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Ignacio López Franco

Trinity College

This dissertation is submitted for the degree of Doctor of Philosophy

August 2008



This dissertation is the result of my own work and includes nothing

which is the result of work done in collaboration.

This dissertation is not substantially the same as any that I have

submitted for a degree or diploma or any other qualification at any

other university.

Ignacio López Franco
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Summary

In this dissertation we generalise the basic theory of Hopf algebras to the

context of autonomous pseudomonoids in monoidal bicategories.

Autonomous pseudomonoids were introduced in [13] as generalisations of both

autonomous monoidal categories and Hopf algebras. Much of the theory of au-

tonomous pseudomonoids developed in [13] was inspired by the example of au-

tonomous (pro)monoidal enriched categories. The present thesis aims to further

develop the theory with results inspired by Hopf algebra theory instead. We

study three important results in Hopf algebra theory: the so-called fundamental

theorem of Hopf modules, the Drinfel’d or quantum double and its relation with

the centre of monoidal categories, and Radford’s formula.

The basic result of this work is a general fundamental theorem of Hopf mod-

ules that establishes conditions equivalent to the existence of a left dualization.

With this result as a base, we are able to construct the centre (defined in [83])

and the lax centre of an autonomous pseudomonoid as an Eilenberg-Moore con-

struction for certain monad. As an application we show that the Drinfel’d double

of a finite-dimensional Hopf algebra is equivalent to the centre of the associated

pseudomonoid. The next piece of theory we develop is a general Radford’s for-

mula for autonomous map pseudomonoids; this yields an explicit formula in the

case of a (coquasi) Hopf algebra. We also introduce unimodular autonomous

pseudomonoids.

In the last part of the dissertation we apply the general theory to enriched

categories with a (chosen) class of (co)limits, with emphasis in the case of finite

(co)limits. We construct tensor products of such categories by means of pseudo-

commutative enriched monads (a slight generalisation of the pseudo-commutative

2-monads of [37]), and showing that lax-idempotent 2-monads are pseudo-com-

mutative. Finally we apply the general theory developed for pseudomonoids to

deduce the main results of [27].
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Chapter 1

Introduction

The present dissertation intends to give a formal Hopf Algebra Theory, by which

we mean a theory general enough to cover the basic results on Hopf algebras and

its generalisations, independent of any linear structure, and from which the results

follow as easily as possible. By using concepts of Higher Dimensional Category

Theory, our abstract perspective allows to cover at the same time, the cases of

Hopf algebras and autonomous monoidal categories. The abstract categorical

language forces us to work conceptually, in contrast to the complex calculations

typical in Hopf Algebra Theory.

The relationship between Category Theory and Hopf Algebra Theory has

been well studied during the last twenty years. Roughly speaking, each piece

of structure that one adds to a coalgebra to obtain a Hopf algebra manifests as

extra structure on the category of correpresentations of the coalgebra. Conversely,

a series of results known as (Tannakian) reconstruction theorems allow us to

construct a Hopf algebra structure on a coalgebra from certain extra structure on

the category of correpresentations. To be a bit more explicit, if C is a coalgebra

and C = Comodf (C) its category of finite-dimensional correpresentations or

comodules: a bialgebra structure on C corresponds to a monoidal structure C ,

and a Hopf algebra structure on C corresponds to a left autonomous (sometimes

called left rigid) monoidal category. There are other corresponding structures, as

for example (co)quasi-triangular elements and braidings, but we are not concerned

with them here.

This correspondence between algebraic and categorical structures sometimes

make us think of Hopf algebras as “the same” as left autonomous categories. This

idea was formalised in [13] where Hopf algebras (and in fact the more general

coquasi-Hopf algebras) and left autonomous monoidal categories were shown to
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be particular instances of an abstract concept of left autonomous pseudomonoid.

Pseudomonoids were introduced in [16], and some of the theory surround-

ing them has been developed by several authors. See [66, 17], and [52] where

the more general pseudomonads are studied. Left autonomous pseudomonoids

are pseudomonoids equipped with some extra structure called a left dualization.

While most of the theory of pseudomonoids is a generalisation of constructions

classically performed on (pro)monoidal categories, we propose to enlarge this the-

ory with results inspired in Hopf Algebra Theory. The results about Hopf alge-

bras that concern us are: the so-called fundamental or structure theorem of Hopf

modules, the Drinfel’d or quantum double construction and Radford’s formula.

Hopf algebras and generalisations.

Hopf algebras feature in many branches of modern Mathematics, from the more

classical examples in Algebraic Geometry (rings of regular functions on an affine

algebraic group), Lie Theory (universal enveloping algebras) and compact groups

(algebras of representative functions), and Theoretical Physics (integrable sys-

tems and Yang-Baxter equation) to the most recent in Knot Theory, Combina-

torics and Category Theory.

Hopf Algebra Theory is not only the study of Hopf algebras but also of a

number of generalisations, such as (co)quasi-Hopf algebras [23], Hopf bialgebroids

[86, 87, 58] and weak Hopf algebras [8]. Of these generalisations, the first lies in

the scope of this work. This is because coquasi-Hopf algebras are left autono-

mous pseudomonoids in certain monoidal bicategory. All three results mentioned

below have been proved in the context of (co)quasi-Hopf algebras, generalising

the classical ones.

The three results about Hopf algebras that we generalise in this dissertation

are at the heart of Hopf Algebra Theory, and are related to one another. The most

basic of them is the fundamental theorem of Hopf modules, that translates the

existence of an antipode for a bialgebra into the existence of certain equivalence of

categories. One of the categories involved is the category of Hopf modules. This

result is of pivotal importance in the theory of finite-dimensional Hopf algebras

because it allow us to deduce the existence and uniqueness of integrals, the Hopf

algebra analogue of Haar measures. We prove a general version of the fundamental

theorem where we substitute Hopf algebras for left autonomous pseudomonoids

and the category of Hopf modules for an Eilenberg-Moore construction for a

special monad. Then we go on to study the internalisation of these constructions.

The second result, or rather construction, is the Drinfel’d or quantum double
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of a finite-dimensional Hopf algebra H. This is a new finite-dimensional Hopf

algebra D(H) constructed out of H (see [22] or [41]). In fact D(H) supports

more structure: it is quasi-triangular, also called almost-commutative or braided.

From the categorical point of view, the Drinfel’d double is interesting because

the category of D(H)-comodules Comod(D(H)) is monoidally equivalent to the

centre of the monoidal category Comod(H). The proof of this fact uses two inter-

mediate monoidal categories: the category of Yetter-Drinfel’d modules and the

category of two-sided Hopf modules. By using our general fundamental theorem

of Hopf modules as a basis, we construct centres of finite coquasi-Hopf algebras

(in the appropriate monoidal bicategory) and prove that D(H) is the centre of H.

Hence, D(H) is not only related to the centre construction, but it is the centre.

The third result is Radford’s formula for the fourth power of the antipode

of a finite-dimensional Hopf algebra. Although many of the basic examples of

Hopf algebras are involutive, i.e., the antipode has order 2, there are many oth-

ers where this is not true. Radford’s formula (originally proven in [71], but see

also [76] for another proof) tells us that although it does not have order 2, the

antipode is not completely wild either: its fourth power has a very simple for-

mula. In this formula intervene two special objects: the modular element and

the modular function, which arise from the theory of integrals (therefore the con-

nection with the fundamental theorem of Hopf modules). The first application

of Radford’s formula is the proof that the antipode of a finite-dimensional Hopf

algebra has finite order. We show a Radford-like isomorphism for autonomous

map pseudomonoids, that yields explicit formulas in the cases of finite quasi and

coquasi-Hopf algebras.

A newer approach to the study of Hopf algebras has been taken in [28, 29, 27]

where instead of working with algebraic structures in the classical sense, the au-

thors manipulate categories directly. In a sense, this is a step further in this (infor-

mal) identification between Hopf algebras and autonomous categories, where one

can forget about the algebra and work with a category that plays the role of the

category of representations of the algebra. In [29, 27] the categories that abstract

the properties of categories of representations of finite-dimensional quasi-Hopf

algebras are called finite tensor categories. When these categories are moreover

semisimple, they were called fusion categories [28]. In [27] “categorical” ana-

logues of the fundamental theorem of Hopf modules and of Radford’s formula

were proved. We are able to deduce these results from the theory we devel-

oped for pseudomonoids (in contrast with the techniques used in the mentioned
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papers), by using a tensor product of categories with finite (co)limits.

Monoidal categories.

Since their introduction in [62], monoidal categories have become a basic tool in

many areas of Mathematics, specially Representation Theory and Hopf Algebra

Theory, but also Knot Theory, (topological) quantum field theories and others.

An example of non trivial applications of monoidal categories to Algebraic Ge-

ometry can be found in [72, 20, 19]. The representations of most of the common

algebraic structures, such as finite groups, Lie algebras and (rational representa-

tions of) algebraic groups, form a monoidal category. Many times, these monoidal

categories come equipped with extra structure, such as braidings, duals, balanced

structures, and others; see [39].

In many examples, the tensor product of a monoidal category preserves finite

colimits in each variable (for example, whenever the category is monoidal closed),

or even finite limits (as in the case of the category of vector spaces). As a

tool to deal with these situations, [19] introduced a “tensor product” of abelian

categories, commonly known as Deligne’s tensor product of abelian categories.

Given two abelian categories A ,B, their tensor product is an abelian category

A ⊠B with a functor A ⊗B → A ⊠B right exact in each variable, universal in the

sense that any other functor right exact in each variable into an abelian category

C factors through A ⊠B uniquely up to isomorphism. This construction is used

in other works, for example in [59, 61, 60]. However, the definition of this tensor

product as it stands is unsatisfactory, because there is no proof of its existence in

general (at least none that I am aware of). In [19] the existence of the product

in certain special class of abelian categories is shown.

We propose to drop the requirement that all the categories be abelian in

Deligne’s definition of the tensor product, asking only for the existence of finite

colimits. In this way, we have at our disposal all the machinery of 2-monad theory

to construct the tensor product. Notably, our new tensor product coincides with

Deligne’s on the class of abelian categories he works with in [19].

Organisation.

The dissertation is organised in seven chapters, the first being the present intro-

duction. Chapters 2 to 4 constitute the theoretical core of this work and gen-

eralise to the context of pseudomonoids all three basic results on Hopf algebras

mentioned above in this introduction. Chapter 6 also provides theory, although

in another vein. The rest of the chapters are devoted to examples.
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Chapter 2 sets the foundations which all the rest of the work rests upon: a

generalised fundamental theorem of Hopf modules for map pseudomonoids, and

its internalisation.

Chapter 3 constructs centres and lax centres of autonomous map pseudomonoids

as an Eilenberg-Moore construction for certain a monad.

Chapter 4 proves a generalised Radford’s formula for autonomous map pseu-

domonoids, and then goes on to study unimodular pseudomonoids.

Once the basic theory is developed, Chapter 5 interprets our results in the

context of two important bicategories: the bicategory of V -modules V -Mod (also

called profunctors, distributors or bimodules), and the bicategory of comodules

in a monoidal braided or symmetric category Comod(V ). Examples of left au-

tonomous map pseudomonoids in the former are the left autonomous monoidal

V -categories, and in the latter coquasi-Hopf algebras. Applications to V -Mod in-

clude the proof of existence of lax centres in V -Mod of left autonomous monoidal

V -categories. In the case of Comod(V ) we show that the classical fundamental

theorem of Hopf modules is a particular case of our Chapter 2, that the Drinfel’d

double of a finite coquasi-Hopf algebra is its centre, and deduce Radford-like

formulas for quasi and coquasi-Hopf algebras.

Chapter 6 we construct monoidal structures on 2-categories of algebras and

pseudomorphisms for a 2-monad, including the 2-categories of V -categories with

finite (co)limits. We use an extension of the pseudo-commutative 2-monads of

Hyland-Power [37] to monads enriched in a monoidal 2-category. The connection

with categories with a class of (co)limits is provided by the proof that every

lax-idempotent (or KZ) 2-monad is pseudo-commutative.

Chapter 7 collects the consequences of the combination of the previous chapter

with the first three chapters. We deduce the main results of [27] from the general

theory; in particular we do not appeal to the Perron-Frobenius arguments used

in [27]. We also relate fusion categories with bicategorical properties, such as the

existence of certain adjoints.
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Chapter 2

Hopf modules and dualizations

In this chapter we make the first step towards our goal of extending the basic

theory of Hopf algebras to the context of autonomous pseudomonoids in monoidal

bicategories. We focus on the construction of Hopf modules and the fundamental

or structure theorem for Hopf modules.

Left autonomous pseudomonoids, introduced in [13], generalise not only left

autonomous (pro) monoidal enriched categories but also Hopf and (co)quasi-Hopf

algebras. In fact, this is the conceptual reason underlying the well-known fact

that the category of finite-dimensional (co)representations of a (co)quasi-Hopf

algebra is left autonomous.

Hopf modules for a bialgebra H were introduced in [55] in connection with

the integrals of H. In the cited paper, the authors prove the classical structure

theorem of Hopf modules, stating that every Hopf module over a Hopf algebra is,

in a specific way, free. This is the basic result that allows to prove the existence

and uniqueness of the integrals in a finite-dimensional Hopf algebra. Integrals, the

Hopf algebra analogue of Haar measures, are one of the more important tools in

the theory of finite Hopf algebras, making the structure theorem of Hopf modules

one of the fundamental results of this theory.

Generalisations of the above to the case of (co)quasi-Hopf algebras can be

found in [34, 75]. A coquasibialgebra H, although not associative in Vect, is an

associative algebra in the category Comod(H,H) of H-bicomodules and thus

we can consider the category of left H-modules in Comod(H,H). This is by

definition the category of H-Hopf modules. There is a monoidal functor from the

category of right H-comodules to the category of H-Hopf modules sending M to

the tensor product bicomodule H ⊗M , where M is considered as a trivial H-

comodule on the left. It is shown in [75] that when H is a coquasi-Hopf algebra
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this functor is an equivalence, and in a dual fashion, that a finite-dimensional

quasibialgebra is quasi-Hopf if and only if the module version of this functor is

an equivalence.

We prove that an analogous result holds if we replace coquasibialgebras by

map pseudomonoids (i.e., pseudomonoids whose multiplication and unit have a

right adjoint), Hopf modules by the Eilenberg-Moore construction for a certain

monad and coquasi-Hopf algebras by left autonomous map pseudomonoids. So, a

map pseudomonoid has a left dualization if and only if a generalised fundamental

theorem of Hopf modules holds. This is also shown to be equivalent to the

invertibility of certain special 2-cells. In our general setup no finiteness condition

is necessary. We take this as an indication that the concept of dualization is more

natural than the one of antipode.

When the monoidal bicategory involved is right closed, and in particular when

it is right autonomous, our generalisation of the category of Hopf modules can be

internalised. This internalisation, which we call a Hopf module construction for

the map pseudomonoid A, is an Eilenberg-Moore construction for certain monad

on the endo-hom object [A,A]. Naturally, this internalisation need not exist.

We study its existence by embedding a Gray monoid M into a Gray monoid

in which Hopf module constructions exist. This Gray monoid is the completion

of the 2-category M under Eilenberg-Moore objects EM(M ), described in [54].

We show that when M is a Gray monoid, right closed Gray monoid or right

autonomous Gray monoid the 2-category EM(M ) has the same structure. This

is accomplished by extending the 2-functor EM on 2-Cat to a homomorphism of

tricategories on Bicat. Left autonomous pseudomonoids A always have a Hopf

module construction, canonically equivalent to A itself.

We now describe the content of the chapter.

Section 2.1.1 provides the basic background on Gray monoids, pseudomonoids

and Kleisli bicategories necessary to develop the rest of the paper.

In Section 2.2 we introduce the Hopf modules for a map pseudomonoid A in a

monoidal bicategory M as the Eilenberg-Moore construction for a certain monad

in [M op,Cat], and explain what we mean by the theorem of Hopf modules.

Section 2.3 surveys some facts about lax actions and opmonoidal morphisms.

When the monad in the definition of Hopf modules is representable by a

monad t : [A,A] → [A,A] in M , we call an Eilenberg-Moore construction for it

a Hopf module construction for A. This is introduced in Section 2.4 along with

the proof that t is a opmonoidal monad.
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Section 2.5 studies the existence of Hopf module constructions by extending

the 2-functor EM : 2-Cat → 2-Cat to a homomorphism of tricategories Bicat →

Bicat.

In Section 2.6 we prove our main result: a map pseudomonoid A is left auto-

nomous if and only if the theorem of Hopf modules holds for A. Also, we use the

results of the preceding section to show that a map pseudomonoid is left autono-

mous if and only if it has a Hopf module construction of a particular form, relating

the problem of the existence of a dualization with a completeness problem.

2.1 Preliminaries

2.1.1 Monoidal bicategories and pseudomonoids

Recall that a Gray monoid [16] is a monoid in the monoidal category Gray. As

a category, Gray is just the category of 2-categories and 2-functors. However,

the monoidal structure we are interested in is not the one given by the cartesian

product. Indeed, Gray has a monoidal closed structure with internal homs given

by Ps(K ,L ), the 2-category of 2-functors K → L , pseudonatural transfor-

mations between them and modifications. The corresponding tensor product is

called the Gray tensor product of 2-categories. This tensor product was intro-

duced in [32, 33]; see also [31]. A monoid in Gray, also called a Gray monoid, is

the same as a one-object Gray-category in the sense of enriched category theory,

and therefore it can be thought of as a one-object tricategory, that is, a monoidal

bicategory (see [31]). By the coherence theorem in [31], any monoidal bicate-

gory is monoidally biequivalent (that is, triequivalent as a tricategory) to a Gray

monoid. This allows us to develop the general theory using Gray monoids instead

of general monoidal bicategories.

Our main examples of monoidal bicategories will be the bicategory of V -

modules V -Mod and the bicategory of comodules Comod(V ) in a monoidal

category V . See Examples 2.1 and 2.2.

We call 1-cells with right adjoints in a bicategory maps.

Let M be a Gray monoid and fix a map pseudomonoid (A, j, p) in M , that is,

a pseudomonoid whose unit j : I → A and multiplication p : A⊗A→ A are maps.

Recall from [16] that a pseudomonoid, in addition to the unit and multiplication,

is equipped with isomorphisms φ : p(p ⊗ A) ⇒ p(A ⊗ p), p(j ⊗ A) ⇒ 1A and

p(A ⊗ j) ⇒ 1A satisfying three axioms. These axioms ensure, as shown in [52],

that any 2-cell formed by pasting of tensor products of these isomorphisms, 1-cells

3



and pseudonaturality constraints of the Gray monoid is uniquely determined by

its domain and codomain 1-cells.

If (A, j, p) is a map pseudomonoid, then (A, j∗, p∗) is a pseudocomonoid, that

is, a pseudomonoid in the opposite Gray monoid. By definition the unit iso-

morphism (A ⊗ j∗)p∗ ∼= 1A of the pseudocomonoid (A, j∗, p∗) is the mate of the

constraint p(A⊗ j) ∼= 1A, and thus the following equality holds.

A

p∗ ��>
>>

>>
>>

∼=

A
1⊗j

��>
>>

>>
>>

A2

1⊗j∗
���

@@���
�� ��
��

A2

=

A2
�� ��
��p

��>
>>

>>
>>

A2

A

1⊗j
@@�������
∼=

A

p∗

@@�������
(2.1)

We mention this because it will be useful in Section 2.6.

Now we briefly mention the three main examples that concern us in this thesis.

Example 2.1 (The bicategory of V -modules). One of our main examples of mo-

noidal bicategory will be the bicategory of V -modules V -Mod. Some authors

call V -modules profunctors or distributors. Here V is a cocomplete monoidal

closed category. The degree of completeness required from V varies between pos-

sible descriptions of V -Mod. See [6, 78], [77, 81], [16, Section7]. We will use

the presentation of V -Mod where V is complete, objects are (small) enriched

V -categories and homs V -Mod(A ,B) are the categories [A op ⊗ B,V ]0 of V -

functors and V -natural transformations. The monoidal structure on V -Mod is

induced by the tensor product of V . A pseudomonoid in V -Mod is a promonoidal

category [11, 12].

Details can be found in Section 5.1.

Example 2.2 (The bicategory of comodules). Our second main example of monoi-

dal bicategory will be the bicategory of comodules in a braided monoidal category

V , denoted by Comod(V ). Objects are comonoids in V , 1-cells are bicomod-

ules and 2-cells bicomodule morphisms. This bicategory is dual to Example 2.1

in a sense that can be made precise. For details see Section 5.2, where it is also

explained how (coquasi) bialgebras can be seen as pseudomonoids in Comod(V ).

Example 2.3 (Algebras for a pseudo-commutative 2-monad). The relationship

between monoidal closed categories and commutative monads has been long es-

tablished in the series of papers [48, 49, 50]. A two-dimensional analogue of the

notion of commutative monad was introduced in [37]: the notion of a pseudo-

commutative 2-monad. For a pseudo-commutative 2-monad T on Cat, the 2-

category T -Alg of T -algebras, pseudomorphisms of T -algebras and appropriate
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2-cells is pseudo-closed. Pseudo-closedness is a higher dimensional analogue of

the notion of closedness in a category. However, it is a “semi-strict” version

of closedness, in the sense that it tries to be as strict as possible and only as

“pseudo” or “weak” as it is necessary to cover the interesting examples. Under

mild conditions on T (as such the existence of a rank for T ), one can construct a

(weak or pseudo) monoidal 2-category structure on T -Alg.

In Chapter 6 we extend these results to monads enriched in a (strict) monoidal

2-category, and apply the construction of the tensor product to the (V -Cat)-

monads whose algebras are categories with chosen (co)limits of certain class.

In Section 2.3 and subsequent sections we shall work with closed Gray monoids.

A Gray monoid M is said to be right closed when equipped with a pseudofunctor

[−,−] : M op × M → M and equivalences

M (X ⊗ Y, Z) ≃ M (Y, [X,Z]) (2.2)

pseudonatural in X,Y, Z, If one allows choice, this definition is equivalent to

the one given in [16]: an object [X,Z] for each pair of objects X,Y of M with

equivalences (2.2) pseudonatural in Y .

2.1.2 Kleisli bicategories

In order to give a concise and conceptual definition of the Hopf modules in the

next section, we shall use the Kleisli bicategory of a pseudocomonad. One can

define a pseudomonad on the 2-category K as a pseudomonoid in the monoidal

2-category Hom(K ,K ) of pseudofunctors, pseudonatural transformations and

modifications, where tensor product is given by composition. A pseudocomonad

is a pseudocomonoid in the same monoidal 2-category. As before, if T is a pseu-

domonad with unit η : 1 ⇒ T and multiplication µ : T 2 ⇒ T which are maps,

then T together with η∗ and µ∗ have a canonical structure of a pseudocomonad

on K .

A lax T -algebra is an arrow a : TA→ A in K equipped with 2-cells a(Ta) ⇒

aµA : T 2A → A and 1A → aηA satisfying the axioms in [65, p. 39] and [52], but

without the requirement of the invertibility of these 2-cells.

Let G be a pseudocomonad on the 2-category K , and denote its comulti-

plication and counit by δ and ǫ, respectively. The Kleisli bicategory Kl(G) of

K has the same objects as K , and hom-categories Kl(G)(X,Y ) = K (GX,Y ).

We denote the 1-cells of Kl(G) by f : X 9 Y . The composition of this f with

5



g : Y 9 Z is given by g(Gf)δX : GX → Z, while the identity of the object X is

εX : GX → X.

The following is a generalisation of part of [36, Prop. 4.6].

Lemma 2.4. Let T : K → K be a pseudomonad whose unit η and multiplication

µ are maps. There exists a bijection between the following structures on an arrow

a : TA → A in K : structures of a lax T -algebra and structures of a monad in

Kl(T ). Furthermore, there exists a bijection between the following structures on

a 1-cell h : TX → A: structures of a morphism of lax algebras from (TX, µX) to

(A, a) and structures of an algebra h : X 9 A for the monad a : A 9 A in Kl(T ).

A structure of a monad in Kl(T ) on a : A 9 A is given by a pair of 2-cells

a(Ta)µ∗A ⇒ a and η∗A ⇒ a in K . The bijection above is given by

T 2A
Ta //

µA

��
������

TA

a

��
TA a

// A

7→

T 2A
Ta //

µA

��
������

TA

a

��
TA

µ∗A
<<xxxxxxxx

�� ��
��

TA a
// A

2.2 The theorem of Hopf modules

If (A, j, p) is a map pseudomonoid in the Gray monoid M , the 2-functor A⊗− has

the structure of a pseudomonad with unit j⊗X : X → A⊗X and multiplication

p ⊗ X : A ⊗ A ⊗ X → A ⊗ X, and also the structure of a pseudocomonad

with counit j∗ ⊗ X and comultiplication p∗ ⊗ X. The associativity constraint

p(A⊗ p) ⇒ p(p⊗A) endows p : A⊗A→ A with the structure of a lax (A⊗−)-

algebra, and hence by Lemma 2.4, with the structure of a monad p : A 9 A in

the Kleisli bicategory Kl(A⊗−).

Definition 2.1. Consider the pseudofunctor Kl(A ⊗ −) → Hom(M op,Cat)

induced by the identity on objects pseudofunctor M → Kl(A⊗−). We will denote

by θ the monad which is the image of the monad p : A 9 A in Kl(A⊗−). Hence,

θ is a monad on the 2-functor M (A⊗−, A) in the 2-category Hom(M op,Cat)

of pseudofunctors, pseudonatural transformations and modifications.

Explicitly, θX(f) = p(A ⊗ f)(p∗ ⊗X) and the multiplication and unit of the

monad, depicted in (2.3) and (2.4), are induced by the counits of the adjunctions
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p ⊣ p∗ and j ⊣ j∗ respectively.

A⊗X
p∗⊗1 //

p∗⊗1 &&LLLLLLLLLL A2 ⊗X
1⊗p∗⊗1// A3 ⊗X

A2⊗f //

p⊗1⊗1
III

I

$$II
II

A3
1⊗p //

p⊗1
DD

D

!!D
DD

A2
p // A

A2 ⊗X

p∗⊗1⊗1qqqq

88qqqq
�� ��
��

φ∗∼=

A2
1⊗f

//

c ∼=

A2

p

=={{{{{{{{
∼= (2.3)

A⊗X

∼= c

f //

j⊗1⊗1
KKK

K

%%KK
KK

A

j⊗1
HHH

H

$$HH
HH

1

  
∼=

A⊗X

1
00

∼=

p∗⊗1
// A2 ⊗X

j∗⊗1⊗1ssss

99ssss
�� ��
��

A2 ⊗X
1⊗f

// A2
p

// A

(2.4)

Definition 2.2. Our generalisation of the category of Hopf modules is the Eilen-

berg-Moore construction υ : M (A⊗−, A)θ → M (A⊗−, A) for the monad θ in

Hom(M op,Cat). We denote by ϕ the left adjoint of υ. Another way of viewing

M (A⊗−, A)θ is as the composition of the pseudofunctor

Kl(A⊗−)(−, A)Kl(A⊗−)(−,p) : Kl(A⊗−)op → Cat

with the identity on objects pseudofunctor M op → Kl(A⊗−)op.

See Example 2.8 for an explanation of why this construction generalises the

usual Hopf modules for a coquasibialgebra.

Observation 2.5. There is another equivalent way of defining Hopf modules.

The category M (A,A) has a convolution monoidal structure, with tensor product

f ∗ g = p(A ⊗ g)(f ⊗ A)p∗ and unit jj∗. This monoidal category acts on the

pseudofunctor M (A ⊗ −, A) : M op → Cat by sending h : A ⊗ X → A to

p(A⊗h)(p∗⊗X), in the sense that this defines a monoidal functor from M (A,A)

to Hom(M op,Cat)(M (A ⊗ −, A),M (A ⊗ −, A)). Now, 1A : A → A has a

canonical structure of a monoid in M (A,A), with multiplication pp∗ ⇒ 1 and

jj∗ ⇒ 1 the respective counits of the adjunctions. Hence 1A defines via the action

described above a monad on M (A ⊗ −, A) in Hom(M op,Cat). This monad is

the monad θ of Definition 2.1.

Definition 2.3. We say that the theorem of Hopf modules holds for a map pseu-

domonoid A if the pseudonatural transformation λ given by

M (−, A)
M (j∗⊗−,A)
−−−−−−−→ M (A⊗−, A)

ϕ
−→ M (A⊗−, A)θ

is an equivalence.
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Observation 2.6. The composition υXλX = θXM (j∗ ⊗ X,A) : M (X,A) →

M (A⊗X,A) is, up to isomorphism, the functor given by

(X
f
−→ A) 7−→ (A⊗X

1⊗f
−−→ A⊗A

p
−→ A).

Recall that a 1-cell in a bicategory is fully faithful if it is a map and the unit

of the adjunction is an isomorphism.

Proposition 2.7. The pseudonatural transformation λ is fully faithful.

Proof. It is clear that λ has right adjoint M (j ⊗−, A)υ. By [38, Lemma 1.1.1],

the unit of the adjunction is an isomorphism if and only if the composition M (j⊗

−, A)υλ is isomorphic to the identity pseudonatural transformation. This is clear

from Observation 2.6, as we have isomorphisms p(A⊗f)(j⊗X) ∼= p(j⊗A)f ∼= f ,

natural in f : X → A.

Explicitly, the component corresponding to f : X → A of the unit of the

adjunction λ ⊣ M (j⊗−, A)υ is the pasting of 2-cells below (where the unlabelled

2-cells denote the obvious counits).

X

j⊗1

��

1

''�� ��
�� A⊗X

j⊗1⊗1
KKK

K

%%KK
KK

j∗⊗1
// X

f //

j⊗1
KKKK

%%KKKK∼=

A

j⊗1
GGG

G

##GG
GG

1

��
∼=∼=

A⊗X
p∗⊗1

//

1

00

∼=

A2 ⊗X

j∗⊗1⊗1ssss

99ssss
�� ��
��

A2 ⊗X
1⊗j∗⊗1

// A⊗X
1⊗f⊗1

// A2
p

// A

Example 2.8. We now explain why the Hopf modules for a map pseudomonoid

generalise the usual Hopf modules for coquasi-Hopf algebras. As we mentioned

in Example 2.2, a coquasibialgebra is a particular instance of a pseudomonoid in

Comon(V ) when V is the category of vector spaces. If C is a such a pseudomo-

noid with unit j and multiplication p, then (C, j∗, p∗) is a pseudomonoid in the

bicategory of comodules. We claim that the category Comod(V )(C,C)θI is the

category of Hopf modules considered in [74, 75].

The convolution monoidal structure on Comod(V )(C,C) is just the usual

tensor product of bicomodules. The monad θI is given by the action of 1C , which

is simply the regular bicomodule (C,∆2). Therefore the Comod(V )(C,C)θI is

the category of left modules for the monoid (C,∆2) within the monoidal category

of C-bicomodules. This is exactly the definition of the category of Hopf modules

given in [74] (actually, the formally dual definition) and [75].
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The functor λI sends a right C-comodule M to the free Hopf module C ⊗M .

The right adjoint to λ sends a Hopf module N to the right C-comodule of left

coinvariants coCN . This is easy to see since by the definition of the composition

in Comod(V ), precomposing with j∗ : I → C is exactly the same as taking left

coinvariants. In [74, 75] the faithfulness of λI is argued using the fact that the

functor (C ⊗ −) is exact when we work with vector spaces. We see that in fact

the fully faithfulness of λ follows formally from the definitions.

The following observation will be of use in Section 2.6.

Observation 2.9. Consider the modification υεϕ, where ε is the counit of the

adjunction λ ⊣ M (j ⊗−, A)υ as depicted below.

M (A⊗−, A)θ

1

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
υ // M (A⊗−, A)

M (j⊗−,A)//

������ ε

M (−, A)

M (j∗⊗−,A)
��

M (A⊗−, A)

ϕ
��

M (A⊗−, A)θ

Observe that M (A⊗X,A)θX is the closure under υX -split coequalizers of the full

subcategory determined by the image of the functor ϕX , and these coequalizers

are preserved by ϕXM (jj∗ ⊗ −, A)υX , since they become absolute coequalizers

after applying υX . It follows that εX is an isomorphism if and only if εXϕX is

an isomorphism. Using the fact that each υX is conservative, we deduce that ε

is an isomorphism if and only if υεϕ is so.

We finish the section by mentioning way of defining Hopf modules for a pseu-

domonoid whose unit and multiplication are not necessarily maps.

Observation 2.10. Consider the 2-category Lax-(A⊗−)-Alg of lax algebras for

the pseudomonad (A⊗−) on M , and the 2-functor

M op A⊗−
−−−→ Lax-(A⊗−)-Algop Lax-(A⊗−)-Alg(−,A)

−−−−−−−−−−−−−→ Cat. (2.5)

This 2-functor is exactly the 2-functor M (A⊗−, A)θ in Definition 2.2. This is so

because each Eilenberg-Moore category Kl(A⊗−)(X,A)Kl(A⊗−)(X,p) is isomorphic

to Lax-(A ⊗ −)-Alg(A ⊗ X,A), by Lemma 2.4. Hence, a Hopf module for A is

a morphism of lax (A ⊗ −)-algebras h : A ⊗X → A. This means h is equipped

with a 2-cell h̄ : p(A ⊗ h) ⇒ h(p ⊗ X) : A ⊗ A ⊗ X → A satisfying coherence

conditions.
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The functor λX : M (X,A) → Lax-(A ⊗ −)-Alg(A ⊗ X,A) sends a 1-cell f

to p(A ⊗ f) with the 2-cell p(A ⊗ p)(A ⊗ A ⊗ f) ∼= p(p ⊗ A)(A ⊗ A ⊗ f) ∼=

p(A ⊗ f)(p ⊗ X) induced by the pseudomonoid structure of A. In particular

λX(f) is a pseudomorphism between the pseudo (A ⊗ −)-algebras A ⊗ X and

A. Conversely, any such pseudomorphism is in the image of λX : if (h, h̄) is a

pseudomorphism, we have (h, h̄) ∼= λX(h(j ⊗ X)). It follows that, when A is a

map pseudomonoid, the theorem of Hopf modules hold for A if and only if every

lax morphism A ⊗ X → A is a pseudomorphism. This latter condition can be

taken as the definition of theorem of Hopf modules for arbitrary pseudomonoids.

2.3 Opmonoidal morphisms and oplax actions

In this section we spell out the relation between opmonoidal morphisms and

right oplax actions in a right closed Gray monoid. Everything in this section is

well-known, though we have not found the present formulation in the literature.

The case when the monoidal 2-category is strict and has certain completeness

conditions is studied in [47].

Let A be a pseudomonoid in M . Briefly, a right oplax action of A on an

object B is an oplax algebra for the pseudomonad − ⊗ A on M . This amounts

to a 1-cell h : B ⊗A→ B together with 2-cells

B ⊗A⊗A
h⊗1 //

1⊗p

��

B ⊗A

h

��
B ⊗A //

h

� �� �KSh2

A

B
1⊗j

{{ww
ww

ww
ww

w
1

��@
@@

@@
@@

B ⊗A //
h

� �� �KSh0

A

satisfying axioms dual to those in [65, p. 39] or [52] but without the invertibility

requirement on the 2-cells. A morphism of right oplax actions on B from h

to k : B ⊗ A → B is a 2-cell τ : h ⇒ k compatible with h2, k2 and h0, k0 in

the obvious sense. Right oplax actions of A on B and their morphisms form a

category OpactA(B) which comes equipped with a canonical forgetful functor to

M (B ⊗A,B).

For each Gray monoid M we have a 2-category Mon(M ) whose objects,

1-cells and 2-cells are respectively pseudomonoids in M , lax monoidal mor-

phisms and monoidal 2-cells. See for example [66] and references therein. Define

Opmon(M ) = Mon(M co)co. The objects of Opmon(M ) may be identified

with the pseudomonoids, the 1-cells, called opmonoidal morphisms, are 1-cells
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f : A→ B of M equipped with 2-cells

A⊗A
(B⊗f)(f⊗A) //

p

��

B ⊗B

p

��
A //

f

� �� �KSf2

B

I
j

����
��

��
�� j

��?
??

??
??

?

A //
f

� �� �KSf0

B

satisfying the obvious equations, and the 2-cells f ⇒ g are the 2-cells of M

satisfying compatibility conditions with f2, g2 and f0, g0.

Now suppose that M is a right closed Gray monoid in the sense of [16], that is,

there is a pseudofunctor [−,−] : M op×M → M and a pseudonatural equivalence

M (X ⊗ Y, Z) ≃ M (X, [Y, Z]). (2.6)

Equivalently, for each pair of objects Y , Z of M there is another one denoted

by [Y, Z] and an evaluation 1-cell evY,Z : Y ⊗ [Y, Z] → Z inducing (2.6). For

any object X of M , the internal hom [X,X] has a canonical structure of a

pseudomonoid; namely, there are composition and identity 1-cells comp : [X,X]⊗

[X,X] → [X,X] and id : I → [X,X] corresponding respectively to

X ⊗ [X,X] ⊗ [X,X]
ev⊗1
−−−→ X ⊗ [X,X]

ev
−→ X and X

1X−−→ X.

Example 2.11.

Proposition 2.12. For any pseudomonoid A and any object B, the closedness

equivalence M (B ⊗A,B) ≃ M (A, [B,B]) lifts to an equivalence

OpactA(B) ≃ Opmon(M )(A, [B,B]).

Moreover, under this equivalence pseudoactions correspond to pseudomonoidal

morphisms.

Using Proposition 2.12 one can easily establish the following facts.

Proposition 2.13. 1. For any map f : X → Y the 1-cell [f∗, f ] from [X,X]

to [Y, Y ] has a canonical structure of an opmonoidal morphism. If τ : f ⇒ g

is an invertible 2-cell then [(τ−1)∗, τ ] : [f∗, f ] ⇒ [g∗, g] is an invertible

monoidal 2-cell.

2. For any pair of objects X,Y of M , the 1-cell iYX : [X,X] → [Y ⊗X,Y ⊗X]

corresponding to Y ⊗ev : Y ⊗X⊗ [X,X] → Y ⊗X has a canonical structure
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of a strong monoidal morphism. Moreover, there are canonical monoidal

isomorphisms (iWY⊗X)(iYX) ∼= iW⊗Y
X .

3. For any map f : X → Z and any object Y there exists a canonical monoidal

isomorphism

[X,X]
iYX //

[f∗,f ]
��

∼=

[Y ⊗X,Y ⊗X]

[1⊗f∗,1⊗f ]
��

[Z,Z]
iYZ

// [Y ⊗ Z, Y ⊗ Z]

(2.7)

4. Given a map f : Y → Z and an object X, the counit of f ⊣ f∗ induces a

monoidal 2-cell

[X,X]
iYX //

RRRRRRRRRRRRRR

))iZX

�����

[Y ⊗X,Y ⊗X]

[f∗⊗1,f⊗1]
��

[Z ⊗X,Z ⊗X]

(2.8)

Proof. (1) It is not hard to show that the 2-cells (2.9) and (2.10) equip

Y ⊗ [X,X]
f∗⊗1
−−−→ X ⊗ [X,X]

ev
−→ X

f
−→ Y

with a structure of right oplax action of [X,X] on Y , and that

Y ⊗ [X,X]

f∗⊗1
--

g∗⊗1

11
�� ��
�� (τ−1)∗⊗1 X ⊗ [X,X]

ev // X

f
((

g

66
�� ��
�� τ Y

is a morphism of right oplax actions on Y .

(2) The evaluation ev : X ⊗ [X,X] → X has a canonical structure of right

oplax action (in fact, pseudoaction) and it is obvious that any 2-functor Y ⊗ −

preserves right oplax actions. This shows that iYX has a canonical opmonoidal

structure. The existence of the isomorphism (iWY⊗X)(iYX) ∼= iW⊗Y
X follows from

the fact that both 1-cells correspond to the right pseudoaction W ⊗ Y ⊗ ev :

W ⊗ Y ⊗X ⊗ [X,X] →W ⊗ Y ⊗X.

(3) The two legs of the rectangle (2.7) correspond, up to isomorphism, to the

1-cell

Y ⊗ Z ⊗ [X,X]
1⊗f∗⊗1
−−−−−→ Y ⊗X ⊗ [X,X]

1⊗ev
−−−→ Y ⊗X

1⊗f
−−→ Y ⊗ Z

12



Y ⊗ [X,X]2
f∗⊗1⊗1//

1⊗comp

��

X ⊗ [X,X]2
ev⊗1 //

1⊗comp

��

X ⊗ [X,X]
f⊗1 //

OOOOOOOOOOOO

OOOOOOOOOOOO
����
CK Y ⊗ [X,X]

f∗⊗1

��

∼= ∼=

X ⊗ [X,X]

ev

��
X

f

��
Y ⊗ [X,X]

f∗⊗1
// X ⊗ [X,X] ev

// X

nnnnnnnnnnnnnnn

nnnnnnnnnnnnnnn
f

// Y

(2.9)

Y

f∗

��1⊗id

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

GGGGGGGGGGGGGGGGGGGGGG

GGGGGGGGGGGGGGGGGGGGGG

X

1⊗id
�� KKKKKKKKKKK

KKKKKKKKKKK ����
AI

Y ⊗ [X,X]
f∗⊗1

//

∼=

X ⊗ [X,X] ev
// X

f
// Y

(2.10)

Figure 2.1:

and therefore there exists an isomorphism as claimed. Moreover, this isomorphism

is monoidal by Proposition 2.12.

(4) The 2-cell (2.8) corresponds under the closedness equivalence to

Z ⊗X ⊗ [X,X]
1⊗ev // Z ⊗X

f∗⊗1 //
66

1

�� ��
�� ε⊗1

Y ⊗X
f⊗1 // Z ⊗X.

This 2-cell is readily shown to be a morphism of right [X,X]-actions on Z⊗X.

2.4 The object of Hopf modules

In this section we shall assume that A is a map pseudomonoid in a closed

Gray monoid M (see Section 2.3). Under these assumptions the monad θ on

M (A⊗−, A) is representable by a monad t : [A,A] → [A,A]; that is, there is an
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isomorphism

M (A⊗X,A)

∼=

θX //

≃
��

M (A⊗X,A)

≃
��

M (X, [A,A])
M (X,t)

// M (X, [A,A])

pseudonatural in X. More explicitly, t is the 1-cell

[A,A]
iAA−→ [A⊗A,A⊗A]

[p∗,p]
−−−→ [A,A] (2.11)

where iAA was defined in Proposition 2.13. The multiplication and unit of t are

respectively

[A,A]
iAA //

iA
2

A
''OOOOOOOOOOO

((

iAA

����{�

[A2, A2]
∼=

[p∗,p] //

iA
A2

��
∼=

[A,A]

iAA
��

[A3, A3]
[1⊗p∗,1⊗p] //

[p∗⊗1,p⊗1]

��
∼=

[A2, A2]

[p∗,p]

��
[A2, A2]

[p∗,p]
// [A,A]

[A,A]

[j∗⊗1,j⊗1]
JJJ

$$JJJ
1

))
[A,A]

1=iIA
;;vvvvvvvvv

//
iAA

�� ��
��

[A2, A2]

∼=

[p∗,p]
// [A,A]

where the unlabelled 2-cells are the ones defined in Proposition 2.13.4. Recall

that an opmonoidal monad is a monad in Opmon(M ) (see Section 2.3).

Proposition 2.14. The monad t : [A,A] → [A,A] is opmonoidal.

Proof. It is a consequence of the description of the multiplication and unit of t

above and Proposition 2.13 applied to the closed Gray monoid M .

Recall that a (bicategorical) Eilenberg-Moore construction for a monad s :

B → B in a bicategory B is a birepresentation of the pseudofunctor

B(−, B)B(−,s) : Bop → Cat

or equivalently, the unit u : Bs → B of that birepresentation. Opmonoidal

monads s : B → B have the property that if they have an Eilenberg-Moore

construction u : Bs → B in M , then this construction lifts to Opmon(M ); in

14



other words, the forgetful 2-functor Opmon(M ) → M creates Eilenberg-Moore

objects. Moreover, u : Bs → B is strong monoidal and an arrow g : C → Bs is

opmonoidal (strong monoidal) if and only if ug is so. The case of B = Cat can

be found in [67], while the general case is in [17, Lemma 3.2].

Definition 2.4. Suppose that the monad t has an Eilenberg-Moore construction

u : [A,A]t → [A,A], with f ⊣ u. So, [A,A]t has a unique (up to isomorphism)

structure of a pseudomonoid such that u is strong monoidal. An Eilenberg-Moore

construction u : [A,A]t → [A,A] is called a Hopf module construction for the map

pseudomonoid A.

The Hopf module construction, of course, need not exist in general. How-

ever, it does exist when the theorem of Hopf modules holds, as we shall show in

subsequent sections.

Observation 2.15. When A has a Hopf module construction the pseudonatural

transformation λ in Definition 2.3 is representable by

ℓ : A
[j∗,1]
−−−→ [A,A]

f
−→ [A,A]t. (2.12)

There exist isomorphisms as depicted below, where w is the 1-cell corresponding

to 1A2 under the closedness equivalence M (A, [A,A2]) ≃ M (A2, A2).

A
[j∗,1] //

w

��
∼=

[A,A]
f //

iAA
��

∼=

[A,A]t

u

��
[A,A2]

[1⊗j∗,1] //
55

[1,p]

∼=
[A2, A2]

[p∗,p] // [A,A]
(2.13)

The isomorphism on the right hand side of (2.13) is the isomorphism of t-algebras

uf ∼= t induced by the universal property of u. We consider [A, p]w as equipped

with the unique t-algebra structure such that (2.13) is a morphism of t-algebras.

Corollary 2.16. The theorem of Hopf modules holds for A if and only if the

1-cell

A
w
−→ [A,A2]

[A,p]
−−−→ [A,A] (2.14)

provides a Hopf module construction for A.

Proof. The pseudonatural transformation λ in Definition 2.3 is an equivalence if

and only if the composition υλ : M (−, A) → M (A ⊗ −, A)θ → M (A ⊗ −, A)
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is an Eilenberg-Moore construction for the monad θ in [M op,Cat]. But υλ is

represented by the 1-cell (2.14) and θ is represented by t, and the result follows.

Observe that in the corollary above we do not assume a priori the existence

of a Hopf module construction for A.

Proposition 2.17. Suppose that A has a Hopf module construction. The 1-cell

ℓ in (2.12) is fully faithful and strong monoidal. Moreover, ℓ is an equivalence if

and only if the theorem of Hopf modules holds for A (see Definition 2.3).

Proof. The first and last assertions follow trivially from Proposition 2.7 and Def-

inition 2.3, so we only have to prove that ℓ is strong monoidal, or equivalently,

that uℓ ∼= t[j∗, A] is strong monoidal. This 1-cell is isomorphic to [A, p]w as in

Observation 2.15.

The 1-cell [A, p]w : A→ [A,A] corresponds up to isomorphism under

M (A, [A,A]) ≃ M (A⊗A,A)

to p : A⊗A→ A, which is obviously a right pseudoaction of A on A, and hence

[A, p]w is strong monoidal by Proposition 2.12. This endows uℓ with the structure

of a strong monoidal morphism, by transport of structure.

Corollary 2.18. 1. Suppose that the monad t has an Eilenberg-Moore con-

struction f ⊣ u : [A,A]t → [A,A]. If the theorem of Hopf modules holds for

A then f is a Kleisli construction for t.

2. Suppose that the monad t has a Kleisli construction k : [A,A] → [A,A]t.

If the theorem of Hopf modules holds for A then k∗ is an Eilenberg-Moore

construction for t.

Proof. Let C ⊂ M (A⊗X,A)θX be the full image of the free θX -algebra functor

ϕX : M (A ⊗X,A) → M (A ⊗X,A)θX . When thought of as with codomain C ,

ϕX provides a Kleisli construction for θX . The theorem of Hopf modules holds if

and only if λX = ϕXM (j∗ ⊗X,A) is an essentially surjective on objects, since it

is always fully faithful by Proposition 2.7. Hence, the theorem of Hopf modules

holds if and only if the inclusion of C into M (A ⊗ X,A)θX is an equivalence,

which is equivalent to saying that ϕX is a (bicategorical) Kleisli construction for

θ. This proves (1) since t and f represent θ and ϕ respectively. To show (2),

since ϕX : M (A ⊗ X,A) → C is a Kleisli construction for θX , the 1-cell k∗

16



is an Eilenberg-Moore construction for t if and only if the right adjoint of ϕX ,

C →֒ M (A⊗X,A)θX → M (A⊗X,A), is an Eilenberg-Moore construction for θX

and this happens only if the inclusion C →֒ M (A⊗X,A)θX is an equivalence.

2.5 On the existence of Hopf modules

In this section we study the existence of the Hopf module construction for an

arbitrary map pseudomonoid. Since this construction is an Eilenberg-Moore con-

struction for a certain monad, it is natural to embed M into a 2-category where

this exists, and the obvious choice is the completion of M under (Cat-enriched)

Eilenberg-Moore objects. This is a 2-category EM(M ) with a fully faithful uni-

versal 2-functor E : M → EM(M ). However, in order to speak of the Hopf

module construction for a map pseudomonoid B in EM(M ) we need EM(M ) to

be a monoidal 2-category and the pseudofunctor B ⊗− to have right biadjoint.

We prove that when M is a Gray monoid there exists a model of its completion

under Eilenberg-Moore objects which is also a Gray monoid and such that the

2-functor E : M → EM(M ) is strict monoidal; this model is the 2-category

explicitly described in [54]. In fact, we prove this by extending the assignment

M 7→ EM(M ) to a monoidal functor on the monoidal category Gray, which turns

out to be a Gray-functor. In order to show that if A ⊗ − : M → M has right

biadjoint then the same is true for E(A) in EM(M ) we have to move from Gray,

where the 1-cells are 2-functors, to Bicat, where 1-cells are pseudofunctors. For

this we extend EM to a homomorphism of tricategories on Bicat.

So far we have only considered bicategorical Eilenberg-Moore constructions.

However, in this section we will use the completion of a 2-category under Cat-

enriched Eilenberg-Moore objects. Recall that a Cat-enriched Eilenberg-Moore

construction on a monad s : Y → Y in a 2-category K is a representation

of the 2-functor K (−, Y )K (−,t) : K op → Cat. Any 2-categorical Eilenberg-

Moore construction is also a bicategorical one because 2-natural isomorphisms

are pseudonatural equivalences.

From [54] we know that EM(K ), the completion under Eilenberg-Moore ob-

jects of the 2-category K , may be described as the 2-category with objects the

monads in K , 1-cells from (X, r) to (Y, s) monad morphisms, i.e., a 1-cells
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f : X → Y equipped with a 2-cell ψ : sf ⇒ ft satisfying

X

t

$$� �� �KSµ
t //

f

��
����
<Dψ

X

f

��

t //

����
<Dψ

X

f

��
Y s

// Y s
// Y

=

X
t //

f
�� ����

DL
ψ

X
f
��

Y
� �� �KSµ

s //

s !!C
CC

CC
C Y

Y
s

=={{{{{{

and

X
t //

f

��
����
<Dψ

X

f

��
Y

s //
CC

1

� �� �KSη
Y

= X

t
''

1

77
� �� �KSη X

f // Y

and 2-cells (f, ψ) ⇒ (g, χ) 2-cells ρ : sf ⇒ gt in K such that

X

t

$$� �� �KSµ
t //

f

��
����
<Dρ

X

g

��

t //

����
<Dχ

X

g

��
Y s

// Y s
// Y

=

X
t //

f
�� ����

DLρ

X
g
��

Y
� �� �KSµ

s //

s !!C
CC

CC
C Y

Y
s

=={{{{{{

X

t

$$� �� �KSµ
t //

f

��
����
<Dψ

X

f

��

t //

����
<Dρ

X

g

��
Y s

// Y s
// Y

=

X
t //

f
�� ����

DLρ

X
g
��

Y
� �� �KSµ

s //

s !!C
CC

CC
C Y

Y
s

=={{{{{{

This is called the unreduced form of the 2-cells in [54].

The completion comes equipped with a fully faithful 2-functor E : K →

EM(K ) given on objects by X 7→ (X, 1X). This 2-functor has a universal

property: for any 2-category with Eilenberg-Moore objects L , E induces an

isomorphism of categories [EM(K ),L ]EM → [K ,L ], where [EM(K ),L ]EM ⊂

[EM(K ),L ] is the full sub 2-category of Eilenberg-Moore object-preserving 2-

functors. Moreover, any object of EM(K ) is the Eilenberg-Moore construction

on some monad in the image of E.

Denote by Hom the category whose objects are 2-categories and whose arrows

are pseudofunctors. This category is monoidal under the cartesian product.
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Proposition 2.19. Completion under Eilenberg-Moore objects defines a strong

monoidal functor EM : Hom → Hom.

Proof. We use the explicit description of the Eilenberg-Moore completion given

in [54]. Define EM on a pseudofunctor F : K → L as sending an object (X, r)

to the monad (FX,Fr) in L , a 1-cell (f, ψ) to (Ff, Fψ) and a 2-cell ρ to Fρ.

The comparison 2-cell (EMF (g, χ))(EMF (f, ψ)) → EMF ((g, χ)(f, ψ)) is defined

to be

(Fr)(Fg)(Ff)
∼=
−→ F (rgf)

F ((gψ)·(χf))
−−−−−−−−→ F (gft)

∼=
−→ F (gf)(Ft)

or what is the same thing

(Fr)(Fg)(Ff)
∼=
−→ F (rg)(Ff)

(Fχ)(Ff)
−−−−−−→ F (sg)(Ff)

∼=
−→ (Fg)F (sf) −→

(Fg)(Fψ)
−−−−−−→ (Fg)F (ft)

∼=
−→ F (gf)(Ft) (2.15)

where the unlabelled isomorphisms are (the unique possible) compositions of the

structural constraints of the pseudofunctor F . The axioms of a 2-cell in EM(L )

follow from the fact that (Fg)(Ff) and F (gf) are monad morphisms. Similarly,

the identity constraint of 1EMF (X) → (EMF )(1X) is defined as

(
(Ft)1FX

(Ft)F0
−−−−→ (Ft)(F1x)

∼=
−→ (F1x)(Ft)

)
=

(
1FX(Ft)

F0(Ft)
−−−−→ (F1X)(Ft)

)

where F0 is the identity constraint of F .

It is clear that this defines a functor EM. It is also clear that it is strong monoi-

dal, with constraints the evident isomorphisms EM(K )×EM(L ) ∼= EM(K ×L )

and E1 : 1 ∼= EM(1).

Observation 2.20. If F : K → L is a biequivalence between 2-categories, then

EMF is a biequivalence too. This is straightforward from the definition of EM on

pseudofunctors in the proof of Proposition 2.19 above.

Recall from Section 2.1.1 the notion of cubical functor.

Corollary 2.21. The pseudofunctor below is a cubical functor whenever F :

K × L → J is one.

EM(K ) × EM(L )
∼=
−→ EM(K × L )

EMF
−−−→ EM(J )
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Proof. Consider 1-cells in EM(K ) × EM(L )

((X ′, t′), (X, t))
((f ′,ψ′),(f,ψ))
−−−−−−−−−→ ((Y ′, s′), (Y, s))

((g′,χ′),(g,χ))
−−−−−−−−→ ((Z ′, r′), (Z, r)).

If (X, t) = (Y, s) and (f, ψ) is the identity 1-cell of (X, t), that is (f, ψ) = (1X , 1t),

then the constraint defined in (2.15) above is

F (r′, r)F (g′, g)F (f ′, 1) = F (r′, r)F (g′f ′, g)
∼=
−→ F (r′g′f ′, rg)

F ((g′ψ′)·(χ′f ′),χ)
−−−−−−−−−−−→ F (g′f ′t′, gt)

∼=
−→ F (g′f ′, g)F (t′, t′)

which is exactly the identity 2-cell of the 1-cell EMF ((g′, χ′)(f ′, ψ′), (gχ)) in the

2-category EM(J ). The rest of the proof is similar.

Recall from Section 2.1.1 the Gray tensor product of 2-categories. If K ,L

are 2-categories, its Gray tensor product K �L is a 2-category classifying cubical

functors out of K × L .

Corollary 2.22. Completion under Eilenberg-Moore objects induces a monoidal

functor EM from Gray to itself. Furthermore, the 2-functors EK : K → EM(K )

are the components of a monoidal natural transformation.

Proof. Define the structural arrow EM(K )�EM(L ) → EM(K �L ) as corre-

sponding to EM(K )×EM(L ) ∼= EM(K ×L ) → EM(K �L ), which is a cubical

functor by Corollary 2.21, and the arrow 1 → EM(1) as the universal E1. Here the

symbol � denotes the Gray tensor product. The axioms of lax monoidal functor

follow from the fact that EM is monoidal with respect to the cartesian product.

The naturality of the arrows EK follows from the universal property of the

completion under Eilenberg-Moore objects. We only have to prove that the re-

sulting natural transformation is monoidal. Consider the diagram

EM(K )�EM(L )

,,
EM(K ) × EM(L )

iiSSSSSSSSSSSSSS
∼= // EM(K × L ) // EM(K �L )

K × L

EK ×EL

OO

EK ×L

55llllllllllllll

ttjjjjjjjjjjjjjjj

K �L

EK �EL

OO

EK �L

44
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One of the two axioms we have to check is the commutativity of the exterior

diagram. This commutativity can be proven by observing that each one of the

four internal diagrams commute and then applying the universal property of

K × L → K �L . The other axiom, involving E1 : 1 → EM(1) is trivial, since

E1 itself is the unit constraint.

Corollary 2.23. EM(M ) is a Gray monoid whenever M is a Gray monoid.

Moreover, the 2-functor EM : M → EM(M ) is strict monoidal, so that M can

be identified with a full monoidal sub 2-category of EM(M ).

Proof. We know that EM is a monoidal functor, and as such it preserves monoids.

Moreover, EM is strict monoidal, that is, a morphism of monoids in Gray, since

E is a monoidal natural transformation (see Corollary 2.22).

The tensor product in EM(M ) is induced by the one of M ; for instance, the

tensor product of (X, r) with (Y, s), denoted by (X, r) ⊚ (Y, s), is (X ⊗ Y, r ⊗ s).

In order to show that EM is in fact a Gray-functor we state the following

easy result.

Lemma 2.24. Let V be a symmetric monoidal closed category and F : V → V be

a lax monoidal functor. Then, any monoidal natural transformation η : 1V ⇒ F

induces on F a structure of a V -functor.

Proof. Define F on enriched homs as

FX,Y : [X,Y ]
η[X,Y ]
−−−−→ F ([X,Y ])

ϑX,Y
−−−→ [FX,FY ]

where ϑX,Y is the arrow corresponding to F [X,Y ]⊗FX −→ F ([X,Y ]⊗X)
F ev
−−→

FY.

Corollary 2.25. EM : Gray → Gray has a canonical structure of Gray-

functor.

Proof. Let V in the lemma above be Gray and η be the transformation defined

by the inclusions EK : K → EM(K ), which is easily shown to be a monoidal

transformation. Now apply the lemma.

Let Ps(K ,L ) denote the 2-category of pseudofunctors from K to L , pseu-

donatural transformations between them and modifications between these.
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Observation 2.26. In the case of EM, the transformation ϑK ,L is defined by

the commutativity of the following diagram

Ps(EM(K ),EM(L )) ⊗ EM(K )
ev // EM(L )

EMPs(K ,L ) ⊗ EM(K ) //

ϑK ,L ⊗1

OO

EM(Ps(K ,L ) ⊗ L )

EMev

OO

that is,

(ϑK ,L (F, τ))(X, t) = (EMev)((F, τ), (X, t))

= (ev(F,X), ev(τ, t))

= (FX, (Ft)τX),

and then EM is defined on homs by the 2-functor

ϑK ,LEK ,L : Ps(K ,L ) → Ps(EM(K ),EM(L ))

whose value on a 2-functor F is the 2-functor sending a monad (X, t) to (FX,Ft).

Then we see that our Gray-functor has as underlying ordinary functor just the

restriction to Gray of the functor in Proposition 2.19.

Denote by Bicat the tricategory of bicategories, pseudofunctors, pseudona-

tural transformations and modifications as defined in [31, 5.6]. (There is another

canonical choice for a tricategory structure on Bicat, as explained in that paper.)

We shall describe an extension of the Gray-functor EM to a homomorphism of

tricategories ẼM : Bicat → Bicat. In order to do this we will use the construc-

tion of a homomorphism of tricategories Bicat → Gray given in [31], of which

we recall some aspects. For each bicategory B there is a 2-category stB and a

pseudofunctor ξB : B → stB inducing for each 2-category K an isomorphism

of 2-categories Bicat(B,K ) ∼= Ps(stB,K ). Moreover, ξB is a biequivalence of

bicategories. As usual, we get a pseudofunctor

stA ,B : Bicat(A ,B) → Ps(stA , stB)

which turns out to be an biequivalence. Finally, the object part of the homo-

morphism of tricategories Bicat → Gray is given by B 7→ stB while on hom-

bicategories it is given by the biequivalence stA ,B.
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Define a homomorphism of tricategories ẼM by

Bicat
∼ //

gEM

��

Gray

EM

��
Bicat Gray? _oo

It is given on objects by B 7→ EM(stB) and on homs by

Bicat(A ,B)
st
−→ Ps(stA , stB)

E
−→ EMPs(stA , stB)

ϑ
−→ Ps(EMstA ,EMstB),

which by the Observation 2.26 sends a pseudofunctor F : A → B to the 2-functor

EM(stF ) defined in Proposition 2.19.

Proposition 2.27. Every biadjunction between pseudofunctors F ⊣b G : L →

K , where K and L are 2-categories, induces a biadjunction EMF ⊣b EMG.

Proof. Since ẼM is a homomorphism of tricategories on Bicat, ẼMF = EM(stF )

is left biadjoint to ẼMG = EM(stG). The 2-functor stF is defined as the unique 2-

functor such that (stF )ξK = ξLF , and similarly forG. It follows, by functoriality

of EM with respect to pseudofunctors (Proposition 2.19), that

EM(stF )EMξK = EMξL EMF and EM(stG)EMξL = EMξK EMG.

Since each component of ξ is a biequivalence and these are preserved by EM (see

Observation 2.20), we have

EMF ≃ (EMξL )∗EM(stF )EMξK ⊣b (EMξK )∗EM(stG)EMξL ≃ EMG

Corollary 2.28. If X is an object in a Gray monoid M such that X ⊗ − has

right biadjoint [X,−], then (EX ⊚ −) : EM(M ) → EM(M ) has right biadjoint

〈EX,−〉 given by 〈EX, (Y, s)〉 = ([X,Y ], [X, s]).

Proof. The 2-functor (EX ⊚−) is just EM(X ⊗−), and then by the proposition

above it has right biadjoint EM([X,−]). This is given by the stated formula as a

consequence of the description of the effect of EM on pseudofunctors in the proof

of Proposition 2.19.

Theorem 2.29. For any closed Gray monoid M there exists another Gray

monoid N and a fully faithful strict monoidal 2-functor M → N such that
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any map pseudomonoid in M has a Hopf module construction in N . Moreover,

N can be taken to be EM(M ).

Proof. The proof is only a matter of putting Corollaries 2.23 and 2.28 together

with the definition of the object of Hopf modules.

Proposition 2.30. Let A be a map pseudomonoid in a Gray monoid M such

that A ⊗ − has right biadjoint. Suppose that the theorem of Hopf modules holds

for E(A) ∈ obEM(M ); then it also holds for A. Moreover, in this case A has a

Hopf module construction provided by

A
w
−→ [A,A⊗A]

[A,p]
−−−→ [A,A] (2.16)

as in Corollary 2.16.

Proof. Consider the image of the monad t under the 2-functor E : M → EM(M ).

Denote by θ̂ the monad EM(M )(−, Et) on EM(M )(−, E[A,A]) and ϕ̂ ⊣ υ̂ the ad-

junction arising from its Eilenberg-Moore construction in Hom(EM(M )op,Cat).

Observe that by the fully faithfulness of E, the monad θ̂EXMP can be identified

with the monad θX of Definition 2.1, and the adjunction ϕ̂EXMP ⊣ υ̂EXMP with

the adjunction ϕX ⊣ υX corresponding to θ.

If the theorem of Hopf modules holds for E(A) then in particular for each

object X of M the functor

EM(M )(E(X), E(A))
EM(M )(1,E([j∗,A]))
−−−−−−−−−−−−→ EM(M )(E(X), E[A,A]) −→

ϕ̂E(X)
−−−−→ EM(M )(E(X), E[A,A])θ̂E(X) (2.17)

is an equivalence (Definition 2.3). But by the fully faithfulness of the 2-functor

E this is, up to composing with suitable isomorphisms, just the functor λX in

Definition 2.3 and then the theorem of Hopf modules holds for A.

The last assertion follows directly from Corollary 2.16.

2.6 Left autonomous pseudomonoids and the theorem

of Hopf modules

In this section we specialise to the kind of pseudomonoid central to our work,

namely the autonomous pseudomonoids. We begin by recalling the necessary

background.
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2.6.1 Background on dualizations

A bidual pair in a Gray monoid M is a pseudoadjunction (see for example [52])

in the one-object Gray-category M . Explicitly, it consists of a pair of 1-cells

e : X ⊗ Y → I and n : I → Y ⊗X together with invertible 2-cells

1Y ⇒ (Y ⊗ e)(n ⊗ Y ) : Y → Y (e ⊗X)(X ⊗ n) ⇒ 1X : X → X

satisfying the following two axioms.

f ⊗ u

e

!!C
CC

CC
CC

CC

f ⊗ u

001

������ ε⊗1

1 ..

(( ((
��1⊗η

1⊗n⊗1// f ⊗ u⊗ f ⊗ u

1⊗1⊗eppppp

88ppppp

e⊗1⊗1
NNN

NN

&&NNN
NN

�� ��
�� c
−1
e,e 1

f ⊗ u

e

=={{{{{{{{{

(2.18)

u⊗ f

n⊗1⊗1
NNN

NN

&&NNN
NN

1

$$
������ η⊗1

1

n
=={{{{{{{{{

n
!!C

CC
CC

CC
CC

�� ��
�� c
−1
n,n u⊗ f ⊗ u⊗ f

1⊗e⊗1 // u⊗ f

u⊗ f

1⊗1⊗nppppp

88ppppp
::

1

(( ((
��1⊗ε

(2.19)

The object X is called a right bidual of Y , denoted by Y ◦, and Y is called

a left bidual of X, denoted by X∨. A Gray monoid in which every object has a

right (left) bidual is called right (left) autonomous.

If X has a right bidual X◦, then the 2-functor X ⊗ − has a right biadjoint

X◦ ⊗ −, and − ⊗ X has a left biadjoint − ⊗ X◦, and dually for left biadjoints.

In particular, any right (left) autonomous Gray monoid is right (left) closed with

internal hom [X,Y ] = X◦ ⊗ Y ([X,Y ] = Y ⊗ X∨). If both X and Y have a

bidual and f : X → Y is a 1-cell, the bidual of f is the 1-cell f◦ = (X◦ ⊗

e)(X◦ ⊗ f ⊗ Y ◦)(n ⊗ Y ◦) : Y ◦ → X◦. Similarly with 2-cells. If N is the full

sub-2-category of M whose objects are the objects with right bidual, we have

a monoidal pseudofunctor (−)◦ : (N op)rev → M , where the superscript rev

indicates the reverse monoidal structure. The structural constraints are given by

the canonical equivalences I ≃ I◦ and Y ◦ ⊗X◦ ≃ (X ⊗ Y )◦.
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Recall from [13] that a left dualization for a pseudomonoid (A, j, p) in M

is a 1-cell d : A◦ → A equipped with two 2-cells α : p(d ⊗ A)n ⇒ j and β :

je ⇒ p(A ⊗ d) satisfying two axioms. Let us write f • g for the composition

p(f ⊗A)(X⊗g) : X⊗Y → A, for a pair of arrows f : X → A, g : Y → A. The 2-

cells α, β are extraordinary 2-cells in the sense of [80], that we write α : d•1A → j

and β : j → A • d. The axioms of a left dualization state that α, beta satisfy the

usual triangular equalities of an adjunction

1 =
(
1A

∼=
−→ j • 1A

β•1A−−−→ (1A • d) • 1A
∼=
−→ 1A • (d • 1A)

1A•α
−−−→ 1A • j

1A−→ 1A
)

1 =
(
d

∼=
−→ d • j

d•β
−−→ d • (1A • d)

∼=
−→ (d • 1A) • d

α•d
−−→ j • d

∼=
−→ d

)

Left dualization structures on d : A◦ → A are in bijection with adjunctions

p ⊣ (p⊗A)(A⊗ d⊗A)(A⊗ n) (2.20)

satisfying the following condition. Consider the pseudomonad (A ⊗ −), and the

free pseudo-(A⊗−)-algebras A and A⊗A. The 1-cell p has the canonical struc-

ture of a pseudomorphism of pseudo-(A⊗−)-algebras, given by the associativity

constraint. Also, the three 1-cells composed in the right hand side of (2.20) are

clearly pseudomorphisms; we consider (p⊗A)(A⊗d⊗A)(A⊗n) with the compo-

sition pseudomorphism structure. The required condition is that the adjunction

(2.20) must be an adjunction in the 2-category of pseudoalgebras Ps-(A⊗−)-Alg.

This condition is missing in [13] and will appear in [57]. Similarly, left dualization

structures on d are in bijection with adjunctions p(d ⊗ A) ⊣ (A◦ ⊗ p)(n ⊗ A) in

Ps-(− ⊗ A)-Alg. For example, given α and β the counit of the corresponding

adjunction (2.20) is

A⊗A◦ ⊗A
1⊗d⊗1//
�� ��
�� 1⊗α

A3
p⊗1 //

1⊗p

��
∼=

A2

p

��
A

1⊗n

OO

1⊗j // 88

1

�� ��
�� ∼=
A2

p // A

(To be precise, in [13] the authors define left dualization in a right autonomous

Gray monoid, i.e., a Gray monoid where any object has a right bidual, but

the only really necessary condition is that the pseudomonoid itself have a right

bidual).

A pseudomonoid equipped with a left dualization is called left autonomous.
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If a left dualization exists, then it is isomorphic to

d ∼= (A⊗ e)(p∗ ⊗A◦)(j ⊗A◦) : A◦ → A (2.21)

by [13, Proposition 1.2]. Furthermore, when j is a map, a left dualization d has

always a right adjoint given by

d∗ ∼= (A◦ ⊗ j∗p)(n ⊗A) : A→ A◦. (2.22)

Example 2.31. The bicategory of V -modules is left and right autonomous. The

bidual of a V -category A is the opposite V -category A op (if V is braided non sym-

metric, we have different left and right opposites, providing left and right biduals).

The pseudonatural equivalence V -Mod(A ⊗B,C ) ≃ V -Mod(B,A op ⊗C ) can

be taken as the obvious isomorphism [(A ⊗B)op⊗C ,V ]0 ∼= [Bop⊗A op⊗C ,V ]0.

The V -modules n and e are given by n(a, a′) = A (a, a′) and e(a, a′) = A (a′, a).

(Note that the V -modules e and n do not induce the isomorphism above, but

only equivalences.)

An example of a left autonomous pseudomonoid in V -Mod is a monoidal

V -category with left duals. More precisely, if A is a monoidal category regarded

as a pseudomonoid in V -Mod and D : A op → A is a V -functor, then D∗ is a

left dualization for A if and only if A has left duals and D is isomorphic to the

functor ∗(−) defined by a choice of left duals in A . This was shown in [13].

Example 2.32. A right bidual of an object C in the monoidal bicategory of co-

modules Comod(V ) of Example 2.2, this is, a comonoid in the braided category

V , is the opposite comonoid, which we will denote by C◦. The comultiplication

of C◦ is equal to the one of C composed with the braiding of V . The braiding

induces functors Comod(V )(C ⊗ D,E) → Comod(V )(D,C◦ ⊗ E) which are

isomorphisms of categories.

In [13] it is noted that a coquasibialgebra H has a structure of a left au-

tonomous pseudomonoid in Comod(V ) with dualization s∗, represented by a

comonoid morphism s : H◦ → H if and only if s∗ is a left dualization for H.
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2.6.2 The main result

Given a left autonomous pseudomonoid A define the following important 2-cell.

γ :=

A3
p⊗1 //

1⊗p
BB

B

  B
BB
∼= φ

A2

p

  @
@@

@@
@@

@ �� ��
�� η

A2

A2

1⊗p∗
>>||||||||

�� ��
��1⊗ε

A2
p

// A

p∗

>>~~~~~~~~
(2.23)

In the lemma below we show that this 2-cell γ is invertible, and in fact this

property will turn out to be equivalent to the existence of a left dualization.

Lemma 2.33. For a left autonomous pseudomonoid A the following equality

holds.

γ =

A2
GF ED

1⊗p∗

OO

p

��

A2⊗n //

∼=

A2 ⊗A◦ ⊗A

p⊗1⊗1

��

A2⊗d⊗1 //

∼=

A4
1⊗p⊗1 //

p⊗A2

��
∼=

A3

p⊗1

��
A@A BC

p∗

OO1⊗n
// A⊗A◦ ⊗A

1⊗d⊗1
// A3

p⊗1
// A2

(2.24)

In particular, γ is invertible.

Proof. A short proof of this result is possible using the missing condition in [13,

Proposition 1.1] discussed in page 26. However, since this condition will only

appear in [57], we prefer to give a slightly longer version here.

The 2-cell on the right hand of (2.24) pasted with the counit of the adjunction

(2.20) gives the following 2-cell

A2
A2⊗n //

p

��
∼=

A2 ⊗A◦ ⊗A

p⊗1⊗1

��

A2⊗d⊗1 //

∼=

A4
1⊗p⊗1 //

p⊗1⊗1

��
∼=

A3

p⊗1

��
A

1
<<

∼=

1⊗n //

1⊗j --

A⊗A◦ ⊗A
1⊗d⊗1

// A3
p⊗1

//

1⊗p

��
∼=

A2

p

��
A2

p
//

������ 1⊗α

A
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which itself is equal to

A2

�� ����A2⊗α

p

��

A2⊗n //

A2⊗j --

A2 ⊗A◦ ⊗A
A2⊗d⊗1 // A4

A2⊗p
��

p⊗A2
JJJ

J

%%JJ
JJ

1⊗p⊗1 // A3

p⊗1

%%JJJJJJJJJJJ

∼=

A3

p⊗1

��

∼= A3
p⊗1

//

1⊗p
ssss

yyssss

A2

p
yysssssssssss

A

∼=

@A BC

1

��∼=
1⊗j

// A2
p

//

∼=

A

=

A2

�� ����A2⊗α

p⊗1

��

A2⊗n //

A2⊗j --

A2 ⊗A◦ ⊗A
A⊗d⊗1 // A4

A2⊗p
��

1⊗p⊗1 //

∼=

A3

1⊗p

��

p⊗1

%%JJJJJJJJJJJ

A3

p⊗1

��
∼=

1⊗p
// A2

p

��

∼= A2

p
yysssssssssss

A

∼=

1⊗j
//

@A BC

1

��∼=
A2

p
// A

=

A2

1
::

∼=

A2⊗n //

A2⊗j --

�� ����A2⊗α

A2 ⊗A◦ ⊗A
A2⊗d⊗1 // A4

1⊗p⊗1 //

∼=A2⊗p
��

A3

1⊗p

��

p⊗1

%%JJJJJJJJJJJ

A3
1⊗p

// A2

p

��

∼= A2

p
yysssssssssss

A

=

A2
1⊗p∗ //

KKKKKKKKKKK

%%
1

%%

�����	 1⊗ε

A3

1⊗p

��

p⊗1

%%KKKKKKKKKKK

A2

p

��

∼= A2

p
yysssssssssss

A

The result follows.
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Define the 2-cell ω as

A
1⊗j //

001

∼=

A2

p

��

1⊗p∗ //

�� ��
�� γ

A3

p⊗1

��
A

p∗
// A2

(2.25)

Now we state the basic result of this work.

Theorem 2.34. Let (A, j, p) be a map pseudomonoid in a Gray monoid M and

suppose that A has a right bidual. Then, the following assertions are equivalent.

1. A is left autonomous.

2. The 2-cell γ in (2.23) is invertible.

3. The 2-cell ω in (2.25) is invertible.

4. The theorem of Hopf modules holds for A.

5. The functor

λA◦ : M (A◦, A)
M (j∗⊗1,1)
−−−−−−−→ M (A⊗A◦, A)

ϕA◦

−−→ M (A⊗A◦, A)θA◦

is an equivalence.

Proof. (1) implies (2) by Lemma 2.33, and (3) follows trivially from (2) as (5) does

from (4). By Observation 2.9, to prove that (3) implies (4) it is enough to show

that for each object X the natural transformation υXεXϕX is an isomorphism.

For g ∈ M (A⊗X,A)θX , the component υX(εX)g is the pasting

A⊗X
p∗⊗1 //

g

77A2 ⊗X
1⊗j∗⊗1//

55

1

�� ��
��

A⊗X
1⊗j⊗1//

�� ��
�� ν

A2 ⊗X
1⊗g // A2

p // A

where ν is the action of θX on g and the unlabelled arrow is induced by the counit

of j ⊣ j∗. This 2-cell pasted with 1A⊗X ∼= (A ⊗ j∗ ⊗ X)(p∗ ⊗ X) gives, by the
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equality (2.1),

A⊗X
1⊗j⊗1//

001

������ ∼=

A2 ⊗X �� ��
�� η⊗1

p⊗1 %%KKKKKKKKKK A2 ⊗X
1⊗g //
�� ��
�� ν

A2
p // A

A⊗X

p∗⊗1

99ssssssssss
g

88

(2.26)

When g = ϕX(h) for some h ∈ M (A⊗X,A), that is g = θX(h) = p(A⊗h)(p∗⊗X)

and ν is equal to

A⊗X
p∗⊗1 //

p∗⊗1 %%KKKKKKKKKK A2 ⊗X
1⊗p∗⊗1//

∼=φ∗⊗1

A3 ⊗X

p⊗1⊗1
LLL

L

%%LL
LL

1⊗1⊗h //

∼= c

A3

p⊗1 ##H
HHHHHHHH

1⊗p // A2
p //

∼= φ−1

A

A2 ⊗X

p∗⊗1⊗1rrrr

99rrrr �� ��
��

A2 ⊗X
1⊗h

// A2

p

??��������

then (2.26) is equal to the pasting of φ−1 : p(A⊗p) ⇒ p(p⊗A) with the following

2-cell

A2 ⊗X
p⊗1 //

1

''
�� ��
��

A⊗X
p∗⊗1

//

p∗⊗1 %%KKKKKKKKKK A2 ⊗X

∼= φ∗⊗1

1⊗p∗⊗1// A3 ⊗X
A2⊗h //

p⊗1⊗1
LLL

L

%%LL
LL

∼=

A3

p⊗1
HHH

H

##HH
HH

A⊗X

3333
��
∼=

1⊗j⊗1

OO 99ssssssssss
A2 ⊗X

�� ��
��

p∗⊗1⊗1rrrr

99rrrr

A2 ⊗X
1⊗h

// A2

which is nothing but ω ⊗X pasted on the right with an isomorphism, and so it

is itself an isomorphism.

Now we show that (5) implies (1). Recall from Observation 2.10 that a Hopf

module structure on a 1-cell A ⊗ X → A is the same as a structure of a lax

morphism between the free pseudo-(A⊗−)-algebras A⊗X and A. We want to

prove that (p⊗A)(A⊗ d⊗A)(A⊗ n) is a right adjoint to p in Lax-(A⊗−)-Alg,

for some d; or equivalently, that the former pseudomorphism is isomorphic to p∗

equipped with the lax morphism structure given by the 2-cell γ in (2.23).

Suppose that λA◦ is an equivalence. Define a 1-cell b = (A ⊗ e)(p∗ ⊗ A◦) :

A⊗A◦ → A. Since γ is a lax morphism structure for p∗ : A→ A⊗A, we obtain a

lax morphism structure on b by simply composing with A⊗e. This lax morphism

structure translates into a Hopf module structure, and then, b ∼= λA◦(d) = p(A⊗d)

as Hopf modules, for some d : A◦ → A. Using Observation 2.10 again, we have

that b and p(A⊗d) are isomorphic in Lax-(A⊗−)-Alg, and one easily deduce that
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p∗ equipped with the lax morphism structure γ is isomorphic to p(A⊗d⊗A)(A⊗n).

If A has a right bidual the 2-functor A ⊗ − has right biadjoint given by

[A,−] = A◦ ⊗ − (see the discussion on biduals at the beginning of the section).

In this case, the monad t of (2.11) can be expressed as

t : A◦ ⊗A
1⊗n⊗1
−−−−→ A◦ ⊗A◦ ⊗A⊗A

(p∗)◦⊗1⊗1
−−−−−−−→ A◦ ⊗A⊗A

1⊗p
−−→ A◦ ⊗A (2.27)

or

A◦ ⊗A
n⊗1⊗1
−−−−→ A◦ ⊗A⊗A◦ ⊗A

1⊗p∗⊗1⊗1
−−−−−−−→ A◦ ⊗A⊗A⊗A◦ ⊗A→

1⊗1⊗e⊗1
−−−−−−→ A◦ ⊗A⊗A

1⊗p
−−→ A◦ ⊗A (2.28)

(we omitted the canonical equivalence A◦ ⊗ A◦ ≃ (A ⊗ A)◦), and the 1-cell ℓ in

(2.12) can be expressed as

A
(j∗)◦⊗1
−−−−−→ A◦ ⊗A

f
−−−→ (A◦ ⊗A)t.

The 1-cell (2.14) can be expressed as (A◦ ⊗ p)(n ⊗ A) : A → A◦ ⊗ A ⊗ A →

A ⊗ A. Recall that this 1-cell has a canonical t-algebra structure, described in

Observation 2.15.

Theorem 2.35. For any map pseudomonoid A with right bidual the following

are equivalent.

1. A is left autonomous.

2. A has a Hopf module construction provided by

A
n⊗1
−−→ A◦ ⊗A⊗A

1⊗p
−−→ A◦ ⊗A. (2.29)

Moreover, in this case the dualization is given by A◦ 1⊗j
−−→ A◦ ⊗ A

f
−→ A, where f

is left adjoint to (2.29).

Proof. By Corollary 2.16, (2.29) is a Hopf module construction for A if and only if

the theorem of Hopf modules holds for A, and this is equivalent to the existence of

a left dualization by Theorem 2.34. The last assertion follows from the existence

of an adjunction p(d⊗A) ⊣ (A◦ ⊗ p)(n⊗A) whenever d is a left dualization (see

[13, Prop. 1.1]).
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Corollary 2.36. For a left autonomous map pseudomonoid A the adjunction

p(d ⊗ A) ⊣ (A◦ ⊗ p)(n ⊗ A) induces the monad t. Moreover, this adjunction is

monadic.

Proof. By Corollary 2.16 we know that (A◦ ⊗ p)(n ⊗ A) : A → A◦ ⊗ A provides

an Eilenberg-Moore construction for t.

By definition [13], a right dualization d′ : A∨ → A for a pseudomonoid A

in M is a left dualization for A in M rev, M with the reverse tensor product.

In particular, A∨ is a left bidual for A. A pseudomonoid equipped with a right

dualization is called right autonomous and a left and right autonomous pseudo-

monoid is simply called autonomous. A left autonomous map pseudomonoid with

dualization d is autonomous if and only if d is an equivalence [13, Propositions

1.4 and 1.5].

Corollary 2.37. Suppose that A is an autonomous map pseudomonoid. Then

there exists an equivalence of monads

A◦ ⊗A

d⊗1
��

t //

∼=

A◦ ⊗A

d⊗1
��

A⊗A
p∗p

// A⊗A

and, moreover, p∗ : A→ A⊗A is monadic.

Proof. The first assertion is clear since d is an equivalence and t is induced by

p(d⊗A) ⊣ (d∗ ⊗A)p∗; see Proposition 2.35. By the same theorem, (d∗ ⊗A)p∗ is

monadic, and then so is p∗ since d is an equivalence.

Proposition 2.38. Any left dualization d : A◦ → A has the structure of a strong

monoidal morphism from (A◦, (j∗)◦, (p∗)◦) to (A, j, p).

Proof. It is enough to show that

A◦ d
−→ A

n⊗1
−−→ A◦ ⊗A⊗A

1⊗p
−−→ A◦ ⊗A (2.30)

is strong monoidal, since (A◦ ⊗ p)(n ⊗A) is an Eilenberg-Moore object in the 2-

category Opmon(M ). In the proof of Theorem 2.34 we saw that p(A⊗d) ∼= (A⊗

e)(p∗⊗A◦), so we have to show that (A◦⊗A⊗e)(A◦⊗p∗⊗A◦)(n⊗A◦) is a strong

monoidal morphism, or equivalently, by Proposition 2.12, that (A⊗ e)(p∗ ⊗A◦) :

A ⊗ A◦ → A is a right pseudoaction of A◦ on A (i.e., a (− ⊗ A◦)-pseudoalgebra
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structure on A). This itself turns to be equivalent to saying that p∗ : A→ A⊗A

is a right pseudocoaction of A on A (i.e., a (− ⊗ A)-pseudocoalgebra structure

on A), which is obviously true.

2.7 Preservation of dualizations

This short section contains some comments on autonomous monoidal lax functors.

The notion of right autonomous monoidal lax functor was introduced in [13], and

it consists of a monoidal lax functor equipped with the structure necessary to

ensure that it preserves, in lax sense, right biduals. More explicitly, if F is a lax

monoidal lax functor with monoidal structure χX,Y : F (X)⊗F (Y ) → F (X⊗Y ),

ι : I → F (I), a right autonomous structure for F is pseudonatural transformation

κX : (FX)◦ → F (X◦) with modifications

ξX : ιe ⇒ (F e)χX,X◦(F (X) ⊗ κX) ζX : χX◦,X(κX ⊗ F (X))n ⇒ (Fn)ι

satisfying two axioms.

What is proved in [13] is that if F : M → N is a right autonomous monoidal

special lax functor and A is a left autonomous pseudomonoid in M with left du-

alization d, then F (A) is left autonomous with left dualization F (d)κA : F (A)◦ →

F (A). The term special means that F is normal (in the sense that the constraint

1FX → F1X is an isomorphism for all X) and the constraints (Fg)(Ff) ⇒ F (gf)

are isomorphisms whenever f is a map. Special lax functors have the property of

preserving adjunctions.

If we restrict ourselves to map pseudomonoids, as application of Theorem

2.34, we can deduce the following result.

Proposition 2.39. Let F : M → N be a monoidal special lax functor between

right autonomous Gray monoids and A be a left autonomous map pseudomonoid

in M . Assume F has the following two properties: the monoidal constraints

ι : I → FI and χA,A : F (A) ⊗ F (A) → F (A⊗ A) are maps, and the 2-cell below

is invertible.

F (A)3
Fpχ⊗1//

1⊗Fpχ
III

$$I
II

F (A)2

Fpχ

##H
HH

HH
HH

HH
∼=

�� ��
�� η

F (A)2

F (A)2

1⊗(Fpχ)∗
::uuuuuuuuu

�� ��
�� 1⊗ε

F (A)2
Fpχ

// F (A)

(Fpχ)∗

;;vvvvvvvvv
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Then, the map pseudomonoid F (A) is left autonomous with left dualization

F (A)◦
(Fj)ι⊗1
−−−−−→ F (A) ⊗ F (A)◦

χ∗(Fp∗)⊗1
−−−−−−−→ F (A)2 ⊗ F (A)◦

1⊗e
−−→ F (A). (2.31)

Proof. Recall that F (A) has multiplication F (p)χ : F (A) ⊗ F (A) → F (A) and

unit F (j)ι : I → F (A), so that it is a map pseudomonoid. Using the conditions

above plus the fact that (2.23) is invertible, it can be shown that the corresponding

2-cell (2.23) for F (A) is invertible, and hence F (A) is left autonomous. The

formula for the left dualization is just the general expression of any left dualization

in terms of the product, unit and evaluation.

If F is strong monoidal (sometimes called weak monoidal) in the sense that

ι and χ are equivalences, then F preserves biduals; more explicitly, there exists

κ : F (A)◦ → F (A◦), unique up to isomorphism, such that

(I
n
−→ (FA)◦⊗FA

κ⊗1
−−→ F (A◦)⊗FA) = (I

ι
−→ FI

Fn
−−→ F (A◦⊗A)

χ∗

−→ F (A◦)⊗FA)

(2.32)

and κ is a fortiori an equivalence.

Proposition 2.40. Suppose F : M → N is a strong monoidal special lax functor

between Gray monoids and A is a left autonomous map pseudomonoid in M with

left dualization d. Then FA is a left autonomous map pseudomonoid too, with

left dualization (Fd)κ : (FA)◦ → F (A◦) → FA.

Proof. The fact that (2.23) is invertible and that χ : F (A) ⊗ F (A) → F (A ⊗ A)

is an equivalence ensures that the hypotheses of Proposition 2.39 are satisfied,

and hence F (A) is left autonomous. The formula for the dualization follows

from (2.31) using (2.32), the fact that χ is an equivalence and the canonical

isomorphism (d⊗A)n ∼= p∗j.

Note that although losing some generality, we gain in simplicity by restricting

to the case of left autonomous map pseudomonoids, in that our proofs are not

based on big diagrams but on the theory of Hopf modules.

We finish the section with an application in the case of a braided Gray monoid.

In [16] a braided Gray monoid is defined as a Gray monoid M equipped with

pseudonatural equivalences cX,Y : X ⊗ Y → Y ⊗X and certain invertible 2-cells

satisfying axioms. These axioms ensure that the pseudofunctor ⊗ : M ×M → M

equipped with constraints X ⊗ cY,X′ ⊗ Y ′ : X ⊗X ′ ⊗ Y ⊗ Y ′ → X ⊗ Y ⊗X ′ ⊗ Y ′

and 1 : I ⊗ I → I is strong monoidal. See Section 3.1 for more explanation.
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Corollary 2.41. If A and B are left autonomous map pseudomonoids, with left

dualizations dA and dB respectively, in a braided Gray monoid M , then A⊗B is

a left autonomous map pseudomonoid too, with left dualization

B◦ ⊗A◦ cB◦,A◦

−−−−→ A◦ ⊗B◦ (dA⊗1)(1⊗dB)
−−−−−−−−−→ A⊗B.

Proof. The objects (A◦, B◦) and B◦ ⊗A◦ can be taken as left bidual of (A,B) ∈

M × M and A ⊗ B ∈ M respectively. With these choices, the corresponding

1-cell κ is just cB◦,A◦ .

2.8 Opposite pseudomonoids

We give another application of the theorem of Hopf modules that we will revisit

in Chapter 3.

If (A, j, p) is a map pseudomonoid we call (A◦, j∗◦, p∗◦) its bidual pseudomo-

noid.

Proposition 2.42. A 1-cell d : A◦ → A is a left dualization for the map pseudo-

monoid (A, j, p) if and only if d∗◦ : A◦◦ → A◦ is a left dualization for the bidual

pseudomonoid.

Proof. First we use Theorem 2.34.2 to prove that (A, j, p) is left autonomous if

and only if (A◦, j∗◦, p∗◦) is left autonomous. The bidual pseudomonoid of A is

left autonomous if and only if the 2-cell (2.33) in Figure 2.2 is an isomorphism.

This is equivalent to saying that (2.34) is an isomorphism, because taking biduals

is a locally fully faithful pseudofunctor. It is easy to see that (2.34) is the 2-cell

γ in (2.23), which is invertible if and only if A is left autonomous.

All that remains to do is to express the left dualization of the bidual pseudo-

monoid of A in terms of the left dualization d of A. By [13, Proposition 1.2] or

(2.21), the left dualization of A◦ is isomorphic to the first 1-cell in the following

chain of isomorphisms.

(A◦ ⊗ eA◦)(((p∗◦)∗j∗◦) ⊗A◦◦) ∼= (A◦ ⊗ eA◦)((p◦j∗◦) ⊗A◦◦)

∼= (A◦⊗ eA◦)(((j∗p)◦)⊗A◦◦) ∼= (A◦⊗ eA◦)(A◦⊗ ((A◦⊗ j∗p)(nA⊗A)))(nA⊗A◦◦)

∼= (A◦ ⊗ eA◦)(A◦ ⊗ d∗ ⊗A◦◦)(nA ⊗A)

The last isomorphism is induced by the isomorphism (2.22) of [13, Proposition

1.2].
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(A◦)3
p∗◦⊗1 //

1⊗p∗◦
GG

G

##G
GG ∼=

(A◦)2

p∗◦
DD

D

""D
DD

�� ��
��

(A◦)2

(A◦)2

1⊗p◦
;;wwwwwwwww

�� ��
��

(A◦)2
p∗◦

// A◦

p◦

==zzzzzzzzz
(2.33)

A3

p∗⊗1

~~||
||

||
||

∼=

A2
1⊗p∗oo

�� ��
��

A2

p
~~~~

~~
~~

~~

A2

�� ��
��

A2

p∗⊗1BBB

``BBB

A
p∗

oo

p∗@@@

``@@@
(2.34)

Figure 2.2: Diagrams of the proof of Proposition 2.42.

2.9 Frobenius and autonomous map pseudomonoids

In this section we study the relationship between autonomous pseudomonoids, the

condition (2) in Theorem 2.34 and Frobenius pseudomonoids. In [17] it is shown

that any autonomous pseudomonoid is Frobenius, and we showed in Theorem

2.34.2 that autonomy is equivalent to the invertibility of the 2-cell γ in (2.23)

and its dual, i.e., the corresponding 2-cell γ′ in M rev. We show a converse in the

absence of biduals, namely: if γ and γ′ are invertible, then A is Frobenius, and

as such it has right and left bidual, and moreover A is autonomous.

A Frobenius structure for a pseudomonoid A is defined in [82] as a 1-cell

ε : A→ I such that εp : A⊗A→ I is the evaluation of a bidual pair.

Lemma 2.43. Let A be a pseudomonoid whose multiplication p is a map, and

call γ and γ′, respectively, the following 2-cells.

A3
p⊗1 //

1⊗p
BB

B

  B
BB
∼= φ

A2

p

  @
@@

@@
@@

@ �� ��
�� η

A2

A2

1⊗p∗
>>||||||||

�� ��
��1⊗ε

A2
p

// A

p∗

>>~~~~~~~~

A3
1⊗p //

p⊗1
BB

B

  B
BB
∼= φ−1

A2

p

  @
@@

@@
@@

@ �� ��
�� η

A2

A2

p∗⊗1
>>||||||||

�� ��
��ε⊗1

A2
p

// A

p∗

>>~~~~~~~~

Then the following equalities in Figure 2.3 hold.

Proof. The proof is a standard calculation involving mates and the axioms of a

pseudomonoid.

Proposition 2.44. Suppose A is a map pseudomonoid and that the 2-cells γ and

γ′ in Lemma 2.43 are invertible. Then j∗p : A ⊗ A → I and p∗j : I → A ⊗ A
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A4
1⊗p⊗1 //

�� ��
��1⊗γ

A3

A3

A2⊗p

OO

1⊗p //
�� ��
�� γ

′

A2

1⊗p∗

OO

∼= A2

p∗⊗1
``BBBBBBBB

A2

p∗⊗1

OO

p
// A

p∗

>>||||||||
p∗

OO
=

A4 1⊗p⊗1 //
�� ��
�� γ

′⊗1

A3

A3

A2⊗p∗
>>||||||||

∼= A3

p∗⊗A2

OO

p⊗1 //
�� ��
�� γ

A2

p∗⊗1

OO

A2
p

//
p∗⊗1

``BBBBBBBB
1⊗p∗

OO

A

p∗

OO

A4 A2⊗p //
�� ��
��1⊗γ′

A3 p⊗1 //
�� ��
�� γ

A2

A3

1⊗p∗⊗1

OO

1⊗p //

p⊗1
%%KKKKKKKKKKK A2

1⊗p∗

OO

p //

∼=

A

p∗

OO

A2

p

99sssssssssss

=

A3

p⊗1

%%KKKKKKKKKKK

∼=

A4

A2⊗p
99sssssssssss p⊗A2 //

�� ��
��γ⊗1

A3 1⊗p //
�� ��
�� γ

′

A2

A3

1⊗p∗⊗1

OO

p⊗1
// A2

p
//

p∗⊗1

OO

A

p∗

OO

Figure 2.3:

have the structure of a bidual pair. In particular, A is a Frobenius pseudomonoid

and given a choice of right and left biduals, A is autonomous.

Proof. The 2-cells

(j∗ ⊗A)(p⊗A)(A⊗ p∗)(A⊗ j)
(j∗⊗A)γ(A⊗j)
−−−−−−−−−→ (j∗ ⊗A)p∗p(A⊗ j) ∼= 1A

(A⊗ j∗)(A⊗ p)(p∗ ⊗A)(j ⊗A)
(A⊗j∗)γ′(j⊗A)
−−−−−−−−−→ (A⊗ j∗)p∗p(j ⊗A) ∼= 1A

endow j∗p and p∗j with the structure of a bidual pair. The axioms of a bidual

pair follow from Lemma 2.43.

Observation 2.45. In the hypothesis of the proposition above, different choices

of a bidual for A give rise to different dualizations. For example, when we take

the bidual pair j∗p, p∗j, so that A is right and left bidual of itself, the resulting

left and right dualizations are just the identity 1A. Slightly more generally, given

any equivalence f : B → A, B has a canonical structure of right bidual of A

such that the corresponding left dualization is (isomorphic) to f . To see this just

consider the evaluation j∗p(A⊗f) : A⊗B → I and the coevaluation (f∗⊗A)p∗j :

I → B ⊗A.
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Chapter 3

Centres of autonomous

pseudomonoids

In this second chapter we continue extending Hopf algebra theory to the context

of autonomous pseudomonoids in monoidal bicategories. We use the results in

Chapter 2 to study centres and lax centres of autonomous map pseudomonoids,

and their relationship with the Drinfel’d double.

A classical notion of centre of an algebraic structure is the centre of a monoid.

If M is a monoid, its centre is the set of elements of M with the property of

commuting with every element ofM . We can slightly change our point of view and

say that the centre of M is the set whose elements are pairs (x, (x · −) = (− ·x)),

i.e., elements of x ∈M equipped with the extra structure of an equality between

the multiplication with x on the left and on the right. The centre of a monoidal

category, defined in [39], follows the spirit of the latter point of view: from the

algebraic structure of a monoidal category C one forms a new algebraic structure

ZC , called the centre of C . What we actually have is a functor ZC → C ,

and ZC has a monoidal structure such that this functor is strong monoidal.

Moreover, ZC has a canonical braiding. The objects of ZC are pairs (x, γx)

where γx : (− ⊗ x) ⇒ (x ⊗ −) is an invertible natural transformation. In this

context one can also consider the lax centre ZℓC of C , simply by dropping the

requirement of the invertibility of γx. See Example 3.1. The functor ZC → C is

the universal one satisfying certain commutation properties.

Another classically considered centre-like object is the Drinfel’d double of a

finite-dimensional Hopf algebra, or, more recently, of a (co)quasi-Hopf algebra.

See [64, 74]. Here the concept is not the one of the object classifying maps
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with certain commutation properties, but it is a representational one. Roughly

speaking, the Drinfel’d double of a finite dimensional Hopf algebra H is a Hopf

algebra D(H) such that the category of representations of D(H) is monoidally

equivalent to the centre of the category of representations of H.

We study lax centres ZℓA of a map pseudomonoid A in a braided Gray monoid

M from two points of view. Firstly we would like to have canonical equivalences

M (I, ZℓA) ≃ Zℓ(M (I, A)). The simple minded choice is to take the object on

right hand side of the equivalence as the lax centre of the monoidal category

M (I, A). However, this turns out to be insufficient to obtain an equivalence. We

are led to consider M (I, A) as a M (I, I)-enriched category and its lax centre

in M (I, I)-Cat. This context provides an enriched equivalence as above, at the

price of requiring certain mild conditions on M . We apply these constructions

to (pro)monoidal enriched categories.

Secondly, we construct lax centres of autonomous map pseudomonoids. By

means of the Hopf module construction of Chapter 2, we construct the lax centre

as an internal analogue of the category of two sided Hopf modules. This gener-

alises the fact that for a Hopf algebra the category of two sided Hopf modules is

monoidally equivalent to the centre of the category of representations of the Hopf

algebra (and to the category of representations of the Drinfel’d double of the Hopf

algebra). Later, in Chapter 5, Section 5.2.4, we show that the (lax)centre of a

finite dimensional coquasi-Hopf algebra H always exists within the bicategory of

comodules. Moreover, the construction of this centre is explicit, can be taking

to be finite dimensional and it is isomorphic as a coalgebra and equivalent as a

coquasibialgebra to the Drinfel’d double of H.

Now we describe the organisation of the present chapter.

Section 3.1 recalls the notion of a braided Gray monoid.

In Section 3.2 we introduce lax centres of pseudomonoids and give the first

examples.

Section 3.3 studies the relationship between M (I, ZℓA) and the centre of the

monoidal category M (I, A). We show that the universal ZℓA → A induces an

equivalence between the categories above, when we consider them as M (I, I)-

enriched categories.

Section 3.4 exhibits lax centres of left autonomous map pseudomonoids as

Eilenberg-Moore constructions for certain monad. When the pseudomonoid is

also right autonomous, the lax centre coincides with the centre.
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3.1 Braided Gray monoids

As in this chapter we study centres and lax centres of pseudomonoids, we shall

need extra structure on the Gray monoids where the pseudomonoids lie. For

example, if one looks at the definition of the centre of a monoidal category given in

[39] (see also Introduction above), one realises that the symmetry of the cartesian

product in Cat is used. We require similar structure on our Gray monoids, but

a symmetry is too strict a structure.

The definition of a braided Gray monoid was first introduced by Kapranov

and Veovodsky in [40] and modified by Baez and Neuchl in [1]. Here we use the

equivalent definition given by Day and Street [16].

Let M be a Gray monoid and denote by sw : M ×M → M ×M the obvious

symmetry. A braiding for M is a pseudonatural transformation c : ⊗sw ⇒ ⊗ :

M × M → M with invertible 2-cells

W ⊗X ⊗ Y ⊗ Z
1⊗1⊗cY,Z //

cW,X⊗1⊗1

��
� �� �KS ̟XY ZW

W ⊗X ⊗ Z ⊗ Y

cW,X⊗Z⊗1

��
X ⊗W ⊗ Y ⊗ Z

1⊗cW⊗Y,Z

// X ⊗ Y ⊗ Z ⊗W

satisfying three axioms. These axioms ensure that ⊗ : M×M → M is a monoidal

pseudofunctor when equipped with 1⊗cY,Z⊗1 : X⊗Y ⊗Z⊗W → X⊗Z⊗Y ⊗W

and 1 : I → I ⊗ I, and the obvious 2-cells.

3.2 Centres and lax centres

We shall work in a braided Gray monoid. See Section 3.1 above. The centre of a

pseudomonoid was defined in [83]. Here we will be interested in the lax version

of the centre, called the lax centre of a pseudomonoid. The definition is exactly

the same as that of the centre but for the fact that we drop the requirement of

the invertibility of certain 2-cells.

Definition 3.1. Given a pseudomonoid in a braided Gray monoid M we define

for each object X a category CP ℓ(X,A). The objects, called lax centre pieces,
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are pairs (f, γ) where f : X → A is a 1-cell and γ is a 2-cell

A⊗X
1⊗f ��

oo
cX,A

____ks
γ

X ⊗A
f⊗1��

A⊗A

p &&MMMMMMM A⊗A

pxxqqqqqqq

A

(3.1)

satisfying axioms (3.2) and (3.3) in Figure 3.1. The arrows (f, γ) → (f ′, γ′) are

the 2-cells f ⇒ g which are compatible with γ and γ′ in the obvious sense.

This is the object part of a pseudofunctor CPℓ(−, A) : M op → Cat, that is

defined on 1-cells and 2-cells just by precomposition. When CPℓ is birepresentable

we call a birepresentation zℓ : ZℓA→ A a lax centre of the pseudomonoid A.

A centre piece is a lax centre piece (f, γ) such that γ is invertible. The full

subcategories CP (X,A) ⊂ CPℓ(X,A) with objects the centre pieces define a

pseudofunctor CP (−, A) : M op → Cat, and we call a birepresentation of it a

centre of A, denoted by z : ZA→ A.

Definition 3.2. The inclusion CP (−, A) →֒ CPℓ(−, A) induces a 1-cell zc :

ZA→ ZℓA, unique up to isomorphism such that zℓzc ∼= z as centre pieces. When

zc is an equivalence we will say that the centre of A coincides with the lax centre.

Example 3.1. The centre of a pseudomonoid in Cat, that is, of a monoidal ca-

tegory, is the usual centre defined in [39]. In fact, lax centres and centres of

pseudomonoids in V -Cat exist and are given by the constructions in [15]. Lax

centres or (ordinary) monoidal categories were also considered in [74] under the

name of ‘weak centers’. If A is a monoidal V -category, its lax centre ZℓC has

objects pairs (x, γ) where x is an object of C and γ : (−⊗ x) ⇒ (x⊗−) is a V -

natural transformation. The V -enriched hom ZℓC ((x, γ), (y, δ)) is the equalizer

of the pair of arrows

C (x, y) //

��

[C ,C ](−⊗ x,−⊗ y)

[C ,C ](γ,1)
��

[C ,C ](x⊗−, y ⊗−)
[C ,C ](1,δ)

// [C ,C ](x⊗−,−⊗ y)

Observation 3.2. By [83], in a monoidal closed Gray monoid with finite limits,

every pseudomonoid has a centre.
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A⊗A⊗X

∼=

1⊗1⊗f
��

p⊗1

''NNNNNNNNNNN
oo

cX,A⊗A

∼=

X ⊗A⊗A
1⊗p

xxppppppppppp
f⊗1⊗1
��
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1⊗p

��

A⊗X oo
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��
____ks
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��
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p
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A⊗A⊗X
GF�� ED

cX,A⊗A

oo
1⊗cX,A

1⊗1⊗f

��
____ks

1⊗γ

∼=

A⊗X ⊗A

1⊗f⊗1

��

oo
cX,A⊗1

____ks
γ⊗1

X ⊗A⊗A

f⊗1⊗1

��
A⊗A⊗A
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NNNN
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A⊗A⊗A
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##G
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X
1⊗j
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w

f

��

∼=A⊗X oo
cX,A

1⊗f

��
____ks
γ

X ⊗A

f⊗1

��
A

j⊗1 //

1 ,,

∼=

A⊗A

p
##G
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A⊗A

p
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w

A
1⊗joo

1rr

∼=

A

= 1f (3.3)

Figure 3.1: Lax centre piece axioms
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3.3 Lax centres of convolution monoidal categories

For any pseudomonoid (A, j, p) in a Gray monoid M we know from [16] that the

category M (I, A) has a canonical convolution monoidal structure. The tensor

product is given by f ∗ g = p(f ⊗ A)g with unit j. We would like to exhibit an

equivalence M (I, ZℓA) ≃ Zℓ(M (I, A)). Our leading example is the bicategory

V -Mod of V -categories and V -modules. In this example the tensor product

just described is just Day’s convolution tensor product introduced in [11]. For

details about this bicategory see Section 5.1. Henceforth, we shall assume our

Gray monoid M satisfies additional properties, which we explain below.

Recall that a 2-cell
Y

g

��}}
}}

}}
}

~~

fg ==== �"λ

X
f

// Z

in a bicategory B is said to exhibit fg as the right lifting of g through f if it

induces a bijection B(Y,X)(k, fg) ∼= B(Y, Z)(fk, g), natural in k. Clearly, right

liftings are unique up to compatible isomorphisms. See [84].

We shall assume that our braided Gray monoid M is closed (see Section

3.1 and references therein) and has right liftings of arrows out of I through

arrows out of I. As explained in [16], this endows each M (X,Y ) with the

structure of a V -category where V = M (I, I) is a symmetric monoidal closed

category whose tensor product is given by composition. The V -enriched hom

M (X,Y )(f, g) is f̂ĝ, the right lifting of ĝ : I → [X,Y ] through f̂ : I → [X,Y ],

where these two arrows correspond to f and g under the closedness biadjunction.

Both f̂ and ĝ are determined up to isomorphism, and then so is M (X,Y )(f, g).

The compositions M (X,Y )(g, h) ⊗ M (X,Y )(f, g) → M (X,Y )(f, h) and units

1I → M (X,Y )(f, f), along with the V -category axioms, are easily deduced

from the universal property of the right liftings. Observe that the underly-

ing category of the V -category M (X,Y ) is the hom-category M (X,Y ). For,

V (1I ,M (X,Y )(f, g)) = V (1I ,
f̂ĝ) ∼= M (I, [X,Y ])(f̂ , ĝ) ∼= M (X,Y )(f, g).

One can define composition V -functors M (Y, Z)⊗M (X,Y ) → M (X,Z) on

objects just by composition in M and on V -enriched homs in the following way.

Given f, h : Y → Z and g, k : X → Y , define an arrow M (I, [Y, Z])(f̂ , ĥ) ⊗

M (I, [X,Y ])(ĝ, k̂) → M (I, [X,Z])(f̂g, ĥk) as the 2-cell in M corresponding to
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the following pasting.

I
ĝk̂

vvlllllllllllllllllll

,, ,,
��

k̂
��

chk

""E
EEEEEEEEEEEEEEEEEEEE

I
ĝ

//

ĥ
��

∼=
f̂ĥ

yysssssssssssss

3333
��

[X,Y ]

ĥ⊗1
��

∼=

I
f̂ //

@A BC

cfg

OO∼=
[Y, Z]

1⊗ĝ // [Y, Z] ⊗ [X,Y ]
comp // [X,Z]

There are also identity V -functors from the trivial V -category to M (X,X). On

objects they just pick the identity 1-cells 1X and homs they are given by the

arrows 1I →
(1̂X)1̂X corresponding to the identity 2-cells 1̂X ⇒ 1̂X . These compo-

sition and identity V -functors endow M with the structure of a category weakly

enriched in V -Cat, in the sense that the category axioms hold only up to specified

V -natural isomorphisms (e.g. when V is the category of sets, we get a (locally

small) bicategory.

Now we shall further suppose that the category V = M (I, I) is complete.

This allows us to consider functor V -categories. In this situation, the composition

V -functors induce V -functors M (X,−)Y,Z : M (Y, Z) → [M (X,Y ),M (X,Z)]

making the pseudofunctor M (X,−) : M → V -Cat locally a V -functor.

Lemma 3.3. In the hypothesis above, if A is a pseudomonoid in M , CPℓ(I, A)

has a canonical structure of a V -category such that the forgetful functor

CPℓ(I, A) −→ M (I, A)

is the underlying functor of a V -functor. Moreover, CP (I, A) is a full sub-V -

category of CPℓ(I, A).

Proof. We give only a sketch of a proof; the details are an exercise in the universal

property of right liftings. Given two lax centre pieces (f, α) and (g, β), define the

V -enriched hom CPℓ(I, A)((f, α), (g, β)) as the equalizer in V of the pair

M (I, A)(f, g) //

��

M (A,A)(p(A⊗ f), p(A⊗ g))

M (A,A)(α,1)
��

M (A,A)(p(f ⊗A), p(g ⊗A))
M (A,A)(1,β)

// M (A,A)(p(f ⊗A), p(A⊗ g))

(3.4)
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where the unlabelled arrows are induced by the universal property of right liftings

under postcomposition with the arrows A→ [A,A] corresponding to p and pcA,A.

With this definition, an arrow 1I → CPℓ(I, A)((f, α), (g, β)) in V = M (I, I)

corresponds to an arrow (f, α) → (g, β) in the ordinary category CPℓ(I, A). The

composition

CPℓ(I, A)((g, β), (h, γ)) ⊗ CPℓ(I, A)((f, α), (g, β)) → CPℓ(I, A)((f, α), (h, γ))

is induced by the composition

M (I, A)(g, h) ⊗ M (I, A)(f, g) → M (I, A)(f, h)

and the universal property of the equalizers, and likewise for the identities.

Proposition 3.4. Assume the lax centre of A exists, with universal centre piece

(zℓ, γ). In the hypothesis above, (zℓ, γ) induces a V -enriched equivalence U mak-

ing the following diagram commute.

M (I, ZℓA)

M (I,zℓ)
))SSSSSSS

U // CPℓ(I, A)

uukkkkkkk

M (I, A)

Moreover, the same holds if the centre of A exists and we use CP (I, A) instead

of CPℓ(I, A).

Proof. On objects, U is equal to the usual functor, that is, it sends f : I → ZℓA

to the lax centre piece (zℓf, γ(f ⊗A)). Next we describe U on V -enriched homs.

Define ̺ by the following equality, where π exhibits hk as a right lifting of k

through h and ̟ exhibits (zℓh)(zℓk) as a right lifting of zℓk through zℓh.

I

<<<< �"
π

hk

}}||
||

||
||

|

k
��

I
h

// ZℓA

zℓ !!C
CC

CC
CC

C

A

=

I

(zℓh)(zℓk)
zz

z

||zz
zz

zz
zz

zz
zz

zz
zz

��

hk
:::: �!
̺

k
��

ZℓA

zℓ

��

8888 � 
̟

I
h

// ZℓA zℓ

// A

(3.5)

This pasted composite is trivially a morphism of lax centre pieces U(h(hk)) →
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A

��

v⊗1
3333
��
ν⊗1

(zℓh)(zℓk)⊗1
sssssssssssssssss

yysss
sss

s

k⊗1
��

1⊗k

))TTTTTTTTTTTTTTTTTT

∼=

ZℓA⊗A
≃ //

zℓ⊗1

��
____ +3γ

A⊗ ZℓA

1⊗zℓ

��
A

h⊗1
// ZℓA⊗A

zℓ⊗1
//

1111
��
̟⊗1

A2

p
$$I

IIIIIIIII A2

p
zzuuuuuuuuuu

A

‖

A

��

1⊗v
////
��
1⊗ν

1⊗(zℓh)(zℓk)
ooooooooooooooooooooo

wwoooooooo

1⊗k
��

A⊗ ZℓA

1⊗zℓ

��
A

∼=

1⊗h //

h⊗1 &&MMMMMMMMMMMM A⊗ ZℓA
1⊗zℓ //

----
��
1⊗̟

A2
p // A

ZℓA⊗A
zℓ⊗1

//

≃

OO
' '' '
OW

γ

A2

p

88qqqqqqqqqqqqq

Figure 3.2:

U(k), and this means exactly that ̺ factors through the equalizer

CPℓ(I, A)(U(h), U(k)) ֌
(zℓh)(zℓk) = M (I, A)(zℓh, zℓk);

in (3.4) defining CPℓ(I, A)(U(h), U(k)) on V -enriched homs. Denote by ˜̺ : hk =

M (I, A)(h, k) → CPℓ(I, A)(U(h), U(k)) the resulting arrow in V . This is by

definition the effect of U on enriched homs.

Observe that the underlying ordinary functor of U is the usual equivalence

given by the universal property of the lax centre. Hence, U is essentially surjective

on objects as a V -functor. It is sufficient, then, to show that U is fully faithful,

or, in other words, that ˜̺ is invertible. To do this, we shall show that ̺ has the

universal property of the equalizer defining CPℓ(I, A)(U(h), U(k)).

Suppose ν : v → (zℓh)(zℓk) is an arrow in V equalising the pair of arrows
(zℓh)(zℓk) → M (A,A)(p(zℓh ⊗ A), p(A ⊗ zℓk)) analogues to (3.4). If one un-

ravels this condition, one gets the equality in Figure 3.2. This means that the

2-cell ̟(zℓhν) is an arrow in the ordinary category CPℓ(I, A) from U(hv) =
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(zℓhv, γ((hv)⊗A)) to U(k) = (zℓk, γ(k⊗A)), and therefore there exists a unique

2-cell τ : hv ⇒ k : I → ZℓA such that zℓτ = ̟(zℓhν). From the universal

property of right liftings, we deduce the existence of a unique τ ′ : v ⇒ hk such

that π(hτ ′) = τ . In order to show that ̺ : hk ⇒ (zℓh)(zℓk) has the universal

property of the equalizer as explained above, we have to show that ̺τ ′ = ν.

But the pasting of ̺τ ′ with ̟, ̟(zℓh(̺τ
′)), is equal, by definition of ̺, to

zℓ(π(hτ ′)) = zℓτ = ̟(zℓhν). It follows that ̺τ ′ = ν.

The case of the centre is completely analogous to that of the lax centre. The

V -functor U is defined on objects by sending f : I → ZA to the centre piece

(zf, γ(f ⊗ A)), where (z, γ) is the universal centre piece. The definition of U on

V -enriched homs is the same as in the case of the lax centre above.

In order to exhibit the desired equivalence M (I, ZℓA) ≃ Zℓ(M (I, A)), we

shall require of our closed braided Gray monoid M two further properties.

Firstly, the pseudofunctor M (I,−) : M → V -Cat must be locally faithful.

In other words, for every pair of 1-cells f, g, the following must be a monic arrow

in V :

M (X,Y )(f, g) → [M (I,X),M (I, Y )](M (I, f),M (I, g)). (3.6)

Secondly, for any f, g : X → Y , the image of the arrow (3.6) under V (I,−) :

V → Set must be surjective. This condition is saying that every V -natural

transformation M (I, f) ⇒ M (I, g) is induced by a 2-cell f ⇒ g; this 2-cell is

unique by the condition in the previous paragraph.

All these properties are satisfied by our main example of V -Mod, as we shall

see later.

Theorem 3.5. In the hypothesis above, if A has a lax centre then there exists a

V -enriched equivalence making the following diagram commute up to a canonical

isomorphism.

M (I, ZℓA)
≃ //

M (I,zℓ) ((RRRRRRRR
Zℓ(M (I, A))

Vuukkkkkkkk

M (I, A)

Here the V -category on the right hand side is a lax centre in V -Cat and V is

the forgetful V -functor. Furthermore, the result remains true if we write centres

in place of lax centres.

Proof. By Proposition 3.4 it is enough to exhibit a V -enriched equivalence be-
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tween CPℓ(I, A) and Zℓ(M (I, A)) commuting with the forgetful functors.

Define a V -functor Φ : CPℓ(I, A) → Zℓ(M (I, A)) as follows. On objects

Φ(f, α) = (f,Φ1(α)) where

Φ1(α)h : h ∗ f ∼= p(A⊗ f)h
αh
−→ p(f ⊗A)h ∼= f ∗ h.

Recall that the V -enriched hom CPℓ(I, A)((f, α), (g, β)) is the equalizer of (3.4)

and Zℓ(M (I, A))(Φ(f, α),Φ(g, β)) is the equalizer of the diagram in Example 3.1,

where C = M (I, A), x = f , y = g, γ = Φ1(α) and δ = Φ1(β). We can draw a

diagram

M (I, A)(f, g) // //

**VVVVVVVVVVVVVVVVVV

**VVVVVVVVVVVVVVVVVV M (A,A)(p(f ⊗A), p(A⊗ g))

M (I,−)
��

[M (I, A),M (I, A)](f ∗ −,− ∗ g)

where CPℓ(I, A)((f, α), (g, β)) is the equalizer of the pair of arrows in the top row

and Zℓ(M (I, A))(Φ(f, α),Φ(g, β)) is the equalizer of the other diagonal pair of

arrows. Moreover, the diagram serially commutes. The vertical arrow is induced

by the effect of the pseudofunctor M (I,−) : M → V -Cat on V -enriched homs,

and hence monic by hypothesis. It follows that there exists an isomorphism

CPℓ(I, A)((f, α), (g, β)) → Zℓ(M (I, A))(Φ(f, α),Φ(g, β)). One can check that

these isomorphisms are part of a V -functor Φ, which, obviously, is fully faithful.

It only rests to prove that Φ is essentially surjective on objects. An object

(f, γ) of Zℓ(M (I, A)) gives rise to a V -natural transformation

γ′h : p(A⊗ f)h ∼= h ∗ f
γh−→ f ∗ h ∼= p(f ⊗A)h.

By the hypothesis on M (I,−) introduced in the paragraph previous to this the-

orem, γ′ is induced by a unique α : p(A⊗f) ⇒ p(f⊗A). The equalities (3.2) and

(3.3) for the 2-cell α follow from the fact that (f, γ) is an object in the lax centre

of M (I, A) and the fact that M (A2, A) → [M (I, A2),M (I, A)] is fully faithful.

Now observe that Φ(f, α) = (f, γ). This shows that Φ is essentially surjective on

objects. Finally, α is invertible if and only if γ is invertible, so that proof also

applies to centres.

Recall from [13] that for a right autonomous pseudomonoid A, with right

dualization d̄ : A∨ → A, every map f : I → A has a right dual in the monoidal V -

category M (I, A). A right dual of f is given by d̄(f∗)∨, where f∗ is a right adjoint

to f . Then the full subcategory MapM (I, A) of M (I, A) is right autonomous (in
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the classical sense that it has right duals).

Theorem 3.6. In addition to the hypothesis above, assume the following: V is

a complete and cocomplete monoidal closed category, M has all right liftings,

M (I, A) has a dense sub V -category included in MapM (I, A) and M (I,−) :

M → Cat reflects equivalences. If A is left autonomous, then the centre of A

coincides with the lax centre whenever both exist.

Proof. By Theorem 3.5, there exists an isomorphism as depicted below.

M (I, ZA)
≃ //

M (I,zc)
��

∼=

Z(M (I, A))
_�

��
M (I, ZℓA)

≃ // Zℓ(M (I, A))

A straightforward modification of [16, Prop. 6] (using the property of the right

liftings with respect to composition dual to [84, Prop. 1]) shows that the monoidal

V -category M (I, A) is closed as a V -category. It follows that the V -functors

(f ∗ −) = p(f ⊗ A)− : M (I, A) → M (I, A) given by tensoring with an object f

are cocontinuous. As M (I, A) has a dense sub monoidal V -category with right

duals, the hypotheses of [15, Theorem 3.4] are satisfied, and we deduce that the

inclusion Z(M (I, A)) →֒ Zℓ(M (I, A)) is the identity. It follows that M (I, zc) is

an equivalence and hence zc is an equivalence.

The theorem above applies to the case of promonoidal enriched categories.

See Section 5.1.

3.4 Lax centres of autonomous pseudomonoids

In this section we exhibit the lax centre of a left autonomous map pseudomonoid

as an Eilenberg-Moore construction for a certain monad.

The lax centre of a pseudomonoid was defined as a birepresentation of the

pseudofunctor CPℓ(−, A). An object of the category CPℓ(X,A), i.e., a lax centre

piece, is a 2-cell p(f ⊗ A) ⇒ p(A ⊗ f)cX,A. We observe that the same notion of

lax centre can be defined by using c∗ instead of c. In an entirely analogous way

to Definition 3.1, one defines a category CP ∗
ℓ (X,A) as follows. It has objects

(f, γ) where f : X → A and γ : p(f ⊗ A)c∗X,A ⇒ p(A ⊗ f), and arrows (f, γ) →

(g, δ) those 2-cells f ⇒ g which are compatible with γ and δ. Pasting with the

structural isomorphism cX,Ac
∗
X,A

∼= 1X⊗A induces pseudonatural equivalences
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CPℓ(X,A) → CP ∗
ℓ (X,A). This is the reason why the c∗ appears in the following

definition.

Definition 3.3. Given a map pseudomonoid A in a braided Gray monoid M

define a pseudonatural transformation σ : M (A ⊗ −, A) ⇒ M (A ⊗ −, A) with

components

σX(g) =
(
A⊗X

p∗⊗1
−−−→ A2 ⊗X

1⊗c∗X,A
−−−−−→ A⊗X ⊗A

g⊗1
−−→ A2 p

−→ A
)
.

Lemma 3.7. The pseudonatural transformation σ has a canonical structure of a

monad.

Proof. Just note that σ is isomorphic to the monad θ of Section 2.2 for the map

pseudomonoid (A, j, pc∗A,A).

Explicitly, the multiplication of σ is given by components

A⊗X⊗A
p∗⊗1⊗1// A2⊗X⊗A

∼=

1⊗c∗X,A⊗1

��
A2⊗X

p∗⊗1⊗1 //

1⊗c∗X,A

OO
∼=

A3⊗X

A2
⊗c∗X,A

OO

1⊗c∗
X,A2

//

1⊗p⊗1
NNNN

&&NNNN

A⊗X⊗A2

1⊗1⊗p
MMM

MM

&&MM
MMM

g⊗A2
//

∼=

A3
p⊗1 //

1⊗p
III

I

$$II
II∼=

A2

p
AAA

A

  A
AAA

∼=

A⊗X

p∗⊗1

OO

p∗⊗1

//

∼=

A2⊗X

1⊗p∗⊗1

OO

�� ��
��

A2⊗X
1⊗c∗X,A

// A⊗X⊗A
g⊗1

// A2
p

// A

(3.7)

and the unit by

A⊗X

∼=

A⊗X
g //

∼=

A
1⊗j

!!C
CC

CC
CC

C 1

  
A⊗X

p∗⊗1
//
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A2 ⊗X
1⊗c∗X,A

//

1⊗j∗⊗1

OO

∼=

A⊗X ⊗A
g⊗1

//

1⊗1⊗j∗

OO

A2

1⊗j∗

OO

�� ��
��

A2
p

// A

∼=
(3.8)

Now we assume that the braided Gray monoid M is also closed. In this

situation the monads θ and σ are represented by monads t and s : [A,A] → [A,A].

The monad s is

[A,A]
iAA−→ [A⊗A,A⊗A]

[cA,A,c
∗
A,A]

−−−−−−−→ [A⊗A,A⊗A]
[p∗,p]
−−−→ [A,A], (3.9)

which is the monad t for the opposite pseudomonoid of A with respect to c∗, in
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other words, (A, j, pc∗A,A). Alternatively, t and s can be taken respectively as

[A,A]
id⊗1
−−−→ [A,A] ⊗ [A,A] −→ [A⊗A,A⊗A]

[p∗,p]
−−−→ [A,A] (3.10)

[A,A]
1⊗id
−−−→ [A,A] ⊗ [A,A] −→ [A⊗A,A⊗A]

[p∗,p]
−−−→ [A,A] (3.11)

where id : I → [A,A] is the 1-cell corresponding to 1A under the equivalence

M (A,A) ≃ M (I, [A,A]).

Observation 3.8. At this point we should remark that for a map pseudomonoid

A, [A,A] has two pseudomonoid structures. The one we have considered so far

is the composition pseudomonoid structure, but we also have the convolution

pseudomonoid structure.

If (C, e, b) is a pseudocomonoid in the closed braided Gray monoid M , [C,−]

is lax monoidal in the standard way. The unit constraint I → [C, I] corresponds

under the closedness equivalence to the counit e : C → I and the 1-cells [C,X]⊗

[C, Y ] → [C,X ⊗ Y ] correspond

C ⊗ [C,X] ⊗ [C, Y ]
b⊗1⊗1
−−−−→ C2 ⊗ [C,X] ⊗ [C, Y ]

1⊗c⊗1
−−−−→ (C ⊗ [C,X])2

(ev⊗1)(1⊗1⊗ev)
−−−−−−−−−−→ X ⊗ Y.

In particular, for a pseudomonoid A, [C,A] has a canonical convolution pseu-

domonoid structure. This structure corresponds to the usual convolution tensor

product in M (C,A) given by f ∗ g = p(A ⊗ g)(f ⊗ C)b with unit je. As we

remarked before, for a map pseudomonoid A the identity 1A has a canonical

structure of a monoid in the convolution monoidal category M (A,A). It follows

that the corresponding 1-cell id : I → [A,A] is a monoid in M (I, [A,A]).

Observation 3.9. Let B be a pseudomonoid in M and consider M (I,B) and

M (B,B) as monoidal categories with the convolution and the composition tensor

product respectively. We have monoidal functors L,R : M (I,B) → M (B,B)

given by L(f) = p(f ⊗B) and R(f) = p(B ⊗ f). The associativity constraint of

B induces isomorphisms L(f)R(g) ∼= R(g)L(f), natural in f and g. If m and n

are monoids in M (I,B), then these isomorphisms form an invertible distributive

law between the monads L(m) and R(n).

The monoidal functors L,R are compatible with monoidal pseudofunctors: if
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F : M → N is a monoidal pseudofunctor, then there are monoidal isomorphisms

M (I,B)
L,R //

FI,B ��
∼=

M (B,B)

FB,B

��

N (FI, FB)

≃ ��
N (I, FB)

L,R // N (FB,FB)

In particular, if m is a monoid in M(I,B), we have an isomorphisms F (L(m)) ∼=

L(Fm) and F (R(m)) ∼= R(Fm) of monoids in M (B,B).

Proposition 3.10. There exists an invertible distributive law between the monads

t and s, and hence between the monads θ and σ.

Proof. Apply Observation 3.9 above to the convolution pseudomonoid B = [A,A]

and the monoid m = n = id : I → [A,A], noting that t = L(id) and s = R(id).

The 1-cell id is a monoid with the structure given by Observation 3.8.

If t has an Eilenberg-Moore construction u : [A,A]t → [A,A] the monad σ̂ is

represented by some ŝ : [A,A]t → [A,A]t.

Proposition 3.11. The monads s and ŝ are opmonoidal monads.

Proof. As we noted above, s is the monad t corresponding to the pseudomo-

noid (A, j, pc∗A,A). It can also be regarded as the corresponding monad t for the

pseudomonoid (A, j, p) in M rev, and thus it is opmonoidal in M rev; hence it is op-

monoidal in M . The monad ŝ is opmonoidal since [A,A]t is an Eilenberg-Moore

construction in Opmon(M ).

Denote by σ̂ the monad on M (A ⊗ −, A)θ induced by σ. There exists an

isomorphism (M (A⊗−, A)θ)σ̂ ≃ M (A⊗−, A)σθ.

Suppose that there exists a pseudonatural transformation σ̃ : M (−, A) →

M (−, A) such that λσ̃ ∼= σ̂λ; since λ is fully faithful (see Proposition 2.7), this is

equivalent to saying that for each X the monad σ̂X restricts to a monad on the

replete image of λX in M (A⊗X,A)θX , and in this case σ̃ = λ∗σ̂λ. Moreover, σ̃

carries the structure of a monad induced by the one of σ̂, making λ together with

the isomorphism λσ̃ ∼= σ̂λ a monad morphism. Such a monad σ̃ clearly exists if

the theorem of Hopf modules holds for A, i.e., if λ is an equivalence.

Theorem 3.12. There exists an equivalence in the 2-category [M op,Cat] be-

tween M (−, A)σ̃ and CPℓ(−, A) whenever the monad σ̃ exists. Moreover, this
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equivalence commutes with the corresponding forgetful pseudonatural transforma-

tions.

Proof. Instead of σ̃X , we shall consider the restriction of σ̂X to the replete image

of λX . Take f : X → A and assume that λX(f : X → A) has a structure ν of

σ̂-algebra. This means that the action ν is a 2-cell

A⊗A⊗X
1⊗c∗X,A //

____ks
ν

A⊗X ⊗A

1⊗f⊗1
��

A⊗X

p∗⊗1

OO

1⊗f
��

A⊗A⊗A

p⊗1

��
A⊗A

p
%%KKKKKKKKKK A⊗A

p
yyssssssssss

A

(3.12)

which is a morphism of θX -algebras from σ̂XλX(f) to λX(f). Furthermore, the

pasting

A2 ⊗X ⊗A
1⊗c∗⊗1 //

____ks
ν⊗1

A⊗X ⊗A2

1⊗f⊗A2

��
A2 ⊗X

1⊗c∗ // A⊗X ⊗A

1⊗f⊗1

��

p∗⊗1⊗1

OO

A4

p⊗A2

��
A⊗X

p∗⊗1

OO

1⊗f
��

A3

p⊗1
%%LLLLLLLLLLL A3

p⊗1
yyrrrrrrrrrrr

A2

p
''OOOOOOOOOOOOOO A2

p
xxrrrrrrrrrrrr

A

____ks
ν

should be equal to the composition σXσXλX(f) → σXλX(f)
ν
−→ λX(f) of the

multiplication of σX (3.7) and ν, and the composition λX(f) → σXλX(f)
ν
−→

λX(f) of the unit of σ (3.8) and ν is the identity. The 2-cells (3.12) correspond,

under pasting with φ−1 : p(A⊗p) ∼= p(p⊗A), to 2-cells p(A⊗(p(f⊗A)c∗X,A))(p∗⊗

X) ⇒ p(A⊗ f), and then to 2-cells p(A⊗ (p(f ⊗A)c∗X,A)) ⇒ p(A⊗ f)(p⊗A) ∼=

p(A ⊗ p)(A ⊗ A ⊗ f). Since λX is fully faithful, and σ̂ restricts to its replete

image, it follows that the 2-cells ν correspond to the 2-cells γ (3.1). The axiom of
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associativity for the action ν translates into the axiom (3.2) for γ and the axiom

of unit for ν into the axiom (3.3) for γ. This shows that the composition of the

forgetful functor V : CPℓ(X,A) → M (X,A) with λX factors as a pseudonatural

transformation G followed by Û , as depicted below.

CPℓ(X,A)
HX //________________

VX ��
GX --ZZZZZZZZZZZZZZZZZZZZZZZZZZZ M (X,A)σ̃X

λ̃X��
ŨX

qqdddddddddddddddddddddddddddddddd

M (X,A)

λX ))TTTTTTTTTT (M (A⊗X,A)θX )σ̂X

ÛX
sshhhhhhhhhhh

M (A⊗X,A)θX

Moreover, GX factors through the image of λ̃X , since ÛXGX factors through λX ,

and in fact GX is an equivalence into the image of λ̃X . Here λ̃X is the functor

induced on Eilenberg-Moore constructions by λX ; in particular, λ̃X is fully faithful

since λX is fully faithful. Therefore we have an equivalence HX as in the diagram,

such that λ̃XHX = GX . Hence, λX ŨXHX = ÛX λ̃XHX = ÛXGX = λXVX , and

ŨXHX = VX . The equivalences HX are clearly pseudonatural in X.

Corollary 3.13. If the theorem of Hopf modules holds for a map pseudomonoid

A then there exists an equivalence CPℓ(−, A) ≃ M (A⊗−, A)σθ.

Proof. λX is an equivalence and then the monad σ̃ exists and

M (−, A)σ̃ ≃ (M (A⊗−, A)θ)σ̂ ≃ M (A⊗−, A)σθ.

Theorem 3.14. Suppose that the theorem of Hopf modules holds for the map

pseudomonoid A and that it has a Hopf module construction. Then the lax centre

of A is the Eilenberg-Moore construction for the opmonoidal monad

s̃ := ℓ∗ŝℓ = A→ A

one of them existing if the other does. Moreover,

s̃ ∼=
(
A

j⊗1
−−→ A⊗A

p∗⊗1
−−−→ A⊗A⊗A

1⊗c∗A,A
−−−−→ A⊗A⊗A

p⊗A
−−−→ A⊗A

p
−→ A

)
.

Proof. The monad ŝ exists and is opmonoidal since t : [A,A] → [A,A] has an
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Eilenberg-Moore construction in Opmon(M ). Hence, s̃ has a canonical op-

monoidal monad structure induced by the one of ŝ. Theorem 3.12 implies that

the lax centre of A exists, that is, CP (−, A) is birepresentable, if and only if the

monad s̃ has an Eilenberg-Moore construction.

To obtain an expression for the 1-cell s̃ recall that, by definition, M (−, s̃) is

isomorphic to λ∗σ̂λ. It is easy to show that

λ∗X σ̂XλX(f : X → A) = p(p⊗A)(A⊗ f ⊗A)(A⊗ c∗X,A)(p∗ ⊗X)(j ⊗X)

∼= p(p⊗A)(A⊗ c∗A,A)(p∗ ⊗A)(j ⊗A)f ;

see the definition of λ in Section 2.2 and Definition 3.3. It follows that the

expression for s̃ of the statement holds.

Observation 3.15. The thesis of Theorem 3.14 above holds under the sole hy-

pothesis of A being left autonomous. This is so because every left autonomous

map pseudomonoid has a Hopf module construction (see Theorem 2.35).

Theorem 3.16. For a (left and right) autonomous map pseudomonoid the centre

equals the lax centre, either existing if the other does.

Proof. Consider the commutative diagram

(M (A⊗X,A)θX )σ̂X

��

// M (A⊗X,A)θX
σ̂ //

��

M (A⊗X,A)θX

υX

��
M (A⊗X,A)σX // M (A⊗X,A) σ

// M (A⊗X,A)

In Theorem 3.12 we proved that any lax centre piece arises as

A⊗A⊗X

p⊗1 ((PPPPPPPPPPPP �� ��
��

A⊗A⊗X
1⊗cA,X //

____ks
ν

A⊗X ⊗A

h⊗1
��

A⊗X

p∗⊗1

OO

h
%%KKKKKKKKKK A⊗A

p
yyssssssssss

A

(3.13)

for some σ̂X -algebra ν : σ̂X(h) → h, so we have to prove that (3.13) is invertible.

Consider the canonical split coequalizer σ̂2
X(h) ⇉ σ̂X(h) ։ h in M (A⊗X,A)θX ,

and its image ν : σX(h) → h in M (A⊗X,A). The arrow ν is a morphism of σX -
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algebras. This implies that the lower rectangle in the diagram below commutes.

p(σX(h) ⊗A)(A⊗ cA,X)

p(σX(h)⊗A)(A⊗cA,X)(η⊗X)

��

// p(h⊗A)(A⊗ cA,X)

p(h⊗A)(A⊗cA,X)(η⊗X)

��
p(σX(h) ⊗A)(A⊗ cA,X)(p∗p⊗X) p(h⊗A)(A⊗ cA,X)(p∗p⊗X)

σ2
X(h)(p⊗X)

(µX)h(p⊗X)
��

// σX(h)(p⊗X)

ν(p⊗X)

��
σX(h)(p⊗X) // h(p⊗X)

The upper rectangle commutes by naturality of composition. Here η denotes the

unit of the adjunction p ⊣ p∗ and µ the multiplication of the monad σ. Observe

that the rows are coequalizers and the right-hand column is just (3.13). Then, to

show that this last arrow is invertible it suffices to show that the left-hand side

column, which is the pasting of η with the multiplication of σ (3.7), is so. But

this 2-cell is invertible because A is right autonomous and hence by the dual of

Theorem 2.34.2 the 2-cell below is invertible. This completes the proof.

A2

p
��?

??
??

??
? �� ��

��

A2

∼=

p∗⊗1 // A3

1⊗p
AA

A

  A
AA

A

p∗

??��������

p∗
// A2

1⊗p∗}}}

>>}}} �� ��
��

A2

=

A3
1⊗p //

p⊗1
AA

A

  A
AA

∼=

A2

p

��?
??

??
??

? �� ��
��

A2

A2

p∗⊗1}}}

>>}}} �� ��
��

A2
p

// A

p∗

??��������

Finally, putting together the results above we obtain:

Corollary 3.17. Any autonomous map pseudomonoid in a braided monoidal

bicategory with Eilenberg-Moore objects has both a centre and a lax centre, and

the two coincide.

Finally, we state and prove the following easy preservation result.

Corollary 3.18. Suppose F : M → N is a pseudofunctor between Gray monoids

with the following properties: F preserves Eilenberg-Moore objects, is braided

and strong monoidal. Then, F preserves lax centres of left autonomous map

pseudomonoids.
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Proof. Let A be a left autonomous map pseudomonoid in M . By Observation

3.15, the lax centre of A is the Eilenberg-Moore construction for the opmonoidal

monad s̃ : A→ A, one existing if the other does. On the other hand, FA is also a

left autonomous map pseudomonoid by Proposition 2.40. Therefore, it is enough

to show that F preserves the monad s̃, in the sense that F s̃ is isomorphic to the

corresponding monad s̃ for FA.

Since s̃ is the lifting of the monad s on A◦ ⊗ A to the Eilenberg-Moore con-

struction (A◦ ⊗ p)(n ⊗ A) : A → A◦ ⊗ A of the monad t (see Theorem 2.35) it

suffices to prove that F preserves the monads t and s. We only work with t, the

proof for the monad s being completely analogous. Now, we know from the proof

of Proposition 3.10 that t = L(n) and s = R(n), where L,R : M (I, A◦ ⊗ A) →

M (A◦ ⊗ A,A◦ ⊗ A) are the functors defined in Observation 3.9. Therefore,

Ft = F (L(n)) ∼= L(I
∼=
−→ FI

FnA−−−→ F (A◦ ⊗ A)) ∼= L(nFA), which is the monad t

corresponding to the pseudomonoid FA.
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Chapter 4

Radford’s formula for

autonomous pseudomonoids

In this Chapter we give a generalisation of Radford’s formula for finite-dimensio-

nal Hopf algebras to the context of autonomous pseudomonoids. We also define

and study unimodular autonomous map pseudomonoids.

Radford’s formula, originally proven in [71] but also see [76], states that for a

finite-dimensional Hopf algebra H with antipode S the following equality holds

S4(x) = a(α−1 ⇀ x ↼ α)a. (4.1)

Here ⇀: H∗ ⊗ H → H, ↼: H ⊗ H∗ → H are actions of H∗ on H given by

(f ⇀ x) =
∑
x1f(x2) = (H ⊗ f)∆(x), (x ↼ f) =

∑
f(x1)x2 = (f ⊗H)∆(x).

An element t ∈ H is called a right integral if tx = ε(x)t for all x ∈ H (ε is the

counit of H). Dually, a right cointegral is a integral in the dual of H. In (4.1),

a is the modular element of H and α is the modular function of H, defined by

the properties that xt = α(x)t and φ ∗ α = φ(a)α for all x ∈ H, φ ∈ H∗. The

existence and uniqueness of a, α are consequences of the fundamental theorem of

Hopf modules and the finiteness of H. See for example [85, 76]. It also follows

that a is a group-like element and α : H → k is a morphism of algebras. It is

worth mention that in fact, in all the proofs of Radford’s formula we are aware

of, what one actually deduces is

S2(x) = a(α−1 ⇀ S−2(x) ↼ α)a (4.2)

and then apply S2 to get (4.1). The formula (4.2) has the same form as the
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formulas for finite dimensional quasi and coquasi Hopf algebras we will deduce in

Section 5.2.5 from the results of this chapter. Moreover, the passage from (4.2)

to (4.1) depends of special properties of Hopf algebras, and does not behave well

for more general algebraic structures.

Radford’s formula was first proved in [71], and plays an important role in

the theory of finite-dimensional Hopf algebras. Other techniques are used in

the proof in [76]. The formula has been generalised to various contexts, such

as quasi-Hopf algebras [34], coquasi-Hopf algebras [30], weak Hopf algebras [69],

bi-Frobenius algebras [21, 14], co-Frobenius Hopf algebras [3], Hopf algebras in a

braided category [5] and finite tensor categories [27].

The main results of the present chapter, Theorem 4.15 and Corollary 4.16,

generalise Radford’s formula for Hopf algebras, coquasi-Hopf algebras and finite

tensor categories. See Sections 5.2.5 and 7.5.

The role of a Hopf algebra and its antipode is played by an autonomous map

pseudomonoid A and its left dualization d. The role of the inverse of the antipode

(that automatically exists for finite-dimensional Hopf algebras) is played by the

right dualization d̄ of A. The finiteness hypothesis on the Hopf algebra is replaced

by the assumption that the counit n : I → A◦ ⊗ A of the pseudoadjunction has

a right adjoint. The modular element a takes the form of an invertible element

w in the monoidal category M (A, I) and the modular function α appears as an

isomorphism. Moreover, this isomorphism is monoidal, generalising the fact that

the modular function is a morphism of algebras.

4.1 Duals in convolution hom-categories

Recall closed Gray monoids and braided Gray monoids from Sections 2.1.1 and

3.1 respectively.

Suppose that M is a closed braided Gray-monoid [16] with internal hom

[−,−] and braiding cX,Y : X ⊗ Y → Y ⊗X. In this situation, the pseudofunctor

[−,−] : M op ×M → M is weak monoidal (see [16, Corollary 9]). If (A, j, p) is a

map pseudomonoid in M , the object [A,A] has the structure of a pseudomonoid

with multiplication

[A,A] ⊗ [A,A] −→ [A⊗A,A⊗A]
[p∗,p]
−−−→ [A,A] (4.3)

and unit

I
≃
−→ [I, I]

[j∗,j]
−−−→ [A,A] (4.4)
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where the unlabelled arrows are part of the monoidal structure of [−,−]. These

1-cells correspond under the closedness biadjunction respectively to

A⊗ [A,A] ⊗ [A,A]
p∗⊗1⊗1
−−−−−→ A2 ⊗ [A,A] ⊗ [A,A]

1⊗c⊗1
−−−−→ A⊗ [A,A] ⊗A⊗ [A,A]

ev⊗1⊗1
−−−−−→ A2 ⊗ [A,A]

1⊗ev
−−−→ A⊗A

p
−→ A (4.5)

and A
j∗

−→ I
j
−→ A.

Suppose further that the object A has right bidual A◦ with evaluation and

coevaluation e : A⊗A◦ → I and n : I → A◦ ⊗A. The 1-cells

ē : A◦ ⊗A
cA◦,A
−−−→ A⊗A◦ e

−→ I and n̄ : I
n
−→ A◦ ⊗A

c∗
A,A◦

−−−→ A⊗A◦ (4.6)

makes of A◦ a left bidual for A. This is so because the braiding c gives rise to a

strong monoidal 2-functor S : M rev → M with underlying 2-functor the identity

2-functor of M , and ē = S(e), n̄ = S(n). There is a canonical equivalence

A◦ ⊗A ≃ [A,A], and the pseudomonoid structure on [A,A] transports to one on

A◦ ⊗A, described in the following Lemma.

Lemma 4.1. When A has right bidual the map pseudomonoid structure on A◦⊗A

described in (4.3) and (4.4) is given by the multiplication

A◦⊗A⊗A◦⊗A
1⊗c∗⊗1
−−−−−→ A◦⊗A◦⊗A⊗A

(pc)∗◦⊗1⊗1
−−−−−−−→ A◦⊗A⊗A

1⊗p
−−→ A◦⊗A (4.7)

and unit

I
j∗◦

−−→ A◦ 1⊗j
−−→ A◦ ⊗A. (4.8)

Proof. Simple exercise.

4.1.1 Opposite and bidual autonomous pseudomonoids

If (A, j, p) is a pseudomonoid in the braided Gray monoid M , then (A, j, pc) is

a pseudomonoid too, called the opposite pseudomonoid. This is the image of the

pseudomonoid (A, j, p) in M rev under the monoidal functor identity S : M rev →

M (see comments above).

Through this subsection we will equip A with the left bidual with evaluation

and coevaluation ē = ecA,A◦ and n̄ = c∗A,A◦n respectively. With this choice of left

biduals A◦ is a right and a left bidual of A.
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Proposition 4.2. Suppose the pseudomonoid A has a left dualization d : A◦ → A.

Then d is a right dualization for the opposite pseudomonoid of A.

Proof. As already mentioned, the braiding of M induces a strong monoidal struc-

ture on the identity 2-functor, yielding a strong monoidal 2-functor S : M rev →

M . Then S preserves biduals and left dualizations. This proves the proposition,

observing that the image under S of the right bidual pair n, e in M is the left

bidual pair n̄, ē.

Example 4.3. A particular instance of Proposition 4.2 is the obvious fact that left

duals in a monoidal category C are right duals in the reverse monoidal category

C rev; that is, the category C equipped with the tensor product X⊗revY = Y ⊗X.

To see this, we consider C as a map pseudomonoid in V -Mod as in Chapter 5.1

or [13, Prop. 1.6]; the opposite pseudomonoid is given just by C rev, while the left

and right dualizations are given by the left and right-dual functors respectively.

Another example of Proposition 4.2 is the fact that if s : H → H is the

antipode of a coquasi-Hopf algebra H, then s−1 is an antipode for the coquasib-

ialgebra with the same comultiplication asH but with the opposite multiplication.

See Section 5.2.

Recall from Section 2.8 that if (A, j, p) is a map pseudomonoid, its opposite

pseudomonoid is (A◦, j∗◦, p∗◦). In Proposition 2.42 we proved that A◦ is left

autonomous if and only if A is so, and expressed the left dualization of the latter

in terms of the one of the former.

Corollary 4.4. If d : A◦ → A is a left dualization for (A, j, p) then d∗ : A◦◦ → A◦

is a right dualization for the pseudomonoid (A◦, j∗◦, (pcA,A)∗◦).

Proof. Combine Propositions 2.42 and 4.2.

Corollary 4.5. Let A be an autonomous map pseudomonoid in a braided Gray

monoid M , and denote by d and d̄ the left and right dualizations. Then, A◦ ⊗A

with the pseudomonoid structure described in Lemma 4.1 is autonomous. More-

over, the left dualization is given by

A◦ ⊗A◦◦ c∗
−→ A◦◦ ⊗A◦ d̄∗◦⊗1

−−−−→ A◦ ⊗A◦ 1⊗d
−−→ A◦ ⊗A.

Proof. The pseudomonoid structure of A◦ ⊗A in Lemma 4.1 can be obtained as

the tensor product of the pseudomonoids (A◦, j∗◦, (pc)∗◦) and (A, j, p) in the Gray

monoid M with braiding c∗. Note that d̄∗◦ is a left dualization for (A◦, j∗◦, (pc)∗◦)

by Corollary 4.4. The result now follows from Corollary 2.41.
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4.1.2 Duals

Let A be an autonomous map pseudomonoid in the (not necessarily braided)

Gray-monoid M . In particular, we suppose that A has left bidual A∨ and right

bidual A◦. Denote the left and right dualizations by d : A◦ → A and d̄ : A∨ → A.

Duals in the convolution category M (I, A) were studied in [16]. If f : I → A has

right adjoint f∗ then it has right dual f⊲ and left dual f⊳ in M (I, A) given by

f⊲ : I
(f∗)∨

−−−→ A∨ d̄
−→ A and f⊳ : I

(f∗)◦

−−−→ A◦ d
−→ A. (4.9)

Dually, if f : A→ I has left adjoint f ℓ, then it has right and left dual in M (A, I)

given by

f⊲ : A
d∗
−→ A◦ (fℓ)◦

−−−→ I and f⊳ : A
d̄∗
−→ A∨ (fℓ)∨

−−−→ I. (4.10)

The evaluation and coevaluation for the left dual f⊳ in M (I, A) are

f⊳ ∗ f ∼= p(d⊗A)(A◦ ⊗ f)(A◦ ⊗ f∗)n
p(d⊗A)(A◦⊗ε)n
−−−−−−−−−−→ p(d⊗A)n

α
−→ j

and

j
jη
−→ jf∗f ∼= jf∗(e ⊗A)(A⊗ n)f ∼= je(A⊗A◦ ⊗ f∗)(A⊗ n)f →

β(A⊗A◦⊗f∗)(A⊗n)
−−−−−−−−−−−−→ p(A⊗ d)(A⊗A◦ ⊗ f∗)(A⊗ n) ∼= f ∗ f⊳

where α, β are the 2-cells giving to d the structure of a left dualization (see

Section 2.6), and η, ε are the unit and counit of the adjunction f ⊣ f∗.

The formulas (4.10) for the duals in M (A, I) can be deduced from (4.9) ap-

plied to the pseudomonoid A◦ together with the monoidal equivalence M (A, I) ≃

M (I, A◦)op.

In the case of map pseudomonoids it is not only true that maps have duals

in M (I, A) but the converse also holds. We leave to the reader the various

dualizations of the following result.

Proposition 4.6. Let A be a left autonomous map pseudomonoid in M . Then,

a 1-cell f ∈ M (I, A) has a left dual if and only if it has a right adjoint in M .

Proof. We only have to prove the direct implication. We know from Proposition

2.17 that the functor λI : M (I, A) → M (A,A)θI in Definition 2.3 is strong mo-

noidal; therefore the composition of λI with the forgetful functor M (A,A)θI →
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M (A,A) is strong monoidal. Explicitly, there are coherent natural transforma-

tions λI(g)λI(f) ∼= λI(f ∗g) and 1A ∼= λI(j). Then we have an adjunction λI(f) ⊣

λI(f
⊳) : A→ A, and composing with j we obtain f ∼= (λI(f))j ⊣ j∗λI(f

⊳).

Example 4.7. In Chapter 4 we will interpret Proposition 4.6 in terms of comodules

for a (coquasi) Hopf algebra H, recovering the following well-known fact. In this

case the monoidal bicategory is the bicategory of comodules Comod(V ) and H

is a left autonomous pseudomonoid in it (e.g., V = Vect). Hence a right H-

comodule M has a left dual if and only if M ∈ V has a dual (e.g., M has finite

dimension), by Proposition 5.14.

We shall write Mr(I, A) for the full subcategory of M (I, A) determined by

the 1-cells with right adjoint (the maps). This is clearly a monoidal subcategory.

Corollary 4.8. If A is a left autonomous map pseudomonoid in M , then the

category Mr(I, A) is left autonomous. If A is also right autonomous, Mr(I, A)

is autonomous.

Proof. We know that the left dual of a map f is given by d(f∗◦), which is again

a map, with right dual given by f◦d∗.

Observation 4.9. We will compute the right and left double duals of a 1-cell

f ∈ M (A, I) with left adjoint, where A is an autonomous map pseudomonoid.

f⊳⊳ = (f ℓ∨d̄∗)⊳ = (f ℓ∨d̄∗)ℓ∨d̄∗ ∼= (d̄f∨)∨d̄∗ ∼= f∨∨d̄∨d̄∗ (4.11)

f⊲⊲ = (f ℓ◦d∗)⊲ = (f ℓ◦d∗)ℓ◦d∗ ∼= (df◦)◦d∗ ∼= f◦◦d◦d∗. (4.12)

These isomorphisms are the components of monoidal transformations with respect

to the convolution tensor product. In fact (4.11) is just (4.12) in the reverse Gray

monoid, so we will only show that the first of them is monoidal.

Consider the following diagram of monoidal categories and monoidal functors.

Mℓ(A,I)
(−)ℓ

//

(−)∨ %%KKKKKKKKKK Mr(I,A)
(−)∨ // Mℓ(A

∨,I)rev
d̄∗ // Mℓ(A,I)

rev
(−)ℓ

// Mr(I,A)rev

(−)∨

��
Mr(I,A∨)rev

(−)∗qqqq

88qqqq

1
// Mr(I,A∨)rev

��
(−)ℓ

d̄

33hhhhhhhhhhhhhhhhhhh

(−)∗
// Mℓ(A

∨∨,I)rev

d̄∨
// Mℓ(A

∨,I)

It is easy to see that this diagram commutes up to canonical monoidal isomor-

phisms. The resulting monoidal isomorphism postcomposed with the monoidal

functor Mℓ(d̄
∗, I) has components (4.11).
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Proposition 4.10. Assume M is braided with braiding c. If the coevaluation

n : I → A◦ ⊗ A has right adjoint n∗ then any map f : A → A has a left and a

right dual in the convolution monoidal category M (A,A). Moreover, if we take

the left bidual of A as A◦ with evaluation and coevaluation as in (4.6), the left

dual is given by

A
d̄∗
−→ A◦ 1⊗n

−−→ A◦⊗A◦⊗A
c⊗1
−−→ A◦⊗A◦⊗A

1⊗1⊗f∗
−−−−−→ A◦⊗A◦⊗A

1⊗n∗

−−−→ A◦ d
−→ A.

(4.13)

Proof. If we prove the existence of a left dual, the existence of a right dual follows

automatically by considering the pseudomonoid A in the reverse Gray monoid

M rev.

The equivalence M (A,A) ≃ M (I, A◦ ⊗A) becomes monoidal when we equip

A◦ ⊗ A with the pseudomonoid structure of Lemma 4.1. Then, an arrow f ∈

M (A,A) has left dual if f̂ = (A◦ ⊗ f)n ∈ M (I, A◦ ⊗ A) does so, which is the

case if f and n are maps. A left dual of f̂ is

I
f̂∗◦

−−→ A◦ ⊗A◦◦ c∗
−→ A◦◦ ⊗A◦ d̄∗◦⊗1

−−−−→ A◦ ⊗A◦ 1⊗d
−−→ A◦ ⊗A

by Corollary 4.5. This 1-cell corresponds to (4.13).

4.2 Radford’s formula

Throughout this section we shall assume that A is an autonomous map pseudomo-

noid in a braided Gray monoid M and that the coevaluation n : I → A◦⊗A has a

right adjoint. Under these conditions, Proposition 4.10 ensures that the identity

1-cell of A has a left and right adjoints in the convolution category M (A,A). On

the other hand, in Section 2.2 we showed that the identity 1-cell has the struc-

ture of a monoid in this monoidal category, and then its dual 1⊳ has a canonical

structure of a (− ∗ 1)-algebra. Here (− ∗ 1) is the monad on M (A,A) given by

tensoring with 1 on the right; the (− ∗ 1)-algebra structure on 1⊳ is

1⊳ ∗ 1
1⊳∗1∗coev
−−−−−−→ 1⊳ ∗ 1 ∗ 1 ∗ 1⊳

1⊳∗ε∗1⊳

−−−−−→ 1⊳ ∗ 1 ∗ 1⊳
ev∗1⊳

−−−→ 1⊳

where ε : 1 ∗ 1 = pp∗ → 1 is the counit of the adjunction p ⊣ p∗.

By Theorem 2.34, or rather this applied to the autonomous map pseudomo-

noid (A◦, j∗◦, p∗◦), there exists a 1-cell w : A→ I, unique up to isomorphism, and
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an isomorphism of (− ∗ 1)-algebras

1⊳ ∼= (jw) ∗ 1; (4.14)

recall that the arrow on the right hand side is isomorphic to (w ⊗A)p∗.

Observation 4.11. The 1-cell w is isomorphic to (j∗)1⊳; this follows from the

last paragraph above. Therefore, Proposition 4.10 implies that w is isomorphic

to

A
d∗
−→ A◦ 1⊗j

−−→ A◦ ⊗A
n∗

−→ I.

Proposition 4.12. If w : A→ I has a left adjoint, then it is an invertible object

in M (A, I). Equivalently, 1⊳ : A→ A is an equivalence.

Proof. We use Theorem 2.34 repeatedly. We know from Proposition 4.8 that w

has a left and a right dual in M (A, I) if it has a left adjoint in M . The right

dual 1⊲ of 1 is a (1 ∗−)-algebra, and hence of the form 1 ∗ (jv) for a unique up to

isomorphism v : A→ I. Then, 1 ∼= (1⊳)⊲ ∼= 1⊲ ∗ jw⊲ ∼= 1∗ j(v∗w⊲). It follows that

j∗ ∼= v ∗ w⊲ and hence j∗ ∼= w ∗ v⊳. Similarly, 1 ∼= (1⊲)⊳ ∼= jv⊳ ∗ 1⊳ ∼= j(v⊳ ∗ w) ∗ 1

and v⊳ ∗ w ∼= j∗.

Consider the isomorphism p∗ ∼= (p⊗A)(A⊗ d⊗A)(A⊗ n) that gives to d the

structure of a left dualization. It induces an isomorphism between the functors

M (A, I) → M (A,A)(1∗−) given by

f 7→ (A⊗ f)p∗ (4.15)

and

f 7→ (A⊗ f)(p⊗A)(A⊗ d⊗A)(A⊗ n) = p(A⊗ df◦). (4.16)

The first functor is the composition of M (A, j) : M (A, I) → M (A,A) with the

free (1∗−)-algebra functor M (A,A) → M (A,A)(1∗−), and hence strong monoidal

by a dual of Proposition 2.17. Explicitly, the monoidal structure is induced by

the isomorphism (A⊗ p∗)p∗ ∼= (p∗ ⊗A)p∗:

(((A⊗ g)p∗) ⊗A)p∗ ∼= (A⊗ g)(A⊗A⊗ f)(p∗ ⊗A)p∗

∼= (A⊗ g)(A⊗A⊗ f)(A⊗ p∗)p∗

∼= (A⊗ (g ∗ f))p∗

and the isomorphism (A ⊗ j∗)p∗ ∼= 1. The second functor is the composition of
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M (I, d)(−)◦ : M (A, I) → M (I, A) with the monoidal functor λI : M (I, A) →

M (A,A)(1∗−) of Definition 2.3 (that is strong monoidal by Proposition 2.17).

Lemma 4.13. The isomorphism between the functors (4.15) and (4.16) described

above is monoidal.

Proof. An equivalent formulation of the lemma is that the isomorphism (A ⊗

e)(p∗⊗A◦) ∼= p(A⊗d) induces a monoidal transformation between the respective

functors M (I, A◦) → M (A,A)(1∗−), or in other words, that the isomorphism

(A◦ ⊗A⊗ e)(A◦ ⊗ p∗ ⊗A◦)(n ⊗A◦) ∼= (A◦ ⊗ p)(n ⊗A)d (4.17)

induces a monoidal transformation between the respective functors M (I, A◦) →

M (I, A◦ ⊗ A)(n∗−), where A◦ ⊗ A has the monoidal structure of Lemma 4.1.

In the proof of Proposition 2.38 we saw that the monoidal structure of the 1-

cell on the left hand side is a consequence of the pseudocomonoid structure of

(A◦, j∗◦, p∗◦), and we equipped the 1-cell on the right hand side with the unique

monoidal structure such that (4.17) is a monoidal isomorphism. Therefore the

lemma is proved.

In the course of the proof of Radford’s formula will need the following easy

result, which we state as a Lemma.

Lemma 4.14. Let M be a monoid in a monoidal category V with left duals.

Equip the left dual M⊳ of M with its canonical structure of (−⊗M)-algebra and

W⊗M⊗W ⊳ with the obvious monoid structure given by the the one of M together

with the evaluation and coevaluation of W .

1. The functor − ⊗W ⊳ : V → V lifts to a functor between Eilenberg-Moore

categories V (−⊗M) → V (−⊗W⊗M⊗W ⊳). These functors are equivalences

when W is invertible.

2. If ξ : M⊳ → W ⊗M is an isomorphism of (− ⊗M)-algebras, where the

codomain is a free algebra, then the arrow

M⊳⊳ (ξ−1)⊳

−−−−→ (W ⊗M)⊳
∼=
−→M⊳ ⊗W ⊳ ξ⊗W ⊳

−−−−→W ⊗M ⊗W ⊳

is a morphism of monoids.

Proof. (1) The functor −⊗W ⊳ together with the transformation

−⊗W ⊳ ⊗W ⊗M ⊗W ⊳ −⊗ev⊗1⊗1
−−−−−−−→ −⊗M ⊗W ⊳. (4.18)
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is a lax morphism of monads from (− ⊗M) to (− ⊗W ⊗M ⊗W ⊳). Therefore,

(−⊗W ⊳) lifts to a functor between the respective categories of algebras. When W

is invertible, the functor (−⊗W ⊳) is an equivalence and (4.18) is an isomorphism;

in other words, (− ⊗W ⊳) is an equivalence of monads, and hence the induced

functor between the categories of algebras is an equivalence.

(2) is a routine exercise.

Applying Lemma 4.13 to M rev we get a monoidal isomorphism between strong

monoidal functors M (A, I) → M (A,A)(−∗1) with components

ρf : (jf) ∗ 1 ∼= (d̄f∨j∗) ∗ 1. (4.19)

Now we state the main result of this chapter. The idea of the proof has certain

similarities to [27, Theorem 3.3].

Theorem 4.15. Let A be an autonomous map pseudomonoid in a braided Gray

monoid and suppose that 1 ∈ M (A,A) has both a left and a right duals (or

equivalently, that n : I → A◦ ⊗ A has a right adjoint) and the 1-cell w : A → I

in (4.14) has a left adjoint. Then there exists a monoidal isomorphism between

strong monoidal endo-functors on M (A, I) with components

ζf : w⊳ ∗ f⊳⊳ ∗ w ∼= f⊲⊲.

Proof. The identity 1 : A→ A has a left and a right dual in M (A,A) by Propo-

sition 4.10; hence w exists, and it is invertible by Proposition 4.12.

There exists a monoidal isomorphism of strong monoidal functors Mℓ(A, I) →

M (A, I) with components

(d̄f∨)⊳⊳ ∼= d̄(f⊲⊲)∨; (4.20)

this follows from the fact that (−)∨ : M (A, I)rev → M (I, A∨) is a strong monoi-

dal functor and d̄ : A∨ → A is a strong monoidal 1-cell. From (4.14) we obtain

an isomorphism

1⊳⊳ ∼= 1⊳ ∗ (jw⊳) ∼= (jw) ∗ 1 ∗ (jw⊳); (4.21)

moreover, by Lemma 4.14.2, this is an isomorphism of monoids when we equip

(jw) ∗ 1 ∗ (jw⊳) with the monoidal structure induced by that 1A.

Now consider the monoidal isomorphisms between strong monoidal functors
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from Mℓ(A, I) to M (A,A)(−∗1⊳⊳)

ρ⊳⊳f : (jf⊳⊳) ∗ 1⊳⊳ ∼= (d̄f∨j∗)⊳⊳ ∗ 1⊳⊳,

The isomorphism of monoids (4.21) induces a natural isomorphism of free (− ∗

(jw) ∗ 1 ∗ (jw⊳))-algebras depicted on the bottom of the following diagram,

(jf⊳⊳) ∗ 1⊳⊳
ρ⊳⊳

f //

∼=
��

(d̄f∨j∗)⊳⊳ ∗ 1⊳⊳

∼=
��

(jf⊳⊳) ∗ (jw) ∗ 1 ∗ (jw⊳)
τf // (d̄f∨j∗)⊳⊳ ∗ (jw) ∗ 1 ∗ (jw⊳)

and by Lemma 4.14.1 τf is of the form τ̂f ∗ (jw⊳) for a unique (− ∗ 1)-algebra

isomorphism

τ̂f : (jf⊳⊳) ∗ (jw) ∗ 1 ∼= (d̄f∨j∗)⊳⊳ ∗ (jw) ∗ 1 (4.22)

natural in f . We can form, then, an isomorphism

j(w⊳ ∗ f⊳⊳ ∗ w) ∗ 1 ∼= jf⊲⊲ ∗ 1 (4.23)

between functors Mℓ(A, I) → M (A,A)(−∗1) given by the composition

jw⊳ ∗(jf⊳⊳)∗jw∗1
jw⊳∗τ̂f
−−−−→ jw⊳ ∗((d̄f)∨⊳⊳j∗)∗jw∗1

∼=
−→ jw⊳ ∗jw∗((d̄f)∨⊳⊳j∗)∗1

ev∗(4.20)∗1
−−−−−−−→ (d̄(f⊲⊲)∨j∗) ∗ 1

ρ−1
f⊲⊲

−−−→ jf⊲⊲ ∗ 1. (4.24)

The unnamed isomorphism is the obvious one induced by ((d̄f∨)⊳⊳j∗) ∗ jw ∼=

((d̄f∨)⊳⊳j∗)w ∼= jw ∗ ((d̄f∨)⊳⊳j∗). Finally, by Theorem 2.34, (4.23) is the image

under M (A, I) → M (A,A)(−∗1) of a unique isomorphism ζf : w⊳ ∗ f⊳⊳ ∗w ∼= f⊲⊲.

Now we shall prove that the isomorphism ζf monoidal. We have to prove that

the following diagrams commute.

w⊳ ∗ f⊳⊳ ∗ w ∗ w⊳ ∗ g⊳⊳ ∗ w
∼= //

ζf∗ζg

��

w⊳ ∗ f⊳⊳ ∗ g⊳⊳ ∗ w
∼= // w⊳ ∗ (f ∗ g)⊳⊳ ∗ w

ζf∗g

��
f⊲⊲ ∗ g⊲⊲

∼= // (f ∗ g)⊲⊲

(4.29)
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jw⊳∗jf⊳⊳∗jw∗jw⊳∗jg⊳⊳∗jw∗1 //

jw⊳∗jf⊳⊳∗jw∗jw⊳∗τ̂g

��

jw⊳∗jf⊳⊳∗jg⊳⊳∗jw∗1 //

jw⊳∗jf⊳⊳τ̂g

��

jw⊳∗j(f∗g)⊳⊳∗jw∗1

jw⊳∗τ̂f∗g

��

jw⊳∗jf⊳⊳∗jw∗jw⊳∗(d̄g∨⊳⊳j∗)∗jw∗1
∼= //

∼=

��

jw⊳∗jf⊳⊳∗(d̄g∨⊳⊳j∗)∗jw∗1

∼=

��
jw⊳∗jf⊳⊳∗jw∗jw⊳∗jw∗(d̄g∨⊳⊳j∗)∗1

∼=

��

jw⊳∗jf⊳⊳∗jw∗(d̄g∨⊳⊳j∗)∗1

jjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjj

∼=

��
(4.27)

jw⊳∗(d̄(f∗g)∨⊳⊳j∗)∗jw∗1

∼=

��

jw⊳∗jf⊳⊳∗jw∗(d̄g∨⊳⊳j∗)∗1

jw⊳∗jf⊳⊳∗jw∗ρ−1
g⊲⊲

��

(d̄g∨⊳⊳j∗)∗jw⊳∗jf⊳⊳∗jw∗1

(d̄g∨⊳⊳j∗)∗jw⊳τ̂f

��
(d̄g∨⊳⊳j∗)∗jw⊳∗(d̄f∨⊳⊳j∗)∗jw∗1

∼=

��

(d̄(f∗g)∨⊳⊳j∗)∗jw⊳∗jw∗1

∼=

��

55
∼=

lllllllllllllllllll

jw⊲∗jf⊳⊳∗jw∗jg⊲⊲∗1

(+)

ζf∗jg
⊲⊲∗1

��

(d̄g∨⊳⊳j∗)∗(d̄f∨⊳⊳j∗)∗jw⊳∗jw∗1

∼=

��
(d̄g∨⊳⊳j∗)∗(d̄f∨⊳⊳j∗)∗1

(d̄g∨⊳⊳j∗)∗ρ−1
f⊲⊲

��

(d̄(f∗g)∨⊳⊳j∗)∗1

ρ−1
f∗g

��

//
∼=

(d̄g∨⊳⊳j∗)∗jf⊲⊲∗1

∼=

��
jf⊲⊲∗(d̄g∨⊳⊳j∗)∗1

jf⊲⊲∗ρ−1
g⊲⊲

jjjjjjj

uujjjjjjj

jf⊲⊲∗jg⊲⊲∗1 ∼=
// j(f∗g)⊲⊲∗1

(4.25)

Figure 4.1: Proof of the monoidality of ζ.
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(jf ∗ 1)(jg ∗ 1)
∼= //

ρfρg

��

jg ∗ jf ∗ 1

jg∗ρf

��

∼= // j(g ∗ f) ∗ 1

ρg∗f

��

jg ∗ (d̄f∨j∗) ∗ 1

∼=
��

(d̄f∨j∗) ∗ jg ∗ 1

(d̄f∨j∗)∗ρg
��

(d̄f∨j∗ ∗ 1)(d̄g∨j∗ ∗ 1)
∼= // (d̄f∨j∗) ∗ (d̄g∨j∗ ∗ 1)

∼= // d̄(g ∗ f)∨j∗ ∗ 1

(4.25)

jg⊳⊳ ∗ jf⊳⊳ ∗ 1⊳⊳
∼= //

jg⊳⊳∗ρ⊳⊳
f

��

j(g ∗ f)⊳⊳ ∗ 1⊳⊳

ρ⊳⊳
g∗f

��

jg⊳⊳ ∗ d̄f∨⊳⊳j∗ ∗ 1⊳⊳

∼=∗1⊳⊳

��
d̄f∨⊳⊳j∗ ∗ jg⊳⊳ ∗ 1⊳⊳

d̄f∨⊳⊳j∗∗ρ⊳⊳
g

��
d̄f∨⊳⊳j∗ ∗ d̄g∨⊳⊳j∗ ∗ 1⊳⊳

∼= // d̄(g ∗ f)∨⊳⊳j∗ ∗ 1⊳⊳

(4.26)

jg⊳⊳ ∗ jf⊳⊳ ∗ jw ∗ 1
∼=∗jw∗1 //

jg⊳⊳∗τ̂f
��

j(g ∗ f)⊳⊳ ∗ jw ∗ 1

τ̂g∗f

��

jg⊳⊳ ∗ d̄f∨⊳⊳j∗ ∗ jw ∗ 1

∼=∗jw∗1

��
d̄f∨⊳⊳j∗ ∗ jg⊳⊳ ∗ jw ∗ 1

df∨⊳⊳j∗∗τ̂g
��

df∨⊳⊳j∗ ∗ dg∨⊳⊳j∗ ∗ jw ∗ 1
∼=∗jw∗1 // d̄(g ∗ f)⊳⊳∨ ∗ jw ∗ 1

(4.27)

Figure 4.2: Proof of the monoidality of ζ.
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jw⊳ ∗ jj∗⊳⊳ ∗ jw ∗ 1

jw⊳∗τ̂j∗��
jw⊳ ∗ jj∗ ∗ jw ∗ 1

jw⊳∗jιℓ∗jw∗1
33gggggggggggggggg ∼= // jw⊳ ∗ (d̄j∗∨⊳⊳j∗) ∗ jw ∗ 1

∼=
��

jj∗ ∗ 1

∼=
55kkkkkkkkkkkkk

(d̄ι∨r j
∗∗1)ρj∗

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

jιr∗1

,,

(d̄j∗⊲⊲∨j∗) ∗ jw⊳ ∗ jw ∗ 1

∼=
��

(d̄j∗⊲⊲∨j∗) ∗ 1

ρ−1
j∗⊲⊲

��
jj∗⊲⊲ ∗ 1

(4.28)

Figure 4.3: Proof of the monoidality of ζ.

j∗

ιr

&&LLLLLLLLLLLLL∼=
uujjjjjjj

w⊳ ∗ j∗ ∗ ww⊳∗ιℓ∗w
ssgggggg

w⊳ ∗ j∗⊳⊳ ∗ w
ζj∗

// j∗⊲⊲

(4.30)

Here ιℓ and ιr denote the canonical isomorphisms between j∗ (which is the unit

of the convolution tensor product in M (A, I)) and its double left dual and double

right dual, respectively. We will deal with (4.29) first. The image of this diagram

under the equivalence M (A, I) → M (A,A)(−∗1) is, by definition of ζ, the diagram

in Figure 4.1. In it, the diagrams left blank commute trivially and the one marked

with (+) does by definition of ζf ; so the diagram in Figure 4.1 commutes if (4.25)

and (4.27) in Figure 4.2 do so. The exterior rectangle in (4.25) in Figure 4.2

commutes because ρ is monoidal, while the square on the left hand side does

by direct verification; hence the square on the right hand side also commutes.

Finally, the commutativity of (4.27) follows easily from (4.26).

We now turn our attention to (4.30). Its image under

M (A, I) → M (A,A)(−∗1)

is the exterior diagram (4.28) in Figure 4.3, where the internal pentagon commutes

trivially, the lower triangle commutes by naturality of ρ, and the upper triangle

by naturality of ιℓ and definition of τ̂j∗ in terms of ρ⊳⊳j∗ .

Our next result is a special case of Theorem 4.15 that will be useful when we

consider our main applications.
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We remind the reader that we are considering the braided Gray monoid M

as autonomous with left biduals induced by the right biduals via the braiding.

Corollary 4.16. Suppose M is an autonomous braided Gray monoid and A is

an autonomous map pseudomonoid in M . Suppose further that the coevaluation

n : I → A◦ ⊗A is a map.

1. If the unique up to isomorphism w : A → I such that jw ∗ 1 ∼= 1⊳ has a

left adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of Mℓ(A, I) with components

(A
p∗

−→ A⊗A
w⊳⊗1
−−−→ A

p∗

−→ A⊗A
1⊗w
−−−→ A

dd̄∗
−−→ A

f
−→ I) ∼= (A

d̄d∗
−−→ A

f
−→ I).

(4.31)

2. If the unique up to isomorphism w : A → I such that 1 ∗ jw ∼= 1⊲ has

left adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of Mℓ(A, I) with components

(A
p∗

−→ A⊗A
1⊗w⊲

−−−→ A
p∗

−→ A⊗A
w⊗1
−−−→ A

d̄d∗
−−→ A

f
−→ I) ∼= (A

dd̄∗
−−→ A

f
−→ I).

(4.32)

3. If the unique up to isomorphism w : I → A such that 1 ∗ wj∗ ∼= 1⊲ has a

right adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of Mr(I, A) with components

(I
f
−→ A

d̄d∗
−−→ A

w⊗1
−−−→ A⊗A

p
−→ A

1⊗w⊲

−−−→ A⊗A
p
−→ A) ∼= (I

f
−→ A

dd̄∗
−−→ A).

(4.33)

4. If the unique up to isomorphism w : I → A such that wj∗ ∗ 1 ∼= 1⊳ has a

right adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of Mr(I, A) with components

(I
f
−→ A

dd̄∗
−−→ A

1⊗w
−−−→ A⊗A

p
−→ A

w⊳⊗1
−−−→ A⊗A

p
−→ A) ∼= (I

f
−→ A

d̄d∗
−−→ A).

(4.34)

Proof. First of all, the assumption that n is a map ensures the existence of 1⊳

and 1⊲ in M (A,A).

Part 1 is simply a restatement of Theorem 4.15 using d̄ ∼= d∨ and d ∼= d̄◦,

while 2 is just 1 applied to the autonomous pseudomonoid A in M rev (so that d

and d̄ are interchanged).
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To prove 3, we first write part 1 for the case of the autonomous map pseu-

domonoid (A◦, j∗◦, p∗◦). Applying (−)◦ to the hypothesis 1 ∗ wj∗ ∼= 1⊲ we get

j∗◦w◦ ∗ 1A◦
∼= 1⊳A◦ . Recalling from Proposition 2.42 that A◦ has both left and

right dualizations d∗◦ and d̄∗◦ respectively, we obtain from part 1 monoidal iso-

morphisms

gd∗◦d̄◦(A◦w◦)p◦(w◦⊳ ⊗A◦)p◦ ∼= gd̄∗◦d◦

with g ∈ Mℓ(A
◦, I); putting g = f◦, with f ∈ Mr(I, A), and using that (−)◦ is a

monoidal biequivalence, we obtain (4.33).

Finally, 4 is obtained from 3 by considering the reverse Gray monoid.

Example 4.17. The results above when applied to a coquasi Hopf algebra give

a formula that generalises the classical Radford’s formula for finite-dimensional

Hopf algebras. This is explained in Section 5.2.5.

4.3 Unimodular pseudomonoids

Recall from the comments at the beginning of the chapter that a right cointegral

for a bialgebra H is a functional φ : H → k such that the convolution product

φ ∗ ψ = ψ(1)φ for all ψ : H → k. If H is a finite-dimensional Hopf algebra, there

exists a unique up to scalars modular element a ∈ H such that ψ ∗φ = ψ(a)ψ for

all ψ : H → k. The Hopf algebra H is unimodular if a = 1. This is equivalent to

saying that the right cointegrals coincide with the left cointegrals (functionals χ

such that ψ ∗ χ = ψ(1)χ for all ψ : H → k).

If one takes the point of view that autonomous pseudomonoids are generalised

Hopf algebras, there must be a corresponding notion of unimodularity for them.

In this section we introduce unimodular autonomous map pseudomonoids and

deduce the first consequences of the definition. One classical result on Hopf

algebras establishes that semisimple Hopf algebras are unimodular. We address

the relationship between semisimplicity and unimodularity in Section 7.6.

Throughout this section A will be an autonomous map pseudomonoid, for

which the coevaluation n : I → A◦ ⊗A is a map.

As we mentioned before, and will explain in Section 5.2.5, the 1-cell w :

A → I of (4.14) plays the role of the modular element. This 1-cell is defined by

the property that 1⊳ ∼= jw ∗ 1 in M (A,A)(−∗1). This leads us to the following

definition.
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Definition 4.1. A unimodularity isomorphism on A is an isomorphism between

the 1-cell w and the unit of the convolution product, j∗. We say that A is

unimodular when it is equipped with a unimodularity isomorphism.

Note that unimodularity isomorphisms are in bijection with isomorphisms of

(− ∗ 1)-algebras 1⊳ ∼= 1.

We show below that this condition is related to the notion of Frobenius monad.

A Frobenius monad in a bicategory K is a monad (r, η, µ) in K equipped with

a 2-cell σ : r ⇒ 1 such that σµ : rr ⇒ 1 is the counit of an adjunction r ⊣ r.

In [82] several conditions equivalent to this definition are given. The Frobenius

structure reflects on Eilenberg-Moore constructions in the following way. If r has

an Eilenberg-Moore construction f ⊣ u : Xr → X, then there exists a bijection

between Frobenius structures on r and adjunctions u ⊣ f .

In the special case when r has left adjoint rℓ, the composition

rℓr
rℓrη
−−→ rℓrrrℓ

rℓµrℓ

−−−→ rℓrrℓ
εrℓ

−−→ rℓ

equips rℓ with the structure of a r-algebra in K op.

The proof of the following lemma is a standard calculation

Lemma 4.18. Suppose (r, η, µ) is a monad in K and the 1-cell r has left ad-

joint rℓ. Then, there is a bijection between the Frobenius structures on r and

isomorphisms of r-algebras in K op between rℓ and r.

A Frobenius monoid in a monoidal category is just a Frobenius monad in the

respective one-object bicategory.

Theorem 4.19. There exist a bijection between the following structures.

1. Unimodularity isomorphisms on A.

2. Frobenius structures on the monoid 1 : A→ A in the convolution monoidal

category M (A,A).

Proof. By Definition 4.1, we have to establish a bijection between isomorphisms

of (− ∗ 1)-algebras 1⊳ ∼= 1 and Frobenius structures on 1 ∈ M (A,A). This is

exactly what Lemma 4.18 does.

Proposition 4.20. 1. If A is unimodular and j : I → A has a left adjoint,

then j∗ ⊣ j.
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2. If j∗ ⊣ j, then A is unimodular.

Proof. 1. Assume f ⊣ j. By Observation 4.11, there is an isomorphism n∗(A◦ ⊗

j)d∗ ∼= j∗. Taking left adjoints, we get an isomorphism j ∼= d(A◦⊗ f)n. Together

with the isomorphism (j∗p⊗A)(A⊗d⊗A)(A⊗n) ∼= 1A that can be easily deduced

from [13, Proposition 1.2], we get

f ∼= f((j∗p) ⊗A)(A⊗ d⊗A)(A⊗ n)

∼= j∗p(A⊗ ((A⊗ f)(d⊗A)n))

∼= j∗p(A⊗ j)

∼= j∗.

(2) If j∗ ⊣ j, by Observation 4.11, w is right adjoint to (A⊗ j∗)(d⊗A)n. This

1-cell is isomorphic to (A⊗ j∗)p∗j ∼= j, and hence w ∼= j∗.

Before our next result, we recall the monads t, s on A◦ ⊗ A. In Observation

3.9 we saw that there are two strong monoidal functors L,R : M (I, A◦A) →

M (A◦A,A◦A), where the domain has the convolution monoidal structure and the

codomain the composition monoidal structure, such that L(n) = t and R(n) = s.

In this way we showed the existence of an invertible distributive law between t

and s. When A is left autonomous, a lifting s̃ : A → A of s to the Eilenberg-

Moore object of t (which can be taken to be A), is a monad with Eilenberg-Moore

construction the lax centre of A (Theorem 3.14).

Proposition 4.21. For a unimodular autonomous map pseudomonoid, the cor-

responding monads t, s are Frobenius. Moreover, the Frobenius structure on s lifts

to s̃.

Proof. The strong monoidal functors L,R of the paragraph above preserve Frobe-

nius monoids, and n is Frobenius by Theorem 4.19. Since everything in the image

of the functor R commutes with the action of t = L(n), the Frobenius structure

of s lifts to s̃.

Corollary 4.22. If A is a unimodular autonomous pseudomonoid, then there

exist an adjunction p∗ ⊣ p.

Proof. The monad t is Frobenius by the proposition above, and as such, the left

adjoint to its Eilenberg-Moore construction is also its right adjoint. By Corol-

lary 2.37, p∗ : A → A ⊗ A is an Eilenberg-Moore construction for t, and hence

Frobenius structures on t are in bijection with adjunctions p∗ ⊣ p.
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Corollary 4.23. If A is unimodular and the (lax)centre of A exists, then the

universal Z(A) → A is not only monadic, but the generated monad is Frobenius.

Proof. Since A is a left and right autonomous pseudomonoid, if a lax centre of

A exists, it is also a centre for A (Theorem 3.16). Now, if Z(A) → A is a (lax)

centre, then it is an Eilenberg-Moore construction for the monad s̃ on A, by

Theorem 3.14. But s̃ is a Frobenius monad by Proposition 4.21.
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Chapter 5

Monoidal categories and

coquasi-Hopf algebras

The present chapter comprises the first two main applications of the theory

of autonomous pseudomonoids developed so far. The first application is to

(pro)monoidal enriched categories and the second to coquasi-Hopf algebras.

In section 5.1, after interpreting the fundamental theorem of Hopf modules

(Theorem 2.34) and Hopf module constructions in the case of the bicategory of V -

modules V -Mod, we study centres and lax centres of (pro)monoidal categories.

One consequence of our results is that if a promonoidal V -category A has a lax

centre ZℓA , then there is a canonical equivalence [ZℓA ,V ] ≃ Zℓ[A ,V ], where

the V -category on the right hand side is the lax centre of [A ,V ] in V -Cat.

We also show that if A is a left autonomous map pseudomonoid (e.g., a left

autonomous monoidal V -category), ZℓA does exists and can be given explicitly.

Section 5.2 deals with the examples more directly related to Hopf algebra

theory by means of the monoidal bicategory of comodules Comod(V ). We ex-

plain why Theorem 2.34 generalises the fundamental theorem of Hopf modules

for (coquasi) Hopf algebras, and describe the Hopf module construction of a

coquasi-Hopf algebra as a bicomodule. Then we relate the centre construction

for pseudomonoids with the Drinfel’d or quantum double of a finite dimensional

(coquasi) Hopf algebra. In fact, we show that the Drinfel’d double is exactly

the centre construction of the autonomous map pseudomonoid in Comod(V )

associated to the coquasi Hopf algebra.
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5.1 V -categories and V -modules

The concept of V -module, also called bimodule, distributor or profunctor, arose

in connection with enriched categories [56], [4]. The bicategory of V -categories

and V -modules can be introduced in several different ways. See for example

[6, 78, 16]. It can be viewed as an extension of the 2-category V -Cat with good

properties, and experience indicates that it is the right environment to study

enriched categories and related structures.

We take a short definition of the bicategory of V -modules, but at the same

time we must ask for some properties (such as completeness) on the base monoidal

category V that are not necessary in other approaches. However, in our examples

V always has these properties, necessary to develop the usual theory of enriched

categories as in [42].

Let V be a complete and cocomplete closed symmetric monoidal category.

There is a bicategory V -Mod whose objects are the small V -categories and

hom-categories V -Mod(A ,B) = [A op ⊗ B,V ]0, the category of V -functors

from the tensor product of the V -categories A op and B to V , and V -natural

transformations between them. Objects of this category are called V -modules

and arrows morphisms of V -modules. The composition of two V -modules M :

A → B and N : B → C is given by (NM)(a, c) =
∫ x

N(x, c) ⊗M(a, x). The

identity module 1A is given by 1A (a, a′) = A (a, a′). Our convention is that a

V -module from A to B as a V -functor A op ⊗ B → V .

There is a pseudofunctor (−)∗ : V -Catco → V -Mod which is the identity on

objects and on hom-categories [A ,B]op0 → [A op ⊗ B,V ]0 sends a V -functor F

to the V -functor F∗(a, b) = B(F (a), b). Moreover, the V -module F∗ has right

adjoint F ∗ given by F ∗(b, a) = B(b, F (a)). The pseudofunctor (−)∗ is easily

shown to be strong monoidal and symmetry-preserving.

The tensor product of V -categories induces a structure of a monoidal bica-

tegory on V -Mod. Moreover, the usual symmetry of V -Cat together with the

symmetry of V induce a structure of symmetric monoidal bicategory on V -Mod,

or rather, induce a symmetry in the sense of [16] in any Gray monoid monoidally

equivalent to V -Mod.

Example 5.1 (Promonoidal enriched categories). A pseudomonoid in V -Mod is a

promonodial V -category [11]. The pseudomonoid structure amounts to a multi-

plication and a unit V -functors P : A op⊗A op⊗A → V and J : A → V together

with associativity and unit V -natural constraints satisfying axioms. Any monoi-
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dal V -category can be thought of as a promonoidal V -category, in fact a map

pseudomonoid, by using the monoidal pseudofunctor (−)∗ : V -Catco → V -Mod;

explicitly, if A is a monoidal V -category, then the induced promonoidal structure

is given by P (a, b; c) = A (b⊗ a, c) and J(a) = A (I, a).

One of the many pleasant properties of V -Mod is that it has right liftings.

If M : B → C and N : A → C are V -modules, a right lifting of N through M is

given by the formula MN(a, b) =
∫
c∈C [M(b, c), N(a, c)]. As explained in Section

3.3, the existence of right liftings endows each hom-category V -Mod(I,A ) with a

canonical structure of a V -Mod(I, I)-category, where I is the trivial V -category.

Therefore, each V -Mod(I,A ) is canonically a V -category via the monoidal iso-

morphism V -Mod(I, I) ∼= V . This is exactly the usual V -category structure of

[A ,V ]. In fact, each hom-category V -Mod(A ,B) is canonically a V -category,

in a way such that the equivalence V -Mod(A ,B) ≃ V -Mod(I,A op ⊗ B) is a

V -functor.

Another feature of V -Mod we will need is the existence of Kleisli and Eilen-

berg-Moore constructions for monads. The existence of the former was shown in

[77]. Here we recall the explicit construction for later use. If (M,η, µ) is a monad

in V -Mod on A , Kl(M) has the same objects as A and homs Kl(M)(a, b) =

M(a, b). Composition is given by

M(b, c) ⊗M(a, b) →

∫ b∈A

M(b, c) ⊗M(a, b)
µa,c
−−→M(a, c)

and the units by I
id
−→ A (a, a)

ηa,a
−−→ M(a, a). One can verify that the V -module

K∗ induced by the V -functor K : A → Kl(M) given by the identity on objects

and by ηa,b : A (a, b) →M(a, b) on homs has the universal property of the Kleisli

construction. It is not hard to see that K∗ is an Eilenberg-Moore construction

for M .

5.1.1 Hopf modules for autonomous (pro)monoidal enriched ca-

tegories

We already established our notations and conventions regarding the bicategory

of V -modules in Examples 2.1 and 5.1. Next we show how the results on Hopf

modules specialise to the bicategory of V -modules, and give explicit descriptions

of the main constructions. Although these descriptions carry over to arbitrary

left autonomous map pseudomonoids, here we will concentrate on the simpler
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case of the left autonomous monoidal V -categories A .

The opmonoidal monad T : A op⊗A → A op⊗A defined in Section 2.4 is given

as a V -module by T (a, b; c, d) =
∫ x

A (b⊗ x, d)⊗A (c, a⊗ x). The multiplication

is has components

T 2(a, b; c, d) =
∫ u,v ∫ x

A (v⊗ x, d)⊗A (c, u⊗ x)⊗
∫ y

A (b⊗ y, v)⊗A (u, a⊗ y)

∼=
∫ x,y

A ((b⊗ y) ⊗ x, d) ⊗ A (c, (a⊗ y) ⊗ x)

∼=
∫ x,y

A (b⊗ (y ⊗ x), d) ⊗ A (c, a⊗ (y ⊗ x)) −→ T (a, b; c, d)

where the last arrow is induced by the obvious arrows A (b⊗(y⊗x), d)⊗A (c, a⊗

(y ⊗ x)) →
∫ x

A (b⊗ x, d) ⊗ A (c, a⊗ x). The unit has components

(A op ⊗ A )(a, b; c, d) = A (b, d) ⊗ A (c, a)
η
−→

∫ x

A (b⊗ x, d) ⊗ A (c, a⊗ x),

the component corresponding to I ∈ obA .

The existence of Eilenberg-Moore constructions in V -Mod implies the fol-

lowing.

Proposition 5.2. Any map pseudomonoid in V -Mod has a Hopf module con-

struction.

Following the remarks on Eilenberg-Moore constructions above, one can give

an explicit description of the Hopf module construction for a map pseudomonoid

A . The V -category (A op⊗A )T = (A op⊗A )T has the same objects as A op⊗A ,

homs (A op ⊗ A )(a, b; c, d) = T (a, b; c, d) and composition and identities induced

by the multiplication and unit of T . The unit of the monad T defines a V -functor

η : A op ⊗A → (A op ⊗A )T ; the Kleisli construction for T is just the module η∗

and the Eilenberg-Moore construction is η∗. The module L : A → (A op ⊗ A )T

in (2.12), which is an equivalence if and only if A has a left dualization, equals

L =
(
A

(J∗)◦⊗A
−−−−−−→ A op ⊗ A

η∗
−→ (A op ⊗ A )T

)
(5.1)

When the promonoidal structure is induced by a monoidal structure on A ,

i.e., P (a, b; c) = A (b⊗ a, c) and J(a) = A (I, a), we can compute L more explic-

itly. Firstly note that for any V -functor F : B → C there exists a canonical iso-

morphism of V -modules (F ∗)◦ ∼= (F op)∗ : Bop → C op, where F op : Bop → C op
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is the usual opposite functor. Then

L ∼= η∗((J
op)∗ ⊗ A ) ∼= (η(Jop ⊗ A ))∗.

In components,

L(a; b, c) ∼= (A op ⊗ A )T (η(I, a), (b, c)) = T (I, a; b, c) ∼= A (a⊗ b, c)

with right A -action and left (A op ⊗ A )T -action. The latter is given by the

composition of (A op ⊗ A )T , while the A -action can be shown to be given as

A (a⊗ b, c) ⊗ A (a′, a)
1⊗(−⊗b)
−−−−−→ A (a⊗ b, c) ⊗ A (a′ ⊗ b, a⊗ b)

comp
−−−→ A (a′ ⊗ b, c).

The fact that L is a fully faithful V -module (Proposition 2.17) means exactly

that the V -functor η(Jop ⊗A ) is fully faithful. This can be also verified directly,

for the effect of this V -functor on homs is

A (b, d)
1⊗1I−−−→ A (b, d) ⊗ A (I, I)

η
−→

∫ x

A (b⊗ x, d) ⊗ A (I, I ⊗ x) ∼= A (b, d)

sending an arrow f to
(
b

∼=
−→ b⊗ I

f⊗1I−−−→ d⊗ I
∼=
−→ d

)
.

We finish the section by characterising monoidal categories which are left au-

tonomous as pseudomonoids in the bicategory of Set-modules, sometimes called

profunctors or distributors. We will denote this bicategory simply by Mod, and

use the conventions of Example 2.2.

If A is a monoidal category, consider the arrows A (b, d⊗ x)×A (x⊗ a, c) →

A (b⊗ a, d⊗ c) sending (f, g) to the composition

b⊗ a
f⊗1
−−→ (d⊗ x) ⊗ a

∼=
−→ d⊗ (x⊗ a)

1⊗g
−−→ d⊗ c

where the isomorphism is the associativity constraint of the monoidal category

A . These arrows are dinatural in x, inducing arrows

∫ x

A (b, d⊗ x) × A (x⊗ a, c) → A (b⊗ a, d⊗ c). (5.2)

When b = I, the neutral object of A , we get arrows

∫ x

A (I, d⊗ x) × A (x⊗ a, c) → A (a, d⊗ c). (5.3)
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Proposition 5.3. A monoidal category A has a structure of a left autonomous

pseudomonoid in Mod if and only if the arrows (5.2) are isomorphisms, if and

only if the arrows (5.3) are isomorphisms, for all objects a, b, c, d in A .

Proof. The result follows from Theorem 2.34 since the arrows (5.2) and (5.3) are

the components of the natural transformations γ and ω defined in (2.23) and

(2.25) respectively.

When idempotents in A split, the conditions in the proposition above imply

that A has left duals, by classical arguments. Indeed, if (5.3) is an isomorphism,

by taking c = I and a = d, we deduce that 1a = (1a ⊗ g)(f ⊗ 1a) for some

f : I → a ⊗ x, g : x ⊗ a → I. By an argument due to Paré, the splitting of the

idempotent (g ⊗ 1x)(1x ⊗ f) : x → x provides a left dual for a. There is another

way of seeing this. The splitting of idempotents in A means that A is Cauchy

complete, and therefore the dualization A op → A in Mod is represented by a

functor. This functor assigns a left dual to each object of A (see Example 2.31).

5.1.2 Lax centres in V -Mod

In this section we study the centre and lax centre of pseudomonoid in the monoidal

bicategory of V -modules by means of the theory developed in previous sections.

Along the way, we compare our work with [15, 18].

First we consider lax centres of arbitrary pseudomonoids. We shall show that

the results in Section 3.3 apply to V -Mod. To realise this aim, we have to verify

all the hypothesis required in that section.

We already saw at the beginning of Section 5.1 that liftings exist. In order

to show V -Mod satisfies the other two hypotheses required in Section 3.3 it is

enough to prove that the arrow (3.6) is an isomorphism for M the bicategory of

V -modules. In this case (3.6) becomes

[A op ⊗ B,V ](M,N) → [[A ,V ], [B,V ]]((M ◦ −), (N ◦ −)), (5.4)

where (M ◦−) is the V -functor given by composition with the V -module M . To

show that (5.4) is an isomorphism, recall that the V -functor

[A op ⊗ B,V ] ∼= [B, [A op,V ]] → Cocts[[Bop,V ], [A op,V ]] (5.5)

into the sub-V -category of cocontinuous V -functors is an equivalence by [42,

Theorem 4.51]. This V -functor sends R : C op⊗C → V to the left extension of the
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corresponding R′ : C → [C op,V ] along the Yoneda embedding y : C → [C op,V ],

which is exactly (R ◦ −).

Theorem 3.5 gives:

Corollary 5.4. Suppose the lax centre of the promonoidal V -category A exists.

Then there exits an equivalence of V -categories [ZℓA ,V ] ≃ Zℓ[A ,V ], where on

the left hand side appears the lax centre in V -Mod and on the right hand side

the lax centre in V -Cat. The composition of this equivalence with the forgetful

V -functor Zℓ[A ,V ] → [A ,V ] is canonically isomorphic to the V -functor given

by composing with the universal V -module ZℓA → A . If the centre of A , rather

than the lax centre, exists, then the above holds substituting lax centres by centres

throughout.

Now we turn our attention to autonomous pseudomonoids. The existence

of Eilenberg-Moore constructions in V -Mod together with Theorem 3.14 and

Theorem 3.16 imply:

Proposition 5.5. Any left autonomous map pseudomonoid in V -Mod has a

lax centre. Moreover, if the pseudomonoid is also right autonomous then the lax

centre is the centre.

Proposition 5.6. If a left autonomous pseudomonoid A in V -Mod has a centre

construction, then its lax centre and its centre coincide.

Proof. We saw that the lax centre of a A exists. The result, then, follows from

Theorem 3.6. The category V -Mod(I,A ) has a dense small sub V -category,

namely the one determined by the representable V -functors; and representables

are maps in the bicategory of V -modules. The rest of the hypotheses on M are

easily verified.

We shall describe the lax centre explicitly. In order to simplify the description,

we will suppose A is a left autonomous monoidal V -category, and not merely a

promonoidal one. However, all the following description carries over to the case

of map pseudomonoids.

By Theorem 3.14, the lax centre of A in V -Mod is the Eilenberg-Moore

construction for the monad S̃ given by

A
J⊗1
−−→ A ⊗A

P ∗⊗1
−−−→ A ⊗A ⊗A

1⊗c∗−−−→ A ⊗A ⊗A
P⊗1
−−−→ A ⊗A

P
−→ A (5.6)
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where c denotes the usual symmetry in V -Cat. Explicitly,

S̃(a; b) ∼=

∫ x,y

A (y ⊗ (a⊗ x), b) ⊗ A (I, y ⊗ x) ∼=

∫ y

A (y ⊗ (a⊗ y∨), b),

where y∨ denotes the left dual of y in A . The multiplication of this monad is

given by

S̃2(a; b) ∼=

∫ u,y,z

A
(
y ⊗ (u⊗ y∨), b

)
⊗ A

(
z ⊗ (a⊗ z∨), u

)

∼=

∫ y,z

A
(
y ⊗ (z ⊗ (a⊗ z∨)) ⊗ y∨, b

)
∼=

∫ y,z

A
(
(y ⊗ z) ⊗ (a⊗ (y ⊗ z)∨), b

)
→

−→

∫ x

A
(
x⊗ (a⊗ x∨), b) ∼= S̃(a; b)

where the last arrow is induced by the components ζa,by⊗z : A
(
(y ⊗ z) ⊗ (a⊗ (y ⊗

z)∨), b
)
→

∫ x
A

(
x⊗(a⊗x∨), b

)
of the universal dinatural transformation defining

the latter coend in the codomain above. The unit of S̃ is given by components

ζa,bI : A (a, b) →
∫ x

A
(
x ⊗ (a ⊗ x∨), b) of the same dinatural transformation

corresponding to x = I. Now we have all the ingredients to describe the lax

centre Zℓ(A ), that is, a Kleisli construction for S̃. It has the same objects as

A , enriched homs Zℓ(A )(a, b) = S̃(a, b), composition given by the multiplication

and unit given by

I → A (a, a)
ζ

a,a
I−−→ S̃(a, a),

where the first arrow is the identity of a in A . The arrows ζa,bI : A (a, b) → S̃(a, b)

define a V -functor, which we also call ζ, and the universal Zℓ(A ) → A is none

other than ζ∗.

Observation 5.7. The monad S̃ is closely related to the monad M̌ in [18, Section

5]. There the authors show that for a general small promonoidal V -category C

there exists a monad M̌ on C in V -Mod with the following property. Whenever

[C ,V ] has a small dense sub-V -category of objects with left duals (it is right-dual

controlled, in the terminology of [18]), the forgetful V -functor Zℓ[C ,V ] → [C ,V ]

is a Eilenberg-Moore construction for the monad M on [C ,V ] in V -Cat given

by composition with M̌ . The module M̌ is given by

M̌(a, b) =

∫ x,y

P (P ⊗ C )(y, a, x, b) ⊗ x∧(y),

where x∧ is the internal hom JC (x,−), JK ∈ [C ,V ] (J is the unit of the promo-
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noidal structure).

When C is equipped with a left dualization D : C op → C , each V -module

I → C with right adjoint in V -Mod has a left dual in the monoidal V -category

V -Mod(I,C ) = [C ,V ]. This was first shown in [13]. In particular, C (x,−),

which is the V -module induced by the V -functor I → C constant on x, has left

dual. It follows that [C ,V ] has a small dense sub-V -category with left duals, and

the results of [18] mentioned above apply.

In this situation, if we assume J is a map, so that S̃ exists, we claim that the

monads M̌ and S̃ are isomorphic, or more precisely, that both are isomorphic as

monoids in the monoidal V -category V -Mod(C ,C ) = [C op ⊗ C ,V ]. To show

this, it is enough to prove that the monads (M̌◦−) and (S̃◦−) on V -Mod(I,C ) =

[C ,V ] given by composition with M̌ and S̃ respectively are isomorphic. Now,

the monad (S̃ ◦ −) is V -Mod(I, S̃), and then it has the forgetful V -functor

Zℓ[C ,V ] → [C ,V ] as a (bicategorical) Eilenberg-Moore construction by Corollary

5.4 and Proposition 5.5. Then, (S̃◦−) and M = (M̌ ◦−) have the same Eilenberg-

Moore construction in V -Cat and it follows that both monads are isomorphic as

required.

Example 5.8. Let G be a groupoid. Write ∆ : G → G × G for the diagonal

functor and E : G → 1 the only possible functor. These give G a structure of

comonoid in Cat and thus P = ∆∗ and J = E∗ is a promonoidal structure on

G . Explicitly, P (a, b; c) = G (a, c) × G (b, c) and J(a) = 1; the monoidal structure

induced in [G ,Set] is given by the point-wise cartesian product. Define a functor

D : G op → G as the identity on objects an D(f) = f−1 on arrows. In [16,

Example 10] it was essentially shown that D is a left and right dualization for

the map pseudomonoid (G , J, P ) in Set-Modco. Then, by Corollary 3.17, G

has centre and lax centre in Set-Modco and both coincide. On the other hand,

there is a category G Z described in [16, Example 10] with the property that

[G Z,Set] ≃ Z[G ,Set]. In [15] G Z is shown to be equivalent to the centre of the

promonoidal category G in the sense of that article. As the centre in Set-Mod

satisfies [ZG ,Set] ≃ Z[G ,Set], we have that G Z is Morita equivalent to ZG .

5.2 Hopf algebras and comodules

5.2.1 Hopf algebras

This section pretends to be a very short introduction to Hopf algebras and some

related structures. Readers familiar with the concepts of Hopf algebras and
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(co)quasi-Hopf algebras can skip to the next section.

Hopf algebras originally appeared as cohomology rings of topological groups

or H-spaces, to later find applications to many branches of Mathematics. Basic

examples of Hopf algebras are the group algebras of finite groups, the algebra of

regular functions of an affine algebraic group, the universal enveloping algebra

of a Lie algebra. Hopf algebra theory is of interest to mathematical physicists

because of its connection to quantum theories, via for example the q-enveloping

algebras of a Lie algebra, and to category theorists because of its relationship

with braided monoidal categories.

Let V be a braided monoidal category. The braiding makes the category of

comonoids and comonoid morphisms in V a monoidal category. A bimonoid in V

is a monoid in this category of comonoids. Therefore, a bimonoid is an object H

of V with a comonoid structure with comultiplication ∆ : H → H⊗H and counit

ε : H → I, and a monoid structure with multiplication p : H ⊗H → H and unit

j : I → H. These structures are compatible in the sense that ∆, ε are monoid

morphisms, or equivalently, p, j are comonoid morphisms. We use Greek letters

for the comonoid structure and Roman ones for the monoid structure because,

although completely dual to each other in the case of a bimonoid, these structures

will play different roles when we move to the coquasibialgebras.

There is a convolution product on V (H,H) given by f ∗ g = p(f ⊗ g)∆ with

unit jε. An antipode for the bialgebra H is an inverse S to 1 : H → H under the

convolution product. Hence an antipode, if it exists, is unique, and moreover it

can be shown to be an anti-monoid and anti-comonoid morphism. A bimonoid

equipped with an antipode is called a Hopf monoid.

In the case when V is the category of modules over a commutative ring, these

structures are usually called coalgebras, algebras, bialgebras and Hopf algebras.

Sometimes we will use Sweedler’s notation which we briefly recall. If (H, ε,∆)

is a coalgebra, we write ∆(x) =
∑
x1 ⊗ x2. These expressions are subject to the

coassociativity rule
∑

(x1)1 ⊗ (x1)2 ⊗ x2 =
∑
x1 ⊗ (x2)1 ⊗ (x2)2, and we write

this element
∑
x1 ⊗ x2 ⊗ x2. The counit condition is written

∑
ε(x1)x2 = x =

∑
x1ε(x2).

Example 5.9 (Group algebras). IfG is a finite group and k a commutative ring, the

algebra k[G] is a Hopf algebra with algebra structure induced by the monoid struc-

ture of G (the free vector space functor is monoidal, and thus it sends monoids

in Set to monoids in Vect), comultiplication and counit given by ∆(g) = g ⊗ g

and ε(g) = δg,e respectively, where e ∈ G is the unit. The antipode is given by
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S(g) = g−1.

Example 5.10 (Universal enveloping algebras). If g is a Lie algebra, the universal

enveloping algebra U(g) has a canonical structure of a Hopf algebra. Recall that

U(g) can be constructed as a quotient of the tensor algebra T (g) over the vector

space g by the two-sided ideal generated by x⊗ y − y ⊗ x− [x, y]. For a ∈ T (g)

we write ā for the corresponding element of U(g). Then the comultiplication

∆ : U(g) → U(g) ⊗ U(g) is defined by ∆(x̄) = x⊗ 1 + 1 ⊗ x for x ∈ T (g) of

degree 1; this formula extends to the whole of U(g). The counit ε : U(g) → k

is given by ε(x̄) = 0 and the antipode S : U(g) → U(g) by S(x̄) = −x̄ for all

x ∈ T (g) of degree 1.

Example 5.11 (Taft’s algebras). Let k be a field and ξ ∈ k a primitive N th root

of the unity. Define a Hopf algebra H in the following way. As an algebra, H is

generated by two elements g, x with relations

gN = 1 xN = 1 xg = ξgx.

The comultiplication ∆ : H → H⊗H, counit ε : H → k and antipode S : Hop →

H are defined on the generators by

∆(g) = g ⊗ g ∆(x) = 1 ⊗ x+ x⊗ g

ε(g) = 1 ε(x) = 1

S(g) = g−1 S(x) = −xg−1.

This Hopf algebra is called a Taft’s Hopf algebra, and it has dimension N2 with

basis {gixj : 0 ≤ i, j ≤ N1}. Observe that H is not commutative nor cocommu-

tative, and the antipode does not satisfy S2 = id, as S2(g) = gxg−1. In fact, it

can be shown that S has order 2N

In [23] Drinfel’d introduced a weaken version of Hopf algebras called quasi-

Hopf algebras. A quasibialgebra is a k-algebra H equipped with a counit ε : H →

k which is a morphism of algebras and a comultiplication ∆ : H → H⊗H that is

not coassociative. Instead, ∆ is coassociative up to conjugation with an invertible

3-cycle. We give the definition of the dual concept of coquasi-Hopf algebra that

serves best to our purposes.

A coquasi bialgebra structure on the k-coalgebra (C,∆, ε) is a triple (p, j, φ)

where p : C ⊗ C → C (the product) and j : k → C (the unit) are coalgebra

morphisms, and φ : C ⊗ C ⊗ C → k (the associator) is a convolution-invertible
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functional, satisfying the following axioms, where we write p(x⊗ y) as xy.

p(j ⊗ id) = id = p(id ⊗ j)

∑
φ(x1 ⊗ y1 ⊗ z1)(x2 · y2) · z2 =

∑
x1 · (y1 · z1)φ(x2 ⊗ y2 ⊗ z2)

(ǫ⊗ φ) ∗ φ(1 ⊗ p⊗ 1) ∗ (φ⊗ ǫ) = φ(1 ⊗ 1 ⊗ p) ∗ φ(p⊗ 1 ⊗ 1)

φ(x⊗ j ⊗ y) = ε(x)ε(y)

where ∗ denotes the convolution product in the dual of C ⊗ C ⊗ C ⊗ C.

Of course, these axioms can be written as string diagrams in any braided

monoidal category V , giving rise to a structure we call a coquasibialgebra or

coquasibimonoid in V . Coquasibialgebras were first considered under another

name in [10]; see also [64]. Observe that when φ = ε⊗ ε⊗ ε, a coquasibialgebra

is just a bialgebra.

If one consider the two-dimensional aspects of reconstruction theorems, the

algebraic structures corresponding to monoidal categories are coquasibialgebras.

The reason for this is that both are pseudomonoids in different monoidal bicate-

gories; see Example 5.12. This approach is taken in [66].

An antipode for the coquasi bialgebra H is a triple (S, α, β) where S : Hcop →

H is a coalgebra morphism from the opposite coalgebra of H to H, and the

functionals α, β : H → k satisfy the following equations, where we write 1 for the

element of H corresponding to the unit j : k → H.

∑
S(x1)α(x2)x3 = α(x)j

∑
x1β(x2)S(x3) = β(x)j (5.7)

∑
φ(x1 ⊗ Sx3 ⊗ x5)β(x2)α(x4) = ε(x) (5.8)

∑
φ−1(Sx1 ⊗ x3 ⊗ Sx5)α(x2)β(x4) = ε(x) (5.9)

The definition of coquasibialgebra and coquasi-Hopf algebra are designed in

such a way that the following holds. If B is a coquasibialgebra, the category of

(right) comodules Comod(B) is monoidal and the forgetful functor U into Vect

is multiplicative in the sense that U(M)⊗U(N) ∼= U(M ⊗N), but not monoidal.

This is because the associativity constraint of Comod(B) is the composition

M⊗N⊗L→M⊗B⊗N⊗B⊗L⊗B →M⊗N⊗L⊗B⊗3 M⊗N⊗L⊗φ
−−−−−−−−→M⊗N⊗L

where the first arrow is the tensor product of the coactions, the second is induced
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by the symmetry of Vect, and we omit the associativity constraint of Vect.

In the case of a coquasi-Hopf algebra H with antipode S, the category of

finite-dimensional comodules Comodf (H) is left autonomous. A left dual ∗M for

a comodule M with coaction χ : M → M ⊗ H is given by the dual M∨ of the

vector space M with coaction

M∨ 1⊗c
−−→M∨ ⊗M ⊗M∨ 1⊗χ⊗1

−−−−→M∨ ⊗M ⊗H ⊗M∨
e⊗cH,M∨

−−−−−−→M∨ ⊗H

where c, e are the coevaluation and evaluation of vector spaces and c is the sym-

metry. The evaluation ∗M ⊗M → k and the coevaluation k →M ⊗ ∗M are the

morphisms of comodules below.

M∨ ⊗M
1⊗χ
−−→M∨ ⊗M ⊗H

e⊗α
−−→ k

k
c
−→M ⊗M∨ χ⊗1

−−→M ⊗H ⊗M∨ 1⊗β⊗1
−−−−→M ⊗M∨

When H is a bialgebra (i.e., φ is trivial) and α = β = ε, we recover Hopf algebras.

5.2.2 The bicategory of comodules

In this section we apply the general theory we have developed for autonomous

pseudomonoids to Hopf algebras and some of their generalisations. After review-

ing the definition and basic properties of the bicategory of comodules, we interpret

the material of the three previous chapters in three sections. In the first of them,

Section 5.2.3, we explain why Theorem 2.34 generalises the fundamental theorem

of Hopf modules for (coquasi) Hopf algebras. In Section 5.2.4 we describe the

centre in the monoidal bicategory of comodules of (the pseudomonoid induced

by) a finite dimensional coquasi-Hopf algebra. We show that this centre is equiv-

alent to the Drinfel’d or quantum double of the coquasi-Hopf algebra. Finally, in

Section 5.2.5 we deduce from the isomorphism we called Radford’s formula for au-

tonomous map pseudomonoids in Section 4.2 formulas for the cases of quasi-Hopf

algebras (Theorem 5.34) and coquasi-Hopf algebras (Theorem 5.36).

Given a monoidal category V , there is a monoidal 2-category Comon(V )

called the 2-category of comonoids. Its objects are comonoids in V , its 1-cells

comonoid morphisms and 2-cells σ : f ⇒ g : C → D are arrows σ : C → I in V
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such that

σ

�����
f

?????

C

??
??
D

=

g

�����
σ

?????

C

��
��D

The vertical composition of a pair of 2-cells σ : f ⇒ g and τ : g ⇒ h is the usual

convolution product: τ ∗ σ = (τ ⊗ σ)∆, where ∆ denotes the comultiplication.

The horizontal compositions

A

f
&&

g
88

�� ��
�� σ B

h // C and D
k // A

f
&&

g
88

�� ��
�� σ B

are A
σ
−→ I and D

k
−→ A

σ
−→ I respectively.

Now suppose further that V has equalizers of reflexive pairs and each func-

tor X ⊗ − preserves them. Then we can construct the bicategory of comod-

ules over V , denoted by Comod(V ). It has comonoids in V as objects and

homs Comod(V )(C,D) the category of C-D-bicomodules; this is the category

of Eilenberg-Moore algebras for the comonad C ⊗−⊗D on V . The composition

of two comodules M : C → D and N : D → E is given by the equalizer of the

following reflexive pair

M�DN //M ⊗N
χM

r ⊗N //

M⊗χN
ℓ

//M ⊗D ⊗N

where the various χ denote the obvious coactions. This equalizer is denoted by

M�DN , and has a C-E-comodule structure induced by the structures of M and

N . The comodule M�DN is sometimes called the cotensor product of M and N

over D. The identity 1-cell corresponding to a comonoid C is the regular comodule

C, i.e. it is C with coaction ∆2 = (∆ ⊗ 1)∆ : C → C ⊗ C ⊗ C.

There is a pseudofunctor (−)∗ : Comod(V ) → Comod(V ) acting as the

identity on objects, sending a comonoid morphism f : C → D to the comodule,

denoted by f∗ : C → D, with underlying object C and coaction

�����������

f

?????

C

??
??
D
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and sending a 2-cell σ : f ⇒ g to the comodule morphism σ∗ : f∗ ⇒ g∗ given by

������ σ

?????

C

The axioms of coaction and of comodule morphism follow from the ones of co-

module morphism and 2-cell in Comon(V ) respectively. It is easy to show that

the pseudofunctor (−)∗ is locally fully faithful (in fact, locally it can be viewed

as a V op-enriched Yoneda embedding).

An important property of (−)∗ is that it sends any 1-cell in Comon(V ) to a

map in Comod(V ). For, if f : C → D is a comonoid morphism, then f∗ has a

right adjoint, denoted by f∗, with underlying object C and coaction

???????????
f

�����

C

��
��D

The composition f∗f
∗ is the comodule with object C and coaction

f

?????

??
??
D

f

�����

C

��
��D C

and the counit of the adjunction is just the arrow f : C → D, which turns out to

be a comodule morphism; the unit is the unique map such that

f∗f∗ = f∗�Df
∗ // C ⊗ C

C

∆

77nnnnnnnnnnnnnn

η

OO

where the horizontal arrow is the defining equalizer of f∗f∗.

When V is braided, Comon(V ) and Comod(V ) have the structure of mo-

noidal bicategories with tensor product given by the tensor product of V ; note

that the braiding is used in defining the comultiplication and coactions on the

tensor product of comonoids and comodules. The pseudofunctor (−)∗ is strong

monoidal. Through (−)∗ we can think of Comon(V ) as a monoidal sub bicate-

gory of Comod(V ).
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Example 5.12 (Coquasibialgebras). A pseudomonoid (C, j, p) in the bicategory of

comonoids Comon(V ) amounts to a comonoid C with two comonoid morphisms

j : I → C and p : C ⊗ C → C and the invertible 2-cells φ : p(p⊗ C) ⇒ p(C ⊗ p),

λ : p(j ⊗ C) ⇒ 1 and ρ : p(C ⊗ j) ⇒ 1 satisfying axioms. These 2-cells are

convolution-invertible arrows φ : C ⊗ C ⊗ C → I and λ, ρ : C → I.

Normal pseudomonoids, that is, pseudomonoids whose unit constraints λ, ρ

are identities, in the monoidal bicategory Comon(Vect) are coquasibialgebras.

The dual of this algebraic structure, called quasibialgebra, was first defined in [23]

where also were defined the quasi-Hopf algebras. Coquasibialgebras and coquasi

Hopf algebras can be found for example in [63, 10, 73]. See Section 5.2.1.

The bicategory Comod(V ) is not just monoidal but it is also left and right

autonomous. The right bidual of a comonoid C is the opposite comonoid C◦.

The braiding provides pseudonatural equivalences

Comod(V )(C ⊗D,E) ≃ Comod(V )(D,C◦ ⊗ E).

The coevaluation n : I → C◦ ⊗ C and evaluation e : C ⊗ C◦ → I comodules are

the object C with coaction

The left bidual is defined by using the inverse of the braiding.

Example 5.13 (Coquasi-Hopf algebras). As shown in [13], Coquasi-Hopf algebras

are exactly the left autonomous normal pseudomonoids in Comod(Vect) whose

unit, multiplication and dualization are representable by coalgebra morphisms.

Regard a coquasibialgebraH as a pseudomonoid (H, j∗, p∗) in Comod(Vect),

and assume H has a left dualization (s∗, α, β) where s : H◦ → H is a comonoid

morphism. We write ∆2 for the arrow (∆ ⊗ H)∆ = (H ⊗ ∆)∆ as it is custom

in Hopf algebra theory. The 2-cell α is a comodule morphism from p∗(s∗ ⊗H)n

to j∗. Then α : H → k is a functional satisfying p(s ⊗ α ⊗ H)∆2 = jα, or in

Sweedler’s notation:
∑
α(x2)s(x1) · x3 = α(x)j. This is one of the equations

in (5.7). Taking mates, the 2-cell β : j∗e ⇒ p∗(H ⊗ s∗) corresponds to a 2-cell

β̄ : e(H ⊗ s∗)p∗ ⇒ j∗. This comodule morphism is an arrow β̄ : H → k satisfying

p(H ⊗ β̄ ⊗ H)∆2 = jβ̄, or in Sweedler’s notation
∑
β̄(x3)x1 · s(x3) = β̄(x)j,
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p

p

Figure 5.1: Comodule structure of the monad t.

that is the second equation in (5.7). The bijection between β and β̄ is given by

β = (H ⊗ β̄ ⊗H)∆2, β̄ = (ε⊗ ε)β. Now it is not hard to check that the axioms

of a left dualization translate into the equations (5.8) and (5.9).

5.2.3 Hopf modules

From now on V will not only have equalizers of reflexive pairs, but all equalizers.

Equalizers are necessary as the proof of the proposition below uses the Adjoint

Triangle Theorem [24]. In any case, these properties are certainly satisfied in our

main example of the category of vector spaces.

Proposition 5.14 ([13]). A comodule M : C → D has a right adjoint if and only

if its composition with ε∗ : D → I has a right adjoint.

Now we shall describe for a pseudomonoid C in Comon(V ) the underlying

comodule of the monad t on C◦ ⊗ C representing θ. Recall from (2.28) that

t ∼= (C◦ ⊗ p∗)(C
◦ ⊗ C ⊗ e ⊗ C)(C◦ ⊗ p∗ ⊗ C∗ ⊗ C)(n ⊗ C∗ ⊗ C)

and so it has underlying object C ⊗C ⊗C with coaction depicted in Figure 5.1.

The Hopf module construction for a map pseudomonoid in Comod(V ) may

not exist, as this bicategory does not have Eilenberg-Moore objects for monads.

However, it does have Eilenberg-Moore constructions for comonads.

Observation 5.15. The bicategory Comod(V ) has Eilenberg-Moore objects for

comonads. If G is a comonad on the comonoid C with comultiplication δ : G →

G�CG and counit ǫ : G → C, its Eilenberg-Moore object admits the following

description (which is dual to the description of Kleisli objects for monads in

V -Cat in [77]). As a comonoid, it is G equipped with comultiplication and
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counit

G
δ
−→ G�CG ֌ G⊗G and G

ǫ
−→ C

ε
−→ I.

Note that the arrow ǫ : G → C in V becomes a morphism of comonoids. The

universal 1-cell is just the comodule ǫ∗ : G→ C.

Proposition 5.16. Given a map pseudomonoid C in Comod(V ), if the monad

t : C◦ ⊗ C → C◦ ⊗ C has right adjoint, then C has a Hopf module construction.

In particular, this holds if C ∈ obV has a dual.

Proof. The 1-cell t∗ has a canonical structure of a right adjoint comonad to the

monad t. It is well-known that the Eilenberg-Moore construction for the comonad

t∗ is an Eilenberg-Moore construction for the monad t. To finish, we show that

if C has a dual in V then t ∼= ((p∗)◦⊗ p)(C◦⊗ n⊗C) has a right adjoint, and for

that it suffices to prove that n does. But by Proposition 5.14, n is a map if and

only if C has a dual.

When V is the category of vector spaces and C is a coquasi-bialgebra, the

assertion that the functor λI from Comod(V )(I, C) to the category of Hopf

modules is an equivalence is what Schauenburg [75] calls the theorem of Hopf

modules. See Example 2.8. We shall show that when C has a Hopf module

construction both notions are equivalent.

Let W be a braided monoidal replete full subcategory of V closed under

equalizers of reflexive pairs. There is an inclusion monoidal pseudofunctor

Comod(W ) → Comod(V ).

This inclusion, being monoidal, preserves biduals.

Corollary 5.17. Let W and V be as above. Suppose C is a map pseudomonoid

in Comod(W ) such that C has a dual in W . Then, the theorem of Hopf modules

holds for C in Comod(W ) if and only if it holds for C in Comod(V ).

Proof. We begin by observing that since C has a dual in W , and hence in V , by

Proposition 5.16, C has a Hopf module construction both in Comod(W ) and in

Comod(V ). Moreover, the two coincide. To see this, observe that the monad t

is given by (2.28) and each of the 1-cells in the composition lies in Comod(W ).

Since C has a dual, t has a right adjoint comonad, whose Eilenberg-Moore con-

struction, described in Observation 5.15, is the Hopf module construction for C.
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By the description of this Eilenberg-Moore construction, one sees that it lies in

Comod(W ).

Hence, we have to prove that the 1-cell ℓ : C → (C◦ ⊗ C)t (see Proposition

2.17) is an equivalence in Comod(W ) if and only if it is one in Comod(V ). One

direction is trivial, so we shall suppose ℓ is an equivalence in Comod(V ). We

have, then, an adjoint equivalence ℓ ⊣ ℓ∗; as ℓ is always a map (by Proposition

2.17), this adjoint equivalence lifts to Comod(W ).

Corollary 5.18. Suppose that C is a map pseudomonoid in Comod(Vect). If

C is finite-dimensional, the theorem of Hopf modules holds for C if and only if

the functor

λI : Comod(Vect)(I, C) → Comod(Vect)(C,C)θI

(see Definition 2.3) is an equivalence.

Proof. Only the converse is non trivial. Write V for Vect and Vf for the full

subcategory of finite-dimensional vector spaces. By Proposition 5.17, it is enough

to show that the theorem of Hopf modules holds for C in Comod(Vf ).

The functor λI is represented by the 1-cell ℓ : C → (C◦ ⊗ C)t. We have that

the functor Comod(Vf )(I, ℓ) is an equivalence, and the result follows from the

fact that the functor Comod(Vf )(I,−) reflects equivalences.

We obtain the following generalisation of [75, Thm. 3.1].

Corollary 5.19. Let C be a map pseudomonoid in Comod(Vect) whose under-

lying space is finite-dimensional. Then C has a left dualization if and only if the

functor λI : Comod(Vect)(I, C) → Comod(Vect)(C,C)θI is an equivalence.

Proof. By the corollary above, the theorem of Hopf modules holds for C; hence,

C has a left dualization by Theorem 2.34.

Corollary 5.20. For any finite-dimensional coquasi-bialgebra C there exists a

map pseudomonoid D in Comod(Vect) such that the category of Hopf modules

for C (as defined in [75]) is monoidally equivalent to the category of right D-

comodules Comod(Vect)(I,D). Moreover, D can be taken to be the Hopf module

construction for C, and in particular, finite-dimensional.

By Observation 5.15, the Hopf module construction (C◦⊗C)t → C◦⊗C can be

taken to be of the form ǫ∗, where ǫ : (C◦⊗C)t → C◦⊗C is a comonoid morphism.
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p

Figure 5.2: Hopf module construction for a coquasibialgebra with a left dualiza-
tion.

Note that, in general, the forgetful functor Comod(Vect)(I,D) → Vect is not

monoidal.

Now suppose that C is a left autonomous map pseudomonoid in Comod(V ).

The existence of a left dualization forces the multiplication to be a map [13, Prop.

1.2]. On the other hand, the unit of C is a map because its underlying object

I ∈ V has a (right) dual by Proposition 5.14. It follows that any left autonomous

pseudomonoid in Comod(V ) is a map pseudomonoid. A Hopf module construc-

tion for C is provided by (C◦ ⊗ p)(n ⊗ C) ∼= (p(d ⊗ C))∗ : C → C◦ ⊗ C. In the

case when C is a coquasibialgebra, the comodule (C◦ ⊗ p∗)(n⊗C) is C ⊗C with

coaction depicted in Figure 5.2.

5.2.4 Centres and Drinfel’d double

We now consider the results of Section 3.4 on the lax centre in the context of

comodules. We suppose the underlying monoidal category V is symmetric, and

thus Comon(V ) is a symmetric monoidal Cat-enriched category. Via the mo-

noidal pseudofunctor (−)∗ we obtain comodules cM,N : M ⊗N → N ⊗M making

the usual diagrams commute up to canonical isomorphisms in Comod(V ).

Proposition 5.21. Any left autonomous pseudomonoid in Comod(V ) whose

underlying object in V has a dual has a lax centre. If the pseudomonoid is also

right autonomous then the lax centre equals the centre.

Proof. We have already mention that any left autonomous pseudomonoid C in

Comod(V ) is a map pseudomonoid. By Theorem 3.14 we have to show that the

monad s̃ : A→ A has an Eilenberg-Moore construction, and for that it is enough

to show that it has a right adjoint, since Comod(V ) has Eilenberg-Moore objects

for comonads. By Theorem 3.14, we have s̃ ∼= p(p⊗C)(C ⊗ cC,C)(p∗ ⊗C)(j⊗C)

and therefore s̃ has a right adjoint if p∗j : I → C ⊗ C has one; but C being left
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autonomous, this 1-cell is isomorphic to (d⊗C)n which is a composition of maps:

d by [13, Prop. 1.2] and n by [13, Prop. 5.1].

Example 5.22. The proposition above implies that any finite-dimensional coquasi-

Hopf algebra H has a lax centre in Comod(Vect). Moreover, the antipode of

a finite-dimensional coquasi-Hopf algebra is always invertible by [9, 75]. This

means that the dualization of the induced map pseudomonoid is an equivalence,

and hence we have a left and right autonomous pseudomonoid (see [13, Prop.

1.5]). It follows that H has a centre and it coincides with the lax centre.

Observation 5.23. In the proposition above, suppose that the full subcategory

Vf of objects with a dual in V is closed under equalizers of reflexive pairs. Then

the lax centre Zℓ(C) → C lies in Comod(Vf ), and it is a lax centre in it.

To prove this observe that t : C◦⊗C → C◦⊗C and its Eilenberg-Moore con-

struction C → C◦ ⊗ C lie in Comod(Vf ), and the monad s and the distributive

law between t and s do so too; see the description of Eilenberg-Moore construc-

tions for comonads in Observation 5.15. It follows that the induced monad s̃ on

C lies in Comod(Vf ), and it has right adjoint in this bicategory, as shown in the

proof above, and it is necessarily the same as in Comod(V ). It follows from the

description of Eilenberg-Moore objects mentioned above that s̃∗ has an Eilenberg-

Moore construction in Comod(Vf ) and coincides with the respective construction

in Comod(V ). Moreover, this construction is given by ǫ∗ : C s̃
∗

→ C, where ǫ

is the comonoid morphism induced by the counit of the comonad s̃∗. Therefore,

the lax centre of C in Comod(Vf ) is the lax centre of C in Comod(V ).

The Drinfel’d double or quantum double of a finite-dimensional Hopf algebra

is a finite-dimensional braided (also called quasitriangular) Hopf algebra D(H)

with underlying vector space H∗ ⊗ H (one can also take H ⊗ H) and suitably

defined structure. It is a classical result that the category of left D(H)-modules is

monoidally equivalent to the category of (two-sided) H-Hopf modules and to the

centre of the category of H-modules. The Drinfel’d double of a finite-dimensional

quasi-Hopf algebra was defined in [64] using a reconstruction theorem, and explicit

constructions were given in [35, 74]. This last paper shows that the category

of D(H)-modules is monoidally equivalent to the centre of the category of H-

modules, via a generalisation of the Yetter-Drinfel’d modules. The quantum

double of a coquasi-Hopf algebra was described in [10]. Alternatively, it can be

described by dualising the explicit constructions for the quasi-Hopf case. Then

the Drinfel’d or quantum double D(H) of a finite-dimensional coquasi-Hopf H
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algebra is finite-dimensional and has the property that the category of D(H)-

comodules Comod(D(H)) is monoidally equivalent to the centre of Comod(H),

and the equivalence commutes with the forgetful functors.

Given a finite-dimensional coquasi-Hopf algebra H, we would like to study

the relationship between the centre Z(H) in Comod(Vect) and the Drinfel’d

double D(H). To this aim we will need some of the machinery of Tannakian

reconstruction, of which we give the most basic aspects following [68].

Let V be a monoidal category and Vf the full sub-monoidal category with

objects with left duals. We denote by Vf -Act the 2-category of pseudoalgebras for

the pseudomonad (Vf ×−) on Cat. Objects of this 2-category are pseudoactions

of Vf and 1-cells are pseudomorphisms of pseudoactions. Observe that Vf has a

canonical Vf -pseudoaction given by the tensor product. We form the 2-category

Vf -Alg/Vf with objects 1-cells σ : A → Vf in Vf -Act. The 1-cells are pairs

(F, φ) : σ → σ′ where F : A → A ′ is a 1-cell in Vf -Act and φ : σ′F ∼= σ is a 2-cell

in Vf -Act. 2- cells (F, φ) ⇒ (F ′, φ′) are just 2-cells F ⇒ F ′ in Vf -Act. There is

a 2-functor Comodf : Comon(V ) → Vf -Act/Vf sending a comonoid C to the

forgetful functor ωC : Comodf (C) → Vf ; here Comodf (C) is the category of right

coactions of C with underlying object in Vf . This category has a canonical Vf -

pseudoaction such that ω is an object of Vf -Act/Vf . The definition of Comodf

on 1-cells and 2-cells should be more or less obvious; see [68].

Under certain hypothesis on V , the 2-functor Comodf is bi-fully faithful. Here

is the case we will need: the 2-functor

Comodf : Comon(Vect) → Vectf -Act/Vectf

is bi-fully faithful. We refer the reader to [68] for a proof of this result.

Theorem 5.24. For any finite-dimensional coquasi-Hopf algebra H, the coalge-

bras H s̃∗ and D(H) are equivalent coquasibialgebras. Moreover, they are isomor-

phic as coalgebras.

Proof. By Observation 5.23, H s̃∗ is a centre for the pseudomonoid H in the

monoidal bicategory Comod(Vectf ). Hence we have an equivalence in the 2-

category Vectf -Act/Vectf from the forgetful functor Comodf (H
s̃∗) → Vectf to

the forgetful functor Z(Comodf (H)) → Vectf . On the other hand, there is an

equivalence from the latter to Comodf (D(H)) → Vectf . In this way we get an

equivalence from Comodf (H
s̃∗) to Comodf (D(H)) in Vectf -Act/Vectf . By the

result mentioned above this theorem, we have an equivalence f : H s̃∗ → D(H)
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in Comon(Vect). That is, both coquasibialgebras are equivalent. As every

equivalence in Comon(V ) has an invertible underlying arrow in V , we deduce

that f is an isomorphism of coalgebras.

5.2.5 Radford’s formula

In this section we interpret the results on Radford’s formula obtained in Chapter 4

in the case of the bicategory of comodules. We will assume that V is a symmetric

monoidal category with equalizers and whose tensor product preserves equaliz-

ers of reflexive pairs in each variable, so that Comod(V ) exists. Since the base

monoidal category V is symmetric, the canonical right and left bidual pseudo-

functors we have chosen on Comod(V ) are equal. Therefore we shall write both

right and left biduals by (−)◦.

For the sake of simplicity, and with view to the applications to Hopf algebra

theory, from now on we will suppose that (H, j, p, s) is a coquasi-Hopf algebra

in the symmetric monoidal category V . We consider the map pseudomonoid

(H, j∗, p∗) in Comod(V ) with left dualization d = s∗.

Lemma 5.25. The arrows sj and j : I → H are equal in V .

Proof. Write jop for the arrow j regarded as a comonoid morphism I → H◦. It

is easy to see that j∗◦ ∼= jop∗ : I → H◦. By Proposition 2.38, the left dualization

s∗ is a strong monoidal morphism. In particular, there exists an isomorphism

(sjop)∗ ∼= s∗j
∗◦ ∼= j∗, and then an isomorphism sjop ∼= j in Comon(V ). This

amounts to an invertible arrow γ : I → I such that γ ⊗ sj = j ⊗ γ; hence

sj = j.

Lemma 5.26. Let M be a left H-comodule.

1. M is invertible in the monoidal category Comod(V )(H, I) if and only if

the object M ∈ V is invertible.

2. If M is invertible, M is isomorphic to f∗ ⊗ (Mε∗) where f : I → H is the

unique morphism such that f ⊗M is the coaction of M .

3. If M is invertible and f, g : I → H are the comonoid morphisms corre-

sponding to M and its left dual respectively, then p(f ⊗ g) = j = p(g ⊗ f).

Proof. 1. Clearly, ε : H → I is a strict monoidal 1-cell from the pseudomonoid

(H, j, p) to I. Hence, the monadic functor

Comod(V )(ε∗, I) : Comod(V )(H, I) → Comod(V )(I, I) ≃ V (5.10)
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is strong monoidal. Therefore, Mε∗ is invertible whenever M is so.

Conversely, by [13, Prop. 5.1] (see Proposition 5.14), Mε∗ has a dual if and

only if M has left adjoint, and this happens if and only if M has left a dual in

Comod(V )(H, I), by Proposition 4.6. Moreover, the coevaluation and evaluation

for Mε∗ are the image under (5.10) of the ones of M . Then, the invertibility of

M follows, because (5.10) is conservative.

2. If M ∈ V is invertible, tensoring the coaction M → H ⊗M with M∨ on

the right we obtain an arrow f : I → H. The coassociativity of the coaction

ensures that f is a comonoid morphism. Clearly f∗ ⊗Mε∗ ∼= M .

3. Denote a left dual ofM byM⊳. The underlying arrow in V of the evaluation

ev : M⊳ ⊗ M → I is an isomorphism between (g∗ ⊗ M⊳ε∗) ⊗ (f∗ ⊗ Mε∗) =

(p(g ⊗ f)∗ ⊗ (M⊳ ⊗M)ε∗) and j∗. If one writes this explicitly as diagrams in

V , one immediately sees that it implies p(g ⊗ f) = j : I → H. An analogous

reasoning proves that p(f ⊗ g) = j.

When s is invertible, denote by s̄ : H◦ → H the morphism of comonoids

whose underlying arrow in V is the inverse of s.

Lemma 5.27. With the notation above, H is also right autonomous if and only

if s : H◦ → H is invertible in Comon(V ), or equivalently, in V . Moreover, in

this case the right dualization is given by s̄∗.

Proof. From [13, Propositions 1.4 and 1.5] we know that a left autonomous map

pseudomonoid is right autonomous if and only if the left dualization is an equiv-

alence. Then, H is right autonomous if and only if s∗ ⊣ s∗ is an equivalence.

In particular, the counit, that is given by s : H → H (see beginning of Section

5.2.2), is an isomorphism. The converse is clear.

The right dualization is given by (s∗)
◦, by [13, Prop. 1.4] (recall that in our

case left and right bidual coincide); so it is the comodule with underlying object

H and left and right coactions

(H
∆
−→ H ⊗H

c
−→ H ⊗H

1⊗s
−−→ H ⊗H

c
−→ H ⊗H) = (H

∆
−→ H ⊗H

s⊗1
−−→ H ⊗H)

and

(H
∆
−→ H ⊗H

c
−→ H ⊗H

c
−→ H ⊗H) = ∆

respectively. It is clear that the arrow s : H → H is an isomorphism of comodules

from (s∗)
◦ to s̄∗.
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From now on we will suppose that the antipode of H is invertible. The right

dualization d̄ is just s̄∗, where s̄ : H◦ → H is the inverse of s.

If H has dual in V , so that n : I → H◦ ⊗H has a right adjoint, then there

exists a comodule W : H → I such that (j∗W)∗1H ∼= 1⊳H has (−∗1H)-algebras (see

(4.14)). Here, 1H is the regular bicomodule H, j∗W is just W with trivial right

coaction induced by the unit j; then, (j∗W) ∗ 1H can be taken as the comodule

with underlying object W ⊗H, left and right coactions

W ⊗H
χ⊗∆
−−−→ H ⊗ W ⊗H⊗2 1⊗c⊗1

−−−−→ H⊗2 ⊗ W ⊗H
p⊗1⊗1
−−−−→ H ⊗W ⊗H

W ⊗H
1⊗∆
−−−→ W ⊗H ⊗H.

The right action of 1H on j∗W ∗ 1H is just the morphism W ⊗ p : W ⊗H ⊗H →

W⊗H. Using Proposition 4.10, the comodule 1⊳H can be taken to be the left dual

H∨ of H with coaction

H∨ 1⊗coev
−−−−→ H∨ ⊗H ⊗H∨ 1⊗(1⊗∆)∆⊗1

−−−−−−−−−→ H∨ ⊗H⊗3 ⊗H∨ −→

cH∨,H⊗1⊗cH,H∨

−−−−−−−−−−−→ H⊗H∨⊗H⊗H∨⊗H
1⊗ev1⊗1
−−−−−→ H⊗H∨⊗H

s−1⊗1⊗s
−−−−−−→ H⊗H∨⊗H

where c denotes the symmetry of V . Analogously, the right action of 1H on 1⊳H
is the morphism

H∨ ⊗H
1⊗1⊗coev
−−−−−−→ H∨ ⊗H⊗2 ⊗H∨ 1⊗p⊗1

−−−−→ H∨ ⊗H ⊗H∨ ev⊗1
−−−→ H∨.

Observation 5.28. The comodule W : H → I is isomorphic to the composition

of 1⊳H with j∗ : H → I; in other words, W is the equalizer of (H∨⊗s)(cH,H∨)(ev⊗

H⊗H∨)(H∨⊗∆⊗H∨)(H∨⊗coev) and H∨⊗j, or, composing with the symmetry

and s−1 and using Lemma 5.25, the equalizer of

H∨ 1⊗coev
−−−−→ H∨ ⊗H ⊗H∨ 1⊗∆⊗1

−−−−−→ H∨ ⊗H⊗2 ⊗H∨ ev⊗1⊗1
−−−−−→ H ⊗H∨

and j ⊗ H∨. We call W the object of right cointegrals of H. When the base

monoidal category is Vect, W is the usual space of right cointegrals

{φ ∈ H∨ |
∑

φ(x1)x2 = φ(x)j}.

Definition 5.1. When the comodule W : H → I is invertible, define b : I → H

as the invertible comonoid morphism given by Lemma 5.26. Define the modular
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element of H as a = sb : I → H.

Example 5.29. When the base monoidal category is Vect, the element a ∈ H

defined above is the usual modular element. In order to show this we compare

two expressions for the coaction of W. The diagram on the left hand side below,

in which the vertical arrows are the coactions, commutes by definition of W.

W
� � //

��

H∨

��
H ⊗ W

� � // H ⊗H∨

W ⊗H //

��

H∨ ⊗H

��
H ⊗ W ⊗H // H

Taking mates under duals, we get the commutative square on the right hand side,

i.e., for any φ ∈ W and x ∈ H, φ(x)b =
∑
φ(x2)s

−1(x1); equivalently,

φ(x)a =
∑

φ(x2)x1.

This means that a is the modular element, since (ψ ∗ φ)(x) =
∑
ψ(x1)φ(x2) =

ψ(a)φ(x) for any ψ ∈ H∨.

Proposition 5.30. Let (H, j, p, s) be a coquasi-Hopf algebra in V , and suppose

the comodule W is invertible. Then any isomorphism

τ : (H
p∗

−→ H ⊗H
1⊗W
−−−→ H

dd̄∗
−−→ H) ∼= (H

p∗

−→ H ⊗H
W⊗1
−−−→ H

d̄d∗
−−→ H)

in Comod(V ), where d = s∗, gives rise to a convolution invertible arrow α :

H → I in V satisfying

α

�������
s2

???????

H

p

����

b
//

//

=

s−2

�������
α

???????

H

p

////

b

��
��

(5.11)

where b : I → H is as in Definition 5.1.

Proof. Denote by s̄ and s̃ the inverse of s when regarded as a coalgebra morphism

H◦ → H and H → H◦ respectively. Also denote by ŝ the morphism s when

regarded as a morphism H → H◦. Then, s̄ = ŝ−1 and s = s̃−1 in Comon(V ),
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and hence d̄ ∼= s̄∗ ∼= ŝ∗ and d ∼= s̃∗. Thus

dd̄∗ ∼= s̃∗s̄∗ ∼= (s̄s̃)∗ ∼= (s−2)∗ d̄d∗ ∼= ŝ∗s∗ ∼= (sŝ)∗ ∼= (s2)∗,

where s−2, s2 : H → H in Comon(V ). We can rewrite the isomorphism τ

as an isomorphism (p(s−2 ⊗ b))∗ ∼= (p(b ⊗ s2))∗, and hence it is induced by

an isomorphism α : p(b ⊗ s2) ∼= p(s−2 ⊗ b) in Comon(V ), in the sense that

τ = (α⊗H)∆, and this is exactly our result.

Observation 5.31. Recall the following standard notation in Hopf Algebra The-

ory. If C is a coalgebra, its dual C∨ acts on C on the left and on the right by

γ ⊗ x 7→ γ ⇀ x =
∑

x1γ(x2) x⊗ γ 7→ x ↼ γ =
∑

γ(x1)x2.

Then, the equality (5.11) is often written as

b · s2(x ↼ α) = s−2(α ⇀ x) · b.

Lemma 5.32. Let k be a commutative ring and U = k-Modop. Denote by

Comod(U )(B,E)f the category of B-E-bicomodules whose underlying k-module

has a dual. Then any natural transformation

τ : Comod(U )(M, I) ⇒ Comod(U )(N, I)

between functors Comod(U )(D, I)f → Comod(U )(C, I) is of the form

τ = Comod(U )(γ, I)

for a unique comodule morphism γ : M → N .

Proof. Write D-Modf for the category of D-modules whose underlying k-module

has a dual. This category is the Cauchy completion (i.e., the completion un-

der absolute colimits) of its full subcategory determined by D. Observe that

Comod(U )(D, I)f is just D-Modop
f , the category of D-modules with a dual

within k-Mod. This is because a comonoid in U is a k-algebra and a comodule in

U a k-module. Then Comod(U )(D, I)f is the completion under absolute limits

of its full subcategory determined by the regular comodule D. Hence τ is of the

form γ�D− for a unique morphism of left C-comodules γ : M → N which can
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be easily seen to be also a morphism of right D-comodules.

Lemma 5.33. Let k be a commutative ring.

1. A k-module L is invertible if and only if Lm is a km-vector space of dimen-

sion one for each maximal ideal m of k.

2. If a k-module L has (categorical) dual L∨ and M is a k-module such that

M ⊗ L ∼= L∨, then M is invertible.

Proof. (1) Localisation is a (normal) monoidal functor k-Mod → km-Mod; this is

just the well known fact that Mm⊗km
Nm is canonically isomorphic to (M ⊗N)m.

Therefore, the evaluation ev : L⊗L∨ → k gives evaluations Lm⊗km
L∨

m
→ km for

each maximal ideal m, each of which is an isomorphism since Lm has dimension

one over km. If follows that evm is an isomorphism for each m, and then ev is an

isomorphism.

(2) For each maximal ideal m, we have Mm ⊗km
Lm

∼= (Lm)∨, where the dual

is taken in the category of km-vector spaces. Then, dimkm
Mm = 1 for every

maximal ideal m, and hence M is an invertible k-module.

A quasi-Hopf algebra H in k-Mod is a coquasi-Hopf algebra in U = k-Modop.

If H has dual as a k-module, we can consider the 1-cell W : H → I in Comod(U )

as before. This 1-cell is just a left H-module, and when W is invertible the action

of H is given by a convolution invertible multiplicative functional β : H → k.

If ∆ is the comultiplication of a quasibialgebra, we will write ∆(x) =
∑
x1 ⊗

x2. However, the usual computations with Sweedler’s notation do not apply since

∆ is not associative.

Theorem 5.34. Let k be a commutative ring and H a k-algebra with multipli-

cation m : H ⊗ H → H and unit u ∈ H. Assume H is projective and finitely

generated as k-module, and equipped with a quasi-Hopf algebra structure with co-

multiplication ∆ : H → H ⊗ H, counit ε : H → k and antipode s : H◦ → H.

Then there exists an invertible h ∈ H such that

∑
β(x1)h · s2(x2) =

∑
β(x2)s

−2(x1) · h, (5.12)

where β : H → k is the invertible multiplicative functional given by the H-module

structure of W.
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Proof. Write U for k-Modop. The 1-cell W : H → I in Comod(U ) satisfies

W⊗ 1H ∼= 1⊳H ; in particular, there is an isomorphism of k-modules W⊗H ∼= H∨,

and therefore, W is an invertible k-module by Lemma 5.33. By Lemma 5.26 we

deduce that W is invertible in Comod(U )(H, I) ≃ H-Modop.

On the other hand, by means of Lemma 5.32 and Corollary 4.16 we obtain an

isomorphism

(H
p∗

−→ H ⊗H
1⊗W
−−−→ H

dd̄∗
−−→ H) ∼= (H

p∗

−→ H ⊗H
W⊗1
−−−→ H

d̄d∗
−−→ H)

while Proposition 5.30 tells us that (5.12) holds.

Now we turn to the case of coquasi-Hopf algebras.

Lemma 5.35. If we write M = Comod(Vect), any natural transformation

τ : M (f∗, I) ⇒ M (g∗, I) : M (D, I)f → M (C, I)f , where f, g : D → C are

coalgebra morphisms and D and C have dual in Vect, is of the form M (α∗, I)

for a unique 2-cell α : g ⇒ f in Comon(Vect). Moreover, τ is invertible if and

only if α is too.

Proof. Set V = Vect. There are isomorphisms between Comod(V )(D, I)f and

Mod(V )(D∨, I)f sending a comodule to the module with same underlying space

but with the action of D∨. Under these isomorphisms, τ becomes a natural

transformation

Mod(V )(f∨∗, I) ⇒ Mod(V )(g∨∗, I) : Mod(V )f (D
∨, I) → Mod(V )f (C

∨, I)

where f∨∗ is the bimodule with left and right actions

C∨ ⊗D∨ f∨⊗1
−−−→ D∨ ⊗D∨ → D∨ and D∨ ⊗D∨ → D∨,

and analogously for g. This is just a natural transformation τ : ((f∨)∗ ⊗D∨

−) ⇒ ((g∨)∗⊗D∨ −) between functors from D∨-Modf to C∨-Modf , and any such

transformation is of the form (β ⊗D∨ −) for a unique morphism of bimodules

β : (f∨)∗ → (g∨)∗. To give β is the same as to give a morphism of bicomodules

σ : g∗ → f∗; in fact, σ∨ = β as morphisms in Vect. Finally, τ = M (α∗, I) where

α∗ = σ.

Theorem 5.36. If H is a finite dimensional coquasi-Hopf algebra (in Vect),
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then there exists a convolution-invertible functional α : H → k such that

b · s2(x ↼ α) = s−2(α ⇀ x) · b.

Proof. First we have to check that the comodule W is invertible. This is clear

since W ⊗H ∼= H∨, and hence dimW = 1, and using Lemma 5.26. Now, Lemma

5.35 together with Corollary 4.16 provide us with an isomorphism of comodules

as in Proposition 5.30, and hence with our result.
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Chapter 6

Pseudo-commutative enriched

monads and monoidal

structures

We would like to apply the theory of autonomous pseudomonoids developed in

previous chapters to V -categories with certain class of (co)limits, or more gener-

ally, to 2-categories of algebras and pseudomorphisms for a 2-monad. To this aim,

we must endow a 2-category of the form T -Alg with a monoidal structure compat-

ible in certain sense with T . Of course, it will not be possible to accomplish this

for any 2-monad T . An answer to our needs is given by the pseudo-commutative

2-monads introduced in [37].

The main result of this chapter is Theorem 6.35, where we show that each lax-

idempotent or KZ 2-monad and each colax-idempotent 2-monad has a canonical

structure of a pseudo-commutative 2-monad. This considerably extends the set

of examples given in [37].

As we already mentioned, our main examples, which will be treated in the next

chapter, are V -categories with certain (co)limits. This amounts to considering 2-

monads on the 2-category V -Cat. As a result the constructions in [37] cannot be

applied without modification. The problem arises in that in the mentioned paper

the authors construct monoidal structures on 2-categories of the form T -Alg for

a pseudo-commutative 2-monad T on Cat. If one tries to replace Cat by V -Cat

one finds that several additional hypotheses are required on V , which essentially

amount to the monadicity of V over Set. To avoid these undesirable restrictions

we are forced to develop the theory of pseudo-commutative W -enriched monads,

108



where W is a symmetric monoidal closed Cat-enriched category (2-category).

When W is V -Cat we obtain our main examples. The price we have to pay

for this generality is to extend some of the basic theory of 2-monads to the W -

enriched case.

The philosophy of [37] is that in many examples of monoidal closed struc-

tures, the closed structure is easier to describe and behaves better that the mo-

noidal structure. The simplest example is the category of vector spaces with the

usual monoidal closed structure. The authors define a notion of pseudo-closed

2-category that is a semi-strict version of closedness, in the sense that it is as

strict as the examples of interest allow. The weakness in this definition is intro-

duced in the conditions involving the unit object. Under certain conditions, a

pseudo-closed structure induces a (weak or pseudo) monoidal structure by means

of biadjunctions.

The structure on a 2-monad T on Cat that corresponds to a pseudo-closed

structure on T -Alg is called a pseudo-commutativity. Pseudo-commutative 2-

monads are the 2-dimensional analogue of the commutative monads introduced

in [48] and further studied in [49, 50].

For a complete and cocomplete symmetric monoidal closed Cat-category W ,

we develop an enriched version of many of the results in [37]. In Section 6.1

we give the basic definitions and properties of W -limits and their relation with

2-limits. In particular, we look at the 2-dimensional aspects of W -limits.

In Section 6.2 we define for a W -enriched monad T a W -category T -Alg.

We study the preservation of W -limits and colimits of the “inclusion” W -functor

J : T -Algs → T -Alg with domain the usual Eilenberg-Moore W -category of T .

These constructions capture the usual elements of the 2-monad theory of [7] in

the case W = Cat.

Section 6.3 introduces pseudo-closed W -categories and pseudo-commutative

W -monads, while Section 6.4 gives an alternative description of a pseudo-com-

mutativity essential in our proof of the pseudo-commutativity of lax-idempotent

2-monads.

In Section 6.5 we describe the pseudo-closed structure of the W -category

T -Alg for a pseudo-commutative W -monad T , and in Section 6.6 we induce mo-

noidal structures from pseudo-closed ones.

Finally, Section 6.7 shows that lax-idempotent and colax-idempotent W -

monads are equipped with canonical pseudo-commutativities. As a consequence,

for a finitely presentable monoidal category V , the 2-category of V -categories
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with finite (co)limits and finitely (co)continuous V -functors has canonical pseudo-

closed and monoidal structures. To keep this chapter of a reasonable size, we

study this consequence and others in the next chapter.

6.1 W -limits when W is a 2-category

Fix a complete and cocomplete monoidal closed 2-category (i.e., Cat-category)

W1. We will write W0 for the underlying category of W1, which is a complete

and cocomplete monoidal closed category. We can consider W -categories, W -

functors and W -natural transformations by enriching in W0. We write W for the

W -category W , with enriched structure induced by the closed structure.

Denote by W the 2-functor W1(I,−) : W1 → Cat. The corresponding under-

lying functor W0 : W0 → Cat0 is lax monoidal, and then it induces a 2-functor

(−)1 = (W0)∗ : W -Cat → 2-Cat. The image of a W -category K under (−)1 is

denoted by K1 and called the underlying 2-category of K . Similarly, if F is a

W -functor, we call F1 the underlying 2-functor of F . The underlying 2-category

of W is W1. Observe that the underlying category of the 2-category K1 is K0,

the underlying category of the enriched category K .

Since W0 has left adjoint given by taking tensor product with the neutral

object I ∈ W , the 2-functor (−)1 has a left adjoint F : 2-Cat → W -Cat.

Observation 6.1. If X is an object of a W -category K , the representable 2-

functor K1(X,−) : K1 → Cat equals the composition of K (X,−)1 : K1 → W1

with W : W1 → Cat.

Given W -functors F,G : K → L , with K small, there is a canonical iso-

morphism between the categories W ([K ,L ](F,G)) and W -Cat(K ,L )(F,G).

Observation 6.2. For any 2-category A and W -category K there is a W -

category of 2-functors A → K1, denoted by [A ,K ]. The W -enriched homs

are given by the usual end formula: [A ,K ](f, g) =
∫
x∈A K (fx, gx). In fact,

W -Cat is monoidal closed and hence canonically a (W -Cat)-category, and hence

a (2-Cat)-category via the 2-functor (−)1 : W -Cat → 2-Cat. The W -category

[A ,K ] is just the cotensor product of the 2-category A with the W -category K .

In particular, there are canonical isomorphisms between [A ,K ] and the usual

W -category of W -functors [F(A ),K ].

Let φ : P → Cat be a 2-functor. Denote by φ̄ : F(P) → W the unique
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W -functor such that the following diagram commutes.

F(P)1
φ̄1 // W1

P

N

OO

φ
// Cat

−∗I

OO

(6.1)

Here N : P → F(P)1 is the unit of the adjunction F ⊣ (−)1. Let G : F(P) →

K be a W -functor corresponding to a 2-functor F : P → K1. We define the

W -limit {φ, F}W of F weighted by φ as the usual weighted limit {φ̄, G}.

Lemma 6.3. Let K be a W -category and F : P → K1 be a 2-functor with

corresponding W -functor G : F(P) → K . If µ : φ̄→ K (L,G−) is a W -limiting

cylinder, then

φ
counitφ
−−−−→W (− ∗ I)φ = Wφ̄1N

WµN
−−−→WK (L,G−)1N = K1(L,F−) (6.2)

is a Cat-limiting cylinder.

Proof. By hypothesis, µ induces W -natural isomorphisms

K (Y, L) ∼= [F(P),W ](φ̄,K (Y,G−)).

These isomorphisms constitute an arrow in the category W -Cat(K op,W ). Ap-

plying the 2-functor (−)1 : W -Cat → 2-Cat we get an arrow in 2-Cat(K op
1 ,W1),

and composing with the 2-functor W : W1 → Cat we get the first 2-natural iso-

morphism in the chain of isomorphisms below (see Observation 6.1).

K1(Y, L) ∼= [F(P),W ]1(φ̄,K (Y,G−))

∼= W -Cat(F(P),W )(φ̄,K (Y,G−))

∼= 2-Cat(P,W1)(φ̄1N,K (Y,G−)1N)

= 2-Cat(P,W1)((− ∗ I)φ,K (Y,G−)1N)

∼= 2-Cat(P,Cat)(φ,WK (W,G−)1N)

∼= 2-Cat(P,Cat)(φ,K1(Y, F−)))

The third isomorphism is induced by F ⊣ (−)1, the equality by (6.1), the fifth

isomorphism is induced by the adjunction (− ∗ I) ⊣W : W1 → Cat, and the last

isomorphism by Observation 6.1 and definition of G. Now it is easy to see that
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the 2-natural transformation φ→ K1(L,F−) corresponding to the identity 1-cell

1 ∈ K1(L,L) is (6.2).

Observation 6.4. Let φ : P → Cat be a weight, φ̄ : F(P) → W the in-

duced W -functor and K a φ̄-complete W -category. Recall from Observation

6.2 that there is a W -category of 2-functors [P,K ]. Then {φ,−} is the under-

lying 2-functor of a W -functor [P,K ] → K , namely, the composition of the

isomorphism [P,K ] ∼= [F(P),K ] and {φ̄,−}.

Given a set of Cat-weights Φ, i.e., a set of 2-functors φ : P → Cat with P

small, we denote by Φ̄ the set of W -weights φ̄ with φ ∈ Φ.

Corollary 6.5. Let K be a W -category. The 2-category K1 is Φ-complete when-

ever K is Φ̄-complete.

6.2 Enriched categories of algebras

We shall call monads (T, η, µ) in the 2-category W -Cat W -enriched monads.

When there is no chance of confusion we omit the unit η and the multiplication

µ of the monad and write only T . As usual, we have the Eilenberg-Moore W -

category of algebras, which we will denote by T -Algs, and we recall briefly here.

Let T be a W -enriched monad on the W -category K . The objects of T -Algs,

called (strict) T -algebras, are T0-algebras, where T0 is the underlying (ordinary)

monad of T on the category K0. We will write T -algebras as pairs (A, a) where

a : TA → A is the algebra structure, or simply as A when there is no place to

confusion. The enriched hom T -Algs((A, a), (B, b)) is given by the equalizer of

the following pair of arrows in W0.

K (A,B)
T //

@A BC

K (a,1)

OO
K (TA, TB)

K (1,b) // K (TA,B)
(6.3)

The fact that W1 is a 2-category provides us with an extra dimension, allowing

us to define the enriched analogous of many 2-categorical constructions.

6.2.1 Lax and pseudo morphisms

For each object X ∈ K and each T -algebra (B, b) define a 1-cell in W

σX,B : K (X,B)
T
−→ K (TX, TB)

K (1,b)
−−−−→ K (TX,B). (6.4)
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When A,B are T -algebras, the 1-cells σA,B are the components of a W -natural

transformation σ : K (Us−, Us−) ⇒ K (TUs−, Us−) : T -Algop
s ⊗ T -Algs → W .

Observe that σ satisfy the following equations:

σTA,BσA,B = K (µA, B)σA,B K (ηA, B)σA,B = 1 (6.5)

Definition 6.1. Given two T -algebras (A, a) and (B, b) in K1, define a 1-cell

p : L→ K (A,B) and a 2-cell

K (A,B)
σA,B

**UUUUUU

L

p 66nnnnnnn

p ((PPPPPPP
�� ��
�� γ K (TA,B)

K (A,B)
K (a,1)

44iiiiii

(6.6)

The pair (p, γ) is defined as the universal such pair satisfying the equalities in

Figure 6.1, in the following sense. If (q : M → K (A,B), δ) is another pair

satisfying the same conditions, then there exists a unique f : L′ → L such that

q = pf and δ = γq. Moreover, suppose that (r : N → K (A,B), ǫ) is yet another

pair satisfying the conditions and denote by g : N → L the corresponding 1-cell.

If ̟ : q ⇒ r is a 2-cell compatible with δ and ǫ in the sense that

K (A,B)
σA,B

**UUUUUUU

N
r

66llllllll

q //
,, ,,
��̟

r ((RRRRRRRR
�� ��
�� δ K (TA,B)

K (A,B)
K (a,1)

44iiiiiii

=

K (A,B)
σA,B

**UUUUUUU

L

q 66mmmmmmmm
q
((QQQQQQQQ

//
r

������ ̟

�� ��
�� ε K (TA,B)

K (A,B)
K (a,1)

44iiiiiii

then there exists a unique 2-cell λ : f ⇒ g such that p · λ = ̟. We will denote

the object L by T -Algℓ(A,B), and call it the object of lax morphisms from A to

B.

Similarly, if we add the requirement that γ be invertible, we obtain an object in

W1 which we will denote by T -Alg(A,B), and call it the object of pseudomorphisms

from A to B.

Observation 6.6. The universal pair (p : T -Algℓ(A,B) → K (A,B), γ) can

be constructed using an inserter and two equifers in the complete 2-category

W1. Hence this universal pair always exists. Analogously, T -Alg(A,B) can be

constructed using an iso-inserter and two equifers.

Proposition 6.7. There is a W -category T -Algℓ with objects the T -algebras and
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�� ��
�� γ

K (A,B)
σA,B // K (TA,B)

σTA,B

((QQQQQQQQQQQQ

L

p
99sssssssssss p //

p
%%KKKKKKKKKKK

�� ��
�� γ

K (A,B)

K (a,1)

77nnnnnnnnnnnn

σA,B

''PPPPPPPPPPPP
K (T 2A,B)

K (A,B)
K (a,1)

// K (TA,B)

K (Ta,1)

66mmmmmmmmmmmm

‖

K (A,B)
σA,B

**UUUUUUUU

L

p 66mmmmmmmmm

p ((QQQQQQQQQ
�� ��
�� γ K (TA,B)

K (µA,1)// K (T 2A,B)

K (A,B)
K (a,1)

44iiiiiiii

K (A,B)
σA,B

**UUUUUUUU

L

p 66mmmmmmmmm

p ((QQQQQQQQQ
�� ��
�� γ K (TA,B)

K (ηA,1) // K (A,B)

K (A,B)
K (a,1)

44iiiiiiii

= 1

Figure 6.1: Axioms for T -Alg(A,B).
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enriched homs given by the objects T -Algℓ(A,B). Similarly, there is a W -category

T -Alg with objects the T -algebras and enriched homs given by T -Alg(A,B). There

are obvious forgetful W -functors Uℓ : T -Algℓ → K , U : T -Alg → K and an

identity on objects inclusion W -functor T -Alg → T -Algℓ.

Proof. We give only a very short outline of the proof. Let (A, a), (B, b), (C, c)

be T -algebras, and (p : L → K (A,B), γ), (q : M → K (A,B), δ) the respective

universal objects as in Definition 6.1. Using γ and δ we can form a 2-cell

K (B,C) ⊗ K (A,B)
comp // K (A,C)

σA,C

**UUUUUU

L⊗M

q⊗p 33gggggggggg

q⊗p ++WWWWWWWWWW
�� ��
�� K (TA,C)

K (B,C) ⊗ K (A,B) comp
// K (A,C)

K (a,1)

44iiiiii

obtaining a 1-cell L ⊗ M → T -Algl(A,C). This is the composition of the W

category T -Algℓ. Similarly, if we denote the identity of A in K by id : I →

K (A,A), the identity 2-cell K (TA, a)TA,Aid ⇒ K (a,A)id induces a 1-cell I →

T -Algℓ(A,A). This is the identity of (A, a) in T -Algℓ.

Definition 6.2. Define a W -functor J : T -Algs → T -Alg as follows. On objects

J is the identity. On homs, JA,B : T -Algs(A,B) → T -Alg(A,B) is induced

by the universal property of T -Alg(A,B). If (p : T -Alg(A,B) → K (A,B), γ)

is an universal pair then JA,B is defined by the requirement that pJA,B be the

equalizer of (6.3), and γJA,B be an identity 2-cell. Similarly, there is a W -functor

Jℓ : T -Algs → T -Algℓ. Observe that UJ = Us = UℓJℓ : T -Algs → W .

6.2.2 Preservation of limits

Now we study the preservation of limits and colimits of J : T -Algs → T -Alg and

J : T -Algs → T -Algℓ.

The objects T -Algℓ(A,B) and T -Alg(A,B) can be described as weighted limits

in one step, as follows. Consider the graph G

0

x //
v

//
oo
u

1

y //
z

//

w
// 2

and let F be the free 2-category on G with relations yv = zx, yx = wx, zv = wv,

ux = uv. For T -algebras A,B the following diagram in W1 defines a 2-functor
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FA,B : F → W1.

K (A,B)

σA,B //

K (a,1)
//

oo
K (ηA,1)

K (TA,B)

σTA,B //

K (Ta,1)
//

K (µA,1)
//
K (T 2A,B) (6.7)

Now, the Yoneda embedding Y : F → [F op,Cat] defines a diagram of shape G

in [F op,Cat], satisfying the relations in the definition of F . Thanks to these

relations we can form a (iso) inserter and two equifers analogous to the ones in Ob-

servation 6.6 to obtain a 2-functor (χ) χℓ : F op → Cat. Using the Yoneda lemma

one can easily deduce that the limit ({χ, FA,B}) {χℓ, FA,B} is just (T -Alg(A,B))

T -Algℓ(A,B).

We claim that the correspondence A,B 7→ FA,B : F → W1 is the object part

of a W -functor

F : T -Algop
s ⊗ T -Algs → [F ,W ] (6.8)

where the codomain is the W -category of 2-functors from F to W of Observation

6.2. Indeed, this W -functor corresponds to a 2-functor

F → [T -Algop
s ⊗ T -Algs,W ]1 (6.9)

and hence to a graph morphism G → [T -Algop
s ⊗ T -Algs,W ]0 satisfying the re-

lations given above. This morphism is defined by the diagrams (6.7), that are

clearly W -natural in A,B.

Proposition 6.8. The W -functors J and Jℓ preserve limits.

Proof. We only treat the case of J ; the proof for Jℓ is completely analogous. We

will show that the W -functors T -Alg(A, J−) : T -Algs → W preserve limits. By

the discussion above, T -Alg(A, J−) is just the composition

T -Algs
F (A,−)
−−−−→ [F ,W ]

{χ,−}
−−−−→ W .

(Recall that {φ,−} is a W -functor by Observation 6.4). Since {φ,−} is contin-

uous, it suffices to show that F (A,−) is so. To show this, recall that F (A,−) is

defined by sending B to the diagram (6.7), or rather to the diagram of shape F

in W constructed from (6.7). A direct inspection of the diagram (6.7) shows that

the assignment B 7→ (6.7) preserves limits; since the diagram F (A,B) is given

by composition of the arrows in (6.7), it follows that F (A,−) preserves limits

because limits in [F ,W ] are computed point-wise.
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Proposition 6.9. If T : K → K preserves ψ-colimits, then J, Jℓ have the same

property.

Proof. The proof is similar to that of Proposition 6.8. We have to show that

T -Alg(J−, B) : T -Algop
s → W preserves ψ-limits, or equivalently, that F (−, B) :

T -Algop
s → [F ,W ] does so. This last property holds since F (−, B) is defined by

the diagrams (6.7) and T preserves ψ-colimits.

Corollary 6.10. The W -functor J has a left adjoint if and only if its underlying

2-functor J1 has a left adjoint, if and only if its underlying functor J0 has a left

adjoint.

Hence, J has left adjoint when the 2-category T -Algs,1 has codescent objects.

In particular, this holds if K1 is cocomplete and T has a rank. See [53].

6.2.3 Flexible replacement

Now fix a monad T on K in W -Cat and assume that J has a left adjoint. We can

reproduce some of the results on flexibility in [7] in the context of W -categories.

It is not our intention to develop a theory of monads enriched in 2-categories, but

only prove the results we will need later in this work. We will use the notations

in [7].

Denote by pA : A→ A′ and qA : A′ → A the unit and counit of the adjunction

(−)′ ⊣ J . We know qApA = 1 and qA is a retract equivalence in T -Alg1. We say

that a T -algebra A is flexible when it is a flexible T1-algebra in K1 in the sense

of [7]. In other words, when qA has a section in T -Algs,1. As observed in [7],

T -algebras of the form A′ are flexible.

The following lemma is a slight generalisation of [7, Theorem 4.7].

Lemma 6.11. For a T -algebra A, q : A′ → A is an equivalence in T -Algs,1 if

and only if the 1-cell JA,B : T -Algs(A,B) → T -Alg(A,B) is an equivalence in W

for all T -algebras B. In particular, this is the case if A is a flexible algebra.

Proof. Suppose qA is an equivalence in T -Algs,1, with chosen pseudoinverse k :

A → A′. As pA is a pseudoinverse for qA in T -Alg1, it follows that k and pA are

isomorphic. The pseudoinverse for JA,B is

T -Alg(A,B)
∼=
−→ T -Algs(A

′, B)
T -Algs(k,1)−−−−−−−→ T -Algs(A,B).

In the proof one uses that JA,B is monic in W0, as UA,BJA,B = (Us)A,B :

T -Algs(A,B) → K (A,B) is a regular mono.
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Proposition 6.12. Let G : T -Alg → L be a W -functor and suppose H : L →

T -Algs is a left adjoint for GJ , with unit s : 1 → GJH. Then the components of

the W -natural transformation

tL,A : T -Alg(JH(L), A)
G
−→ L (GJH(L), A)

L (s,1)
−−−−→ L (L,GA)

are retract equivalences in W .

Proof. The proof is by inspection of the composition

L (L,GJ(A)) ∼= T -Algs(H(L), A)
JH(L),A
−−−−−→ T -Alg(JH(L), J(A)) →

GJH(L),J(A)
−−−−−−−−→ L (GJH(L), GJ(A))

L (sL,1)
−−−−−→ L (L,GJ(A)).

This composition is an identity. On the other hand, the composition of the last

two arrows, GJH(L),J(A) and L (sL, 1), is just tL,A. It follows that tL,AJH(L),A is

an isomorphism. But H(L) is flexible by [7, Theorem 5.1], and hence JH(L),A is

an equivalence by Lemma 6.11. Therefore, tL,A is an equivalence, and since it has

a section, in fact it is part of a retract equivalence.

Corollary 6.13. The components of the W -natural transformation

T -Alg(FX,A)
UFX,A
−−−−→ K (TX,UA)

K (ηX ,1)
−−−−−→ K (X,A)

are retract equivalences in W .

We do not go as far as to define W -biadjunctions and saying something about

the pseudo-W -naturality of the equivalences in the corollary above.

6.2.4 Preservation of colimits

For a moment we go back to the case of a 2-monad S on a 2-category K . Assume

the left adjoint to J : S-Algs → S-Alg has a left adjoint (−)′. In [53] the existence

of (−)′ is related to the existence of certain colimits in S-Algs called codescent

objects. We recall below only the definitions needed in this work. In particular

we consider strict algebras and not lax algebras as in [53].

A strict coherence data in a 2-category K is a diagram

X3

p //
q //
r //

X2

d //
oo e

c //
X1
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satisfying equations: de = 1X1 = ce, dp = dq, cr = cq, cp = dr. A lax codescent

object for the strict coherence data is a pair (x, ξ) where x : X1 → X and

ξ : xd ⇒ xc universal (in a 2-categorical sense) with respect to the conditions

(ξp) · (ξr) = ξq and ξe = 1. A codescent object is defined in the same way buy

insisting that the 2-cell ξ must be an isomorphism. Codescent objects of strict

coherence data were called “strict coherence objects” in [79].

By [53], the existence of (−)′ amounts to the existence of codescent objects

for the strict coherence data below, for each S-algebra (A, a).

T 3A

µTA //
TµA //

T 2a

// T
2A

µA //
oo TηA

Ta
// TA (6.10)

There is an obvious 2-category D such that strict codescent objects in a 2-

category L are in bijection with 2-functors D → L . Moreover, there is a weight

γ : Dop → Cat such that for any F : D → L the colimit γ ∗ F is a codescent

object for the strict codescent object defined by F . The same construction in the

case of lax codescent objects can be found in [53]; we omit the details.

Proposition 6.14. Let φ : Pop → Cat be a 2-functor. If S preserves φ-colimits,

then (−)′J preserves φ-colimits.

Proof. First observe that since S preserve φ-colimits, the forgetful Us : S-Algs →

K creates such colimits. Now, the diagrams (6.10) define a 2-functor C :

S-Algs → [D , S-Algs], which is easily shown to preserve φ-colimits. Hence the

composition of C with (γ ∗ −) : [D , S-Algs] → S-Algs preserves φ-colimits. This

composition is just (−)′J .

6.3 Pseudo-closed W -categories and pseudo-commu-

tative W -monads

This section recalls the concepts of pseudo-closed W -category and pseudo-com-

mutative W -category. We say recall because, although [37] considers 2-categories

the relevant definitions are exactly the same for W -categories.

6.3.1 Pseudo-closed enriched categories

In the same way that pseudo-closed 2-categories were defined in [37], we can

define pseudo-closed W -categories.
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Definition 6.3. A pseudo-closed W -category is a W -category K equipped with

the following data: W -functors V : K → W and [−,−] : K op ⊗ K → K ,

an object I ∈ K , W -natural transformations jA : I → [A,A], eA : [I, A] → A,

iA : A → [I, A], kA,B,C : [B,C] → [[A,B], [A,C]]. This data must satisfy axioms

completely analogous to [37, Definition 1]. Explicitly, this data is subject to the

commutativity of the diagrams in Figure 6.2 and

• V [−,−] = K (−,−) : K op ⊗ K → W ;

• the 1-cell I
jA−→ K (I, [A,A]) = V [I, [A,A]]

V e[A,A]
−−−−−→ V [A,A] = K (A,A) is

the identity of A;

• there are retract equivalences iA ⊣ eA in the 2-category K1;

• the 1-cell W (I, V (iAeA)) : K1(I, A) → K1(I, A) in Cat takes each f : I →

A in K1 to eA[p,A]jA : I → [A,A] → [I, A] → A.

I
jB //

j[A,B] %%KKKKKKKKKKKK [B,B]

kA

��
[[A,B], [A,B]]

[A,C]
kA,A,C// [[A,A], [A,C]]

[jA,1]
��

[A,C] [I, [A,C]]e[A,C]

oo

[C,D]

kB,C,D

��

kA,C,D // [[A,C], [A,D]]
k // [[[A,B], [A,C]], [[A,B], [A,D]]]

[kA,B,C ,1]

��
[[B,C], [B,D]]

[1,kA,B,D]
// [[B,C], [[A,B], [A,D]]]

[A,B]
kI,A,B //

[eA,1] ((PPPPPPPPPPPP
[[I, A], [I,B]]

[1,eB ]
��

[[I, A], B]

Figure 6.2: Some of the axioms of a pseudo-closed W -category.

When W = Cat we recover the pseudo-closed 2-categories of Hyland-Power

[37].

Lemma 6.15. If K is a pseudo-closed W -category then K1 has an induced

structure of a pseudo-closed 2-category.
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Proof. Apply (−)1 : W -Cat → 2-Cat to the pseudo-closed structure of K .

A closed W -functor G : K → L between pseudo-closed W -categories is a W -

functor equipped with 1-cells φX,Y : G[X,Y ] → [GX,GY ], φ0 : I → GI satisfying

the usual axioms of a closed functor that we recall from [26] or [37, Definition 3].

So, G is said to be closed when it is equipped with a W -natural transformation

φX,Y : G[X,Y ] → [GX,GY ] and an arrow φ0 : I → GI satisfying the axioms

depicted in Figure 6.3.

I
j //

φ0

��

[GA,GA]

GI
Gj

// G[A,A]

φA,A

OO G[I, A]
φI,A //

GeA

��

[GI,GA]

[φ0,1]
��

GA [I,GA]eGA

oo

G[B,C]
Gk //

φB,C

��

G[[A,B], [A,C]]
φ[A,B],[A,C] // [G[A,B], G[A,C]]

[1,φA,C ]

��
[GB,GC]

k
// [[GA,GB], [GA,GC]]

[φA,B ,1]
// [G[A,B], [GA,GC]]

Figure 6.3: Axioms of a closed functor.

We will need the concept of a pseudo-closed transformation mentioned in [37].

Definition 6.4. Let G,H : K → L be two closed W -functors between pseudo-

closed W -categories. A pseudo-closed W -natural transformation τ : G → H is a

W -natural transformation equipped with invertible 2-cells

G[X,Y ]
φ //

τ[X,Y ]

��

[GX,GY ]

[1,τY ]
���� ��

��τ̄X,Y [GX,HY ]

H[X,Y ]
φ

// [HX,HY ]

[τX ,1]

OO

I
φ0 //

MMMMMMMMMM

&&φ0





�
 τ̄0
GI

τI
��

HI

satisfying three axioms depicted in Figure 6.4.

Since a pseudo-closed 2-category is a semi-strict kind of closed 2-category, it

is reasonable to think that if each 2-functor [X,−] has a left biadjoint we obtain

a monoidal structure. This was studied in [37].
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G[B,C]
Gk

//

τ

��

G[[A,B],[A,C]]
φ

//

τ

��

[G[A,B],G[A,C]]
[1,φ]

//

[1,τ ]

��

[G[A,B],[GA,GB]]

[1,[1,τ ]]

��

H[B,C]
Hk //

φ

��

H[[A,B],[A,C]]

φ

��

�� ��
�� τ̄ �� ��

�� [1,τ̄ ]

[HB,HC]

k
��

[H[A,B],H[A,C]]
[τ,1]

//

[1,φ]
��

[G[A,B],H[A,C]]

[1,φ]
��

[[HA,HB]]
[φ,1] // [H[A,B],[HA,HC]]

[τ,1] // [G[A,B],[HA,HC]]
[1,[τ,1]]// [G[A,B],[GA,HC]]

‖
G[B,C]

φ
//

τ

��

[GB,GC]
k

//

[1,τ ]

��

[[GA,GB],[GA,GC]]

[1,[1,τ ]]

��

[φ,1]
// [G[A,B],[GA,GC]]

[1,[1,τ ]]

��

H[B,C]

φ

��

�� ��
�� τ̄ [GB,HC]

k

))TTTTTTTTTTTTTTT

[HB,HC]

[τ,1]

55jjjjjjjjjjjjjjj

k
//

k
��

[[GA,HB],[GA,HC]]
[[1,τ ],1]

//

[[τ,1],1]
��

�� ��
�� [τ̄ ,1]

[[GA,GB],[GA,HC]]

[φ,1]

))SSSSSSSSSSSSSS

[[HA,HB],[HA,HC]]
[1,[τ,1]]// [[HA,HB],[GA,HC]]

[φ,1] // [H[A,B],[GA,HC]]
[τ,1] // [G[A,B],[GA,HC]]

I
φ0

//

j

  

φ0

%%
GI

Gj

$$II
III

II τ
//

� �� �KSτ̄0

HI
Hj

$$JJ
JJJ

JJ

G[A,A]

φ

��

τ //

____ +3τ̄

H[A,A]

φ
��

[HA,HA]

[τ,1]
��

[GA,GA]
[1,τ ]

// [GA,HA]

=

HI
Hj // H[A,A]

φ

��
I

j

��

φ0

OO

j // [HA,HA]

[τ,1]
��

[GA,GA]
[1,τ ]

// [GA,HA]

G[I, A]
φ //

τ

��

�� ��
�� τ̄

[GI,GA]

[1,τ ]
��

H[I, A]
φ
//

He

��

[HI,HA]
[τ,1]//

[φ0,1]
��

____ks
[τ̄0,1]

[GI,HA]

[φ0,1]ooA [I, A]e
oo

=

G[I, A]
φ //

Ge

��

[GI,GA]

[φ0,1]
��

GA

τ

��

[I,GA]e
oo

[1,τ ]
��

HA [I,HA]e
oo

Figure 6.4: Axioms of a pseudo-closed transformation
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Theorem 6.16 ([37]). Suppose K is a pseudo-closed 2-category. If for each pair

of objects X,Y there is an object X ⊗ Y and an equivalence dZ : [X ⊗ Y, Z] →

[X, [Y, Z]] 2-natural in Z such that the following diagram commutes

[Z,W ]
k //

k
��

[[Y, Z], [Y,W ]]
k // [[X, [Y, Z]], [X, [Y,W ]]]

[dZ ,1]��
[[X ⊗ Y, Z], [X ⊗ Y,W ]]

[1,dW ]
// [[X ⊗ Y, Z], [X, [Y,W ]]

then the assignment (X,Y ) 7→ X ⊗ Y extends to a (weak or pseudo) monoidal

structure on K with unit object I.

If K ,L are pseudo-closed 2-categories with compatible monoidal structures

as in Theorem 6.16: each closed 2-functor K → L has a canonical structure of

a (weak) monoidal 2-functor, and each pseudo-closed transformation induces a

(weak) monoidal 2-natural transformation.

6.3.2 Pseudo-commutative enriched monads

If T : W → W is a W -functor, a strength for T is a W -natural transformation

tX,Y : X ⊗ T (Y ) → T (X ⊗ Y ). Using the symmetry of W , we obtain a W -

natural transformation t′X,Y : T (X) ⊗ Y → T (X ⊗ Y ). To give a strength t is

the same as giving a W -natural transformation t̄ : T [X,Y ] → [X,TY ] and the

same as giving a W -natural transformation T : [X,Y ] → [TX, TY ]. The bijection

between these structures is given by the diagrams below (where i denotes the unit

of the closedness adjunction of W1).

[TX, TY ] ⊗ TX
ev // TY

[X,Y ] ⊗X

T⊗1

OO

t
// T ([X,Y ] ⊗X)

T ev

OO X
i //

i
��

[Y,X ⊗ Y ]

T

��
[TY,X ⊗ TY ]

[1,t]
// [TY, T (X ⊗ Y )]

TX
T i //

i
��

T [Y,X ⊗ Y ]

t̄
��

[Y, TX ⊗ Y ]
[1,t′]

// [Y, T (X ⊗ Y )]

T [X,Y ] ⊗X
t′ //

t̄⊗1
��

T ([X,Y ] ⊗X)

T ev

��
[X,TY ] ⊗X ev

// TY

We will consider W -enriched monads T equipped with the canonical strength

corresponding to the enrichment [X,Y ] → [TX, TY ].
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Definition 6.5. A pseudo-commutativity for a W -enriched monad T is an in-

vertible modification

TX ⊗ TY
t′X,TY //

tTX,Y

��

�� ��
�� γX,Y

T (X ⊗ TY )
TtX,Y // T 2(X ⊗ Y )

µX⊗Y

��
T (TX ⊗ Y )

Tt′X,Y

// T 2(X ⊗ Y ) µX⊗Y

// T (X ⊗ Y )

(6.11)

satisfying the axioms resulting from replacing in [37, Definition 5] the cartesian

product in Cat by the tensor product ⊗ of W . We do not write the axioms

here, as these will not be explicitly used. An equivalent description of a pseudo-

commutativity is given in Proposition 6.18 below, which can be taken itself as an

alternative definition.

We call an strong enriched monad equipped with a pseudo-commutativity a

pseudo-commutative monad.

When W = Cat with the symmetric monoidal closed structure induced by

the cartesian product, we recover the pseudo-commutative 2-monads of [37].

Example 6.17. One basic example of pseudo-commutative 2-monad discussed in

detail in [37] is the one of the free symmetric strict (unbiased) monoidal category

2-monad. This is the monad T on Cat given by the following description. If

X is a category, TX has objects finite sequences of objects of X, and arrows

(x1, · · ·, xn) → (y1, · · ·, yn) pairs ((f1, · · ·, fn), π) where π is an element of the

symmetric group Sn and fi : x1 → yπi is an arrow in X. There are no arrows

between sequences of different length. Composition is defined by multiplying the

elements of the symmetric group and then composing the arrows in the lists in

the unique possible way. Identities are of the form ((1x1 , · · ·, 1xn), 1). The tensor

product of two lists of objects of X is obtained by appending the second list to

the first. This is easily extended to arrows. The multiplication µX : T 2X → TX

is given on objects by removing parenthesis:

µX((x1
1, · · ·, x

1
k1

), (x2
1, · · ·, x

2
k2

), · · ·, (xn1 , · · ·, x
n
kn

)) = (x1
1, · · ·, x

1
k1
, x2

1, · · ·, x
n
kn

)

The unit ηX : X → TX is given on objects by ηX(x) = (x). The description of

these functors on arrows are obvious and omitted for simplicity.

The domain of the 2-cell (6.11) is the 2-functor sending an object

((x1, · · ·, xn), (y1, · · ·, ym)) ∈ TX × TY (6.12)
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to

((x1, y1), (x1, y2), · · ·, (x1, ym), (x2, y1), · · ·, (x2, ym), · · ·, (xn, y1), · · ·(xn, ym))

while the codomain is the functor sending (6.12) to

((x1, y1), (x2, y1), · · ·, (xn, y1), (x1, y2), · · ·, (xn, y2), · · ·, (x1, ym), · · ·, (xn, ym)).

Therefore, domain and codomain of (6.11) are the functors sending (6.12) to the

two lexicographic orders. The components of the natural isomorphism γX,Y are

of the form ((1, · · ·, 1), π) where π is the permutation that mediates between the

two lexicographic orders. More details can be found in [37].

Later we will use the following alternative description of pseudo-commutati-

vities in [37, Proposition 8]. The basic observation is that 2-cells γX,Y in (6.11)

are in bijection with 2-cells

T [X,Y ]
T (T) //

t̄X,Y

��

�� ��
�� γ̄X,Y

T [TX, TY ]
t̄ // [TX, T 2Y ]

[1,µY ]

��
[X,TY ]

T
// [TX, T 2Y ]

[1,µY ]
// [TX, TY ]

(6.13)

and the axioms of a pseudo-commutativity translate accordingly into conditions

on γ̄.

The following result was proved in [37, Proposition 8] in the case of 2-monads,

but it carries over unchanged to the case of enriched monads.

Proposition 6.18. To give a pseudo-commutativity for a W -enriched monad T is

equivalent to give a modification γ̄ as in (6.13) subject to the following conditions.

1. [X, γ̄Y,Z ]t̄X,[Y,Z] is the exponential transpose of [t, TZ]γ̄X⊗Y,Z .

2. γ̄X,Y η[X,Y ] is an identity.

3. [ηX , TY ]γ̄X,Y is an identity.
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4. γ̄X,Y µ[X,Y ] is equal to the pasting

T 2[X,Y ]
T 2(T) //

T t̄

��

�� ��
�� T γ̄X,Y

T 2[TX, TY ]
T t̄ //T t̄ // T [TX, T 2Y ]

T [1,µB ]

��
T [X,TY ]

T (T) //

t̄
��

T [TX, T 2Y ]
T [1,µY ]//

t̄
��

T [TX, TY ]

t̄
��

[X,T 2Y ]

T
��

�� ��
�� γ̄X,TY

[TX, T 3Y ]
[1,TµY ] //

[1,µTY ]
��

[TX, T 2Y ]

[1,µY ]

��
[TX, T 3Y ]

[1,µTY ]
// [TX, T 2Y ]

[1,µY ]
// [TX, TY ]

5. [µX , TY ]γ̄X,Y is equal to the pasting

T [X,Y ]
T (T) //

t̄

��

T [TX, TY ]

t̄
��

T (T) //

�� ��
�� γ̄TX,TY

T [T 2X,T 2Y ]
t̄ // [T 2X,T 3Y ]

[1,µTY ]
��

[X,TY ]

T

��

�� ��
��γ̄X,Y [TX, T 2Y ]

T //

[1,µY ]

��

T [T 2X,T 3Y ]

[1,TµY ]
��

[1,µTY ] // [TX , T 2Y ]

[1,µY ]

��
[TX, T 2Y ]

[1,µY ]
// [TX, TY ]

T
// [T 2X,T Y ]

[1,µY ]
// [T 2X,TY ]

6.4 A characterisation of pseudo-commutativity

In [37, Section 4.1] the authors show that a pseudo-commutativity on a strong

2-monad T on Cat induces a canonical structure of pseudomorphism on the

functor σX,B : [TX, b]T : [X,B] → [TX, TB] → [TX,B], for X ∈ Cat, (B, b) ∈

T -Alg. These pseudomorphisms satisfy certain properties necessary to ensure

that T -Alg has the structure of a pseudo-closed 2-category. In this section we

improve these observations in two ways. First, we work with monads enriched

in a monoidal closed 2-category, and secondly we show that pseudomorphism

structures on the functors [TX, b]T satisfying certain conditions are in bijection

with pseudo-commutativities on T .

Let T : W → W be a W -enriched monad, equipped with its canonical

strength. Consider the 2-functors [−,−], [T−,−] : W op
1 × T -Alg1 → T -Alg1.

126



Observe that the 1-cells

σX,B : [X,B]
T
−→ [TX, TB]

[1,b]
−−→ [TX,B] (6.14)

are part of a pseudonatural transformation

U [−,−] ⇒ U [T−,−] : W op
1 × T -Alg1 → W1.

Indeed, if f : B → C is a 1-cell in T -Alg1, the structural 2-cell σf corresponding

to f is the pasting below.

[X,B]

[1,f ]
��

T // [TX, TB]
[1,b] //

[1,T f ]
��

� �� �KSf̄

[TX,B]

[1,f ]
��

[X,C]
T // [TX, TC]

[1,c] // [TX,C]

(6.15)

Observe that the pseudonatural transformation obtained by precomposing σ with

1 × J1 : W op
1 × T -Algs,1 → W op

1 × T -Alg1 is in fact 2-natural. In other words, σ

is 2-natural on strict morphisms.

The conditions in the proposition below appear in [37].

Proposition 6.19. There is a bijection between pseudo-commutativities on T

and liftings of σ to a pseudonatural transformation [−,−] ⇒ [T−,−] : W op
1 ×

T -Alg1 → T -Alg1 satisfying the following conditions.

1. [ηX , B]σX,B = 1[X,B] in T -Alg1.

2. σTX,BσX,B = [µX , B]σX,B in T -Alg1.

3. [X,σY,B] : [X, [Y,B]] → [X, [TY,B]] is the exponential transpose of the 1-

cell [t, B]σX⊗Y,B : [X ⊗ Y,B] → [X ⊗ TY,B] in T -Alg1.

4. The composition of 1 × J1 : W op
1 × T -Algs,1 → W op

1 × T -Alg1 with σ is a

2-natural transformation.

We split the proof of the proposition in several lemmas.

Lemma 6.20. Let T : W → W be a W -enriched monad, equipped with its canon-

ical strength. There is a bijection between modifications γ̄ as in (6.13) satisfying

conditions 2 and 4 of Proposition 6.18 and liftings of σ to a pseudonatural trans-

formation [−,−] ⇒ [T−,−] : W op
1 × T -Alg1 → T -Alg1 which composed with

W op
1 × J are 2-natural.
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Proof. Given a modification γ̄ as in 6.13, we can define 2-cells σ̄X,B for X ∈ W ,

(B, b) ∈ T -Alg as the following composition.

T [X,B]
T (T) //

t̄

��

T [TX, TB]
T [1,b] //

t̄
��

T [TX,B]

t̄
���� ��

�� γ̄X,B [TX, T 2B]
[TX,Tb] //

[1,µB ]

��

[TX, TB]

[1,b]

��

[X,TB]
T //

[1,b]

��

[TX, T 2B]
[1,µB ] //

[1,T b]

��

[TX, TB]

[1,b] ((PPPPPPPPPPPP

[X,B]
T

// [TX, TB]
[1,b]

// [TX,B]

Each 2-cell σ̄X,B endows [TX, b]T with the structure of a pseudomorphism of T -

algebras: the condition involving the unit η follows from condition 2 of Proposition

6.18 and the condition involving the multiplication µ follows from condition 4 of

the same proposition. With this pseudomorphism structure, the 2-cell (6.15) is

a 2-cell in T -Alg1; in other words, (σ, σ̄) is a lifting of σ to a pseudonatural

transformation between the 2-functors [−,−], [T−,−] : W op
1 × T -Alg1 → T -Alg1.

(If such a lifting exists, it is unique). Moreover, the composition of (σ, σ̄) with

1 × J1 : W op
1 × T -Algs,1 → W op

1 × T -Alg1 is a 2-natural transformation.

Conversely, we now show that any lifting (σ, σ̄) of σ whose composition with

W op
1 × J1 is 2-natural, induces a modification γ̄ as in (6.13). Given σ̄X,B define

γ̄X,Y by

T [X,Y ]
T (T) //

t̄

��

T [1,ηY ]

''PPPPPPPPPPPP
T [TX, TY ]

T [1,TηY ]

((RRRRRRRRRRRRR 1

��
T [X,TY ]

T (T) //

t̄
��

T [TX, T 2Y ]
T [1,µY ] // T [TX, TY ]

t̄
��

[X,TY ]
[1,TηY ] //

1 **

[X,T 2Y ]

[1,µY ]

��

�� ��
�� σ̄X,TY [TX, T 2Y ]

[1,µY ]

��
[X,TY ]

T
// [TX, T 2Y ]

[1,µY ]
// [TX, TY ]

To show that γ̄X,Y is a modification, we use that σ̄ is 2-natural on strict mor-
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phisms: for f : Z → Y , h : W → X in W1,

γ̄X,Y T [h, f ] = σ̄X,TY (T [X, ηY ])(T [h, f ]) = σ̄X,TY (T [h, Tf ])(T [W, ηZ ])

= [Th, Tf ]σ̄W,TZ(T [W, ηZ ]) = [Th, Tf ]γ̄W,Z .

Condition 2 of Proposition 6.18 follows easily from the unit axiom of a pseudo-

morphism: γ̄X,Y η[X,Y ] = σ̄X,TY T [X, ηY ]η[X,Y ] = σ̄X,TY η[X,TY ][X, ηY ] = 1. Con-

dition 4 of the same proposition is a bit harder to prove, but routine nonethe-

less. We leave the verification to the reader; we only mention that the equality

[TX, µY ]σ̄X,T 2Y = σ̄X,TY T [X,µY ] and the multiplication axiom of a pseudomor-

phism must be used in the verification.

These constructions are inverses of each other: there is a bijection between

modifications γ̄ and liftings of σ to a pseudonatural transformation (σ, σ̄) which

composed with W op
1 × J1 are 2-natural.

Lemma 6.21. Assume the hypotheses of Lemma 6.20. Then

1. Condition 3 of Proposition 6.18 holds if and only if [η,−]σ is the identity

pseudonatural transformation of [−,−].

2. Condition 5 of Proposition 6.18 holds for γ̄ if and only if σTX,BσX,B =

[µX , B]σX,B for all X ∈ W1 and B ∈ T -Alg1.

3. Condition 1 of Proposition 6.18 holds for γ̄ if and only if the pseudomor-

phism [X,σY,B] : [X, [Y,B]] → [X, [TY,B]] corresponds to the pseudomor-

phism [t, B]σX⊗Y,B : [X ⊗ Y,B] → [X ⊗ TY,B] under the closedness struc-

ture of W1.

Proof. The proof of part 1 is obvious.

Now we show 2. Suppose that σTX,BσX,B = [µX , B]σX,B. If γ̄ is defined as

in the proof of Lemma 6.20, condition 5 of Proposition 6.18 is the equality

(
[T 2X,µY ]σ̄X,T 2XT ([TX, ηY µY ]T)T [X, ηY ]

)
·
(
[T 2X,µY ]Tσ̄X,TY T [X, ηY ]

)

= [µX , TY ]σ̄X,TY T [X, ηY ]

(6.16)

Using the 2-naturality of σ with respect to strict morphisms,

[T 2X,µY ]σ̄X,T 2Y = σ̄X,TY T [TX, µY ]
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and using this we can transform the left hand side of (6.16) into the pasting

T [X,Y ]
T [1,ηY ] // •

σ̄X,TY

��

// •

σ̄TX,TY

//

��

•

��
• // • // •

that is by hypothesis equal to [µX , TY ]σ̄X,TY T [X, ηY ]. Conversely, assuming

condition 5 of Proposition 6.18, and defining σ̄ in terms of γ̄ as in the proof of

Lemma 6.20, we have to show

(
[T 2X, b]γ̄TX,BT [TX, b]T (T)

)
·
(
[T 2X, b]T[TX, b]γ̄X,B

)
= [µX , B][TX, b]γ̄X,B

for X ∈ W and a T -algebra (B, b). Using the fact that γ̄ is a modification, one

can see that the left hand side in the equality above is equal to the pasting

• //

��

T [TX, TB] //

γ̄TX,TB

��

•

��
γ̄X,B [TX, T 2B]

[1,µ]

��

// [T 2X,TB]

[T 2X,b][T 2X,Tb]
��

• // [TX, TB]
[T 2X,b][T 2X,Tb]T

// [T 2X,B]

that by hypothesis is just [T 2X, b][µX , TB]γ̄X,B. This completes the proof of part

2.

Finally, we prove 3. It is not hard to show that at the level of 1-cells in

W , [X,σY,B] always corresponds to [t, B]σX⊗Y,B, so we must only check the 2-

dimensional aspect. Suppose condition 1 of Proposition 6.18 holds. The pseudo-

morphism structure of [X,σY,B] is given by the 2-cell [X, σ̄Y,B]t̄X,[Y,B], and then

we must show that its exponential transpose is the 2-cell [tX,Y , B]σ̄X⊗Y,B. This

follows trivially from our hypothesis as the former is equal to the composition

[X, [TY, b]][X, γ̄X,B]tX,[Y,B] and the latter is equal to [X⊗TY, b][tX,Y , TB]γ̄X⊗Y,B.

Conversely, if we assume that the exponential transpose of [X, σ̄Y,B]t̄X,[Y,B] is

[tX,Y , B]σ̄X⊗Y,B, it is clear that

[X, γ̄Y,Z ]t̄X,[Y,Z] = [X, σ̄X,TZ ][X,T [Y, ηZ ]]t̄X,[Y,Z]
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corresponds to

[tX,Y , TZ]γ̄X⊗Y,Z = [tX,Y , TZ]σ̄X⊗Y,TZT [X ⊗ Y, ηZ ].

This concludes the proof of the lemma.

6.5 The pseudo-closed W -category T -Alg

In this section we show that for a pseudo-commutative W -monad on W , the W -

category T -Alg is pseudo-closed. We briefly discuss the closed 2-multicategory

structure of T -Alg1. Although we do not emphasise here the W -multicategory

structure of T -Alg, our view is that this is the most natural structure to con-

sider on T -Alg. To save space, and because the description of the closed W -

multicategory structure is analogous to the 2-categorical case, we will only discuss

the latter.

6.5.1 Parametrised pseudomaps

For a W -enriched monad T on W , we can define objects of parametrised pseu-

domaps. Given objects X1, · · ·, Xn, in W , we denote by

ti : X1 ⊗ · · · ⊗ TXi ⊗ · · · ⊗Xn → T (X1 ⊗ · · · ⊗Xn)

the unique arrow obtained by compositions of components of t and t′. We recall

from [37] the notion of parametrised pseudomap. If (Ai, ai) and (B, b) are T -

algebras, a pseudomap parametrised by X1, · · ·, Xi1 and Xi+1, · · ·, Xn is a 1-cell

f : X1⊗· · ·⊗Xi−1⊗Ai⊗Xi+1⊗· · ·⊗Xn → B equipped with an invertible 2-cell

b(Tf)ti ∼= f(X1 ⊗ · · · ⊗ a ⊗ · · · ⊗ Xn) satisfying pseudomap axioms. With the

obvious notion of 2-cell between parametrised pseudomaps, we obtain categories

T1-Alg(X1, · · ·, Ai, · · ·, Xn, B). Parametrised pseudomaps and cotensor products

are related in the following way. If A,B are T -algebras and X is an object of W ,

there are 2-natural isomorphisms

T1-Alg(X,A;B) ∼= T1-Alg(A, [X,B]) (6.17)

where [X,B] is the usual cotensor product in T -Alg.

For an enriched monad S on a monoidal category V one can define parametrised

maps of algebras. There is an obvious multicategory V T with objects the T -

131



algebras and multimaps A1, · · ·, An → B the arrows A1 ⊗ · · · ⊗ An → B which

are parametrised maps in each variable. However, in the two-dimensional case

we have two obvious choices of a 2-multicategory, as we explain below.

For a pseudo-commutative W -monad T on W , there are two 2-multicategories

of T -algebras one can consider. The simplest is the 2-multicategory whose objects

are the T -algebras and multihom-categories T1-Algb(A1, · · ·, An, B) the categories

of 1-cells A1 ⊗ · · · ⊗An → B that are parametrised pseudomaps in each variable,

and 2-cells compatible with this structure. The other 2-multicategory is the one

considered in [37], denoted by T1-Alg. It has as objects the T -algebras and mul-

tihoms T1-Alg(A1, · · ·, An, B) the full subcategory of the corresponding multihom

of T1-Algb determined by the 1-cells which are partial maps in each variable with

the additional condition that each partial map structure must commute with

the others. To state this property, a pseudo-commutativity on T is required. For

more details see [37]. There is an obvious inclusion morphism of 2-multicategories

T1-Alg → T1-Algb.

From these two 2-multicategories the most interesting is T -Alg, as it carries

a closed structure. This is explained below.

6.5.2 The T -algebra of pseudomorphisms

In this section we construct the internal hom that will be part of a pseudo-closed

structure on the W -category T -Alg. The underlying object of this T -algebra is

the W -object of pseudomorphisms constructed in Definition 6.1. First we look at

an example.

Example 6.22. Let T be the 2-monad on Cat of Example 6.17, whose algebras are

symmetric strict unbiased monoidal categories. For each pair of T -algebras A,B,

the category T -Alg(A,B) has an obvious symmetric strict monoidal structure. If

f1, · · ·, fn : A→ B are symmetric strong monoidal functors, their tensor product

is the functor sending a ∈ A to f1(a) ⊗ · · · ⊗ fn(a). This functor is symmetric

stong monoidal thanks to the existence of the pseudo-commutativity of T .

We need to give, for each pair of T -algebras A,B, an T -algebra JA,BK with

underlying object T -Alg(A,B). The latter is defined by means of (PIE)∗-limits

in W1, (limits that can be constructed from products, inserters and equifers) and

these are created by the forgetful W -functor U1 : T -Alg1 → W1, and in this way

T -Alg(A,B) is endowed with a canonical structure of a T -algebra. We explain

this in more detail below.
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Recall from Section 6.2.2 that the enriched hom T -Alg(A,B) can be obtained

as a limit {χ, FA,B} in W1, where FA,B : F → W1 is certain 2-functor defined

by (6.7) and χ is a weight in the class (PIE)∗. The diagram in (6.7) in this case

(K = W ) is

[A,B]

σA,B //

[a,1]
//

oo
[ηA,1]

[TA,B]

σTA,B //

[Ta,1]
//

[µA,1]
//
[T 2A,B] (6.18)

Proposition 6.19 tells us that the 1-cell σA,B of (6.14) is a pseudomorphism,

and hence the diagram above lies in T -Alg1 = T1-Alg. Hence FA,B : F → W1

factors through a 2-functor F̂A,B : F → T1-Alg as UF̂A,B. Since U creates

(PIE)∗-limits, it follows that T -Alg(A,B) is the underlying object of a canonical

T -algebra, namely {χ, F̂A,B}. Moreover, the universal p : JA,BK → [A,B] is a

strict morphism.

The assignment A,B 7→ JA,BK extends to a W -functor J−,−K : T -Algop ⊗

T -Alg → T -Alg. Indeed, we need to exhibit 1-cells

T -Alg(C,A) ⊗ T -Alg(B,D) → T -Alg(JA,BK, JC,DK) (6.19)

in W , or equivalently, a parametrised pseudomap of algebras

T -Alg(C,A) ⊗ JA,BK ⊗ T -Alg(B,D) → JC,DK. (6.20)

As a 1-cell, this parametrised pseudomap is just the obvious composition 1-cell.

The other piece of data we have to provide is an invertible 2-cell between the

1-cells

T -Alg(C,A)⊗T JA,BK⊗T -Alg(B,D)
t2 //

1⊗act⊗1
��

T (T -Alg(C,A)⊗JA,BK⊗T -Alg(B,D))
T comp // T JC,DK

act
��

T -Alg(C,A)⊗JA,BK⊗T -Alg(B,D)
comp

// JC,DK

This 2-cell corresponds, upon composition with the universal JC,DK → [C,D], to

the 2-cell obtained from the 2-cell in Figure 6.5.

Example 6.23. Although it might seem a bit complicated, the definition of J−,−K

on homs (6.19) has a very simple content. This can be exemplified by the case

when W is Cat and T is the 2-monad whose algebras are symmetric strict (un-

biased) monoidal categories. See Examples 6.17 and 6.22. In this case, (6.20)

is the composition functor and with parametrised pseudomap structure given by
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T JA,BK⊗JB,DK
Tp⊗p //

t̄(Tp)⊗1
��

T [A,B]⊗[B,D]
t′ // T ([A,B]⊗[B,D])

T comp // T [A,D]

t̄
��

[A,TB]⊗JB,DK
1⊗p //

1⊗p

��
∼=

[A,TB]⊗[B,D]

1⊗σB,D

��

1⊗T // [A,TB]⊗[TB,TD]
comp //

1⊗[1,d]uujjjjjjjjjjjjjjj
[A,TD]

[1,d]
��

[A,TB]⊗[B,D]
1⊗[b,1] //

[1,b]⊗1 ))SSSSSSSSSSSSSS [A,TB]⊗[TB,D]
comp // [A,D]

[A,B]⊗[B,D]

comp

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Figure 6.5: 2-cell that induces the parametrised pseudomap structure of the com-
position.

the canonical isomorphism

h(g1 ⊗ · · · ⊗ gn)f ∼= (hg1f) ⊗ · · · ⊗ (hgnf)

induced by the strong monoidal structure of h, for f : C → A, gi : A → B,

h : B → D.

Observation 6.24. The W -functor J−,−K restricts to a W -functor T -Algop
s ⊗

T -Algs → T -Algs. Indeed, in the construction of the 1-cell (6.19) we only used

the universal isomorphism σB,Dp ∼= [b,D]p defining JB,DK. This means that by

restricting to T -Algs(B,D) in (6.19) we obtain a 1-cell

T -Alg(C,A) ⊗ T -Algs(B,D) → T -Algs(JA,BK, JC,DK).

In other words, each W -functor JA,−K sends strict morphisms to strict morphisms

and each W -functor J−, BK send all pseudomorphisms to strict morphisms.

The proof of the following proposition is the same as the proof of [37, Theorem

10].

Proposition 6.25. If T is a pseudo-commutative W -enriched monad on W , then

T -Alg1 has a canonical structure of a closed 2-multicategory .

For later use we include the description of the isomorphisms of categories

T -Alg1(A,B;C) ∼= T -Alg1(A, JB,CK) given in [37]. A multimap (f, f̄A, f̄B) :

A,B → C is given by the following data in W : a 1-cell f : A ⊗ B → C, and

invertible 2-cells f̄A : (Tf)t′ ⇒ f(a ⊗ B) and f̄B : (Tf)t ⇒ f(A ⊗ b) satisfying
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axioms. If g : A → [B,C] is the exponential transpose of f and ḡ the transpose

of f̄A, then the condition on f̄A expressing the fact that f is a partial map in the

first variable translates into the statement that (g, ḡ) is a pseudomap A→ [B,C].

The transpose of f̄B gives a 2-cell α : σB,Cg ⇒ [b, C]g because fA commutes with

fB. Finally , α lifts to a 2-cell between 1-cells into JB,CK as a translation of the

pseudomap condition on the second variable.

6.5.3 T -Alg as a pseudo-closed W -category

Proposition 6.26. If T is a pseudo-commutative W -enriched monad on W , then

T -Alg has a canonical structure of a pseudo-closed W -category.

Proof. We have to provide the data in Definition 6.3. The W -functor T -Alg → W

will be the forgetful W -functor U , the internal hom will be the one described in

the preceding section, denoted by J−,−K, and the unit object will be FI, the free

T -algebra on the unit object of W . The 1-cell jA : FI → JA,AK is the strict

morphism corresponding to the identity 1-cell I → T -Alg(A,A). The 1-cell eA is

the strict morphism

JFI,AK
p
−→ [TI,A]

[ηI ,1]
−−−→ [I, A]

∼=
−→ A.

The pseudoinverse of eA is iA : A
∼=
−→ [I, A]

≃
−→ JFI,AK. The composition 1-

cell kA,B,C : JB,CK → JJA,BK, JA,CKK corresponds to the composition multi

pseudomap JB,CK ⊗ JA,BK → JA,CK. Observe that jA, eA and k are strict

maps of T -algebras. Checking the axioms of a pseudo-closed W -category is now

a matter of routine. This can be found for the case W = Cat in [37].

Recall that the unit and counit η, ε of the W -adjunction F ⊣ Us : T -Algs → W

induce W -natural transformations 1 → UF : and FU → 1, which we still name

η and ε.

Proposition 6.27. The W -functors U : T -Alg → W and F : W → T -Alg have

canonical closed structures. The unit η : 1 → UF is a closed W -natural transfor-

mation and the counit ε : FU → 1 is a pseudo-closed W -natural transformations.

Proof. The forgetful W -functor U is closed by definition of the pseudo-closed

structure of T -Alg: the closed constraints are given by the universal UJA,BK =

T -Alg(A,B) → W (A,B) and the unit ηI : I → UFI.

The closed structure of F is given in the following way. The arrow φ :

F [X,Y ] → JFX,FY K is the unique strict morphisms of T -algebras corresponding
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to the 1-cell [X,Y ] → T -Alg(FX,FY ) induced by the identity 2-cell

[TX, TY ]
T // [T 2X,T 2Y ] [1,µY ]

++WWWWW

[X,Y ]

T 44iiiiii

T
**UUUUUU [T 2X,TY ]

[TX, TY ] [µX ,1]

11cccccccccccccccccccccc

The unit constraint is just the identity FI → FI.

The closedness of η follows from the commutativity of the diagrams below.

[X,Y ]

η[X,Y ]

��

[1,ηY ] //

T

++WWWWWWWWWWWWWWWWWWWWWWWW [X,UFY ]

UF [X,Y ]
Uφ

// UJFX,FY K
Up

// [UFX,UFY ]

[ηX ,1]

OO
I

1

~~}}
}}

}}
}} ηI

##F
FFFFFFFF

I ηI

// UFI
1

// UFI

Now we show that the counit ε is a pseudo-closed W -natural transformation in

the sense of Definition 6.4. We exhibit an isomorphism depicted in the diagram

on the left hand side below, and show that the triangle on the right hand side

commutes.

FUJA,BK //

εJA,BK

��
∼=

F [UA,UB]
φ // JFUA,FUBK

J1,εBK
��

JA,BK
JεA,1K

// JFUA,BK

FI
1 //

1 !!D
DD

DD
DD

D FI
FηI // FUFI

εFIzzvvv
vv

vv
vv

FI

The unit condition is obvious. To define the isomorphism in the diagram on the

left hand side, we observe that all the arrows are strict morphisms of T -algebras,

and hence it suffices to define an isomorphism between JεA, BK and

UJA,BK
p
−→ [UA,UB]

F
−→ JFUA,FUBK

J1,εBK
−−−−→ JFUA,BK. (6.21)

By using the 2-dimensional aspect of the universal property of the limit JFUA,BK,

we reduce the problem to defining an isomorphism between the composition of

(6.21) and JεA, BK with the universal p : JFUA,BK → [TA,B], compatible with

the universal isomorphism [T 2A, b]Tp ∼= [µA, B]p (see Definition 6.1). The com-

position of (6.21) and JεA,BK with p are respectively

JA,BK → [A,B]
T
−→ [TA, TB]

[1,b]
−−→ [TA,B] and JA,BK → [A,B]

[a,1]
−−→ [TA,B]
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and the required isomorphism between these is the universal isomorphism in the

definition of JA,BK. One can verify that this isomorphism satisfies the axioms of

a pseudo-closed transformation.

6.6 Monoidal structures

Proposition 6.28. Given a monad T on W in W -Cat, suppose we have the

following commutative diagram in W -Cat.

T -Algs
G //

J

��

T -Algs

Us

��
T -Alg

T -Alg(A,−)
// W

If J has a left adjoint, T -Algs admits tensor products and coequalizers, then G

has a left adjoint too.

Proof. First of all, observe that in presence of cotensor products, the existence of

coequalizers in T -Algs is equivalent to the existence of coequalizers in the ordinary

category (T -Algs)0. See [42, Section 3.8].

Since Us creates limits, G preserves limits if and only if UsG = T -Alg(A, J−)

preserves limits. But this is true as J preserves limits (Proposition 6.8). Then

G has a left adjoint if and only if the functor G0 does. We can use the Adjoint

Triangle Theorem, or for example [2, Theorem 7.3.b], to prove that G0 has a

left adjoint. Indeed, Us,0 is monadic and T -Alg(A, J−)0 ∼= T -Algs(A
′,−)0 has a

left adjoint given by taking − ∗ A′ (tensor product with A′) and (T -Algs)0 has

coequalizers.

Corollary 6.29. Let T be a W -enriched pseudo-commutative monad on W and

J−,−K the internal hom of the induced pseudo-closed structure on T -Alg. If J

has left adjoint and T -Algs has cotensor products and coequalizers, then the W -

functor JB,−K : T -Algs → T -Algs has a left adjoint −⊘B, for all T -algebras B.

In particular, the result holds if T is pseudo-commutative and has a rank.

Corollary 6.30. The W -functors −⊘B extend to a W -functor

⊘ : T -Algop
s ⊗ T -Algs → T -Algs
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cocontinuous in the first variable. Moreover, if for a weight ψ, T preserves ψ-

colimits, then ⊘ preserves ψ-colimits in the second variable.

Proof. The first part of the statement is obvious from Corollary 6.29 above. The

last part is equivalent to claiming that each W -functor J−, CK : T -Algop
s → T -Algs

preserves ψ-limits whenever T preserves ψ-colimits. Since Us : T -Algs → W

creates limits, this is equivalent to saying that UsJ−, CK = T -Alg(J−, C) preserves

φ-limits whenever T preserves ψ-colimits. This last statement holds true by

Proposition 6.9.

Proposition 6.31. Assume the hypotheses of Corollary 6.29. Then each 2-

functor JB,−K1 : T -Alg1 → T -Alg1 has a left biadjoint − ⊠ B. Moreover, the

pseudofunctor − ⊠ − is part of a (pseudo-)monoidal structure making T -Alg1 a

(pseudo-)monoidal pseudo-closed 2-category.

Proof. We use Theorem 6.16 to deduce our result. Define A ⊠ B = J(A′ ⊘ B).

Since (−⊘B)1 is a left adjoint to

(T -Algs,1
J1−→ T -Alg1

JB,−K1
−−−−→ T -Alg1) = (T -Algs,1

JB,−K1
−−−−→ T -Algs,1

J1−→ T -Alg1)

we have that (− ⊠B)1 is a left biadjoint to the 2-functor JB,−K1. Moreover,

dC : JJ(A′ ⊘B), CK
kB−−→ JJB, J(A′ ⊘B)K, JB,CKK

Junit,1K
−−−−→ JA, JB,CKK

is a retract equivalence in W (see Proposition 6.12). The commutativity of the

diagram in Theorem 6.16 is equivalent to the commutativity in W of the diagram

below, which is easy to verify.

JA⊠B,CK⊗JC,DK
dC⊗1 //

comp

��

JA,JB,CKK⊗JC,DK
1⊗k // JA,JB,CKK⊗JJB,CK,JB,DKK

comp

��
JA⊠B,DK

dD

// JA,JB,DKK

Now we apply Theorem 6.16.

Corollary 6.32. The 2-functors F1, U1 and the unit and counit η, ε of the biad-

junction F1 ⊣b U1, have canonical (pseudo) monoidal structures.

Proof. We already mentioned at the end of Section 6.3.1 that when pseudo-closed

structures induce monoidal structures, closed 2-functors and pseudo-closed 2-

natural transformations acquire structures of (pseudo) monoidal functors and
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(pseudo) monoidal transformations, respectively. In the case of the biadjunction

F1 ⊣b U1, this means that F1, U1 together with the unit and the counit are

(pseudo) monoidal.

Observation 6.33. 1. The universal property of A ⊠ B can be expressed in

the following way. There is a multimap A ⊗ B → A ⊠ B inducing an

equivalence between the category of pseudomorphisms A⊠B → C and the

category of multimaps A⊗B → C, for all T -algebras C.

2. A standard argument shows that the monoidal constraint F1(X)⊠F1(Y ) →

F1(X ⊗ Y ) is an equivalence in T -Alg.

6.7 Lax-idempotent monads are pseudo-commutative

In this section we show that every lax-idempotent W -enriched monad has a canon-

ical pseudo-commutativity.

Recall that a 2-monad (T, η, µ) on a 2-category K is lax-idempotent, or Kock-

Zöberlein, when any 1-cell f : A→ B between T -algebras has a unique structure

of a lax morphism of T -algebras. This is equivalent to the condition that a 1-cell

a : TA→ A is a T -algebra structure if and only if there exists an retract adjunc-

tion a ⊣r ηA (i.e., and adjunction with counit an identity). Another equivalent

condition is the existence of a modification δ : Tη → ηT satisfying

δη = 1 and µδ = 1. (6.22)

Many more equivalent conditions are given in [44, Theorem 6.2]. Also, the for-

getful 2-functor Uℓ : T -Alg → K is locally fully faithful.

If A,B are T -algebras, the unique lax morphism structure on a 1-cell f : A→

B in K is given by the following 2-cell, where the arrows denote the counit and

unit of the respective adjunctions.

TA

a

��

� �� �KS
TA

Tf // TB

b
��

A

ηA

<<yyyyyyyy

f
// B

ηB

=={{{{{{{{ � �� �KS

B

(6.23)

It follows that a 1-cell f : A→ B has a (unique) structure of a pseudomorphism

of T -algebras if and only if 6.23 is invertible. Also, the forgetful 2-functor U :
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T -Alg → K is locally injective on objects (i.e., U is injective on 1-cells) and

locally fully faithful.

In [51] it is shown that left adjoint 1-cells between algebras for a doctrine

are pseudomaps. In our case, the same is true. If A,B are T -algebras and

f ⊣ f∗ : B → A is an adjunction in K , then f∗, just as any 1-cell, is a lax

morphism and hence f has a structure of a colax morphism of T -algebras. It

follows from [44, Lemma 6.5] that the colax structure fa⇒ bTf is invertible and

its inverse is a pseudomorphism structure on f .

Lemma 6.34. Let T : W → W be a W -enriched monad and assume that the

underlying 2-monad T1 : W1 → W1 is lax-idempotent. Then the 1-cell in (6.14)

σX,B : [X,B]
T
−→ [TX, TB]

[TX,b]
−−−−→ [TX,B]

is part of a coretract adjunction with right adjoint [ηX , B] : [TX,B] → [X,B]. In

particular, (6.14) is a pseudomorphism.

Proof. We have [ηX , B][TX, b]T = [X, b][ηX , TB]T = [X, b][X, ηX ] = 1 by W -

naturality of η. So indeed we can define the unit of our adjunction as the identity.

Now define the counit as the following 2-cell

[X,B] T

��
[TX,B]

[ηX ,1]
77nnnnnnnnnnnn

T //

[1,ηB ]

@@[T 2X,TB]

[TηX ,1] ,,

[ηTX ,1]
22

�� ��
�� [TX, TB]

[1,b] // [TX,B]

where the unlabelled 2-cell is [δX , 1]. Now we check the axioms of an adjunction.

First, [ηX , B][TX, b][δX , TB]T = [X, b][δXηX , TB]T = 1 by (6.22). The other

axioms is again follows from (6.22):

[TX, b][δX , TB]T[TX, b]T = [δX , B][T 2X, b][T 2X,Tb]TT

= [δX , B][T 2X, b][T 2X,µB]TT

= [δX , B][T 2X, b][µX , TB]T

= [δX , B][µX , B][TX, b]T

= 1.
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Theorem 6.35. Every W -enriched monad T : W → W such that its underly-

ing 2-monad T1 is lax-idempotent is pseudo-commutative. Moreover, the pseudo-

commutativity is unique.

Proof. We have to check the conditions in Proposition 6.19. By Lemma 6.34

above, σ lifts to a pseudonatural transformation [−,−] ⇒ [T−,−] : W op
1 ⊗

T -Alg1 → T -Alg1. Moreover this lifting is unique because U1 : T -Alg1 → W1 is

injective on 1-cells and locally fully faithful. The conditions (1) to (4) in Propo-

sition 6.19 hold trivially, since U1 is injective in 1-cells; in other words, these

conditions hold if and only if they hold in W . The uniqueness of the pseudo-

commutativity is equivalent to the uniqueness of the pseudomorphism structure

on each σX,B, which holds by the properties of U1 already mentioned.

Corollary 6.36. If T : W → W is a W -enriched monad with lax-idempotent

underlying 2-monad, then T -Alg has a canonical structure of a pseudo-closed

W -category.

Proof. It is a consequence of Theorem 6.35 together with Proposition 6.26.

Example 6.37. There are pseudo-commutative 2-monads which are not lax-idem-

potent. For example, the 2-monad T on Cat whose algebras are the symmetric

strict monoidal categories. See [37] for a detailed description of the pseudo-

commutativity for this 2-monad, or Example 6.17. One of the several possible

ways of seeing that T is not lax-idempotent is to show that there can not be a

2-natural transformation δX : TηX ⇒ ηTX : TX → T 2X. For, if (x1, · · ·, xn) ∈

TX, the corresponding component of δX should be an arrow ((x1), · · ·, (xn)) →

((x1, · · ·, xn)). But there are no such arrows in T 2X unless n = 1, as there are

arrows only between strings of the same length.

Example 6.38. There are property-like 2-monads which are not pseudo-commu-

tative. Property-like 2-monads were defined in [44] as those 2-monads for which

every algebra structure is unique up to isomorphism and every pseudomorphism

structure on a 1-cell is unique. For example, if T is the 2-monad on Cat that

freely adds chosen finite products and finite coproducts, T is property-like but is

not pseudo-commutative (as products do not always commute with coproducts).

Recall from Section 6.5 the 2-multicategories T1-Alg and T1-Algb.

Proposition 6.39. If T is lax-idempotent, the canonical morphism of 2-multi-

categories T -Alg1 → T -Algb1 is an isomorphism.
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Proof. For simplicity we explain why the inclusion

T -Alg1(A,B;C) −→ T -Algb1(A,B;C)

is an isomorphism. In other words, we must show that every 1-cell f : A⊗B → C

equipped with structures of a partial map in each variable automatically satisfies

the commutation relation necessary to be a multimap. As we noted at the end

of Section 6.5.2 of the partial map structures give a pseudomap structure to the

exponential transpose g : A → [B,C] of f . The other partial map structure

correspond to a 2-cell α : σB,Cg ⇒ [b, C]g in W . The two partial map structures

commute with each other if and only if α is a 2-cell in T -Alg1. Now, by Lemma

6.34, the domain and codomain of α are pseudomorphisms, and hence α is a

2-cell in T -Alg1 since for the lax-idempotent 2-monad T1 the forgetful 2-functor

T -Alg1 = T1-Alg → W is locally full.

142



Chapter 7

Categories with finite

(co)limits

Now it is time to apply the theory of the previous chapters to the example of

the 2-category of V -categories with finite (co)limits equipped with the (weak or

pseudo) monoidal structure constructed in Chapter 6.

After discussing pseudo-closed structures on 2-categories of V -categories with

a class of colimits, we look closely at the corresponding monoidal structures in the

case of finite colimits. In Section 7.3 we recall Deligne’s tensor product of abelian

categories (introduced in [19]) and prove that our tensor product of categories

with finite colimits coincides with Deligne’s tensor product on a special class of

abelian categories: those abelian categories for which Deligne’s tensor product is

proven to exist in [19].

In Section 7.5 we deduce the “Radford’s formula for finite tensor categories”

of [27] from the general theory of previous chapters. In particular our proof is

independent of the Perron-Frobenius dimension argument used in [27]. In the

rest of the chapter we consider the case of semisimple categories, and give a char-

acterisation of semisimplicity of a autonomous category enriched in vector spaces

in bicategorical terms (the existence of certain adjunction). Explicit descriptions

of various constructions are provided.

7.1 The case W = V -Cat

In this section we apply the results developed so far to the case of the symmet-

ric monoidal closed 2-category W = V -Cat. Here V is a complete an cocom-
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plete symmetric monoidal closed category, and V -Cat the 2-category of small

V -categories. We use the constructions and follow the notations of [45].

Let Φ be a small class of weights. Recall from [42, Section 5.5] that the

free completion of a V -category A under Φ-colimits can be obtained as the clo-

sure under Φ-colimits of the representables in [Aop,V ]. This Φ-cocomplete V -

category is usually denoted by ΦA. The Yoneda embedding yA : A→ ΦA induces

equivalences of V -categories Φ-Cocts[ΦA,B] ≃ [A,B] for all Φ-cocomplete V -

category B, with pseudoinverse given by taking left Kan extension along yA. Here

Φ-Cocts[C,D] denotes the V -category of Φ-cocontinuous V -functors C → D;

these are the enriched homs of a W -category with objects the Φ-cocomplete small

V -categories.

Let us denote by Φ-Colim1 be the 2-category of V -categories with chosen

Φ-colimits, V -functors strictly preserving these and V -natural transformations.

This is the underlying 2-category of a W -category Φ-Colim with enriched homs

Φ-Colim(A,B) the full sub-V -category of [A,B] determined by the V -functors

that strictly preserve Φ-colimits. There is an obvious forgetful W -functor Us :

Φ-Colim → W . The main result of [45] is the monadicity of (Us)1, as a 2-functor.

If T is the associated 2-monad on W , with unit η : 1 → T , there is an equivalence

of V -categories making the following diagram commutative.

A
ηA //

yA !!C
CC

CC
CC

C TA

≃

��
ΦA

Below we explain the necessary modifications to prove that the W -functor Us

is monadic.

Lemma 7.1. The W -functor Us has a left adjoint.

Proof. By [45, Theorem 5.1] we know the 2-functor (Us)1 has a left adjoint.

Hence, it is enough to prove that Φ-Colim has cotensor products preserved by

Us. As we aim to prove Us is monadic, Us will in fact create cotensor products,

and that is what we shall show. This amounts to saying that for any V -category

X and any V -category with chosen Φ-colimits A, the V -category [X,A] has a

canonical choice of colimits and the unit X → Φ-Colim([X,A], A) is a cotensor

product.

Let A be a V -category with chosen Φ-colimits and X be any V -category.

Given a weight φ : D → V in Φ and a functor G : D → [X,A], we want to choose
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a colimit φ ∗ G. What follows is the explanation of how to chose the colimits

point-wise. Denote by Ĝ : X → [D,A] and G′ : D ⊗ X → A the V -functors

induced by G, and define

φ ⋄G = (X
Ĝ
−→ [D,A]

φ∗−
−−→ A).

Now we need a cylinder ν : φ→ [X,A](G−, φ⋄G) =
∫
x∈X A(G′(−, x), φ⋄G(x)) =∫

x∈X A(G′(−, x), φ ∗ G′(−, x)). For each x ∈ X we have a chosen colimiting

cylinder µx : φ → A(Ĝ(x)(−), φ ∗ (Ĝ(x))). If follows easily that µx is dinatural

in x and hence it induces a unique V -natural transformation into the end, which

we take as ν. We leave to the reader the rest of the verification of the fact that

X → Φ-Colim([X,A], A) has the universal property of a cotensor product.

Proposition 7.2. The W -functor Us is monadic.

Proof. At the beginning of [45, Section 6] it is shown that the functor (Us)0 creates

coequalizers of (Us)0-contractible pairs of arrows. But we know that Φ-Colim

has cotensor products, which is enough to ensure that coequalizers in Φ-Colim0

are coequalizers in the W -category Φ-Colim. From the enriched version of Beck’s

monadicity theorem [25], we deduce that Us is monadic.

Denote by T the W -enriched monad on W = V -Cat whose Eilenberg-Moore

construction is Us : Φ-Colim → W . Theorem 6.3 of [45] asserts that the 2-

monad T1 on the 2-category W1 of small V -categories, V -functors and V -natural

transformations is lax-idempotent. Henceforth, Theorem 6.35 gives the following

corollary.

Corollary 7.3. The V -Cat-monad T on V -Cat whose algebras are the V -

categories with chosen Φ-colimits is pseudo-commutative. The same holds if we

replace colimits by limits.

Proof. Only the case of limits needs a proof. If L is the W -monad on W = V -Cat

whose algebras are categories with chosen Φ-limits, L1 is colax-idempotent. Now,

if we write U1 for W co
1 , Lco

1 has an obvious structure of a lax-idempotent 2-monad

on U1. Therefore, Lco
1 is a pseudo-commutative 2-monad on U1 by Theorem 6.35,

and hence L is pseudo-commutative too.

Corollary 7.4. For T as in the corollary above, the W -category T -Alg, and hence

the 2-category Φ-Coctsc, are pseudo-closed.
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Example 7.5. As observed in [70], there are lax-idempotent 2-monads which are

not equivalent to a 2-monad given by freely adding chosen colimits as described

above. Any such 2-monad must have a fully faithful unit. The example in [70,

Example 10] is the 2-monad T on Cat constant on the terminal category. The

unit of this 2-monad is the unique possible functor ηX : X → 1, which is not

always fully faithful.

7.2 Finite limits and colimits

Let V be a complete and cocomplete locally finitely presented closed symmetric

monoidal category, Φ be a class of finite weights (see [43]) and Φ-Colim the W -

category of V -categories with chosen finite colimits, V -functors strictly preserving

them and V -natural transformations.

We want to show that the forgetful 2-functor Us : Φ-Colim → V -Cat creates

filtered colimits. The forgetful 2-functor V -Cat0 → V -Gph0 into the category

of V -graphs is finitarily monadic, as shown in [46]. Colimits in V -Gph0 have

the following simple description. If D : J → V -Gph0 is a functor with J

small, write Gj = D(j). Define obG as colimj ob Gj , with universal cone qj :

obGj → ob G . Define G (X,Y ) as the colimit in V of the functor G : J → V

defined on objects by sending j ∈ J to
∑

qj(U)=X,qj(V )=Y Gj(U, V ) and on arrows

in the obvious way. We obtain morphisms of V -graphs qj : Gj → G forming a

colimiting cone. Details, along with a more conceptual description using the

bicategory V -Mat of V -matrices, can be found in [46].

Let D : J → Φ-Colim0 be an ordinary functor with J filtered. We

shall also denote by D the functor J → V -Cat0 resulting from composing

with (Us)0. To abbreviate, we denote D(j) by Cj . We know that D has a

colimit since the 2-category V -Cat is cocomplete; that is, there exists a V -

category C and a natural transformation qj : Cj → C inducing an isomorphism

V -Cat(C ,B) ∼= limj V -Cat(Cj ,B) 2-natural in B. Then C is a fortiori a

colimit in the ordinary category V -Cat0 and hence in V -Gph0. As J is fil-

tered, the V -enriched homs C (X,Y ) have a simpler description than in the gen-

eral case. Pick j1 ∈ J such that there exist X1, Y1 ∈ C j1 with qj1(X1) = X

and qj1(Y1) = Y . Consider the functor H : j1↓J → V defined on objects by

H(α : j1 → j) = Cj(Dα(X1), Dα(Y1)). On arrows, H(γ) is given by the effect

of Dγ on homs. If P : j1↓J → J is the projection functor, we have a natural
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transformation τ : H ⇒ GP with components

τ(α:j1→j) : Cj(Dα(X1), Dα(Y1)) →
∑

qj(U)=X,qj(V )=Y

Cj(U, V )

the canonical arrows into the coproduct.

Lemma 7.6. 1. The natural transformation τ induces an isomorphism

colimH ∼= C (X,Y ).

2. For any V -functor F : P → Cj1 and X ∈ obCj1 consider the functor

F# : j1 ↓ J → [Pop,V ]0 sending α : j1 → j to Cj((Dα)F, (Dα)(X)).

There exists a canonical isomorphism colimF#
∼= C (qj1F (−), qj1(X)).

Proof. The functor P : j1 ↓ J → J is final. This gives a canonical isomorphism

colimG ∼= colimGP . We shall show that τ induces a bijection between the cones

σα : H(α : j1 → j) → Z and cones ρα : GP (α) = G(j) → Z for any Z ∈ V .

Given σ, define ρ in the following way. To give ρα is to give arrows ρU,Vα :

Cj(U, V ) → Z for every U, V ∈ ob Cj such that qj(U) = X and qj(V ) = Y . Given

such U, V , choose some arrow β : j → k in J such that Dβ(U) = D(βα)(X1)

and Dβ(V ) = D(βα)(Y1). Here X1, Y1 ∈ Cj1 are the objects used in the definition

of H. Set

ρU,Vα = Cj(U, V )
Dβ
−−→ Ck(Dβ(U), Dβ(V )) = Ck(D(βα)(X1)), D(βα)(Y1))

σβα
−−→ Z.

Using the fact that J is filtered and the naturality of σ, it is easy to show that

ρU,Vα does not depend on the choice of the arrow β : j → k. Moreover, ρατα = σα.

Naturality of ρ can be easily established using the same techniques. Next we

show ρ is unique. Suppose ρ̃ is another cone satisfying ρ̃τ = σ. Then, for any

U, V ∈ obCj , if we choose β : j → k as above, we have: ρ̃U,Vα = ρ̃
Dβ(U),Dβ(V )
βα Dβ =

(ρ̃τ)βαDβ = (ρτ)βαDβ = ρU,Vα . It follows that ρ = ρ̃. This finishes the proof of

the first part of the lemma.

Consider the cone q# : F# → C (qj1F (−), qj1(X)) with components (q#)α =

qj : Cj((Dα)F,D(α)(X)) → C (qj1F (−), qj1(X)). Given any other cone r : F# →

G, the part (1) of the lemma gives arrows r̂P : C (qj1F (P ), qj1(X)) → G(P ) unique

with the property that r̂P qj = (rα)P for each P ∈ ob P. The V -naturality of r̂
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can be expressed as the commutativity of

C (qj1F (P ), qj1(X)) ⊗ C (P ′, P ) //

r̂P⊗1

��

C (qj1F (P ′), qj1(X))

r̂P ′

��
G(P ) ⊗ C (P ′, P ) // G(P ′)

where the horizontal arrows correspond to the respective V -functor structures.

The fact that this diagram does commute follows from the analogous diagrams

for each rα and the fact that ⊗ preserves colimits in each variable.

For a class of finite weights Φ, denote by R the monad induced by the monadic

W -functor Us : Φ-Colim → W .

Proposition 7.7. The forgetful W -functor Us : Φ-Colim → V -Cat creates

filtered colimits. Equivalently, the W -monad R is finitary.

Proof. Since Us creates cotensor products, it is enough to prove that the ordinary

functor (Us)0 : Φ-Colim0 → W0 creates filtered colimits.

Let D : J → Φ-Colim0 be a functor with J filtered. As before, denote

D(j) and colimUsD by Cj and C respectively, with colimiting cone qj : Cj → C .

We have to show that the qj form a colimiting cone in Φ-Colim0.

First we show that C has finite colimits. Let φ : P → V be a weight in Φ and

G : P → C a V -functor. Being a finite V -category, P is finitely presented in

V -Cat0; hence, G factors through some qj as G = qjGj for some Gj : P → Cj .

Consider the unit of the colimit ηj : φ→ Cj(Gj(−), φ ∗Gj). We claim that

η : φ
ηj
−→ Cj(Gj(−), φ ∗Gj)

qj
−→ C (G(−), qj(φ ∗Gj)) (7.1)

is the unit of a colimit, or in other words, (7.1) induces a V -natural isomorphism

C (qj(φ∗Gj), C) ∼= [P,V ](φ,C (G(−), C)). First, observe that η does not depend

on the factorisation of G. For, if Gk : P → Ck is another factorisation, there exist

β : j → ℓ, γ : k → ℓ in J such that (Dβ)Gj = (Dγ)Gk, and therefore qj(φ∗Gj) =

qℓ(Dβ)(φ∗Gj) = qℓ(φ∗ (Dβ)Gj) = qℓ(φ∗ (Dγ)Gk) = qℓ(Dγ)(φ∗Gk) = qk(φ∗Gk)

and qjηj = qℓ(Dβ)ηj = qℓηℓ = qℓ(Dγ)ηk = qkηk.

Given C ∈ ob C , we can choose j1 such that C = qj1(X) for some X ∈

obCj1 and G = qj1Gj1 . Using the fact that finite weights φ : Pop → V are

finitely presented objects in [Pop,V ] and Lemma 7.6, one sees that the arrow

C (qj1(φ∗Gj1), C) → [P,V ](φ,C (G(−), C)) is the composition below, and hence
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an isomorphism.

colim
α:j1→j

Cj(Dα(φ ∗Gj1), Dα(X)) ∼= colim
α:j1→j

Cj(φ ∗ ((Dα)Gj1)), Dα(X))

∼= colim
α:j1→j

[P, V ](φ,Cj((Dα)Gj1 , Dα(X)))

∼= [P,V ](φ,C (qj1Gj1 , C))

Now we equip C with chosen finite colimits. So far we have showed that

C has finite colimits and each qj : Cj → C preserves finite colimits. For each

finite weight φ : Pop → V in Φ and G : P → C set φ ∗ G = qj(φ ∗ Gj)

where Gj : P → Cj is a factorisation of G through qj . To make sense, φ ∗ G

has to be independent of the choice of j. Suppose Gk is a factorisation of G

through Ck. Since J is filtered and P is finite, there are arrows β : j → ℓ and

γ : k → ℓ such that (Dβ)Gj = (Dγ)Gk. Hence qj(φ ∗ Gj) = qℓ(Dβ)(φ ∗ Gj) =

qℓ(φ ∗ ((Dβ)Gj)) = qℓ(φ ∗ ((Dγ)Gk)) = qℓ((Dγ)(φ ∗Gk)) = qk(φ ∗Gk). With this

choice of finite colimits each qj strictly preserves colimits, so that them form a

cone in Φ-Colim0. Now it is easy to show that q is a colimiting cone. Suppose

pj : Cj → B is a cone in Φ-Colim0 and let F : C → B the corresponding V -

functor. We only have to show that F preserves chosen colimits. For any finite

weight φ : Pop → V in Φ and G : P → C , we have F (φ ∗ G) = Fqj(φ ∗ Gj) =

pj(φ ∗ Gj) = φ ∗ (pjGj) = φ ∗ (FqjGj) = φ ∗ (FG). Hence, C is a colimit in

Φ-Colim0.

Corollary 7.8. Let Φ be a class of finite weights. The 2-categories Φ-Coctsc and

Φ-Ctsc have canonical structures of pseudo-monoidal pseudo-closed 2-categories.

Furthermore, the right biadjoint forgetful 2-functors into V -Cat are part of mo-

noidal pseudo-closed biadjunctions.

Proof. Recall that from [45] that there are isomorphisms of 2-categories making

the following diagrams commute.

R-Alg
∼= //

U ''PPPPPPP Φ-Coctsc

vvllllllll

V -Cat

L-Alg
∼= //

U ''PPPPPPP Φ-Ctsc

vvmmmmmmmm

V -Cat

Here R,L are the 2-monads (and in fact (V -Cat)-monads) on V -Cat with

Eilenberg-Moore constructions Φ-Colim and Φ-Lim respectively. Both R and L

are finitary by Proposition 7.7, and then R-Algs and L-Algs are cocomplete by

the results in [7]. Now we apply the results obtained in Section 6.6.
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Example 7.9. Let k be a commutative ring, A a k-algebra and ΣA the one-object

k-Mod-category defined by A. Then, [(ΣA)op, k-Mod] is the category of left A-

modules. When A is finitely generated as a k-module, ΦΣA is the category of

finitely generated A-modules A-Modf .

Example 7.10. Suppose V = k-Mod, the category of modules over a commutative

ring k. If A and B are k-algebras of finite rank, A-Modf ⊠B-Modf can be taken

to be A ⊗ B-Modf . To see this, define a V -functor right exact in each variable

A-Modf ⊗B-Modf → A⊗B-Modf sending (M,N) to the A⊗B-module M ⊗N .

If C is a V -category with finite colimits, a functor F : A-Modf ⊗ B-Modf → C

right exact in each variable is the same, up to an equivalence, as an object C of

C with an action of A and an action of B, each one commuting with the other;

in other words, it is the same as a V -functor Σ(A⊗B) → C , or a right exact V -

functor A⊗B-Modf → C . Therefore there is an equivalence and an isomorphism

as depicted in the following diagram.

A-Modf ⊗B-Modf //

⊗ **TTTTTTTTTTTTTTTT
A-Modf ⊠B-Modf

≃

��

∼=

A⊗B-Modf

7.3 Deligne’s tensor product

Let k be a commutative ring and U = k-Mod category of k-modules. Of course,

U is a complete and cocomplete symmetric monoidal closed category. Moreover,

U is locally finitely presentable; we write Uf for the full (monoidal) subcategory

of finitely presentable objects, as usual.

If A ,B are abelian U -categories, their Deligne’s tensor product, introduced

in [19], is a k-bilinear functor A ×B → A •B, where A •B is another abelian

category, that induces equivalences between the category of right exact functors

A •B → C and the category of functors A ×B → C right exact in each variable,

for all abelian U -categories C .

The property of A • B can be rewritten in the following manner. There are

equivalences

Φ-Cocts(B, JA ,C K) ≃ Φ-Cocts(A • B,C )

pseudonatural in C , where Φ is the class of weights of finite colimits, or a class

whose closure is the class of finite colimits. However, as a result of the requirement

that A , B, C and A •B be abelian, A •B need not be equivalent to the finitely
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cocomplete A ⊠ B defined by Proposition 6.31, at least a priori.

Although in [19] the tensor product is defined for arbitrary abelian catego-

ries, it is only shown to exist for certain special abelian categories, namely those

satisfying the following conditions.

Condition 1. The ground commutative ring k is a field, all the objects have finite

length and the homs are finite-dimensional.

We shall show that for this special type of abelian categories, A ⊠ B has the

defining property of A • B. In other words, for the kind of abelian categories

that A • B is shown to exist in [19], A ⊠ B and A • B coincide. This gives

evidence that the right product to consider would be ⊠.

Recall that a sub-quotient of an object in an abelian category is a quotient of

a subobject. An abelian subcategory is closed under sub-quotients exactly when

it is closed under subobjects, or dually, when it is closed under quotients.

Observation 7.11. If D is an abelian category satisfying Condition 1 above, the

inclusion of a full abelian subcategory closed under sub-quotients i : C → D has

a left adjoint iℓ; the left adjoint sends an object X of D to the greatest quotient of

X lying in C . When D has a projective generator P , D is canonically equivalent

to D(P, P )-Modf via X 7→ D(P,X). Moreover, iℓ(P ) is a projective generator in

C , so that C ≃ C (iℓ(P ), iℓ(P ))-Modf . There is an isomorphism

C

��

≃ //

∼=

C (iℓP, iℓP )-Modf

��
D ≃

// D(P, P )-Modf

with components C (iℓP,X) ∼= D(P, iX); here the functor on the right hand side

is the one induced by the morphism of algebras iℓP,P : D(P, P ) → C (iℓP, iℓP ).

We consider the base category U = k-Mod equipped with chosen finite co-

products and coequalizers given by the usual constructions. This gives chosen

finite colimits by the usual construction of colimits out of coproducts and co-

equalizers. For any k-algebra A, the category A-Modf of finitely presentable

A-modules inherits a choice of finite colimits.

Observation 7.12. Given algebra k-morphisms f : A→ A′ and g : B → B′ call

f∗ and g∗ the functors given by restriction of scalars. If the four algebras involved

are finitely presentable as k-modules and Noetherian as algebras, we can prove

that f∗ ⊠ g∗ is an exact functor.
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Consider the diagram

A′-Modf ⊗B′-Modf //

f∗⊗g∗

��
∼=

A′-Modf ⊠B′-Modf
≃ //

f∗⊠g∗

��

A′ ⊗B′-Modf

(f⊗g)∗

��
A-Modf ⊗B-Modf // A-Modf ⊠B-Modf

≃ // A⊗B-Modf

where the equivalences are the ones of Example 7.10. If A is a Noetherian al-

gebra, the category of finitely presented A-modules A-Modf is not only finitely

cocomplete but it is closed under kernels in A-Mod. Hence it makes sense to

say that f∗ ⊠ g∗ is exact (as a tensor product of Noetherian algebras is again

Noetherian). Since the outside rectangle commutes up to an isomorphism, we

deduce that there exist an isomorphism filling in the square on the right hand

side. Therefore, the exactness of f∗ ⊠ g∗ follows from the exactness of (f ⊗ g)∗.

Now suppose that A is an abelian category satisfying Condition 1 above. Us-

ing [19, 5.12] A can be shown to be a filtered colimit of full abelian subcategories

Ai closed under sub-quotients, such that each Ai is equivalent to category of

modules of finite rank over a k-algebra of finite rank (depending on i). Following

the notation of [19], denote by 〈X〉 the full subcategory closed non-empty finite

direct sums and under subquotients of A generated by the object X. Define a

filtered category J with obJ = obA and an arrow X → Y if an only if X is

a direct summand of Y in A , and a functor J → U -Cat by sending X → Y

to the inclusion 〈X〉 →֒ 〈Y 〉. Clearly, A is a (filtered) colimit of this functor. By

[19, 2.14, 2.17], each category 〈X〉 has a projective generator PX and there is an

equivalence 〈X〉 ≃ A (PX , PX)-Modf (see Observation 7.11).

Let R be the 2-monad on U -Cat whose algebras are the U -categories with

chosen finite colimits. Suppose that the abelian category A in the paragraph

above is equipped with chosen finite colimits. Then each subcategory Ai is a

subobject of A in the category (R-Algs)0 of categories with chosen finite colimits

and functors strictly preserving them. Since R is finitary, R-Algs → U -Cat

creates filtered colimits, and A is a filtered colimit of the subcategories Ai in

R-Algs.

Theorem 7.13. Suppose A and B are abelian categories with chosen finite col-

imits and satisfying Condition 1. Then A ⊠B not only has chosen finite colimits

but is also abelian. Therefore, the monoidal structure ⊠ coincides on such abelian

categories with the tensor product defined in [19].

152



Proof. Suppose A ,B are U -categories satisfying Condition 1 and with chosen

finite colimits. We only need to prove that A ⊠ B is an abelian category.

As observed above, A and B are filtered colimit of filtered diagrams of sub-

categories Ai and Bj in R-Algs, respectively. By Proposition 6.14, A ′ is filtered

colimit of the diagram A ′
i . The 2-functor ⊘ : R-Algs × R-Algs → R-Algs of

Corollary 6.30 preserves filtered colimits in each variable (since R does so) and

hence A ⊠ B = A ′ ⊘ B will be the filtered colimit of the Ai ⊠ B = A ′
i ⊘ Bj in

R-Algs, and in U -Cat.

We have seen in Observation 7.11 that each inclusion Ai →֒ Aj is, after com-

posing with certain equivalences and up to isomorphism, a restriction of scalars

functor between categories of finite-dimensional modules, and likewise for the

Bj ’s. Hence, each functor Ai ⊠ Bu → Aj ⊠ Bv is exact by Observation 7.12. It

follows that A ⊠ B is abelian, since the colimit in U -Cat of a filtered diagram

of abelian categories and exact functors is an abelian category.

7.4 Tensor products from sketches

In this section we briefly explain the relationship between our definition of the

tensor product of two V -categories with chosen colimits and the work of Kelly

on essentially algebraic theories.

For the purposes of this section, V will be a locally finitely presentable mo-

noidal category (see [43]); however, in some parts less is needed (for example,

locally bounded).

Denote by R the 2-monad on V -Cat whose algebras are the V -categories

with chosen finite colimits. Then R-Alg is (isomorphic to) the 2-category of

V -categories with chosen finite colimits, finitely cocontinuous V -functors and V -

natural transformations. In this section we explain the relationship between the

monoidal structure on the 2-category R-Alg defined in the previous sections and

work by Kelly [42, 43].

For a V -category X , denote by Φ(X ) the closure under finite colimits in

[X op,V ] of the representables. One could consider any class of colimits here, but

the finite ones will suffice for our purposes. Denote by y : X → Φ(X ) the Yoneda

embedding. It has a universal property: composition with y induces equivalences

from the V -category of finitely cocontinuous V -functors FinCocts[Φ(X ),A ] to

[X ,A ], for any finitely cocomplete V -category A . By construction of R [45],
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there exits an equivalence making the following diagram commutative.

X
η //

y
""F

FF
FF

FF
FF

R(X )

≃

��
Φ(X )

In particular, both y and η are dense.

The V -category [X op,V ] is locally finitely presentable, and Φ(X ) is the full

subcategory of finitely presented objects.

A V -sketch is a pair (A ,Ψ) where A is a V -category and Ψ = {Ψγ : ψγ ⇒

A (Aγ , Sγ(−))}γ∈Γ is a set of V -natural transformations, where ψγ : Dγ → V

and S : Dγ → A . A model for the sketch (A ,Ψ), or a Ψ-model, is a V -

functor F : A → B such that the transformations ψγ ⇒ A (Aγ , Sγ(−)) ⇒

B(F (Aγ), FSγ(−)) are the units of a weighted limit {ψγ , FSγ(−)}. We denote by

Ψ-Mod[A ,B] the full subcategory of [A ,B] determined by the Ψ-models. Then,

a Ψ-model is a functor that sends each Ψγ to a limit. We denote Ψ-Mod[A ,V ]

by Ψ-Alg, and call its objects Ψ-algebras.

Given a sketch (A op,Ψ), define the V -category

Ψ-Com[A ,B] = Ψ-Mod[A op,Bop].

The objects of this V -category are called Ψ-comodels. A sketch (A op,Ψ) can

be identified with a set of transformations {φγ ⇒ A (Gγ(−), Aγ)}γ∈Γ where φγ :

Dop
γ → V and G : Dγ → A . A Ψ-comodel is a V -functor that sends each one of

these transformations to a colimit.

It is shown in [42, 6.3] that for a sketch (A op,Ψ), Ψ-Alg is a reflective sub-

category of [A op,V ]. In particular, it is cocomplete. Denote by K : A → Ψ-Alg

the composition of the Yoneda embedding with the reflection. It is easy to see

that K is dense. Moreover, K is a Ψ-comodel. To see this, note that a functor

G : A → B is a Ψ-comodel if and only if G is a K-comodel in the sense of [42,

5.12] by [42, Theorem 6.11] and the last paragraph of [42, 6.2].

Now suppose Φ is a set of weights and that all the elements ψγ of the sketch

Ψ belong to Φ. Denote by K the closure under Φ-colimits of the image of K in

Ψ-Alg, and Z : A → K corresponding factorisation of K.

Theorem 7.14 ([42, Theorem 6.23]). Composition with Z : A → K induces

equivalences Φ-Cocts[K ,B] ≃ Ψ-Com[A ,B]. The inverse equivalence is given

154



by taking left Kan extension along Z.

Given two V -sketches (A op,ΨA ) and (Bop,ΨB), one can define a new V -

sketch (A ⊗ B,ΨA ⊗Φ ΨB) consisting of the V -natural transformations

φ
τ
−→ A (G(−), A)

1⊗1B−−−→ A (G(−), A) ⊗ B(B,B) = A ⊗ B((G(−), B), (A,B))

φ
σ
−→ B(H(−), B)

1A⊗1
−−−→ A (A,A) ⊗ B(H(−), B) = A ⊗ B((A,H(−)), (A,B))

where τ ∈ ΨA , σ ∈ ΨB, A is an object of A and B an object of B.

Consider the example when Φ is the class of all finite weights, or a class whose

closure is the class of finite weights (for example, Φ can consists of the weights for

coequalizers, binary coproducts, initial object and tensor products with objects

in a small strong generator of V included in Vf ). Take two finitely cocomplete V -

categories A and B and V -sketches ΨA and ΨB consisting, respectively, of the

units of the colimits in A and B with weight in Φ. Then, ΨA ⊗Φ ΨB-Com[A ⊗

B,C ] is the V -category of V -functors A ⊗B → V , finitely cocontinuous in each

variable. The V -category ΨA ⊗Φ ΨB-Alg is Lex[A op,Bop; V ], the V -category

of V -functors A op ⊗ Bop → V finitely continuous in each variable. The dense

V -functor Z : A ⊗ B → K in this case has the universal property of the tensor

product corresponding to the pseudo-closed structure on R-Alg.

Suppose that the base monoidal category V is equipped with chosen finite

colimits. We choose finite colimits in [A op ⊗ Bop,V ] point-wise, and use the

reflection [A op⊗Bop,V ] → Lex[A op,Bop; V ] to equip the codomain with chosen

finite colimits. We equip the V -category K of Theorem 7.14 with the chosen

colimits corresponding to the ones of Lex[A op,Bop; V ]. Hence, if A and B have

chosen finite colimits, we have K ≃ A ⊠ B.

7.5 Radford’s formula for finitely complete autono-

mous categories

Throughout this section we will denote the category of vector spaces by V , and

the category of finite-dimensional vector spaces by Vf . Let L be the 2-monad on

V -Cat whose algebras are V -categories with chosen finite limits, and denote by

⊠ the tensor product corresponding to its pseudo-closed structure as in Section

6.6 (see Theorem 6.35). The neutral object for this pseudo-monoidal structure

is the free V -category with chosen finite limits L(I) over the unit V -category I.

We shall identify F (I) with V op
f via the canonical equivalence L(I) → V op

f that
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makes the following triangle commute (see the beginning of Section 7.1).

I
ηI //

y !!C
CC

CC
CC

C L(I)

≃
��

V op
f

The unit constraint V op
f ⊠C → C corresponds to the cotensor product V -functor

{−,−} : V op
f ⊗ C → C .

If X is an object of C and Y an object of D , we will denote the image of

the object (X,Y ) under the universal multimap C ⊗ D → C ⊠ D , the canonical

V -functor left exact in each variable, by X ⊠ Y .

We denote the dual of a finite-dimensional vector space W by W∨.

A pseudomonoid in L-Alg is the same as a monoidal V -category C which

is finitely complete and whose tensor product is left exact in each variable. We

will denote the multiplication and unit by P : C ⊠ C → C and J : V op
f → C ,

respectively, and by 1 the object of C defined by J .

From now on, we will consider only V -categories with homs lying in the full

subcategory of finite-dimensional vector spaces Vf .

Lemma 7.15. Any 1-cell F : V op
f → C in L-Alg has a right adjoint given by

C
C (Fk,−)
−−−−−→ Vf

(−)∨

−−−→ V op
f . (7.2)

In particular, J has right adjoint.

Proof. The isomorphism C (Fk,X) ∼= Vf (C (Fk,X)∨, k) ∼= V op
f (k,C (Fk,X)∨)

exhibits the left exact (7.2) as right adjoint to F .

Example 7.16. Let k be a perfect field (e.g. a field of characteristic zero), A be a

category equivalent to A-Modf , the category of finite-dimensional modules over

a finite-dimensional k-algebra A, and suppose A has the structure of an autono-

mous monoidal category. We shall show that any such category is an autonomous

map pseudomonoid in L-Alg, so that the theory developed in previous chapters

apply. In particular, our results apply to the finite tensor categories considered

in [27].

We only have to prove that the multiplication P : A ⊠ A → A has right

adjoint. Via the left dual functor, A is equivalent to A op. Hence, by a dualised

instance of Example 7.10, the tensor product functor A-Modop
f ⊗ A-Modop

f →
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A ⊗ A-Modop
f provides us with a choice of A ⊠ A . Now, the monoidal product

of A corresponds to a functor A-Modop
f ⊗ A-Modop

f → A-Modop
f , exact in each

variable; by [19, 5.7], the induced functor A ⊗ A-Modop
f → A-Modop

f is exact.

It follows that the multiplication P : A ⊠ A → A is not only left exact but

also right exact. Therefore P has a right adjoint, because both domain and

codomain of P are equivalent to categories of finite-dimensional modules over a

finite-dimensional algebra, as we explain below.

Any right exact functor G : A-Modf → B-Modf is of the form (M ⊗A −)

for a (unique up to isomorphism) left B right A finite-dimensional bimodule M .

Hence, the functor HomB(M,−) is a right adjoint to G.

Lemma 7.17. If C and D are pseudomonoids in L-Alg, then C ⊠ D so is.

Proof. The pseudomonoidal structure is induced by the monoidal structure of

C ⊗ D .

Note that in the proof above we are not allowed to say that that the pseudo-

functor (−⊠−) is monoidal and hence preserves pseudomonoids. This is because,

although there are equivalences C ⊠ D ≃ D ⊠ C induced by the isomorphisms

C ⊗D ∼= D⊗C , we can not say that the former provide a braiding, making L-Alg

a braided monoidal 2-category, as we lack an established definition of braiding

for general monoidal 2-categories.

Lemma 7.18. If X ∈ C and Y ∈ D have left duals ∗X and ∗Y , then X ⊠ Y ∈

C ⊠ D has left dual ∗X ⊠ ∗Y .

Proof. We have to show that (∗X ⊠ ∗Y ) ⊗ − is left adjoint to (X ⊠ Y ) ⊗ −.

The former functor is the image under ⊠ : L-Alg × L-Alg → L-Alg of the 1-cell

((∗X ⊗−), (∗Y ⊗−)) while the latter is the image of ((X ⊗−), (Y ⊗−)). Since

pseudo-functors preserve adjunctions, we get our result.

Now we fix a map pseudomonoid C in L-Alg; this means that C is a finitely

complete monoidal category whose (left exact) multiplication functor P : C ⊠C →

C has right adjoint P ∗ (the unit J has right adjoint by Lemma 7.15). We shall

suppose that C is autonomous, and denote by D̄ : C op → C the functor given by

taking right dual; its pseudo-inverse D̄∗ : C → C op is given by taking left dual.

For any object Y of C we shall write LY : C → C for the left exact functor

given by LY (X) = Y ⊗ X. This functor has left adjoint LℓY isomorphic to L∗Y .

Observe that there exist canonical isomorphisms : ̟ : P (LY ⊠ C ) ∼= LY P whose
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components ̟X⊠Z : (Y ⊗ X) ⊗ Z → Y ⊗ (X ⊗ Z) are just the associativity

constraint of the tensor product. Analogously, there is a left exact functor RY :

C → C given by tensoring with Y on the right, and RY ∗ ⊣ RY .

Lemma 7.19. The 2-cells below

C 3 P⊠1 //

1⊠P
BB

B

!!B
BB

C 2

P

  A
AA

AA
AA

A �� ��
��

C 2

C 2

1⊠P ∗

==||||||||
�� ��
��

C 2 P //

∼=

C

P ∗

>>}}}}}}}}
(7.3)

and

C 3 1⊠P //

P⊠1
BB

B

!!B
BB

C 2

P

  A
AA

AA
AA

A �� ��
��

C 2

C 2

P ∗⊠1
==||||||||

�� ��
��

C 2 P //

∼=

C

P ∗

>>}}}}}}}}
(7.4)

are given, on an object of the form Y ⊠ Z, respectively by

C 2(X, (P⊠C )(C ⊠P ∗(Z))Y ) = C 2(X, (LY ⊠C )(P ∗Z)) ∼= C 2((LℓY ⊠C )X,P ∗Z)

∼= C (P (LℓY ⊠ C )X,Z) ∼= C (LℓY PX,Z) ∼= C (PX, Y ⊗ Z) ∼= C 2(X,P ∗(Y ⊗ Z)

and

C 2(X, (C ⊠P )(P ∗(Y )⊠C )Z) = C 2(X, (C ⊠RZ)P ∗Y ) ∼= C 2((C ⊠RℓZ)X,P ∗Y )

∼= C (P (C ⊠ RℓZ)X,Y ) ∼= C (RℓZPX, Y ) ∼= C (PX, Y ⊗ Z) ∼= C 2(X,P ∗(Y ⊗ Z).

In particular, (7.3) and (7.4) are invertible.

Proof. First observe that the result for (7.4) follows from the one for (7.3) by

considering the reverse monoidal category. Therefore it suffices to prove that the

outer rectangle in the diagram (7.5) in Figure 7.1 commutes; and this happens

when the diagram marked as (A) commutes. In fact, we can show that (A)

commutes when we substitute P ∗Z by any object of C ⊠ C . In order to do this

consider the diagram (7.6), where we changed P ∗Z by U ⊠ V ; this suffices since,

for fixed X, all the functors C ⊠ C → Vf involved are left exact. Hence, it is

enough to prove the commutativity of (B). Now, the rectangle in (7.7) commutes

by naturality of ̟, and then it follows that (B) commutes too.

As a direct consequence of Lemma 2.43 Observation 2.45, we get the following.
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Corollary 7.20. For any autonomous monoidal V -category C with homs in Vf

and multiplication P : C ⊠ C → C with right adjoint,

1. The left exact functors J∗P : C ⊠ C → V op
f and P ∗J : V op

f → C ⊠ C form

a bidual pair. In particular, C is a Frobenius pseudomonoid in L-Alg.

2. The left dual functor D : C op → C is a right dualization with respect to the

bidual pair

E = (C ⊠ C op 1⊠D
−−−→ C ⊠ C

P
−→ C

J∗

−→ V op
f )

N : (V op
f

J
−→ C

P ∗

−−→ C ⊠ C
D∗⊠1
−−−→ C op

⊠ C ).

3. The right dual functor D̄ : C op → C is a right dualization with respect to

the bidual pair

Ē = (C op
⊠ C

D̄⊠1
−−−→ C ⊠ C

P
−→ C

J∗

−→ V op
f )

N̄ : (V op
f

J∗

−→ C
P ∗

−−→ C ⊠ C
1⊠D̄∗

−−−→ C ⊠ C op).

We are now ready to deduce, for any autonomous monoidal k-linear category

with finite-dimensional homs and left adjoint multiplication P : C ⊠ C → C, the

main results in [27].

Let N : V op
f → C ⊠C op be the coevaluation given in the corollary above, and

denote by H ∈ C ⊠C op the corresponding object. By Lemma 7.15, N has a right

adjoint, and therefore by Section 4.2 there exists a unique up to isomorphism left

exact V -functor W : V op
f → C such that (P ⊠ C op)(W ⊠H) ∼= (W ⊠ 1) ⊗H is

isomorphic as an H-module to the left dual of H. By Lemma 7.15, W has right

adjoint.

Proposition 7.21. The left exact functor W : V op
f → C is invertible in the

monoidal category L-Alg(V op
f ,C ); equivalently, the object W of C defined by W

is invertible.

Proof. The functor W has a right adjoint by 7.15. Then, a result dual to Propo-

sition 4.12 shows W is invertible in L-Alg(V op
f ,C ). In other words, the object

W ∈ C is an invertible object.

Observation 7.22. If C is a finite tensor category in the sense of [27] (and

hence a map pseudomonoid in L-Alg by Example 7.16), the object W is called
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a distinguished invertible object of C (see [27, Definition 3.1]). The proposition

above shows that the invertibility of W follows from abstract considerations and it

is independent of the Frobenius-Perron dimension argument used by the authors

of that paper.

Theorem 7.23. There exists a monoidal isomorphism between endo-functors of

V (C )
∗W ⊗X∗∗ ⊗W ∼= ∗∗X.

Proof. The coevaluation N : V op
f → C op ⊠C has a right adjoint by Lemma 7.15,

and hence 1C has a left and a right dual in L-Alg(C ,C ), and we already saw that

W has a right adjoint. Therefore we can apply Theorem 4.15 to the autonomous

pseudomonoid (C , J∗, P ∗) in L-Algop, and, since left (respectively right) duals in

L-Algop(C ,V op
f ) are the same as left (respectively right) duals in L-Alg(V op

f ,C ),

we obtain the result.

We include below some results that may shed some light on how the general

theory applies to L-Alg.

Lemma 7.24. Let C and D be autonomous V -categories which are map pseu-

domonoids in L-Alg equipped with the right and left bidual in part 2 and 3 of

Corollary 7.20. Then any left exact F : C → D has a left adjoint F ℓ and the

right and left bidual F ◦, F∨ : Dop → C op are given by F ◦ = F∨ ∼= F ℓop ∼= F op∗.

In particular, F does not only preserve finite limits but all the limits that may

exist in C .

Proof. The bidual of F is determined by the existence of an isomorphism Ē(Dop⊠

F ) ∼= Ē(F∨⊠C ), or, evaluating onX⊠Y ∈ Dop⊠C , D(X,FY )∨ ∼= C (F∨X,Y )∨.

If follows that F∨op is a left adjoint for F . The proof with the right bidual is

analogous.

Observation 7.25. 1. We shall describe the pseudomonoid structure of the

bidual C op of C . By Lemma 7.24, the unit object of C op is the same as

the one of C . The multiplication is (P ∗)∨; because of the definition of the

evaluation and coevaluation of the bidual pair in Corollary 7.20.3, and by

using repetitively Lemma 7.19, this functor is isomorphic to D̄∗P (D̄ ⊠ D̄).

Hence, the multiplication of C op is isomorphic to

C op
⊠ C op sw

−→ C op
⊠ C op Q

−→ C op
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where Q denotes the left exact functor induced by the opposite of the tensor

product of C , ⊗op : C op ⊗ C op → C op, and sw is the canonical equivalence

sw : A ⊠ B ≃ B ⊠ A .

2. Now we turn our attention to the (convolution) pseudomonoid structure

on C ⊠ C op. This structure was described in Lemma 4.1, and has unit

object 1 ⊠ 1 and multiplication (P ⊠ ((P ∗)∨sw))(C ⊠ sw ⊠ C op). Then,

the multiplication is just the composition (P ⊠Q)(C ⊠ sw ⊠ C op); it sends

objects of the form X⊠Y ⊠Z⊠U in C ⊠C op⊠C ⊠C op to (X⊗Z)⊠(Y ⊗U).

Observation 7.26. The convolution hom-category L-Alg(V op
f ,D) is monoidal-

ly equivalent to V -Cat(I,D), which is the underlying ordinary category of D .

Therefore, if D is autonomous, L-Alg(V op
f ,D) is autonomous. Explicitly, if F :

V op
f → D is left exact, its left and right duals in L-Alg(V op

f ,D) are the left exact

V -functors determined by the objects D̄∗(Fk) and D̄(Fk) respectively.

A number of the constructions we have done for a general pseudomonoid in

Chapter 2 translate under the equivalence

L-Alg(C ,C ) ≃ L-Alg(V op
f ,C ⊠C op) ≃ V -Cat(I,C ⊠C op) = V (C ⊠C op) (7.8)

into constructions on the ordinary category V (C ⊠ C op). This equivalence is

monoidal with respect to two different monoidal structures. On L-Alg(C ,C ) we

have the convolution monoidal structure and the composition monoidal structure.

The former corresponds to the pseudomonoid structure on C ⊠ C op described

in Observation 7.25; the latter corresponds to the pseudomonoidal structure on

C ⊠ C op given by multiplication and unit

C ⊠C op
⊠C ⊠C op 1⊠Ē⊠1

−−−−→ C ⊠V op
f ⊠C op ≃ C ⊠C op H := N̄(k) ∈ C ⊠C op.

(7.9)

Explicitly, the multiplication sends an object X ⊠ Y ⊠ Z ⊠ U to {C (Y, Z)∨, X ⊠

U} ∼= (X ⊠ U)dimC (Y,Z). The fact that the identity 1-cell is a monoid in the

convolution category L-Alg(C ,C ) translates into the fact that the coevaluation

N̄ is a monoid in L-Alg(V op
f ,C ⊠C op), where C ⊠C op has the product described

in Observation 7.25, or equivalently, that the object H determined by N̄ is a

monoid in the underlying ordinary category V (C ⊠ C op), and hence in C ⊠ C op.

Definition 7.1. We denote the Hopf module construction for the pseudomonoid

C in L-Algrev by H → C ⊠ C op. The finitely complete category H is called the

category of Hopf modules of C .
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Observation 7.27. When we restrict ourselves to the finite tensor categories

of [27], the category H defined above is what is called the category of Hopf

bimodules. (Note that in that paper the authors use the symbol C op for what we

would denote by C rev: C equipped with the reverse tensor product.) Hence, our

notion of category of Hopf modules generalises the one of [27].

The following result is a generalisation of [27, Prop. 2.3 (a)].

Proposition 7.28. The functor C → H given by X 7→ (X⊠1)⊗H is a monoidal

equivalence, where the latter category has the monoidal structure induced by (7.9).

Proof. The functor in question is equivalent to the functor sending X : I →

C to (P ⊠ C op)(X ⊠ H), which is induced by composition with the monoidal

equivalence (P ⊠C op)(C ⊠N) (see Theorem 2.35). Hence, X 7→ (X⊠1)⊗H is a

monoidal equivalence as claimed, with monoidal structure induced by transport

of structure.

7.6 Semisimple categories and completion under bi-

products

In this section we express the semisimplicity of a category enriched in vector

spaces in terms of two 2-monads: the 2-monadD whose algebras are the categories

with chosen biproducts and L whose algebras are the categories with chosen finite

limits. Then we relate the semisimplicity of an autonomous monoidal category

with finite dimensional homs with a purely bicategorical property; namely, the

existence of a right adjoint to the right adjoint to the unit. See Theorem 7.39.

In this section V will still denote the category of vector spaces over a field k.

Let Fin-BP be the 2-category of V -categories with chosen biproducts, V -

functors preserving biproducts up to isomorphism, and V -transformations. We

will also call biproducts direct sums. Of course, any V -functor preserves biprod-

ucts; in other words, the forgetful 2-functor Fin-BP → V -Cat is locally an iso-

morphism of categories. The 2-category Fin-BP is isomorphic toD-Alg for certain

2-monad D on V -Cat that we describe below.

If X is a V -category, D(X ) has as objects finite sequences (x1, x2, · · · , xn)

of objects of X . The elements of the V -enriched hom

D(X )((x1, · · · , xm), (y1, · · · , yn))
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are matrices (fp,q), 1 ≤ p ≤ n, 1 ≤ q ≤ m, where fp,q ∈ X (xq, yp). Composition

is given by product of matrices, while identities are given by the corresponding

identities matrices. MultiplicationD2(X ) → D(X ) is given by deleting brackets,

and the unit X → D(X ) by adding brackets.

We now examine the relationship between the 2-monad D and semisimple

categories. First we fix some terminology. A subobject of an object X in X is a

monic S ֌ X. Subobjects of a fixed object form a category Sub(X) with the

obvious arrows. We call any subobject isomorphic to 1X : X → X or 0 : 1 → X

trivial; note that the zero subobject is defined only when X has a final object.

We say that X has finite length if the length of the chains of subobjects of X

is bounded; this is, if there exists an n ≥ 0 such that, if there is an m-tuple of

composable arrows in Sub(X), none of which is an isomorphism, then m ≤ n. An

object X is simple if it is not initial and its non-zero subobjects are isomorphisms.

Clearly, simple objects have finite length. A V -category X is semisimple if every

object is isomorphic to a direct sum of simple objects.

Observation 7.29. Any object (x1, · · · , xn) in D(X ) is isomorphic to an ob-

ject in a normal form. By this we mean that there exists a permutation σ

of {1, 2, · · · , n} and positive integers k1, · · · , km such that
∑m

i=1 ki = n and

xσ(j) = xσ(j+1) if and only if
∑r

i=1 ki ≤ j ≤
∑r+1

i=1 ki − 1, 1 ≤ r ≤ m − 1.

In other words, we can rearrange the xi in a way such that all of them that are

equal are grouped together. The permutation matrix associated to σ provides an

isomorphism between (x1, · · · , xn) and (xσ(1), · · · , xσ(n)). In particular, any ob-

ject of D(X ) is isomorphic to an object of the form (y1)
k1 ⊕(y2)

k2 ⊕· · ·⊕(ym)km ,

with all the yi distinct objects of X . Here (y)k denotes the direct sum of k copies

of the object (y) of D(X ); this direct sum is isomorphic to the list (y, y, · · · , y),

of length k.

Given two objects of D(X ), it is clear from the discussion above that we can

find normal forms for each one in a compatible way. In other words, one of the

objects will be isomorphic to (x1)
ℓ1 ⊕ · · · ⊕ (xr)

ℓr ⊕ (y1)
k1 ⊕ · · · ⊕ (ys)

ks and the

other to (x1)
h1 ⊕ · · · ⊕ (xr)

hr ⊕ (z1)
m1 ⊕ · · · ⊕ (zt)

ms , with all the xi, yi and zi

distinct pairwise.

Lemma 7.30. If B has kernels, then for any pair of simple objects S, S′, B(S, S′)

is a division algebra if and only if S ∼= S′ and zero otherwise.

Proof. Suppose f : S → S′ is a non-zero arrow. The arrow ker f is a subobject of

S, and it cannot be an isomorphism as f 6= 0. Therefore, ker f is zero, and then

f is a non-zero subobject of S′. We deduce that f is an isomorphism.
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Lemma 7.31. Let B be a semisimple V -category with kernels, and {Sα}α∈I a

representative set of simple objects. If the objects of B have finite length, then B

is equivalent to D(X ) where X =
∐
α∈I Xα, ob(Xα) = {xα} and Xα(xα, xα) =

B(Sα, Sα).

Proof. The V -category B is equivalent to its full sub V -category B′ with objects

the direct sums of the Sα. So, it is enough to prove the result for B′. Let X

be the V -category described in the statement. Define X → B′ sending xα to

Sα and as the identity on homs. We shall prove this functor induces equivalences

Fin-BP(B′,C ) ≃ [X ,C ] for any V -category C with finite direct sums.

Any arrow f : Sr1α1
⊕ · · · ⊕ Srmαm

→ Ss1α1
⊕ · · · ⊕ Ssm

αm
is coproduct of arrows

f i : Sriαi
→ Ssi

αi
, by Lemma 7.30. Moreover, each f i determines and is determined

by a matrix (f ip,q) with entries in End(Sαi
).

Now suppose F : X → C is a V -functor. Define G : B′ → C on objects such

that it preserves finite direct sums. On arrows, G(f) = G(f1) ⊕ · · · ⊕ G(fm),

where G(f i) : G(Sαi
)ri → G(Sαi

)si is given by the matrix (F (f ip,q)). This defines

a finite direct sum-preserving V -functor, corresponding to F under composition

with X → B′. This is the object part of the required inverse equivalence.

Lemma 7.32. Let Xα be V -categories with ob(Xα) = {xα} and Aα = X (xα, xα)

division algebras. Then, the V -category D = D(
∐
α Xα) is semisimple and

abelian, and has objects of finite length.

Proof. By definition, every object of D is direct sum of the objects xα. So, to

show this category is semisimple, it suffices to prove that each xα is simple. Let

f : (xα1 , · · · , xαn) → xα be a non zero monomorphism. By definition, f is a

matrix (f1, · · · , fn) with fi : xαi
→ xα. All the fi must be non-zero, otherwise

f would not be monic. This forces αi = α for all i. Now, f ∈ Mat1×n(Aα), and

the condition of being a monomorphism implies that for any g ∈ Matm×n(Aα),

fg = 0 implies g = 0. But Aα is a division ring, and then n = 1. We just

showed that f comes from a non-zero arrow xα → xα, and hence it is invertible.

Therefore, the only non-zero subobjects of xα are isomorphisms, and xα is simple.

Next we show that D has kernels and cokernels. In fact, only one of the two

properties is needed, since by duality we get a proof for the other, as D(Y )op ∼=

D(Y op) for any V -category Y . Let f be an arrow in D . To the purpose of

showing it has a kernel, by Observation 7.29, we may assume f is of the form

g1 ⊕ · · · ⊕ gr ⊕ 0, where gi : (xi)
ℓi → (xi)

hi and 0 is the zero morphism between

certain objects. Hence, it suffices to prove that each gi has a kernel. An arrow
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g : (xα0)
k → (xα0)

h in D is a matrix gp,q ∈ Math×k(Aα0). Since Aα0 is a division

algebra, and then every Aα0-module is free, the matrix (gp,q) has a kernel. This

kernel is the matrix of the inclusion of the (submodule) kernel of (gp,q), with

respect to any basis in this submodule. Now it is easy to see that this kernel

matrix is the kernel of g.

To prove that D is abelian it only remains to show that any arrow factors as

a cokernel followed by a kernel. The argument is very similar to the one used in

the previous paragraph. It is enough to prove that the arrows (xα0)
k → (xα0)

m

have coker-ker factorisations, and this is true because matrices with entries in the

division algebra Aα0 have a coker-ker factorisation. This finishes the proof.

Recall that we denote by L the 2-monad on V -Cat whose algebras are the

V -categories with chosen finite limits.

Proposition 7.33. For a V -category B, the following are equivalent.

1. B is semisimple abelian with objects of finite length.

2. B is semisimple and has kernels and objects of finite length.

3. B is equivalent to D(
∐
α Xα) where Xα has one object xα and its unique

hom Xα(xα, xα) is a division algebra.

4. B is equivalent to L(
∐
α Xα) where Xα has one object xα and its unique

hom Xα(xα, xα) is a division algebra.

Proof. (1) implies (2) trivially, (2) implies (3) by Lemma 7.31 together with

Lemma 7.30, and (3) implies (1) by Lemma 7.32. To prove the equivalence of

(3) and (4) it is enough to show that any V -functor with domain D(
∐

Xα)

preserves kernels. But this is clear, since this category is semisimple abelian and

every object in it is injective, and hence any kernel is, up to composing with

isomorphisms, the the coprojection of a direct sum.

Corollary 7.34. Let B be a V -category satisfying the properties of Proposition

7.33. Then, B is equivalent to D(X ) for a discrete V -category X if and only if

B(S, S) ∼= k for every simple object S of B. In this case, B is also equivalent to

L(X ).

The corollary above can be reinterpreted in the following way. Let B be as

in Corollary 7.34, and let {Sα}α∈Λ be a set of representatives of the isomorphism

classes of simple objects. Then, to give a V -functor B → A , where A has finite

direct sums, is, up to isomorphism, to give an object of A for each Sα.
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Example 7.35. Suppose the base field k is algebraically closed. Then any semisim-

ple abelian V -category B is as in Corollary 7.34. Indeed, for any simple object

S, B(S, S) is a finite dimensional division algebra, and then isomorphic to k.

We now show that the results on semisimplicity above hold for V -categories

with finite homs and whose objects are injective. An object E is injective if for

any monic m : X ֌ Y the V -natural transformation X (−,m) : X (−, Y ) ⇒

X (−, X) is epi. In particular, if s : S ֌ X is a subobject with S injective, then

there is an arrow r : X → S such that rs = 1S .

Lemma 7.36. If s : S ֌ X is a subobject with S injective in a V -category B

with kernels, then s is part of a biproduct diagram.

Proof. We have to give a diagram

S
s //

X
r

oo
p //

K.
k

oo

Choose r such that rs = 1S , and define k = ker r and p the unique arrow such

that kp = 1X − sr; this makes sense as r(1X − sr) = r − rsr = r − r = 0. The

only condition that remains to be checked is pk = 1K . But this is also easy:

kpk = (1X − sr)k = k − srk = k, and k is mono.

In the hypothesis of the Lemma above, we have

dimB(X,X) ≥ dimB(S, S) + dim(K,K) ≥ dim B(S, S) + 1.

Lemma 7.37. Suppose B has finite-dimensional homs and every object is injec-

tive. Then every object is Artinian and Noetherian, and has a simple subobject.

Proof. Suppose X is not Artinian; that is, there is an infinite chain of subobjects

X ) S1 ) S2 ) · · · . Then, dimB(X,X) ≥ dimB(Sn, Sn) + n ≥ n + 1 for all

n ≥ 1, which contradicts the finite-dimension of B(X,X). The proof for the

Noetherian condition is analogous. Finally, if X had not a simple subobject,

we could construct an infinite descending chain of subobjects, contradicting the

Artinian property.

Lemma 7.38. Suppose B has finite-dimensional homs and every object is injec-

tive. Then every object is isomorphic to a finite direct sum of simple objects. If,

in addition, B has kernels, then B is abelian.
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Proof. Every object is finite direct sum of simple objects by Lemmas 7.36 and

7.37. The rest follows from Proposition 7.33.

We now apply these results to the case of autonomous V -categories. Recall

that if C is a monoidal V -category we denote by J : V op
f → C the left exact

V -functor corresponding to the unit of the monoidal structure.

Theorem 7.39. Let C be an autonomous monoidal V -category with finite-di-

mensional homs and finite limits. Then

1. If J∗ : C → V op
f has a right adjoint, then C is semisimple abelian with

objects of finite length.

2. J∗ has right adjoint if and only if J∗ ⊣ J .

3. If C is semisimple and C (1,1) ∼= k, then J∗ ⊣ J .

Proof. (1) If

J∗ = (C
C (−,1)
−−−−→ V op

f

(−)∨

−−−→ Vf )

(see Lemma 7.15) has right adjoint, then C (−,1) : C → V op
f is cocontinuous.

In other words, C (−,1) : C op → V is continuous, and hence 1 is injective.

Therefore, every object in C is injective, as C (−, X) is isomorphic to C (− ⊗

X∗,1). By Lemma 7.38, C is semisimple abelian with objects of finite length.

(2) Denote by G a right adjoint to J∗. We know that C is semisimple. Write

1 ∼= ⊕αS
nα
α and G(k) ∼= ⊕αS

mα
α , decompositions of 1 and G(k) as direct sum

of simple objects. There is an isomorphism C (X,G(k)) ∼= V op
f (J∗(X), k) ∼=

C (1, X)∨, natural in X. Setting X = Sα0 a simple object, we get

C (Sα0 , Sα0)
∨mα0 ∼= C (Sα0 , Sα0)

nα0

and hence mα = nα for all α. Then we see that G(k) ∼= 1 and therefore G ∼= J .

(3) We have to prove the existence of a natural isomorphism C (1, X)∨ ∼=

C (X,1). As C is semisimple, by Proposition 7.33, it is enough to show there exists

an isomorphism between the restriction of the two functors to the full subcategory

of C with objects a set of representatives of isomorphism classes of simple objects.

Write 1 as the direct sum of simple objects as in the paragraph above. It is enough

to show that there is an exact dinatural pairing C (S,1) ⊗ C (1, S) → k, where S

is a simple object appearing in the decomposition of 1. If C (1,1) ∼= k, by the

finiteness of the hom spaces, the composition is such a pairing.
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Corollary 7.40. For an autonomous monoidal V -category C with finite limits

and finite-dimensional homs and with C (1,1) ∼= k, the following are equivalent.

1. J∗ : C → V op
f is has a right adjoint.

2. J∗ ⊣ J .

3. C is semisimple abelian with objects of finite length.

7.7 Semisimple pseudomonoids and fusion categories

In this section we show that any semisimple autonomous monoidal V -category is

unimodular. We work in the monoidal 2-category L-Alg of Section 7.5. As in the

previous section, V will denote the category of vector spaces over a field k.

We have seen in Proposition 7.33 that a finitely complete semisimple V -

category is equivalent to L(
∐
α Xα), where the V -categories Xα have one object

and the unique V -enriched hom is a division algebra under composition.

Proposition 7.41. Assume k is algebraically closed. If the objects A and B

in L-Alg are semisimple as V -categories and have objects of finite length, then

A ⊠ B is semisimple too. Moreover, if A and B have representative sets of

simple objects {Aα} and {Bβ} respectively, then {Aα ⊠ Bβ} is a representative

set of simple objects of A ⊠ B.

Proof. By Proposition 7.33, we may assume A and B are of the form D(
∐
α Xα)

and D(
∐
β Yβ) respectively, where obXα = {xα}, obYα = {yα} and every V -

enriched hom Xα(xα, xα) and Yβ(yβ , yβ) is isomorphic to k (since k is alge-

braically closed). The sets {(xα)} and {(yβ)} are the sets of simple objects in the

respective categories. By Corollary 6.32, L(
∐
α Xα) ⊠ L(

∐
β Yβ) is equivalent to

L((
∐
α Xα) ⊗ (

∐
β Yβ)), and hence to L(

∐
α,β Xα ⊗ Yβ). Under this equivalence

xα⊠yβ corresponds to (xα, yβ). Then, A ⊠B is equivalent to D(
∐
α,β Xα⊗Yβ),

again by Proposition 7.33. The V -categories Xα ⊗ Yβ have one object (xα, yβ),

and its V -enriched hom is clearly isomorphic to k. It follows from Proposition

7.33 that A ⊠ B is semisimple abelian. Finally, {(xα, yβ)} is the set of simple

objects of D(
∐
α,β Xα⊗Yβ), and then {xα⊠ yβ} is a set of representatives of the

simple objects of A ⊠ B.

Let C be semisimple and monoidal with objects of finite length and finitely

many simple objects. Then C has associated structural constants. If {Sα}α∈Λ is
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a set of representatives of the isomorphism classes of simple objects, we can write

Sα ⊗ Sβ ∼= ⊕γS
n

α,β
γ

γ .

The non negative integers nα,βγ are called the structural constants of C .

Theorem 7.42. Assume k is algebraically closed and let C be semisimple abelian

autonomous monoidal V -category with finite dimensional homs. Then, the mul-

tiplication P : C ⊠ C → C has a right adjoint if and only if C has finitely many

isomorphism classes of simple objects. Moreover, P ∗(X) ∼= ⊕α∈ΛSα⊠(S∗
α⊗X) ∼=

⊕α∈Λ(X ⊗ Sα) ⊠ S∗
α, where {Sα} is a set of representatives of the isomorphism

classes of simple objects.

Proof. Let {Sα}α∈Λ be a set of representatives of classes of isomorphism of simple

objects. Write α∗ for the element of Λ such that Sα∗
∼= S∗

α. Suppose P has a

right adjoint P ∗, and write P ∗(1) ∼= ⊕α,β∈Λ(Sα ⊠ Sβ)
nα,β , where all but finitely

many of the non negative integers nα,β are non zero. By Corollary 7.20, for any

object X in C we have

X ∼=
⊕

α,β∈Λ

{C (1, Sβ ⊗X)∨, S
nα,β
α } ∼=

⊕

α,β∈Λ

{C (∗Sβ , X)∨, S
nα,β
α }

where {−,−} denotes the cotensor product. Let Sγ be an arbitrary simple object

and set X = Sγ to obtain

Sγ ∼=
⊕

α∈Λ

{C (Sγ , Sγ)
∨, S

nα,γ∗

α } ∼=
⊕

α∈Λ

S
nα,γ∗

α

where we used C (S, S) ∼= k for all simple objects S. We deduce that nα,γ∗ = 0 if

α 6= γ and nγ,γ∗ = 1. Then γ belongs to the finite set Λ′ = {α ∈ Λ | nα,α∗ 6= 0}.

This proves that Λ = Λ′ is finite. Moreover,

P ∗(1) ∼=
⊕

α∈Λ

Sα ⊠ S∗
α.

Henceforth, by Corollary 7.20 (2) and (3), together with (2.20) and its dual, we

deduce P ∗(X) ∼= ⊕α(X ⊗ Sα) ⊠ S∗
α
∼= ⊕αSα ⊠ (S∗

α ⊗X).

For the converse, suppose C has finitely many isomorphism classes of simple

objects, and let {Sα}α∈Λ a set of representatives, and that C (Sα, Sα) ∼= k for all

α ∈ Λ. We have to show that there exists a V -functor Q : C → C ⊠ C and a

natural isomorphism C (X ⊗ Y, Z) ∼= C ⊠ C (X ⊠ Y,Q(Z)). By Corollary 7.34,
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to give Q is to give objects Q(Sα). Then we have to find objects Q(Sα) with

a natural isomorphism C (X ⊗ Y, Sα) ∼= C ⊠ C (X ⊠ Y,Q(Sα)). Applying again

Corollary 7.34, we have to find isomorphisms

C (Sβ ⊗ Sγ , Sα) ∼= C ⊠ C (Sβ ⊠ Sγ , Q(Sα)) (7.10)

for all α, β, γ ∈ Λ. Write Sβ ⊗ Sγ ∼= ⊕λS
n

β,γ
λ

λ and Q(Sα) ∼= ⊕λ,µ(Sλ ⊠ Sµ)
mα

λ,µ ,

where mα
λ,µ are integers to be determined. Substituting in (7.10), we have to

exhibit isomorphisms

C (Sn
β,γ
α

α , Sα) ∼= C ⊠ C (Sβ ⊠ Sγ , (Sβ ⊠ Sγ)
mα

β,γ ).

Using that C ⊠ C (Sβ ⊠ Sγ , Sβ ⊠ Sγ) has dimension one, we deduce that setting

mα
β,γ = nβ,γα , we have an isomorphism as required.

Following [28], when k is algebraically closed, we call a semisimple abelian

autonomous monoidal V -category with finite dimensional homs, finitely many

simple objects and simple unit object a fusion category.

Observation 7.43. The Theorem above can be reinterpreted in the following

way: fusion categories are exactly the semisimple abelian autonomous monoidal

k-linear categories C with simple unit object and such that the multiplication

P : C ⊠ C → C has right adjoint.

The following result originally appears in [27, Corollary 6.4]. However, our

proof is very different, as it follows from a general result on autonomous map

pseudomonoids.

Theorem 7.44. Let C be a fusion category regarded as an autonomous map

pseudomonoid in L-Alg. Then, C is an unimodular autonomous pseudomonoid

in L-Alg. In particular there exists a natural isomorphism

∗∗X ∼= X∗∗.

Proof. We can consider C as an autonomous map pseudomonoid in L-Alg by

Theorem 7.42 and Corollary 7.20. By Corollary 7.40, there exists an adjunction

J∗ ⊣ J , and this forces to C to be unimodular, as showed in Proposition 4.20.

This means that the object W in Theorem 7.23 is isomorphic to the unit 1,

yielding an isomorphism as claimed.
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C 2(X,(LY ⊠C )P ∗Z)

∼=
��

C 2(X,η) //

P ++XXXXXXXXXXXXXXXXXXXXXXXX C 2(X,P ∗P (LY ⊠C )P ∗Z)

∼=

uukkkkkkkkkkkkkk

C 2(X,P ∗̟P∗Z)

��

C 2((Lℓ
Y ⊠C )X,P ∗Z)

P
��

(A) C (PX,P (LY ⊠C)P ∗Z)

C (1,∼=)

��
C (P (Lℓ

Y ⊠C )X,PP ∗Z)

C (1,εZ)

��

∼= // C (Lℓ
Y PX,PP

∗Z)

C (1,εZ)

��

C (PX,LY PP
∗Z)

∼=oo

C (1,LY εZ)

��

C 2(X,P ∗LY PP
∗Z)

∼=oo

C 2(1,P ∗LY εZ)

��
C (P (LY ⊠C )X,Z)

∼=
// C (Lℓ

Y PX,Z) ∼=
// C (PX,LY Z)

∼=
// C 2(X,P ∗LY Z)

(7.5)

C 2(X,LY (U)⊠V )
P //

Lℓ
Y ⊠1

UUUUUU

**UUUUUU

∼=

��

C (PX,P (LY (U)⊠V ))

C (1,̟)

��
C 2((Lℓ

Y ⊠C )X,Lℓ
Y LY (U)⊠V )

C 2(1,εU⊠1)
iiiiii

ttiiiiii P
��

C (PX,LY (U⊗V ))

Lℓ
Y

��

(B)

C 2((Lℓ
Y ⊠C )X,U⊠V )

��

C (P (Lℓ
Y ⊠C )X,Lℓ

Y LY (U)⊗V )
∼= //

C (1,εU⊠1)
iiiiii

ttiiiiii

C (LY PX,L
ℓ
Y LY (U⊗V ))

C (1,εU⊗V )

��
C (P (Lℓ

Y ⊠C )X,U⊗V )
∼= // C (LY PX,U⊗V )

(7.6)

C 2(X,LY (U)⊠V )
P //

Lℓ
Y ⊠1

��

C (PX,LY (U)⊗V )
Lℓ

Y //

C (1,̟U⊠V )

��

C (Lℓ
Y PX,L

ℓ
Y (LY (U)⊗V ))

C (1,̟−1
LY (U)⊠V

)

��

C 2((Lℓ
Y ⊠C )X,Lℓ

Y LY (U)⊠V )

P
��

C (PX,LY (U⊗V ))

Lℓ
Y ))TTTTTTTTTTTTTTT

C (P (Lℓ
Y ⊠C )X,Lℓ

Y LY (U)⊗V )
C (̟−1

X ,1)

//

(B)

C (Lℓ
Y PX,L

ℓ
Y LY (U)⊗V )

(7.7)

Figure 7.1:
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