76 research outputs found

    Exponential Kleisli monoids as Eilenberg-Moore algebras

    Get PDF
    Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.Comment: v2: minor typos correcte

    Autonomous Pseudomonoids

    Get PDF
    In this dissertation we generalise the basic theory of Hopf algebras to the context of autonomous pseudomonoids in monoidal bicategories. Autonomous pseudomonoids were introduced in [13] as generalisations of both autonomous monoidal categories and Hopf algebras. Much of the theory of autonomous pseudomonoids developed in [13] was inspired by the example of autonomous (pro)monoidal enriched categories. The present thesis aims to further develop the theory with results inspired by Hopf algebra theory instead. We study three important results in Hopf algebra theory: the so-called "fundamental theorem of Hopf modules", the "Drinfel'd quantum double" and its relation with the centre of monoidal categories, and " Radford's formula". The basic result of this work is a general fundamental theorem of Hopf modules that establishes conditions equivalent to the existence of a left dualization. With this result as a base, we are able to construct the centre (defined in [83]) and the lax centre of an autonomous pseudomonoid as an Eilenberg-Moore construction for certain monad. As an application we show that the Drinfel'd double of a finite-dimensional Hopf algebra is equivalent to the centre of the associated pseudomonoid. The next piece of theory we develop is a general Radford's formula for autonomous map pseudomonoids formula in the case of a (coquasi) Hopf algebra. We also introduce "unimodular" autonomous pseudomonoids. In the last part of the dissertation we apply the general theory to enriched categories with a (chosen) class of (co)limits, with emphasis in the case of finite (co)limits. We construct tensor products of such categories by means of pseudo-commutative enriched monads (a slight generalisation of the pseudo-commutative 2-monads of [37], and showing that lax-idempotent 2-monads are pseudo-commutative. Finally we apply the general theory developed for pseudomonoids to deduce the main results of [27].This work was supported by an Internal Graduate Studentship, Trinity College, Cambridge

    An algebraic description of regular epimorphisms in topology

    Get PDF
    AbstractRecent work of Janelidze and Sobral on descent theory of finite topological spaces motivated our interest in ultrafilter descriptions of various classes of continuous maps. In earlier papers we presented such characterizations for triquotient maps and local homeomorphisms, here we do it for regular epimorphisms. To do so, we give an alternative description of the “obvious” reflection of pseudotopological spaces into topological spaces. Topological spaces, when presented as ultrafilter convergence structures, are examples of (T;V)-algebras introduced by Clementino and Tholen in “Metric, Topology and Multicategory—a Common Approach”. In this paper, we work in this general setting and hence obtain at once characterizations of regular epimorphisms between topological spaces, approach spaces and (generalized) metric spaces, as well as the characterization for preordered sets which motivated our work

    Geometry of abstraction in quantum computation

    Get PDF
    Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.Comment: 29 pages, 42 figures; Clifford Lectures 2008 (main speaker Samson Abramsky); this version fixes a pstricks problem in a diagra

    Categories and Types for Axiomatic Domain Theory

    Get PDF
    Submitted for the degree of Doctor of Philosophy, University of londo

    Healthiness Conditions for Predicate Transformers

    Get PDF
    AbstractThe behavior of a program can be modeled by describing how it transforms input states to output states, the state transformer semantics. Alternatively, for verification purposes one is interested in a 'predicate transformer semantics' which, for every condition on the output, yields the weakest precondition on the input that guarantees the desired property for the output.In the presence of computational effects like nondeterministic or probabilistic choice, a computation will be modeled by a map t:X→TY, where T is an appropriate computational monad. The corresponding predicate transformer assigns predicates on Y to predicates on X. One looks for necessary and, if possible, sufficient conditions (healthiness conditions) on predicate transformers that correspond to state transformers t:X→TY.In this paper we propose a framework for establishing healthiness conditions for predicate transformers. As far as the author knows, it fits to almost all situations in which healthiness conditions for predicate transformers have been worked out. It may serve as a guideline for finding new results; but it also shows quite narrow limitations
    • 

    corecore