conclusive observation can be found in the figure that there is no 
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correlation between the convergence time and the discount factor. One of the possible 

explanation is that the Q-leaming is a sampling approach, which the stochastic exploration of the 

network overwhelms the effect of discount factor in the optimization. 
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Figure 6.10 For the Bellman inference network, the network needs longer convergence time for a larger discount 

factor / . However, for the distributed Q-leaming network, there are no big differences in the convergence time for 
different discount factors. 

6.4 Discussion 

Distributed g-leaming network demonstrates the high performance of learning a Markov 

decision process via a collective mechanism with a network of interconnected computational 

units. Results show that the g-leaming network algorithm outperforms the conventional Q-

leaming implementation in term of learning speed. The design takes the advantage of given the 

distributive characteristic of environment. The g-leaming network can also applied for 

sequential decision making problems. However, to gain the full capability and the highest 

performance of the network convergence rate, parallel accessing to the environment would 

definite boost the throughput of the learning system based on the g-leaming network 

architecture. 
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6.4.1 Related work 
There are close resembles of distributed reinforcement learning designs available. The 

I 

architectural designs found are typically dedicating for specific needs and can be categorized into 

three application domains, which are 1.) multi-agents reinforcement learning, 2.) computer 

network and communication application and 3.) autonomous robot path planning. 

The area of multi-agent reinforcement learning is growing rapidly in recent years and 

appearing as an interdisciplinary subject attracts attention of researchers from the domains of 

computer science, economic (Kealbling, Littman et al. 1996; Shoham, Powers et al. 2004). 

Agents in the multi-agent system know little about other agents, and the environment changes 

during learning. The framework adopted is stochastic games (also called Markov games) (Filar 

and Vrieze 1997), which are the generalization of the Markov decision process to the case of two 

or more controllers. The stochastic game is thought to be a close resemble of Nash-type games, 

that a Nash equilibrium, each agent's choice is the best response to the other agents' choices. 

Thus, no agent can gain by unilateral deviation. The principle of the multi-agents reinforcement 

learning is interestingly contributes to the design of artificial intelligence system with applying 

basic principle from Economic. However, it is still controversial the clarity on the formulation of 

the basic multi-agents systems and the potential of the design on real world applications 

(Shoham, Powers et al. 2004). 

The application of distributed reinforcement learning in network adaptive routing problem 

abound. The approaches and the degree of modifications from the original g-leaming scheme are 

varied. Peshkin and Savova (Peshkin and Savova 2002) proposed a multiple agents 

reinforcement learning architecture for telecommunication systems, where an individual router is 

an agent which makes its routing decisions according to an individual policy. Their approach 

allows update the local policies while avoiding the necessity for centralized control or global 

knowledge of network structure. A rather sophisticated gradient decent learning algorithm is 

adopted for the agents to find the optimal routing policy. Similarly, Druschel and Chen 

(Subramanian, Druschel et al. 1997) adopt an approach from ant colonies, that is very similar in 

spirit of Peshkin,s work, for network routing problems. The routing information is periodically 

updated by "ants", as agents, for minimizing the network loading. A more general and simple 

distributed value functions approach demonstrate the collective power of the reinforcement 

learning in a power grids design problem (Schneider, Wong et al. 1999). 
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The distributed value function approach has some degree of similarity with the distributed Q-

leaming network approach, in term of the formulation of 0-leaming in distributed context. Yet, 

the distributed value function approach does not incorporate the component of state exploration, 

that it is aimed for the purpose of optimization with given transition probabilities and rewards. 

Further, the Q-leaming network is realized in VLSI circuit, where high bandwidth processor 

communication is provided while the distributed value function approach is targeting to the 

network of general purpose computers with lower communication bandwidth. 

Lastly, parallel Q-leaming architecture is proposed for autonomous robotic application. In 

(Laurent and Piat 2001), in order to increase the speed of learning regarding a large state space, 

the robotic controller was designed to parallelize the maximum/minimum operator using 

hardware. Unlike the g-leaming network approach, the single decision and reward is received by 

the robot in the parallel 2-leaming approach. The parallel paradigm proposed in (Laurent and 

Piat 2001) would introduce speed-up and fit for the application of single learning agent or 

environment for sequential decision making as the typical Q-leaming algorithm. 

6.5 FPGA Implementation 
In recent years, Field Programmable Gate Array (FPGA) technology has emerged as a high-

speed digital computation platform. The flexibility of the FPGA's programmable logic combined 

with its high-speed operation potentially allows it to making decision and performing 

optimization in real time. Additionally, FPGAs can be used to accelerate prototyping of analog 

hardware models of brain processes by quickly building a simulation platform to study the 

functional behavior of the proposed model in a much shorter design cycle. 

Our logic-level design makes extensive use of Xilinx's System Generator (SG) that works 

under MATLAB's Simulink environment (Hwang, shirazi et al. 2001). Simulink provides a 

schematic design environment of logic gate blocks with which to implement the FPGA model. 

SG then automatically converts the simulink code from the schematic design to a bit stream file 

to configure the F P G A hardware. 

In Recent advance of Field Programmable Gate Arrays technology, Vertex-class F P G A 

introduced block Read-only-memory (BRAM) and multipliers as embedded elements in the 

FPGA. The embedded dedicated multipliers and B R A M offer a wide alternative of resources 
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management from mapping the arithmetic unit into the dedication circuit instead of distributed 

logics. The dedicated circuits, such as 18-bit by 18-bit multipliers provide much higher 

performance than multipliers constructed using F P G A logics. Besides, since the ̂ -learning 

network architecture requires memory storage for the 0-factor table, embedded B R A M in F P G A 

provides excellent design alternative. Instead of having the Q-factor table distributing among the 

parallel registers, the g-factor can be stored in the B R A M . 

Adapting to the F P G A architecture, there are two difference approaches that can map the 

distributed 0-leaming network to F P G A hardware. The two approaches are 1.) distributed 

registering approach and 2.) BRAM-based approach. 

6.5.1 Distributed registering approach 
(reward and state transition 

from the environment) 
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——^ I ~ E N n ^ l F — " R 
: , > -I I I ——i 

ViS'mY^ / ——• ： ： ： H ~ • • 叙 I 
rTt ^ ： ： ： I • I 

p v ^ : : ： I ： • > i V{s) 
： : . • u - ^ r n ^ H / i ^ 

~ » - > 进 卸 r+^AfR ••• 1 
——•Pen I ^ ]• I 

I I : J I I ~ T ^ — 卿 础 — — 」 

[ h — — 「 一 
J argminv" 

a . y . L ^ 1 RandO 
(action to the environment) ^ 

Figure 6.11 Schematic design for the computational unit which represents state s and n actions. For the sake of 

clarity, the state exploration and exploitation logics are simply denoted by and 中3. The Q-factor table are 

mapping to an array of registers in parallel. Each register has an enable input, which is controlled by the exploration 

unit. It is to control only one Q-factor would be updated with corresponding action. The unit O j is the minimum 

operator, which is implemented in parallel by a set of comparator and multiplexer. Besides, there are registers, "z"'", 
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to keep the input information from the environment, such as state s' and reward r. The action a is also registered, as 

it is used to select the corresponding "old" Q-factor from the array of factors for the updating. 

t 

Registers and logics are abundance in the F P G A chip that distributed design can be benefited 

from the distributed resources and the high performance of the parallel computation. The Q-

factor table component 平2 can be parallelized in such way that the Q factors are storing using 

distributed registers and the minimum operator is realized using parallel design. Figure 6.11 

depicts the schematic design of the computational unit based on the distributed registering 

approach. 

The major characteristic of the design is to map the Q-factor to an array of distributed registers 

and using a parallel minimum operator. There is less design effort on the control logics while 

more logics are expected for the parallelism. Besides, suppose that the computational time for 

state exploration and exploitation 平3 is constant with regarding to the number of action, the 

computational complexity for the A actions state would be reduced to 0(1) from 0(A). It is 

because the parallelism applied on the minimum operator, which would take A steps if computes 

in serial. On the other hand, the resources consumption would grow linearly with the number of 

actions. Further empirical analysis would be done in the following section. 

6.5.2 Serial BRAM storing approach 
In contrast to the parallel registering approach, design can take advantage of the availability of 

the embedded memory in the FPGA. Based on the Xilinx Virtex-II XC2V-2000 FPGA, there are 

56 embedded Block R A M (BRAM) available, each with 1 Skbits storage. As an alternative to the 

distributed registering design, the g-factor table can be mapped to be stored in the R A M . The 

schematic design is depicted in Figure 6.12. 

The BRAM-based design consumes less logic resources in the minimum operator and the 

resources consumption would be fixed with regarding to the increasing number of actions. For 

one B R A M , it would be able to store 1125 g-factor for 16-bit precision and 562 g-factor for 32 

bit precision based on the XC2V2000 FPGA. On the other hand, longer computational delay 

would be expected for the sequential BRAM-based design. 
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Figure 6.12 In this design, the Q-factor table are mapping to the internal RAM and addressed by the action index. 

For computing the minimum value, all values from the RAM are needed to be evaluated. The minimum operator 

O j , which is implemented in serial by evaluating all Q-factor from the RAM. The minimum operator consists of a 

comparator, multiplexer and a register. The register stores the most updated minimum value and being used to 

compare with the values from the RAM. If there is another value smaller found, it would be registered. Further, 

there are two inputs for the address of the RAM. One is used for the minimum operation, as which is the counter 

output to enumerate all addresses of the RAM. The other input is the action index which is outputs from the 

exploration component. 

6.5.3 Comparison 

Current design have that each computational unit represents a binary relation between a state 

and the destination, whereas the number of state increases linearly with the number of 

computational units in trivial. In contrast, the possible actions can be taken at a state can be 

varied according to the problem specification. The distributed register approach and the B R A M 

approach might dedicate for alternative applications with different needs. Resources utilization 
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includes B R A M consumption and slice (i.e. logic resources), updating rate, which is the 

maximum speed the system can perform, would directly correlates to the architectural design. 

Table 6.1 Comparison between the two approaches on the consumption of logic slice with respect to the number 

of actions and bit length 

Number of actions 

Bit 2 4 8 16 

length 

Distributed 16 143 731 

Registering 24 164 276 531 1059 

Approach 32 200 356 771 1387 

64 381 676 1331 2699 

^ B R A M - b a s e d 16 146 ] M 208 

Approach 24 182 186 216 276 

32 218 226 288 344 

64 386 386 456 616 

Both distributed and BRAM-based design increases linearly in resources consumption with 

increased number of actions. Though the BRAM-based approach consumes more resources in 

the case of small number of actions (i.e. binary actions), BRAM-based approach increases much 

slower in the logic usage than the distributed approach with increased number of action. It is 

simply because the parallel distributed approach requires more logics for the parallelism design. 

The exceptional case for the binary actions in BRAM-based approach is because that there are 

extra logics for controlling the read/write process of R A M . Since these logics would not increase 

with increased number of action, the BRAM-based approach shows more efficient in logic 

utilization by storing the g-factor in the memory, provided that sufficient embedded R A M s are 

available. 
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The pay-off for the efficient logic utilization for the RAM-based approach is the 

computational speed. W e compared the updating rate, which is the reciprocal of the time from 

receiving rewards and new transition states to the 2-factor is updated and stored, between two 

approaches. The higher updating rate shows a design with higher capability of reacting to the 

changes of environment in real time. The distributed approach has higher updating rate than the 

BRAM-based approach. For the larger number of actions, the parallel approach has over 12 

times faster updating rate than the BRAM-based approach. For larger number of actions, the 

BRAM-based approach requires more iteration loops to enumerate the values from the B R A M , 

which is computational expensive. 

Table 6.2 Maximum updating rate' 

Number of actions 

2 4 8 16 

^ D i s t r i b u t e d 14.02 M H z 1 3 . 9 8 M H z 1 3 . 8 7 M H z 1 2 . 2 8 7 M H z 

Registers 

Approach 

BRAM-based 7.75 M H z 4.31 M H z 1.91 M H z 1.1 M H z 

Approach 

6.5.4 Discussion 

Mapping the distributed g-1 earning network to F P G A can have two difference approaches 

with benefited from the characteristic of FPGA. The distributed approaches benefited from the 

distributed logics and registers in the FPGA that massive parallelization would provide 

significant acceleration to the g-1 earning computation. However, the resources consumption 

would be a threat for application with a large number of possible actions, as the logic 

consumption increases linearly with the increases number of actions. Alternatively, a B R A M -

based approach can be more effective in term of logics utilization. The g-factor table can be 

‘The maximum updating rate is referring to the Xilinx Virtex-II XC2V-2000 FPGA. The rate is based on the maximum frequency reported 
by the Xilinx-ISE software. Usually, this is maximum frequency is underestimating, as it is computed based on the worst condition of the 
FPGA board. In practical uses, 20 to 50 percentage improvement can always be found. 
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storing at the internal B R A M of the F P G A with a sequential procedure for the arithmetic 

computation. Though a slower updating rate are recorded for the BRAM-based approach, it 

would be suitable for applications with large number of actions. 

6.6 Conclusion 
To improve the speed of learning under an unknown environment, a distributed Q-leaming 

network approach is proposed. As a substantial extension of the Bellman inference network, the 

2-leaming network realizes the architecture of parallel learning and optimization simultaneously. 

It has been shown a highly efficient approach in solving on-line reinforcement learning problem. 

W e found that the g-leaming network has been greatly improved and outperformed the 

conventional Q-leaming in term of learning speed and adaptation to distributed environment. In 

addition, we studied the Field Programmable Gate Array (FPGA) implementation of the Q-

leaming network. Two approaches, distributed registering and BRAM-based, are found for 

dedicating the FPGAs resources for different applications, such as high speed and problems of 

high dimension. 
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Chapter 7 

Summary 
W e proposed a hybrid GA-DP approach to solve the computational intensive equivalence set 

search problem. The idea is to convert a searching problem to an optimization problem by 

considering the equivalence set criterion as the heuristic fitness measure in genetic algorithm. 

W e found that the hybrid approach is a more efficient method to locate the equivalence set of 

genes from a large genetic network, especially when searching small equivalence set from large 

genetic network. W e also offer an efficient FPGAs implementation, based on the Xilinx F P G A 

prototyping board. The F P G A system can speed-up the computation. Over thousand times 

acceleration could be achieved over software approach (Lam and Mak 2002). The hybrid GA-DP 

paradigm would benefit and greatly enhance the computational efficiency of the equivalence sets 

genes searching and help the development of large-scale genetic network and genetic network 

dynamics. 

Evaluation of a given phylogenetic tree based on the maximum-likelihood criterion is 

computational intensive. It is also challenging for FPGAs implementation. It is because, 1 •) fix-

point architecture in FPGAs fails to support the precision demanding probabilistic computation; 

2.) the recursive routine based on the tree data structure of the "pruning" algorithm is difficult to 

realize in FPGAs, as there is no such a F P G A equivalence data structure; 3.) basic computation 

such as logarithm and exponentiation, which is part of the maximum-likelihood computation, is a 

challenging task in F P G A implementation. 

To circumvent the limitations mentioned above, we, firstly, proposed a simplified floating 

point architecture based on fixed-point arithmetic. The new architecture could dedicatedly 

support the probabilistic computation up to 16 significant figures while maintained economic 

hardware area. Secondly, we developed a recursive architecture based on the "stack" scheme. 

The recursive architecture supported the realization of the parallel maximum-likelihood 
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evaluation algorithm. Lastly, we studied the implementation of logarithm and exponentiation 

using the factoring approach; this turned out to be a hardware area and computational speed 

efficient approach. The FPGA-based maximum-likelihood hardware showed significant speed-

up, from 3Ox to lOOx, comparing to software implementation (Mak and Lam 2004; Mak and 

Lam 2004a.). 

The FPGA-based system provides significant speed-up in the maximum-likelihood phylogeny 

evaluation. It can be regarded as a coprocessor in accelerating the phylogenetic tree evaluation 

and the microprocessor is dedicated for tree topology searching. However, there is a 

communication cost between the software and hardware. This might affect the speed-up ratio. 

The latency in communication is technology dependent. In (Mak and Lam 2003), we have shown 

that using H W / S W (Hardware/Software) codesign for G A M L implementation can provide 

speedup over software implementation. The H W / S W approach is benefited from high 

performance hardware and the flexibility of software. In our preliminary design, the G A M L is 

divided into two parts: the genetic algorithm (excluding the fitness evaluation) and the tree 

topology evaluation. Since the tree evaluation process is repeated extensively, the overall G A M L 

runtime is reduced tremendously. It is also shown that our H W / S W system can scale up for real 

applications. 

In (Mak and Lam 2004), the H W / S W co-design system has been extended to a more powerful 

embedded computing platform. In this platform, a microprocessor is immersed into F P G A fabric 

for realizing an effective environment for H W / S W co-design implementation. Significant 

improvements in data transmission between hardware and software and higher clock frequency 

of F P G A have been realized when compared to the parallel port interface in (Mak and Lam 

2003). 

An FPGA-based architecture for the numerical computation of N M D A and non-NMDA 

receptors activities and the resultant synaptic plasticity has been presented. The accuracy of the 

F P G A realization is comparable to software implementations and yet it operates at a much higher 

speeds. Additionally, the programmability of the F P G A system allows it to prototype analog 

circuit designs with a much shorter design cycle. Therefore, F P G A technology can be used to 

fill the gaps between software and hardware simulations. This technology can potentially be used 

as a tool suitable for dynamic clamp experiments, or to control neuro-prosthetic devices for 
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chronic replacement of damaged neurons in central regions of the brain (Mak, Rachmouth et al. 

2005). 

W e describes a novel connectionist approach for mapping the value iteration algorithm to a 

continuous-time inference network solving the dynamic programming in the continuous-time 

domain. Some of the limitations for the conventional heuristic search techniques, such as 

increased inefficiency for problem of larger scale, and the discrete time asynchronous distributed 

approach with requirement for the synchronization of control flags between processors, 

exponentially increasing of computational loads when discount factor approaches one, have been 

effectively overcome. Numerical simulations have been used to demonstrate the salient features 

of such type of continuous-time inference network, for which fully-analog parallel 

implementation can be made arbitrarily fast and its required computational time is practically 

independent of problem size. This opens up the possibility for future realization of this class of 

optimization and learning circuits for real-time decision making applications, such as rover path 

planning and trajectory design for U A V s for surveillance mission. 

Previous work on FPGAs implementation for shortest path problem using the Inference 

network ravels the high performance parallel architecture (Ng, Mak et al. 2003). W e also derived 

a discrete-time version of the inference network that the network can be well mapped to FPGAs 

for solving dynamic programming. 

To improve the speed of learning under an unknown environment, a distributed g-leaming 

network approach is proposed. As a substantial extension of the Bellman inference network, the 

g-leaming network realizes the architecture of parallel learning and optimization simultaneously. 

It has been shown a highly efficient approach in solving on-line reinforcement learning problem. 

W e found that the g-learning network has been greatly improved and outperformed the 

conventional g-leaming in term of learning speed and adaptation to distributed environment. In 

addition, we studied the FPGAs implementation of the g-leaming network. Two approaches, 

distributed registering and BRAM-based, are found for dedicating the FPGAs resources for 

different applications, such as high speed and problems of high dimension. 
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Appendix A 

Simplified Floating-Point Arithmetic 

For any real positive number A, which can be represented as the simplified floating-point 

based on the fixed-point architecture, that A = A'x 2_〃 where A，and R ‘ are represented in fixed-

point. Thus R，(exponent) and 乂’ 二 J] 二以/.2一' (mantissa), where at and r, is 

either zero or one and m is the word length. In addition, the number A is normalized that A ‘ is 

always a number between 0.5 and 1. The implementation of multiplying two numbers is as 

follow: 

'[Ax if/X >0.5 (A.l) 
二 < 

(yi. X 政 X 2). , otherwise 

where the number in the blanket is the mantissa and the superscripts are the exponent. The 

mantissa of the product A，xB' will be within the range of 0.25 and I, as A and B were 

normalized. Simple logic to detect whether the product is larger than 0.5 is required. 

In addition operation, assumed that the input number is normalized: 

A + B = A''2-'+B'-2-' 

(A'. 2-1 + B'. 2 ) . 2-奸 1, if overflow occurs (A.2) 
= < 

( / +政 . 2 -卞 2 、 otherwise 

where 15 |<| /1 and overflow occurs if A'+B ’. 2—出 > 1. The mantissa B，is shifted in order to have 

the same exponent as A，. 
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Appendix B 

FPGA Implementation for Logarithm, 

Exponentiation, and Division 

B.l Introduction 
Evaluation of basic functions, such as logarithm logJf, exponentiation e and division YIX are 

in great demand in many application of the Field Programmable Gate Array (FPGA) system 

design, such as computer 3D graphics, digital signal processing (DSP), scientific computation 

and biomedical signal processing (Constantinides et al. 2004). Architecture for basic function 

evaluation becomes a critical issue, as design trade-off landscape in digital hardware is generally 

more complicated than traditional software approach. Because of the limited hardware resources, 

hardware system design usually comprises multiple design objectives, such as hardware area, 

memory and power consumption minimization. In contrast, optimization of the computational 

speed and accuracy appears to be critical in software approach, of which memory and power is 

not a critical concern. 

Since F P G A allows flexible allocation of on-chip hardware resources, such as Block-Random-

access-memory ( B R A M ) and logic gates, approach or architecture for basic function evaluation 

permits flexible trade-off on hardware area, computational time and accuracy are highly 

preferred and in great demand for the optimization of the multiple objectives in FPGA system 

design. 

Traditional software routines provide accurate results in elementary function computations 

given enough time for iterations. For example, the shift-and-add method employs only the 

addition and shift operations (i.e. multiplications by a power of the radix of the number system 

used) that slowly converges to the desired approximated solution (Lugish 1970; Chen 1972; 
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Muller 1985; C. Chen 2000). For example, Coordinate Rotation Digital Computer (CORDIC) 

iterative solutions for trigonometric and other transcendental functions that use only shifts and 

adds to perform. The trigonometric functions are based on vector rotations, while other function 

such as square root are implemented using an incremental expression of the desired function 

(Andraka 1998). C O R D I C generally produce one additional bit of accuracy for each iteration. 

The other example is the multiplicative/additive normalization, which has been proposed to 

compute natural exponential function (Chen 1972). In additive normalization for evaluating the 

e', input operand Xo=X is normalized to zero by successively subtracting the yth normalization 

term log(l+5yr") from the yth remaining term Xj. In each step, the methods also evaluates the yth 

partial result term ej=ej{\+Sjf̂ ) that is the partial result of the exponential function with accuracy 

up to f j . Suppose the base r equals to two, the evaluation for the yth partial result would be 

simply addition and shifting. Similar idea is used for the multiplicative normalization to compute 

the logarithm. But the input operant would be normalized to one with multiplying the 

normalization tern {l+s/^) while the partial result term is evaluated by subtracting the term 

log(l+5/r") is theyth operation. 

Alternatively, table based approach provides faster computation with the approximate or 

exact solution directly looked up from the pre-computed table stored in Read-only-memory 

(ROM) or Random-access-memory (RAM) (D. DasSama 1994; Takagi 1995; Villalba 2000). 

However, the R O M / R A M space increases exponentially with the word length or number of 

accurate bits. While interpolation techniques with table-driven algorithm based on an enhanced 

minimax quadratic computation reduces the table size in single-precision floating-point format (J. 

Pineiro 2004; J. Pineiro 2005). However these routines generally numerical intensive requires 

high precision multiplier, which consumes a lot of hardware resources in FPGA. Though a very 

high precision can be obtained, the hardware resources hungry algorithm make the 

implementation not suitable (Kostopoulos 1991). 

B.2 Approximation Scheme 

B.2.1 Logarithm 
Multiplicative normalization has been used for reciprocal, for division and for logarithm. In all 

cases, there is a sequence that converges towards one, and this controls the convergence of 
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another sequence towards the result linearly (Milos D. Ercegovac 2003). 

The iterative algorithm consists of determining a sequence f.n such that the sequence y.n-

converges to one, where 

(B . i ) 

where we set y.o=X and 

+ (B.2) 

where r is the radix of the algorithm and s.n. = s.o.,s.i.,...,s.m.i is a sequence that controls the 

multiplication of factor fj.. If we define s. e {0,1},/ = 1,2,...,«，then s.i. is regarded as a factor 

selection variable controlling the multiplication of factor fj.. Note that with careful selection of 5./, 

the multiplicative normalization produces a continued product representation of the reciprocal of 

X, that is 

去 尸 (B.3) 
^ 7=1 j=\ 

where this normalization can be used to produce an approximation of the reciprocal function. 

With little modification on Eq.(B.3), we can approximate the logarithm values. Suppose we take 

logarithm on Eq(B.3), such that it becomes 

log Z « - X log fj = log(l + ) (B.4) 
7=1 7=1 

However, n iterations are required for the multiplicative normalization converging to a solution 

with error less than log(l+2"). For given available of larger memory storage, that tradeoff 

between computational time and memory consumption is feasible. 

B.2.1.1 Integrate Direct Table Look-up and Computation 

Suppose for taking the logarithm of a number X, which can be written as X=l+b+c，where b>c. 

The term b and c can be expressed as a fixed point representation with binary number x/ equals 

to either zero or one. Thus we have b= O.x.ox.ijc.2.…x.k-i. and c= 0.00…Ox.k...x.n. In other words, b 
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can be represented by k-h\X with all bits are fractional bits. Then the logarithm of X can be 

expressed as the sum of two terms, 

log(l + b + c) = log(l + b) + log(l + — ) (B.5) 
\ + b 

The first term log(l+Z?) can be exactly evaluated by Look-Up-Table of k-h\i address and w-bit 

word length. W e denote the L U T by F{w.k) = log(Wvt), w". is any input number with /c-bit 

representation. The results from the table look-up can be directly fed into the multiplicative 

normalization to approximate the function for the remaining term. 

Since the logarithm of 少 has been changed to log(l + c/(l + Z?)), the original formulation of 

normalization is not applicable. It is difficult to evaluate the input value, there is a division 

operation involved in the expression log(l + c/(l + b)). But the function approximation can be 

modified, such that l + c/(l + Z)) is multiplied by a sequence of factors with converging to one as 

follow 

1 , L I ^ m m 

丄十D十c ) — 1 , if(i +办+ +〜2—勺—1 + (B.6) 
1 +办今 i j=T 

m m 
such that + ̂  + (1 + 5.2-0^(1 + ̂ ) and + + + — The 

j=k j=k 

algorithm is as follows. W e set the initial inputyo = 1+办andxo. = log(l+Z?) = F{\^b). 

for j from kiom 

_J0, if J；. •(l + 2-O-(l + Z?)>0 

j [l, otherwise 

where/, 二 1 + 力. 

〜+i=x厂 log(l +〜.2-") 

end 

B.2.2 Exponentiation 
Additive normalization is used for exponentiation approximation. Similar to the method to 

compute logarithm, exponential is approximated by the product of a sequences. Note that the 
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exponential is with base 2 in our discussion. The method is applicable for other baseA. In this 

case, the input value Z is converging to zero by adding a sequence of -fi., as follows 

X - f j j ->0, f \ f . = n ( l +〜2-") —2义 （B.7) 
7=1 7=1 7=1 

The exponential value is a product of/i. 

B.2.2.1 Integrate Direct Table Look-up and Computation 

Unlike the method on computing the logarithm, the hybrid approach is to partition the 

exponential function into two product terms. The first term consists of the first k bit of the 

exponential X, and the second term consists of the remaining bits, such that X = b + c, where 

b=0.x0xix.2,..”x々 -i and c 二 0.00,...fix.kx.k+ix.k+i,• • • ̂ n. Therefore we can look up the exponential 

value of the first term with k bit from a table. A table of 2,̂. depth and m-bit word length can be 

designed for the function G{X) = 2^-1 that the value will be all less than one. Since evaluation of 

exponential of X has been changed to the evaluation of the 2⑶。。¥“•〜+2” ’％，the original 

formulation of normalization is not applicable. Thus we can set the initial input y.o. = b and xq.= 
G{b)+\. 

for j from kiom 

0, if>, - log(l + 2 " ) < 0 

s • — \ 
•‘ [1, otherwise 

= - f j , where /, = 1 + Sj 1:丨 

end 

B.2.3 Division 
Multiplicative normalization is used for approximating the division YIX, Reciprocal is a special 

case of division that Y equals to one. The approximation formulation has been shown in 

Eq.(B.3). W e now consider the hybrid solution with considering the first 众-bit of X is a table 

A The other common bases are e, 10, 8, etc 
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look-up instead of computation. 

Suppose for taking the division YIX, that Xcan be written as X=\+b+c, where b>c. The term b 

and c can be expressed as a fixed point representation with binary number x, equals to either zero 

or one. Thus we have b= Ojc.ox.ix.2..,,x‘k-i. and c= O.OO...Ox.k...x.n.. In other words, b can be 

represented by A:-bit with all bits are fractional bits. Then the division of X can be expressed as 

the product of two terms, 

(B.8) 
X l + + c \ + b l + + c 

The first term 1/(1+̂ ?) can be directly by Look-Up-Table of k-h\t address and m-bit word 

length. W e denote the L U T by H{w.k) = l/(l+w.yt.), w.k. is any input number with 々 -bit 

representation. The results from the table look-up can be directly fed into the multiplicative 

normalization to approximate the function for the remaining term. 

Since the division been changed to ̂  (1 +列，the original formulation of normalization is not 
1 + b + c 

applicable. Similar to the method used in the logarithm, the function approximation can be 

modified, such that 

1 丄 m 1 m 

Thus we set the initial inputyo = and x。= YxH{\ + b) • 

for j from kXom 

'0, i f > , . ( l + 2 — + 
j j^. Otherwise 

、 川 w h e r e 力 二 1 + 力. 

end 
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Appendix C 

Analog VLSI Implementation 

In a standard-IC implementation of the binary relation inference network (Lam and Tong 

1997), it was shown that it was possible to implement the inference network with analog 

processing units. However, with practical problems that involve large number of nodes, this 

implementation would have problems in building a network with reasonable size. The simple 

computations involved in the units and the regular interconnection in the network are very 

suitable for a VLSI implementation. The following describe a VLSI design in solving M D P s 

Bellman optimization problems with binary relation inference network. 

C.l Site Function 

In the last few decades, the vast majority of analog circuits have used voltages to represent 

and process relevant signals. However, recently, current-mode signal processing circuit, in 

which signals and state variables are represented by currents rather than voltages (Toumazou, 

Lidgey et al. 1990), have shown advantages over their voltage-mode counterparts. Their 

advantages include higher bandwidth, higher dynamic range, and they are more amenable to 

lower power suppliers (Liu, Kramer et al. 2002). A number of possible current-mode 

configurations are feasible to define the arithmetic operations in the site function describe in 

Eq. 1.8. As signal is presented in the form of current, they can be added by simply 

connecting them together. However, analog multiplication is still a challenging subject (Han 

and Edgar 1998), as noise and low bandwidth often diminish the performance of the 

multiplier. 
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C.1.1 A multiplication cell 

The Gilbert multiplier cell (Gilbert 1968) has been the most popular multiplier circuit for 

the past three decades. Taking advantages of the current-mode approach, the original voltage-

mode design has been modified and several current-mode forms multiplier cell (or Gilbert 

cell) emerge (Toumazou, Lidgey et al. 1990). In line with Gilbert's work, Chan et. al, 

proposed a simple layout circuit with high dynamic range to achieve the multiplication 

function. 

中 i x 2 (j),.’•工 1 (j)i2 

I x l 

I 13202 I H03I0： I 13X02 J I lll)3Jl02 ^ 1)03x02 � [_ 8031102 

u ^ u 
is(l)‘.. 工 y 吟 

Figure C.l. Four-quadrant current-mode multiplier cell (Chan, Ling et al. 1995) 

Fig. C.l illustrate the architecture of the multiplier cell The relationships for the important 

signals /xl, 1x2, Is, Iyljy2,11 and 12 are described as 

(Iyl-fy2XM-Ix2) 
I � - h 二 ^ (。1) 

Is = (1x1 + 1x2) (C.2) 

The multiplication performs by (1x1-1x2) and (Iyl-Iy2), where Ix and ly are current inputs. 

Is is another current-input which equals to the current Ix\+Ix2. To fit our inference network 

application, modification of the circuit is required that the circuit is expected able to perform 

simple two quadrant multiplication where Z = K-XY with Xand Y are inputs, K is constant. 

The modifier multiplier cell is shown in Fig. C.2. W e introduce a pair of current mirror Ql, 

which are mirroring currents Ixl and 1x2. The sum of the two currents from Ql is connected 

to Is, which is another current source equaling to the sum of Ixl and 1x2 as in Eq. C.2. The 
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other pair of current mirrors Q 2 are used for mirroring the output currents II and 12. Also 

current mirror Q3 is used to invert the current of 12 following Eq 1.1. 

1 x 1 1 x 2 Q 2 

I'J v̂'R' n I ̂ ^ ^^ ’ r n 厂 n _ 
I T L^ J)31f02 I j  

t" ？h •• ^ ^ — 

I N03X02 

f- 」广 1 二 Q 3 
• 门 T - X 

113X02 1 _ N 3W _ _ H03K02 N03lf02 」 [j]^‘0Jilf& I L ！ • J = ' 8 * 1 ' f \ " T ，， 4 — 

I_Jf i p t-Jf 1 f 們'(v：：̂ 丄〇U[ 
U [ J L J U 1-1 I r-l I V V V 去 , ^ ^ 

⑷ , ⑷ . 工 y 丄 ( p . - 工 y 邻 

Figure C.2. Current-mode multiplier cell 

Following the circuit in Fig. C.2, the multiplication can be easily realized with letting Iy2 

equals to zero. For simplicity, we let Ixl equals to 1. Consider z = x''y that equation C.l can 

be modified as 

Iout = Iy2'x' (C.3) 

where 

Iy\ = 0, 7x1 = 1 (C.4) 

\-Txl 
= (C.5) 

1 + 7x2 

Following Eq. C.5, the required input for 1x2 can be easily computed. For example, x =0.5, 

1x2 二 0.5/1.5 二 0.3333. 

Because of the current-mode design, a wider operation range can be found when 

comparing to the voltage-mode design (Chan, Ling et al. 1995). Response of the multiplier 

was shown in Figure 3 for between zero and one, which is range of probability values. A 

fairly good performance of the multiplication results is shown in the circuit response figure. It 

can be observed that the multiplication of two larger numbers would give a better accuracy. 
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Figure C.3 Current-mode multiplier cell response 

C.2 The Unit Function 

A minimum selecting function block is required in the unit output function. Several circuits 

are reported in finding the maximum or the minimum from a group of signals. In (Baturone, 

Huertas et al. 1994), a current-mode minimum circuit was reported. The circuit can be 

constructed by the addition and subtraction of replicas of two currents. Also they can be 

expressed as bounded-difference and algebraic sum (Sasaki, Inouk et al. 1990). 

Following the proposed minimum circuit in (Vittoz 1994), we construct the unit function, 

which is used to resolve the outputs from the site functions. The schematic is shown in Fig. 4. 

The circuit was shown with a large dynamic range and with best performance in the 0 - 17 

j^A (Ng and Lam 1996). The minimum circuit response was shown in Fig. 5. 
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Figure C.4 Current-mode minimum circuit 
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Figure C,5 Minimum circuit response to a sinusoid and constant inputs. The circuit delay can 

be found at around 80ns 

C.3 The Inference Network Computation 

Considered a 6-node shortest path problem in Fig. 6, in which node A represents the 

starting city and node F represents the destination. There are arc costs associating with each 

pair of states. Further, probability T(i, cuk, /，)=0.8 i f k = i' and T{i, cuk, i')=02 V. The 

semantic meaning is that one can reach the next city, which would be the desire city with 

probability 0.8, or one will arrive at some other random states with probability 0.2. The 
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problem is mapping to the BRIN computational network using C M O S transistor based on the 

description of unit construction discussion above. 

B D 

C 3 E 

Figure C.6 A typical 6-state M D P s problem, where state F is the regarded as destination and 

state A is regarded as start. There are arc costs associating with each pair of states. Further, 

probability T{i, a 汝，i >0.8 ifk=i' and T{i, a 汝，i >0.2 '•dk 丰 i，. The semantic meaning is that 

one can reach the next state, which would be the desire state with probability 0.8, or one will 

arrive at some other random states with probability 0.2 

The worst case propagation delay of a unit, r"”" is given by the sum of delays in the 

multiplication circuit and the minimum circuit. For a 6-node network, assuming that the 

discount factor ；I equals to 0.5, r画 i s 300ns. The results are shown in Fig. 7. The figure on 

left is the numerical simulation of the 6-node single-destination inference network based on 

solving first-order ordinal differential equation using Matlab. The figure on the right is the 

inference network circuit simulation for the same problem. The expected value for state A, B 

and C (referring to Fig. C.6) is [4.2, 4.8, 6.4], as shown in the left figure. In the circuit 

simulation, expected values are presented by current in the /jA operational range. The results 

obtained is [3.95 JUA , 4.83 JUA , 6.74 JUA ]. The results from the circuit simulation can accurate 

compute the optimal value based on the Bellman formulation, as it realized the Bellman value 

iteration, but using a continuous-time inference network approach. Both numerical simulation 

and the circuit simulation show a similar behavior of the typical network convergence to the 

desired optimal solution based on the Bellman criterion. 
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Figure C.7 (left) Numerical simulation of the 6-node single-destination inference network based on solving first-

order ordinal differential equation (right) Inference network circuit simulation for the same problem. The 

expected value for state A, B and C (referring to Fig. 6) is [4.2, 4.8, 6.4], as shown in the left figure. In the 

circuit simulation, expected values are presented by current in the JuA operational range. The results obtained 

is [3.95 JuA , 4.83 JuA , 6.74 juA ]. Both numerical simulation and the circuit simulation show a similar 

behavior of the typical network convergence to the desired optimal solution based on the Bellman criterion. 

From the numerical simulation in previous chapter, we know that the discount factor y 

affects the convergence rate of the network. From the inference network circuit, we confirm 

that the discount factor would affect the conference of the inference network as shown in the 

numerical simulation. Fig. C.8. A similar variations are shown when comparing to the 

numerical simulation in previous chapter. The network with larger discount factor y shown 

slower convergence rate (See y =0.9) while a smaller discount factor shows faster 

convergence rate (See 厂=0.1). 

10.0|j-| 
CO 

i t ^ ^ ^ 
CO 

0.0 200.0n 400.0n 

time (second) 
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Figure C.8 Root-mean-square (RMS) errors with averaged over all states are computed for the inference 

network with different discount factor y . Similar variations are shown when comparing to the numerical 

simulation in previous chapter. The network with larger discount factor / shown slower convergence rate (See 

/ =0.9) while a smaller discount factor shows faster convergence rate (See / =0.1). 

I 

C.4 Layout 
The analog VLSI design layout for a current mirror is shown figure C.9. In order to gain high 

symmetric for against the defect in the fabrication process, the current mirror consists of four 

transistors with organized in a square shape. 

_lllllllll_ BBBBHI 

丨 ； 編 , ： 

Figure C.9 Layout of a n-type current mirror 
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Figure C.IO Layout of a p-type current mirror 
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The two-input minimum operator consists of three n-type, p-type current mirror, and one 

p-type transistor. 

' * ‘ ' vcid' \  

* * * * ^ * 吹'«；!〈、'，：； * • • * 

. . . • . . 

: : : : _ _ _ _ _ _ 
. • • 早 - 』 — _ i _ i i 丨 lUii .III iiiWÎ ;. 

Z P liniwun 々 ： 

: _ 纏 糖 ： 

•mm mm：.咖:：： 
und 

Figure C.ll The two-input minimum operator 

For realizing the Binary Inference Network for shortest path problem, we have finish the 

layout of the circuit. For each computational unit, there are 34 transistors including both p-

type and n-type. The layout is shown in C.12. The inference network is arranged vertically 

with the metal on the right-hand side is ground. Each computational unit is corresponding to a 

node from the graph in Fig. 5.12. 
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Figure C.l2 Binary Relation Inference Network for 10-node Shortest Path Problem 

C.5 Fabrication 
The goal of this fabrication of the first stage of the design which will consist of a network 

of computational units that are connected in a network on a large die that has a larger number 

of pins, such as the 4.6mm x 4.6mm chip that contains 116 pins. This design will allow the 

user to build high performance computational systems for reinforcement learning and able to 

run large scale simulations of neural learning model in real time. 

The overall design consists of about 500 M O S transistors, the vast majority measuring 
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X 込jum each. The design includes larger transistors when used in critical nodes, such as 

current mirrors, to approximately 2800 in order to achieve better matching. Since the 

goal of this iteration is to show proof of principle, no attempt was made to optimize transistor 

sizes. There are also six capacitors, each of IpR The main system components and their size 
( 

is shown in table C.l 

The BRIN for reinforcement learning is composed two separate subsystems: a shortest path 

circuit, and a drug addiction modeling circuits. The shortest path circuit measures 500jum x 

900jum, or an area of OASmm^. At this size, a conservative estimate of 20 BRIN circuits can 

be fit on half of a 4.6mmx4.6mm die. This is already a very large network in computational 

terms, and can be useful in computing shortest path for 80 cities. 

Table C.l Main system component in the circuit fabrication 

Shortest path circuitQ-leaming circuit Whole system 

Number of 50 M O S 45 M O S -500 M O S 

transistors ipFx6 cap 6 Cap 

Size 240,000 260,000 1.5mm' 

The sum of the layout area of the learning subcircuits’ is 1 mm〗. This conservative 

estimate takes into account wiring to the pads. The entire reinforcement learning system is 

approximately 1.5mm . 

The circuits are laid out using Tanner L-Edit software in a hierarchal fashion. D R C 

checks are performed on each of the smaller subcircuits to make sure that no design rules are 

violated. The design is laid out inside an Pad frame generated by Tanner. The layout for the 

pad frame is shown in Figure C.13. There are five sub-circuits, current-mirrors, minimum 

circuit, Binary Inference Network for shortest path problem, Q-leaming network circuit and 

one of the units from the Q-leaming network, in the overall padframe layout sending for 

fabrication. In total, 
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Figure C.13 Overall design with the padframe 
C.5.1 Testing and Characterization 

The process chosen for fabrication is the A M I 1.5 process. The choice of this 

conservative process is to address the issue of circuit performance, which will invariably 

differ from simulation results. Analog designs are dependent on good matching for optimal 

performance. In this iteration, the most critical transistors of the design are made especially 

big so that the AL and AW are small, which will help the circuits operate near the ideal case 

of perfect matching. 

Simulations of the chip were performed on Tanner's T-spice and included the pad frame 

and other off chip circuits. All circuits have been optimized and seem to work fine. Important 
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layout techniques, such as the use of guard rings to protect against latchup, and optimal 

placement of critical nodes on the die, is implemented in this design as well. 

The layout plan for this chip requires a large number of pins in order to be able to build a 

functional network. Special care will be taken to protect critical nodes with guard rings, 

although it is recognized that the 1.5|i process is not optimized for guard ring design. Careful 

layout techniques will be used to separate digital and analog components, as well as design 

larger dimension mirrors and other circuit elements to achieve good matching. 
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