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Summary

In this dissertation we generalise the basic theory of Hopf algebras to the
context of autonomous pseudomonoids in monoidal bicategories.

Autonomous pseudomonoids were introduced in [13] as generalisations of both
autonomous monoidal categories and Hopf algebras. Much of the theory of au-
tonomous pseudomonoids developed in [13] was inspired by the example of au-
tonomous (pro)monoidal enriched categories. The present thesis aims to further
develop the theory with results inspired by Hopf algebra theory instead. We
study three important results in Hopf algebra theory: the so-called fundamental
theorem of Hopf modules, the Drinfel’d or quantum double and its relation with
the centre of monoidal categories, and Radford’s formula.

The basic result of this work is a general fundamental theorem of Hopf mod-
ules that establishes conditions equivalent to the existence of a left dualization.
With this result as a base, we are able to construct the centre (defined in [83])
and the lax centre of an autonomous pseudomonoid as an Eilenberg-Moore con-
struction for certain monad. As an application we show that the Drinfel’d double
of a finite-dimensional Hopf algebra is equivalent to the centre of the associated
pseudomonoid. The next piece of theory we develop is a general Radford’s for-
mula for autonomous map pseudomonoids; this yields an explicit formula in the
case of a (coquasi) Hopf algebra. We also introduce unimodular autonomous
pseudomonoids.

In the last part of the dissertation we apply the general theory to enriched
categories with a (chosen) class of (co)limits, with emphasis in the case of finite
(co)limits. We construct tensor products of such categories by means of pseudo-
commutative enriched monads (a slight generalisation of the pseudo-commutative
2-monads of [37]), and showing that lax-idempotent 2-monads are pseudo-com-
mutative. Finally we apply the general theory developed for pseudomonoids to

deduce the main results of [27].
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Chapter 1

Introduction

The present dissertation intends to give a formal Hopf Algebra Theory, by which
we mean a theory general enough to cover the basic results on Hopf algebras and
its generalisations, independent of any linear structure, and from which the results
follow as easily as possible. By using concepts of Higher Dimensional Category
Theory, our abstract perspective allows to cover at the same time, the cases of
Hopf algebras and autonomous monoidal categories. The abstract categorical
language forces us to work conceptually, in contrast to the complex calculations
typical in Hopf Algebra Theory.

The relationship between Category Theory and Hopf Algebra Theory has
been well studied during the last twenty years. Roughly speaking, each piece
of structure that one adds to a coalgebra to obtain a Hopf algebra manifests as
extra structure on the category of correpresentations of the coalgebra. Conversely,
a series of results known as (Tannakian) reconstruction theorems allow us to
construct a Hopf algebra structure on a coalgebra from certain extra structure on
the category of correpresentations. To be a bit more explicit, if C' is a coalgebra
and ¥ = Comodf(C') its category of finite-dimensional correpresentations or
comodules: a bialgebra structure on C' corresponds to a monoidal structure %,
and a Hopf algebra structure on C' corresponds to a left autonomous (sometimes
called left rigid) monoidal category. There are other corresponding structures, as
for example (co)quasi-triangular elements and braidings, but we are not concerned
with them here.

This correspondence between algebraic and categorical structures sometimes
make us think of Hopf algebras as “the same” as left autonomous categories. This
idea was formalised in [13] where Hopf algebras (and in fact the more general

coquasi-Hopf algebras) and left autonomous monoidal categories were shown to
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be particular instances of an abstract concept of left autonomous pseudomonoid.

Pseudomonoids were introduced in [16], and some of the theory surround-
ing them has been developed by several authors. See [66, 17], and [52] where
the more general pseudomonads are studied. Left autonomous pseudomonoids
are pseudomonoids equipped with some extra structure called a left dualization.
While most of the theory of pseudomonoids is a generalisation of constructions
classically performed on (pro)monoidal categories, we propose to enlarge this the-
ory with results inspired in Hopf Algebra Theory. The results about Hopf alge-
bras that concern us are: the so-called fundamental or structure theorem of Hopf

modules, the Drinfel’d or quantum double construction and Radford’s formula.

HOPF ALGEBRAS AND GENERALISATIONS.

Hopf algebras feature in many branches of modern Mathematics, from the more
classical examples in Algebraic Geometry (rings of regular functions on an affine
algebraic group), Lie Theory (universal enveloping algebras) and compact groups
(algebras of representative functions), and Theoretical Physics (integrable sys-
tems and Yang-Baxter equation) to the most recent in Knot Theory, Combina-
torics and Category Theory.

Hopf Algebra Theory is not only the study of Hopf algebras but also of a
number of generalisations, such as (co)quasi-Hopf algebras [23], Hopf bialgebroids
[86, 87, 58] and weak Hopf algebras [8]. Of these generalisations, the first lies in
the scope of this work. This is because coquasi-Hopf algebras are left autono-
mous pseudomonoids in certain monoidal bicategory. All three results mentioned
below have been proved in the context of (co)quasi-Hopf algebras, generalising
the classical ones.

The three results about Hopf algebras that we generalise in this dissertation
are at the heart of Hopf Algebra Theory, and are related to one another. The most
basic of them is the fundamental theorem of Hopf modules, that translates the
existence of an antipode for a bialgebra into the existence of certain equivalence of
categories. One of the categories involved is the category of Hopf modules. This
result is of pivotal importance in the theory of finite-dimensional Hopf algebras
because it allow us to deduce the existence and uniqueness of integrals, the Hopf
algebra analogue of Haar measures. We prove a general version of the fundamental
theorem where we substitute Hopf algebras for left autonomous pseudomonoids
and the category of Hopf modules for an Kilenberg-Moore construction for a
special monad. Then we go on to study the internalisation of these constructions.

The second result, or rather construction, is the Drinfel’d or quantum double
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of a finite-dimensional Hopf algebra H. This is a new finite-dimensional Hopf
algebra D(H) constructed out of H (see [22] or [41]). In fact D(H) supports
more structure: it is quasi-triangular, also called almost-commutative or braided.
From the categorical point of view, the Drinfel’d double is interesting because
the category of D(H)-comodules Comod(D(H)) is monoidally equivalent to the
centre of the monoidal category Comod(H). The proof of this fact uses two inter-
mediate monoidal categories: the category of Yetter-Drinfel’d modules and the
category of two-sided Hopf modules. By using our general fundamental theorem
of Hopf modules as a basis, we construct centres of finite coquasi-Hopf algebras
(in the appropriate monoidal bicategory) and prove that D(H) is the centre of H.
Hence, D(H) is not only related to the centre construction, but it is the centre.

The third result is Radford’s formula for the fourth power of the antipode
of a finite-dimensional Hopf algebra. Although many of the basic examples of
Hopf algebras are involutive, i.e., the antipode has order 2, there are many oth-
ers where this is not true. Radford’s formula (originally proven in [71], but see
also [76] for another proof) tells us that although it does not have order 2, the
antipode is not completely wild either: its fourth power has a very simple for-
mula. In this formula intervene two special objects: the modular element and
the modular function, which arise from the theory of integrals (therefore the con-
nection with the fundamental theorem of Hopf modules). The first application
of Radford’s formula is the proof that the antipode of a finite-dimensional Hopf
algebra has finite order. We show a Radford-like isomorphism for autonomous
map pseudomonoids, that yields explicit formulas in the cases of finite quasi and
coquasi-Hopf algebras.

A newer approach to the study of Hopf algebras has been taken in [28, 29, 27|
where instead of working with algebraic structures in the classical sense, the au-
thors manipulate categories directly. In a sense, this is a step further in this (infor-
mal) identification between Hopf algebras and autonomous categories, where one
can forget about the algebra and work with a category that plays the role of the
category of representations of the algebra. In [29, 27| the categories that abstract
the properties of categories of representations of finite-dimensional quasi-Hopf
algebras are called finite tensor categories. When these categories are moreover
semisimple, they were called fusion categories [28]. In [27] “categorical” ana-
logues of the fundamental theorem of Hopf modules and of Radford’s formula
were proved. We are able to deduce these results from the theory we devel-

oped for pseudomonoids (in contrast with the techniques used in the mentioned
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papers), by using a tensor product of categories with finite (co)limits.

MONOIDAL CATEGORIES.

Since their introduction in [62], monoidal categories have become a basic tool in
many areas of Mathematics, specially Representation Theory and Hopf Algebra
Theory, but also Knot Theory, (topological) quantum field theories and others.
An example of non trivial applications of monoidal categories to Algebraic Ge-
ometry can be found in [72, 20, 19]. The representations of most of the common
algebraic structures, such as finite groups, Lie algebras and (rational representa-
tions of ) algebraic groups, form a monoidal category. Many times, these monoidal
categories come equipped with extra structure, such as braidings, duals, balanced
structures, and others; see [39].

In many examples, the tensor product of a monoidal category preserves finite
colimits in each variable (for example, whenever the category is monoidal closed),
or even finite limits (as in the case of the category of vector spaces). As a
tool to deal with these situations, [19] introduced a “tensor product” of abelian
categories, commonly known as Deligne’s tensor product of abelian categories.
Given two abelian categories o7, %, their tensor product is an abelian category
KA with a functor &/ @A — /KA right exact in each variable, universal in the
sense that any other functor right exact in each variable into an abelian category
€ factors through o7 X .2 uniquely up to isomorphism. This construction is used
in other works, for example in [59, 61, 60]. However, the definition of this tensor
product as it stands is unsatisfactory, because there is no proof of its existence in
general (at least none that I am aware of). In [19] the existence of the product
in certain special class of abelian categories is shown.

We propose to drop the requirement that all the categories be abelian in
Deligne’s definition of the tensor product, asking only for the existence of finite
colimits. In this way, we have at our disposal all the machinery of 2-monad theory
to construct the tensor product. Notably, our new tensor product coincides with

Deligne’s on the class of abelian categories he works with in [19].

ORGANISATION.

The dissertation is organised in seven chapters, the first being the present intro-
duction. Chapters 2 to 4 constitute the theoretical core of this work and gen-
eralise to the context of pseudomonoids all three basic results on Hopf algebras
mentioned above in this introduction. Chapter 6 also provides theory, although

in another vein. The rest of the chapters are devoted to examples.
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Chapter 2 sets the foundations which all the rest of the work rests upon: a
generalised fundamental theorem of Hopf modules for map pseudomonoids, and
its internalisation.

Chapter 3 constructs centres and lax centres of autonomous map pseudomonoids
as an Eilenberg-Moore construction for certain a monad.

Chapter 4 proves a generalised Radford’s formula for autonomous map pseu-
domonoids, and then goes on to study unimodular pseudomonoids.

Once the basic theory is developed, Chapter 5 interprets our results in the
context of two important bicategories: the bicategory of #-modules #-Mod (also
called profunctors, distributors or bimodules), and the bicategory of comodules
in a monoidal braided or symmetric category Comod(7'). Examples of left au-
tonomous map pseudomonoids in the former are the left autonomous monoidal
¥V -categories, and in the latter coquasi-Hopf algebras. Applications to »-Mod in-
clude the proof of existence of lax centres in #-Mod of left autonomous monoidal
¥ -categories. In the case of Comod(¥’) we show that the classical fundamental
theorem of Hopf modules is a particular case of our Chapter 2, that the Drinfel’d
double of a finite coquasi-Hopf algebra is its centre, and deduce Radford-like
formulas for quasi and coquasi-Hopf algebras.

Chapter 6 we construct monoidal structures on 2-categories of algebras and
pseudomorphisms for a 2-monad, including the 2-categories of ¥ -categories with
finite (co)limits. We use an extension of the pseudo-commutative 2-monads of
Hyland-Power [37] to monads enriched in a monoidal 2-category. The connection
with categories with a class of (co)limits is provided by the proof that every
lax-idempotent (or KZ) 2-monad is pseudo-commutative.

Chapter 7 collects the consequences of the combination of the previous chapter
with the first three chapters. We deduce the main results of [27] from the general
theory; in particular we do not appeal to the Perron-Frobenius arguments used
in [27]. We also relate fusion categories with bicategorical properties, such as the

existence of certain adjoints.
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Chapter 2
Hopf modules and dualizations

In this chapter we make the first step towards our goal of extending the basic
theory of Hopf algebras to the context of autonomous pseudomonoids in monoidal
bicategories. We focus on the construction of Hopf modules and the fundamental
or structure theorem for Hopf modules.

Left autonomous pseudomonoids, introduced in [13], generalise not only left
autonomous (pro) monoidal enriched categories but also Hopf and (co)quasi-Hopf
algebras. In fact, this is the conceptual reason underlying the well-known fact
that the category of finite-dimensional (co)representations of a (co)quasi-Hopf
algebra is left autonomous.

Hopf modules for a bialgebra H were introduced in [55] in connection with
the integrals of H. In the cited paper, the authors prove the classical structure
theorem of Hopf modules, stating that every Hopf module over a Hopf algebra is,
in a specific way, free. This is the basic result that allows to prove the existence
and uniqueness of the integrals in a finite-dimensional Hopf algebra. Integrals, the
Hopf algebra analogue of Haar measures, are one of the more important tools in
the theory of finite Hopf algebras, making the structure theorem of Hopf modules
one of the fundamental results of this theory.

Generalisations of the above to the case of (co)quasi-Hopf algebras can be
found in [34, 75]. A coquasibialgebra H, although not associative in Vect, is an
associative algebra in the category Comod(H, H) of H-bicomodules and thus
we can consider the category of left H-modules in Comod(H, H). This is by
definition the category of H-Hopf modules. There is a monoidal functor from the
category of right H-comodules to the category of H-Hopf modules sending M to
the tensor product bicomodule H ® M, where M is considered as a trivial H-

comodule on the left. It is shown in [75] that when H is a coquasi-Hopf algebra



this functor is an equivalence, and in a dual fashion, that a finite-dimensional
quasibialgebra is quasi-Hopf if and only if the module version of this functor is
an equivalence.

We prove that an analogous result holds if we replace coquasibialgebras by
map pseudomonoids (i.e., pseudomonoids whose multiplication and unit have a
right adjoint), Hopf modules by the Eilenberg-Moore construction for a certain
monad and coquasi-Hopf algebras by left autonomous map pseudomonoids. So, a
map pseudomonoid has a left dualization if and only if a generalised fundamental
theorem of Hopf modules holds. This is also shown to be equivalent to the
invertibility of certain special 2-cells. In our general setup no finiteness condition
is necessary. We take this as an indication that the concept of dualization is more
natural than the one of antipode.

When the monoidal bicategory involved is right closed, and in particular when
it is right autonomous, our generalisation of the category of Hopf modules can be
internalised. This internalisation, which we call a Hopf module construction for
the map pseudomonoid A, is an Eilenberg-Moore construction for certain monad
on the endo-hom object [A, A]. Naturally, this internalisation need not exist.
We study its existence by embedding a Gray monoid .# into a Gray monoid
in which Hopf module constructions exist. This Gray monoid is the completion
of the 2-category .# under Eilenberg-Moore objects EM(.#), described in [54].
We show that when .# is a Gray monoid, right closed Gray monoid or right
autonomous Gray monoid the 2-category EM(.#') has the same structure. This
is accomplished by extending the 2-functor EM on 2-Cat to a homomorphism of
tricategories on Bicat. Left autonomous pseudomonoids A always have a Hopf
module construction, canonically equivalent to A itself.

We now describe the content of the chapter.

Section 2.1.1 provides the basic background on Gray monoids, pseudomonoids
and Kleisli bicategories necessary to develop the rest of the paper.

In Section 2.2 we introduce the Hopf modules for a map pseudomonoid A in a
monoidal bicategory .# as the Eilenberg-Moore construction for a certain monad
in [.#°P, Cat|, and explain what we mean by the theorem of Hopf modules.

Section 2.3 surveys some facts about lax actions and opmonoidal morphisms.

When the monad in the definition of Hopf modules is representable by a
monad t : [4, A] — [A, A] in .#, we call an Eilenberg-Moore construction for it
a Hopf module construction for A. This is introduced in Section 2.4 along with

the proof that ¢ is a opmonoidal monad.



Section 2.5 studies the existence of Hopf module constructions by extending
the 2-functor EM : 2-Cat — 2-Cat to a homomorphism of tricategories Bicat —
Bicat.

In Section 2.6 we prove our main result: a map pseudomonoid A is left auto-
nomous if and only if the theorem of Hopf modules holds for A. Also, we use the
results of the preceding section to show that a map pseudomonoid is left autono-
mous if and only if it has a Hopf module construction of a particular form, relating

the problem of the existence of a dualization with a completeness problem.

2.1 Preliminaries

2.1.1 Monoidal bicategories and pseudomonoids

Recall that a Gray monoid [16] is a monoid in the monoidal category Gray. As
a category, Gray is just the category of 2-categories and 2-functors. However,
the monoidal structure we are interested in is not the one given by the cartesian
product. Indeed, Gray has a monoidal closed structure with internal homs given
by Ps(#,.%), the 2-category of 2-functors % — £, pseudonatural transfor-
mations between them and modifications. The corresponding tensor product is
called the Gray tensor product of 2-categories. This tensor product was intro-
duced in [32, 33]; see also [31]. A monoid in Gray, also called a Gray monoid, is
the same as a one-object Gray-category in the sense of enriched category theory,
and therefore it can be thought of as a one-object tricategory, that is, a monoidal
bicategory (see [31]). By the coherence theorem in [31], any monoidal bicate-
gory is monoidally biequivalent (that is, triequivalent as a tricategory) to a Gray
monoid. This allows us to develop the general theory using Gray monoids instead
of general monoidal bicategories.

Our main examples of monoidal bicategories will be the bicategory of 7'-
modules ¥-Mod and the bicategory of comodules Comod(¥') in a monoidal
category 7. See Examples 2.1 and 2.2.

We call 1-cells with right adjoints in a bicategory maps.

Let .# be a Gray monoid and fix a map pseudomonoid (A, j, p) in .#, that is,
a pseudomonoid whose unit j : I — A and multiplication p : AQ A — A are maps.
Recall from [16] that a pseudomonoid, in addition to the unit and multiplication,
is equipped with isomorphisms ¢ : p(p ® A) = p(A®@p), p(j ® A) = 14 and
p(A ® j) = 14 satisfying three axioms. These axioms ensure, as shown in [52],

that any 2-cell formed by pasting of tensor products of these isomorphisms, 1-cells



and pseudonaturality constraints of the Gray monoid is uniquely determined by
its domain and codomain 1-cells.

If (A, j,p) is a map pseudomonoid, then (A, j*,p*) is a pseudocomonoid, that
is, a pseudomonoid in the opposite Gray monoid. By definition the unit iso-
morphism (A ® j*)p* = 14 of the pseudocomonoid (A, j*,p*) is the mate of the
constraint p(A ® j) = 14, and thus the following equality holds.

A——

A A2 ——— A2
o~ Z lej _ 1®j ~ p ‘U/
A‘?” u\ - /:\ % 21)
— A2 A=——————A

A2

We mention this because it will be useful in Section 2.6.

Now we briefly mention the three main examples that concern us in this thesis.

Ezample 2.1 (The bicategory of ¥-modules). One of our main examples of mo-
noidal bicategory will be the bicategory of ¥-modules 7-Mod. Some authors
call #-modules profunctors or distributors. Here ¥ is a cocomplete monoidal
closed category. The degree of completeness required from ¥ varies between pos-
sible descriptions of »-Mod. See [6, 78], [77, 81], [16, Section7]. We will use
the presentation of ¥-Mod where ¥ is complete, objects are (small) enriched
¥ -categories and homs ¥-Mod (<7, %) are the categories [&/°P @ B, ¥ ]y of V-
functors and ¥ -natural transformations. The monoidal structure on ¥-Mod is
induced by the tensor product of #". A pseudomonoid in ¥-Mod is a promonoidal
category [11, 12].

Details can be found in Section 5.1.

Ezample 2.2 (The bicategory of comodules). Our second main example of monoi-
dal bicategory will be the bicategory of comodules in a braided monoidal category
¥, denoted by Comod(?’). Objects are comonoids in 7, 1-cells are bicomod-
ules and 2-cells bicomodule morphisms. This bicategory is dual to Example 2.1
in a sense that can be made precise. For details see Section 5.2, where it is also

explained how (coquasi) bialgebras can be seen as pseudomonoids in Comod (7).

Ezample 2.3 (Algebras for a pseudo-commutative 2-monad). The relationship
between monoidal closed categories and commutative monads has been long es-
tablished in the series of papers [48, 49, 50]. A two-dimensional analogue of the
notion of commutative monad was introduced in [37]: the notion of a pseudo-
commutative 2-monad. For a pseudo-commutative 2-monad 7" on Cat, the 2-

category T-Alg of T-algebras, pseudomorphisms of T-algebras and appropriate



2-cells is pseudo-closed. Pseudo-closedness is a higher dimensional analogue of
the notion of closedness in a category. However, it is a “semi-strict” version
of closedness, in the sense that it tries to be as strict as possible and only as
“pseudo” or “weak” as it is necessary to cover the interesting examples. Under
mild conditions on T' (as such the existence of a rank for T'), one can construct a
(weak or pseudo) monoidal 2-category structure on T-Alg.

In Chapter 6 we extend these results to monads enriched in a (strict) monoidal
2-category, and apply the construction of the tensor product to the (#-Cat)-

monads whose algebras are categories with chosen (co)limits of certain class.

In Section 2.3 and subsequent sections we shall work with closed Gray monoids.
A Gray monoid . is said to be right closed when equipped with a pseudofunctor
[—, =] : AP x M — A and equivalences

M(X DY, Z) ~ . H(Y,[X, 2)) (2.2)

pseudonatural in X,Y,Z, If one allows choice, this definition is equivalent to
the one given in [16]: an object [X, Z] for each pair of objects X,Y of .# with

equivalences (2.2) pseudonatural in Y.

2.1.2 Kleisli bicategories

In order to give a concise and conceptual definition of the Hopf modules in the
next section, we shall use the Kleisli bicategory of a pseudocomonad. One can
define a pseudomonad on the 2-category .# as a pseudomonoid in the monoidal
2-category Hom (%", ") of pseudofunctors, pseudonatural transformations and
modifications, where tensor product is given by composition. A pseudocomonad
is a pseudocomonoid in the same monoidal 2-category. As before, if T" is a pseu-
domonad with unit 7 : 1 = 7 and multiplication p : T? = T which are maps,
then T together with n* and p* have a canonical structure of a pseudocomonad
on % .

A lax T-algebra is an arrow a : TA — A in % equipped with 2-cells a(Ta) =
apra : T?A — A and 14 — ana satisfying the axioms in [65, p. 39] and [52], but
without the requirement of the invertibility of these 2-cells.

Let G be a pseudocomonad on the 2-category %, and denote its comulti-
plication and counit by § and e, respectively. The Kleisli bicategory KI(G) of
2 has the same objects as %, and hom-categories KI(G)(X,Y) = #(GX,Y).
We denote the 1-cells of KI(G) by f : X - Y. The composition of this f with



g:Y - Z is given by g(Gf)dx : GX — Z, while the identity of the object X is
£x - GX — X.
The following is a generalisation of part of [36, Prop. 4.6].

Lemma 2.4. LetT : & — & be a pseudomonad whose unit n and multiplication
w are maps. There exists a bijection between the following structures on an arrow
a:TA — A in £ : structures of a lax T-algebra and structures of a monad in
KI(T'). Furthermore, there exists a bijection between the following structures on
a 1-cell h : TX — A: structures of a morphism of lax algebras from (T X, ux) to
(A, a) and structures of an algebra h : X - A for the monad a : A - A in KI(T).

A structure of a monad in KI(T) on a : A - A is given by a pair of 2-cells

a(Ta)p*y = a and % = a in . The bijection above is given by

24 % TA T24 1% TA
HA\L 4 la — MAU HA\L 1 ia
TAT>A TA=———TA a A

2.2 The theorem of Hopf modules

If (A, j, p) is a map pseudomonoid in the Gray monoid .#, the 2-functor A®— has
the structure of a pseudomonad with unit j® X : X — A® X and multiplication
pRX : AR A®X — A® X, and also the structure of a pseudocomonad
with counit j* ® X and comultiplication p* ® X. The associativity constraint
p(A®p) = p(p® A) endows p: A® A — A with the structure of a lax (A ® —)-
algebra, and hence by Lemma 2.4, with the structure of a monad p: A - A in
the Kleisli bicategory KI(A® —).

Definition 2.1. Consider the pseudofunctor KI(A ® —) — Hom(.Z°P, Cat)
induced by the identity on objects pseudofunctor .# — KI(A®—). We will denote
by 6 the monad which is the image of the monad p: A - A in KI(A® —). Hence,
6 is a monad on the 2-functor # (A ® —, A) in the 2-category Hom(.Z°P, Cat)

of pseudofunctors, pseudonatural transformations and modifications.

Explicitly, Ox(f) = p(A® f)(p* ® X) and the multiplication and unit of the
monad, depicted in (2.3) and (2.4), are induced by the counits of the adjunctions



p - p* and j - j* respectively.

*®1 1ep*®1 A2® 1®
Ao X T8 2o x BV g3 x 200 43 1 2Ly
) P p*®1®/1, %1@1 cz\p®1 E/ (2.3)
Pl ) e U AN N\
2 42
A2 @ X A2~ A
-—>A®X A 1
]®1®1 ]®1®1 EC\J®1 =~ (2.4)
S AN
2 2
A®XWA ®X A ®Xﬁ®f A2 —= A

Definition 2.2. Our generalisation of the category of Hopf modules is the Eilen-
berg-Moore construction v : .4 (A® —, A)? — .#(A® —, A) for the monad 6 in
Hom(.#°P,Cat). We denote by ¢ the left adjoint of v. Another way of viewing
M(A® —,A) is as the composition of the pseudofunctor

KI(A® —)(—, A)KA2EP) L K|(A @ —)°P — Cat

with the identity on objects pseudofunctor .Z°P — KI(A ® —)°P
See Example 2.8 for an explanation of why this construction generalises the

usual Hopf modules for a coquasibialgebra.

Observation 2.5. There is another equivalent way of defining Hopf modules.
The category .# (A, A) has a convolution monoidal structure, with tensor product
f+xg=pA®g)(f ® A)p* and unit j5*. This monoidal category acts on the
pseudofunctor .# (A ® —, A) : .#°° — Cat by sending h : A® X — A to
p(A®h)(p*®X), in the sense that this defines a monoidal functor from .# (A, A)
to Hom(.Z°?, Cat)(# (A ® — A), #(A® —,A)). Now, 14 : A — A has a
canonical structure of a monoid in .Z (A, A), with multiplication pp* = 1 and
j7* = 1 the respective counits of the adjunctions. Hence 14 defines via the action
described above a monad on .Z (A ® —, A) in Hom(.#°P, Cat). This monad is
the monad 6 of Definition 2.1.

Definition 2.3. We say that the theorem of Hopf modules holds for a map pseu-
domonoid A if the pseudonatural transformation A given by
(=, A) DI, A A) S (A —, A

is an equivalence.



Observation 2.6. The composition vxAxy = Ox.#(7* @ X, A) : 4 (X,A) —
M (A® X, A) is, up to isomorphism, the functor given by

XL A Aex 2L ag Al a).
Recall that a 1-cell in a bicategory is fully faithful if it is a map and the unit

of the adjunction is an isomorphism.
Proposition 2.7. The pseudonatural transformation A is fully faithful.

Proof. 1t is clear that A has right adjoint .Z(j ® —, A)v. By [38, Lemma 1.1.1],
the unit of the adjunction is an isomorphism if and only if the composition .Z (j®
—, A)v is isomorphic to the identity pseudonatural transformation. This is clear
from Observation 2.6, as we have isomorphisms p(A® f)(j @ X) = p(j @A) f = f,
natural in f: X — A. O

Explicitly, the component corresponding to f : X — A of the unit of the
adjunction A 4 .Z(j® —, A)v is the pasting of 2-cells below (where the unlabelled

2-cells denote the obvious counits).

1

J . /
X 1/ /;4 ® X ol X \
j®1i / > *RIRL JRIR1 o~ Jj®1 o~ ]®1 \
, e \ N , N
—_— — = A2 4>
A®Xp*®1 A ®X A ®XV1® ®1A®X1®f®1A A

Ezample 2.8. We now explain why the Hopf modules for a map pseudomonoid
generalise the usual Hopf modules for coquasi-Hopf algebras. As we mentioned
in Example 2.2, a coquasibialgebra is a particular instance of a pseudomonoid in
Comon(?') when ¥ is the category of vector spaces. If C is a such a pseudomo-
noid with unit j and multiplication p, then (C, j., ps«) is a pseudomonoid in the
bicategory of comodules. We claim that the category Comod(¥)(C,C)%" is the
category of Hopf modules considered in [74, 75].

The convolution monoidal structure on Comod(¥)(C,C') is just the usual
tensor product of bicomodules. The monad 67 is given by the action of 1<, which
is simply the regular bicomodule (C, A%). Therefore the Comod(¥)(C,C)?" is
the category of left modules for the monoid (C, A?) within the monoidal category
of C-bicomodules. This is exactly the definition of the category of Hopf modules
given in [74] (actually, the formally dual definition) and [75].



The functor A; sends a right C'-comodule M to the free Hopf module C'® M.
The right adjoint to A sends a Hopf module N to the right C-comodule of left
coinvariants ©°“N. This is easy to see since by the definition of the composition
in Comod(7"), precomposing with j, : I — C is exactly the same as taking left
coinvariants. In [74, 75| the faithfulness of A; is argued using the fact that the
functor (C'® —) is exact when we work with vector spaces. We see that in fact

the fully faithfulness of A follows formally from the definitions.

The following observation will be of use in Section 2.6.
Observation 2.9. Consider the modification vep, where ¢ is the counit of the
adjunction A 4 .#(j ® —, A)v as depicted below.

MAD— A (A —, A)TIED)

M (—, A)

e e
MA@ —, A)

j/so

%(A® _aA)e

Observe that .# (A® X, A)?X is the closure under vy-split coequalizers of the full
subcategory determined by the image of the functor ¢x, and these coequalizers
are preserved by px.#(jj* ® —, A)vx, since they become absolute coequalizers
after applying vx. It follows that ex is an isomorphism if and only if expx is
an isomorphism. Using the fact that each vx is conservative, we deduce that e

is an isomorphism if and only if vey is so.

We finish the section by mentioning way of defining Hopf modules for a pseu-

domonoid whose unit and multiplication are not necessarily maps.

Observation 2.10. Consider the 2-category Lax-(A ® —)-Alg of lax algebras for
the pseudomonad (A ® —) on ., and the 2-functor

M A7, Lax (A @ —)-Algop L2 ACA

Cat. (2.5)

This 2-functor is exactly the 2-functor .#(A® —, A)? in Definition 2.2. This is so
because each Eilenberg-Moore category KI(A® —) (X, A)KIA®=)(XP) i5 isomorphic
to Lax-(A ® —)-Alg(A ® X, A), by Lemma 2.4. Hence, a Hopf module for A is
a morphism of lax (A ® —)-algebras h : A® X — A. This means h is equipped
with a 2-cell b : p(A® h) = h(p® X) : A® A® X — A satisfying coherence

conditions.



The functor Ax : #(X,A) — Lax-(A ® —)-Alg(A ® X, A) sends a 1-cell f
to p(A ® f) with the 2-cell p(ARP)(ARA® f) X plp® A)(A® A® f) =
p(A® f)(p® X) induced by the pseudomonoid structure of A. In particular
Ax (f) is a pseudomorphism between the pseudo (A ® —)-algebras A ® X and
A. Conversely, any such pseudomorphism is in the image of Ax: if (h,h) is a
pseudomorphism, we have (h,h) = Ax(h(j ® X)). It follows that, when A is a
map pseudomonoid, the theorem of Hopf modules hold for A if and only if every
lax morphism A ® X — A is a pseudomorphism. This latter condition can be

taken as the definition of theorem of Hopf modules for arbitrary pseudomonoids.

2.3 Opmonoidal morphisms and oplax actions

In this section we spell out the relation between opmonoidal morphisms and
right oplax actions in a right closed Gray monoid. Everything in this section is
well-known, though we have not found the present formulation in the literature.
The case when the monoidal 2-category is strict and has certain completeness
conditions is studied in [47].

Let A be a pseudomonoid in .. Briefly, a right oplaxz action of A on an
object B is an oplax algebra for the pseudomonad — ® A on .#. This amounts
to a l-cell h: B ® A — B together with 2-cells

h®1

BRARKA——B®A 1 B
®7 1

| g J TN

BwA - A BeA—7F 4

satisfying axioms dual to those in [65, p. 39] or [52] but without the invertibility
requirement on the 2-cells. A morphism of right oplax actions on B from h
tok: BR®A — Bisa2-cell 7:h = k compatible with hs, ks and hg, kg in
the obvious sense. Right oplax actions of A on B and their morphisms form a
category Opact 4(B) which comes equipped with a canonical forgetful functor to
A (B® A,B).

For each Gray monoid .# we have a 2-category Mon(.#) whose objects,
1-cells and 2-cells are respectively pseudomonoids in .#, lax monoidal mor-
phisms and monoidal 2-cells. See for example [66] and references therein. Define
Opmon(.Z) = Mon(.Z)*. The objects of Opmon(.#Z) may be identified

with the pseudomonoids, the 1-cells, called opmonoidal morphisms, are 1-cells

10



f:A— B of # equipped with 2-cells

A
Ao A (BRSf)(fRA) Bo B | T |
J J
T » /w\
A B A 7 B

f

satisfying the obvious equations, and the 2-cells f = g are the 2-cells of .Z
satisfying compatibility conditions with fs, go and fy, go.
Now suppose that . is a right closed Gray monoid in the sense of [16], that is,

there is a pseudofunctor [—, —| : #°P X .# — .# and a pseudonatural equivalence
MXRY,Z)~ H#(X,]Y,Z]). (2.6)

Equivalently, for each pair of objects Y, Z of .# there is another one denoted
by [Y,Z] and an evaluation 1-cell evyy : Y ® [Y,Z] — Z inducing (2.6). For
any object X of .#, the internal hom [X, X]| has a canonical structure of a
pseudomonoid; namely, there are composition and identity 1-cells comp : [X, X]|®
[X, X] — [X,X] and id : I — [X, X]| corresponding respectively to

X®X,X]oX, X 22L Xo[X,X] <5 X and X 5 X,

Example 2.11.
Proposition 2.12. For any pseudomonoid A and any object B, the closedness
equivalence M (B ® A, B) ~ (A, [B, B]) lifts to an equivalence
Opact 4(B) ~ Opmon(.#)(A, B, B)).
Moreover, under this equivalence pseudoactions correspond to pseudomonoidal
morphisms.
Using Proposition 2.12 one can easily establish the following facts.

Proposition 2.13. 1. For any map f: X — Y the 1-cell [f*, f] from [X, X]
to [Y,Y] has a canonical structure of an opmonoidal morphism. IfT: f = g
is an invertible 2-cell then [(T=1)*,7] = [f*, f] = l9%, 9] is an invertible

monoidal 2-cell.

2. For any pair of objects X, Y of M, the 1-cell z}/{ XX = [YoX, Y e X]
corresponding to Y @ev : Y @ X @ [X, X] — Y ®X has a canonical structure

11



of a strong monoidal morphism. Moreover, there are canonical monoidal
Y\ ~ WRQY
) =iy T

isomorphisms (i{'g ) (i

3. For any map f : X — Z and any object Y there exists a canonical monoidal
isomorphism

iY

X, X] 2>V ® X,Y ® X]
[f’%f}l = l[1®f*,1®f] (2.7)
(2,2) —=[Y ® Z,Y ® Z]

z

4. Given a map f:Y — Z and an object X, the counit of f - f* induces a

monoidal 2-cell

Y
X, X] —* [V ® X,Y ® X]

\if{ﬂ\ l[f*®1,f®1} (2.8)

[Z®X,Z® X]
Proof. (1) It is not hard to show that the 2-cells (2.9) and (2.10) equip
[rel

Yo, x] T xeox,x] % x Ly

with a structure of right oplax action of [X, X] on Y, and that

el f
Y[X,X]T e hel_XeX,X]— X@y
-t i

is a morphism of right oplax actions on Y.

(2) The evaluation ev : X ® [X, X| — X has a canonical structure of right
oplax action (in fact, pseudoaction) and it is obvious that any 2-functor ¥ @ —
preserves right oplax actions. This shows that z}/( has a canonical opmonoidal
structure. The existence of the isomorphism (i ) (i%) = ¥ EY follows from
the fact that both 1-cells correspond to the right pseudoaction W ® Y ® ev :
WYX X, X]| WY ®X.

(3) The two legs of the rectangle (2.7) correspond, up to isomorphism, to the
1-cell

Yeoze[X,X] 2 vexex x| 2% yvex 2 yez

12



Yo X, X229 o 1x, X2 2% x o [x, x] L2 v e X, X)
\ fr@1
® [X, X]
1®comp ~ 1®comp =~ ev (2.9)
X

f
Y

/
| 1 \ (2.10)

/

Y @[X, X]—
Figure 2.1:

and therefore there exists an isomorphism as claimed. Moreover, this isomorphism
is monoidal by Proposition 2.12.
(4) The 2-cell (2.8) corresponds under the closedness equivalence to

ZoXoX,X| 2 zex Tl yvox 'L 7o x.

1
This 2-cell is readily shown to be a morphism of right [ X, X]-actionson Z@X. O

2.4 The object of Hopf modules

In this section we shall assume that A is a map pseudomonoid in a closed
Gray monoid .# (see Section 2.3). Under these assumptions the monad 6 on
AM(A® —, A) is representable by a monad ¢ : [A, A] — [A, A]; that is, there is an

13



isomorphism

M(A®X,A) — s H(A® X, A)

~| S |~

(X, [A, A]) (X, [A,A))

(X 1)

pseudonatural in X. More explicitly, ¢ is the 1-cell

i [p*p]

[A,A] S [A® A, AR Al — [A, 4] (2.11)
where iﬁ was defined in Proposition 2.13. The multiplication and unit of ¢ are
respectively

Z'A *
(4, A] A (A2, A7] L) (4, A

= 4
4o = zﬁ

143, 4% 20 42 g2)
[p* ®bp®1} = J{ [p*.p]
2 2 A A
[4% 47] [p* ) 14, 4]
[A,A]
1:1{4 1
[A7 A] iﬁ [A27 AQ] [p*.p] [A’ A]

where the unlabelled 2-cells are the ones defined in Proposition 2.13.4. Recall

that an opmonoidal monad is a monad in Opmon(.Z) (see Section 2.3).
Proposition 2.14. The monad t : [A, A] — [A, A] is opmonoidal.

Proof. 1t is a consequence of the description of the multiplication and unit of ¢

above and Proposition 2.13 applied to the closed Gray monoid .Z . O

Recall that a (bicategorical) Eilenberg-Moore construction for a monad s :

B — B in a bicategory £ is a birepresentation of the pseudofunctor
PB(—,B)?—*) . #°P — Cat

or equivalently, the unit v : B®* — B of that birepresentation. Opmonoidal
monads s : B — B have the property that if they have an Eilenberg-Moore

construction u : B® — B in ., then this construction lifts to Opmon(.Z); in

14



other words, the forgetful 2-functor Opmon(.#) — .# creates Eilenberg-Moore
objects. Moreover, u : B® — B is strong monoidal and an arrow g : C' — B? is
opmonoidal (strong monoidal) if and only if ug is so. The case of # = Cat can

be found in [67], while the general case is in [17, Lemma 3.2].

Definition 2.4. Suppose that the monad t has an Eilenberg-Moore construction
u: [AAlY — [A, A], with f H u. So, [A4, A]' has a unique (up to isomorphism)
structure of a pseudomonoid such that u is strong monoidal. An Eilenberg-Moore
construction u : [4, A]' — [A, A] is called a Hopf module construction for the map

pseudomonoid A.

The Hopf module construction, of course, need not exist in general. How-
ever, it does exist when the theorem of Hopf modules holds, as we shall show in

subsequent sections.

Observation 2.15. When A has a Hopf module construction the pseudonatural

transformation A in Definition 2.3 is representable by

VAR NS (2.12)

There exist isomorphisms as depicted below, where w is the 1-cell corresponding
to 1,42 under the closedness equivalence . (A, [A, A%]) ~ .4 (A%, A?).

1]

~

A————[AA] [A, At
wl = zﬁl = lu
[A AQ] [1®j*71] [AQ AQ] [p*,p} [A,A] (213)
%___,.,.-/
L7l

The isomorphism on the right hand side of (2.13) is the isomorphism of t-algebras
uf =t induced by the universal property of u. We consider [A, p]w as equipped

with the unique t-algebra structure such that (2.13) is a morphism of ¢-algebras.

Corollary 2.16. The theorem of Hopf modules holds for A if and only if the

1-cell

A2 14,47 2 g (2.14)

provides a Hopf module construction for A.

Proof. The pseudonatural transformation A in Definition 2.3 is an equivalence if
and only if the composition v\ : A (—, A) — #(A® —,A)? — M (A2 —,A)

15



is an Eilenberg-Moore construction for the monad 6 in [.Z°P, Cat]. But v is
represented by the 1-cell (2.14) and 6 is represented by ¢, and the result follows.
O

Observe that in the corollary above we do not assume a priori the existence

of a Hopf module construction for A.

Proposition 2.17. Suppose that A has a Hopf module construction. The 1-cell
¢ in (2.12) is fully faithful and strong monoidal. Moreover, { is an equivalence if
and only if the theorem of Hopf modules holds for A (see Definition 2.3).

Proof. The first and last assertions follow trivially from Proposition 2.7 and Def-
inition 2.3, so we only have to prove that ¢ is strong monoidal, or equivalently,
that ul = t[j*, A] is strong monoidal. This 1-cell is isomorphic to [A, pJw as in
Observation 2.15.

The 1-cell [A,pJw : A — [A, A] corresponds up to isomorphism under

M (A A A)) = AM(AD A, A)

top: A® A — A, which is obviously a right pseudoaction of A on A, and hence
[A, p]w is strong monoidal by Proposition 2.12. This endows uf with the structure

of a strong monoidal morphism, by transport of structure. O

Corollary 2.18. 1. Suppose that the monad t has an Filenberg-Moore con-
struction f " u : [A, A" — [A, A]. If the theorem of Hopf modules holds for

A then f is a Kleisli construction for t.

2. Suppose that the monad t has a Kleisli construction k : [A, A] — [A, Al;.
If the theorem of Hopf modules holds for A then k* is an Eilenberg-Moore

construction for t.

Proof. Let € C .4 (A ® X, A)?% be the full image of the free §x-algebra functor
ox : MARX,A) — M(A® X, A)’>. When thought of as with codomain %,
px provides a Kleisli construction for fx. The theorem of Hopf modules holds if
and only if Ax = px.Z(j* ® X, A) is an essentially surjective on objects, since it
is always fully faithful by Proposition 2.7. Hence, the theorem of Hopf modules
holds if and only if the inclusion of € into .# (A ® X, A)’X is an equivalence,
which is equivalent to saying that ¢x is a (bicategorical) Kleisli construction for
0. This proves (1) since t and f represent 6 and ¢ respectively. To show (2),
since px @ M (A® X,A) — € is a Kleisli construction for fx, the 1-cell k*

16



is an Eilenberg-Moore construction for ¢ if and only if the right adjoint of ¢x,
C — M(ARX,A)X — #(A®X, A), is an Eilenberg-Moore construction for fx
and this happens only if the inclusion ¢ — .#(A® X, A)?X is an equivalence. [

2.5 On the existence of Hopf modules

In this section we study the existence of the Hopf module construction for an
arbitrary map pseudomonoid. Since this construction is an Eilenberg-Moore con-
struction for a certain monad, it is natural to embed .# into a 2-category where
this exists, and the obvious choice is the completion of .# under (Cat-enriched)
Eilenberg-Moore objects. This is a 2-category EM(.#') with a fully faithful uni-
versal 2-functor E : .# — EM(.#). However, in order to speak of the Hopf
module construction for a map pseudomonoid B in EM(.#') we need EM(.#) to
be a monoidal 2-category and the pseudofunctor B ® — to have right biadjoint.

We prove that when ./ is a Gray monoid there exists a model of its completion
under Eilenberg-Moore objects which is also a Gray monoid and such that the
2-functor E : A4 — EM(A) is strict monoidal; this model is the 2-category
explicitly described in [54]. In fact, we prove this by extending the assignment
M — EM(.4) to a monoidal functor on the monoidal category Gray, which turns
out to be a Gray-functor. In order to show that if A ® — : . # — .# has right
biadjoint then the same is true for F(A) in EM(.#') we have to move from Gray,
where the 1-cells are 2-functors, to Bicat, where 1-cells are pseudofunctors. For
this we extend EM to a homomorphism of tricategories on Bicat.

So far we have only considered bicategorical Eilenberg-Moore constructions.
However, in this section we will use the completion of a 2-category under Cat-
enriched Eilenberg-Moore objects. Recall that a Cat-enriched Eilenberg-Moore
construction on a monad s : Y — Y in a 2-category £ is a representation
of the 2-functor # (—,Y)# (=) . #°P _ Cat. Any 2-categorical Eilenberg-
Moore construction is also a bicategorical one because 2-natural isomorphisms
are pseudonatural equivalences.

From [54] we know that EM(.%), the completion under Eilenberg-Moore ob-
jects of the 2-category %", may be described as the 2-category with objects the

monads in ', 1-cells from (X,r) to (Y,s) monad morphisms, i.e., a 1-cells
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f X — Y equipped with a 2-cell ¥ : sf = ft satisfying

t

/3\ X X
o f ¥ f
X—t-x—-"tsx _ | 7 !
ol s Y\ﬂ/y
f 7 J{fﬂ ! K
and
X=X
s PR
vy ZX\”fi)rXHY

t

t X X
L T o e
7 e g quﬂﬂy
Y —>Y—>Y Y

t X ! X
T b
fl Vi lfpﬂ ;o ufh '

A
Y —>Y—>Y Y

This is called the unreduced form of the 2-cells in [54].

The completion comes equipped with a fully faithful 2-functor F : % —
EM(.#") given on objects by X +— (X,1x). This 2-functor has a universal
property: for any 2-category with Eilenberg-Moore objects ., E induces an
isomorphism of categories [EM(.%"), Llem — [#, L], where [EM(%), L]em C
[EM(%), %] is the full sub 2-category of Eilenberg-Moore object-preserving 2-

functors. Moreover, any object of EM(.£") is the Eilenberg-Moore construction

on some monad in the image of FE.

Denote by Hom the category whose objects are 2-categories and whose arrows

are pseudofunctors. This category is monoidal under the cartesian product.
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Proposition 2.19. Completion under Eilenberg-Moore objects defines a strong

monoidal functor EM : Hom — Hom.

Proof. We use the explicit description of the Eilenberg-Moore completion given
in [54]. Define EM on a pseudofunctor F' : % — £ as sending an object (X, r)
to the monad (FX,Fr)in .Z, a 1-cell (f,¢) to (Ff, F1) and a 2-cell p to Fp.
The comparison 2-cell (EMF(g, x))(EMF(f,v)) — EMF((g,x)(f,%)) is defined

to be

F((g¢)- (X))
—_—

(Fr)(Fg)(Ff) = F(rgf) F(gft) = F(gf)(F1)

or what is the same thing

) EED, p(sq)(Ff) 2 (Fg)F(sf) —

(Fg)(F)
e

(Fr)(Fg)(Ff) = F(rg)(Ff

(Fg)F(ft) = F(gf)(Ft) (2.15)

where the unlabelled isomorphisms are (the unique possible) compositions of the
structural constraints of the pseudofunctor F'. The axioms of a 2-cell in EM(.Z)
follow from the fact that (Fg)(Ff) and F(gf) are monad morphisms. Similarly,
the identity constraint of 1lgmp(x) — (EMF)(1x) is defined as

(Ft)Fo Fo(Ft)
- = — 5

((Ft)lpx (Ft)(F1,) = (F1,)(Ft)) = (Lpx(Ft) (F1x)(Ft))

where Fj is the identity constraint of F'.

It is clear that this defines a functor EM. It is also clear that it is strong monoi-
dal, with constraints the evident isomorphisms EM(J#") x EM(.Z) = EM(# x .¥)
and Fy : 1 = EM(1). O

Observation 2.20. If F': # — £ is a biequivalence between 2-categories, then
EMF is a biequivalence too. This is straightforward from the definition of EM on

pseudofunctors in the proof of Proposition 2.19 above.
Recall from Section 2.1.1 the notion of cubical functor.

Corollary 2.21. The pseudofunctor below is a cubical functor whenever F

H x L — _Z is one.

EM(.%) x EM(.Z) = EM(% x ) 225 EM( #)
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Proof. Consider 1-cells in EM(#) x EM(.Z)
((X/,t/), (X, t)) ((f"),(f4) ((}/*I7 S/)7 (Y, S)) ((g"x")(9:x)) ((Z/, 7,1)7 (Z, 7,))

If (X,t) = (Y, s) and (f, ) is the identity 1-cell of (X, ), that is (f,v) = (1x, 1¢),
then the constraint defined in (2.15) above is

F(r' 1) F(d, g)F(f',1) = F(r',r)F(d ', 9) = F(r'g' [, rg)

F((g"¢")- (X' f"):x) F(g'f’t',gt) i F(g’f’,g)F(t’,t’)

which is exactly the identity 2-cell of the 1-cell EMF((¢', X")(f’,%'), (gx)) in the
2-category EM(_#). The rest of the proof is similar. O

Recall from Section 2.1.1 the Gray tensor product of 2-categories. If 7', %
are 2-categories, its Gray tensor product £ 1% is a 2-category classifying cubical
functors out of # x Z.

Corollary 2.22. Completion under Eilenberg-Moore objects induces a monoidal
functor EM from Gray to itself. Furthermore, the 2-functors E 5 : & — EM(%)

are the components of a monoidal natural transformation.

Proof. Define the structural arrow EM(.#)0OEM(Z) — EM(#0.Z) as corre-
sponding to EM(J#) x EM(.Z) = EM( x .£) — EM(#0.Z), which is a cubical
functor by Corollary 2.21, and the arrow 1 — EM(1) as the universal E;. Here the
symbol [J denotes the Gray tensor product. The axioms of lax monoidal functor
follow from the fact that EM is monoidal with respect to the cartesian product.

The naturality of the arrows E » follows from the universal property of the
completion under Eilenberg-Moore objects. We only have to prove that the re-

sulting natural transformation is monoidal. Consider the diagram

EM()OEM(L)

T ——
_
T— —
T —

EM(#) x EM(2) =~ EM(¥ x %) —= EM(#00.2)

H XL
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One of the two axioms we have to check is the commutativity of the exterior
diagram. This commutativity can be proven by observing that each one of the
four internal diagrams commute and then applying the universal property of
H x L — #OZL. The other axiom, involving E; : 1 — EM(1) is trivial, since

FE itself is the unit constraint. O

Corollary 2.23. EM(.#) is a Gray monoid whenever .4 is a Gray monoid.
Moreover, the 2-functor E 4 : M — EM(A) is strict monoidal, so that # can
be identified with a full monoidal sub 2-category of EM(.#).

Proof. We know that EM is a monoidal functor, and as such it preserves monoids.
Moreover, E , is strict monoidal, that is, a morphism of monoids in Gray, since

E is a monoidal natural transformation (see Corollary 2.22). O

The tensor product in EM(.#) is induced by the one of .#; for instance, the
tensor product of (X, r) with (Y, s), denoted by (X,r) ® (Y,s),is (X ®@Y,r® s).
In order to show that EM is in fact a Gray-functor we state the following

easy result.

Lemma 2.24. Let ¥ be a symmetric monoidal closed category and F' : V' — ¥ be
a lax monoidal functor. Then, any monoidal natural transformation n: 1y = F

induces on F a structure of a ¥ -functor.

Proof. Define F' on enriched homs as

[
Fxy :[X,Y] 22 F(IX,Y]) 22 [FX, FY]

where ¥ x y is the arrow corresponding to F[X,Y]|® FX — F([X,Y]® X) Fev,
FY. O

Corollary 2.25. EM : Gray — Gray has a canonical structure of Gray-

functor.

Proof. Let ¥ in the lemma above be Gray and 7 be the transformation defined
by the inclusions E » : # — EM(%'), which is easily shown to be a monoidal

transformation. Now apply the lemma. Ol

Let Ps(.#,.Z) denote the 2-category of pseudofunctors from ¢ to £, pseu-

donatural transformations between them and modifications between these.
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Observation 2.26. In the case of EM, the transformation ¥ » ¢ is defined by

the commutativity of the following diagram

Ps(EM(2),EM(.¥Y)) @ EM(¢") d EM(Z)
ﬁx,z@T TEMev

EMPs(.%, %) ® EM(%) EM(Ps(#,.%) ® &)

that is,

(D, 2(F,7))(X,t) = (EMev)((F,7), (X,1))
= (ev(F, X),ev(r,1))
= (FX7 (Ft)TX)v

and then EM is defined on homs by the 2-functor
YV vExw v Ps(H, L) — Ps(EM(X),EM(Z))

whose value on a 2-functor F' is the 2-functor sending a monad (X, ¢) to (F X, F't).
Then we see that our Gray-functor has as underlying ordinary functor just the

restriction to Gray of the functor in Proposition 2.19.

Denote by Bicat the tricategory of bicategories, pseudofunctors, pseudona-
tural transformations and modifications as defined in [31, 5.6]. (There is another
canonical choice for a tricategory structure on Bicat, as explained in that paper.)
We shall describe an extension of the Gray-functor EM to a homomorphism of
tricategories EM : Bicat — Bicat. In order to do this we will use the construc-
tion of a homomorphism of tricategories Bicat — Gray given in [31], of which
we recall some aspects. For each bicategory £ there is a 2-category stZ and a
pseudofunctor {5 : Z — st inducing for each 2-category £ an isomorphism
of 2-categories Bicat(#, %) = Ps(st#, #"). Moreover, {5 is a biequivalence of

bicategories. As usual, we get a pseudofunctor
sty » : Bicat(«/, #) — Ps(st/,stA)

which turns out to be an biequivalence. Finally, the object part of the homo-
morphism of tricategories Bicat — Gray is given by 4 — st while on hom-

bicategories it is given by the biequivalence st 4.
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Define a homomorphism of tricategories EM by

Bicat —~— Gray

& lEM
v

Bicat <—— Gray

It is given on objects by & — EM(st#) and on homs by
Bicat (<7, B) 2% Ps(sto/,stB) 2> EMPs(st.«, st ) > Ps(EMst.</, EMst %),
which by the Observation 2.26 sends a pseudofunctor F' : o/ — % to the 2-functor

EM(stF') defined in Proposition 2.19.

Proposition 2.27. Fvery biadjunction between pseudofunctors F 4, G : £ —
J, where & and £ are 2-categories, induces a biadjunction EMF -, EMG.

Proof. Since EMis a homomorphism of tricategories on Bicat, EMF = EM(stF)
is left biadjoint to EMG = EM(stG). The 2-functor stF is defined as the unique 2-
functor such that (st F'){ » = ¢ F, and similarly for G. It follows, by functoriality
of EM with respect to pseudofunctors (Proposition 2.19), that

EM(stF)EME » = EME2EMF  and EM(stG)EME » = EME » EMG.

Since each component of § is a biequivalence and these are preserved by EM (see

Observation 2.20), we have
EMF ~ (EMEg)*EM(stF)EME 5 —, (EME »)*EM(stG)EME & ~ EMG

O

Corollary 2.28. If X is an object in a Gray monoid # such that X ® — has
right biadjoint [X,—], then (EX ® —) : EM(.#) — EM(.Z) has right biadjoint
(EX, =) gwen by (EX, (Y, s)) = ([X,Y],[X,s]).

Proof. The 2-functor (EX ©® —) is just EM(X ® —), and then by the proposition
above it has right biadjoint EM([X, —]). This is given by the stated formula as a
consequence of the description of the effect of EM on pseudofunctors in the proof
of Proposition 2.19. O

Theorem 2.29. For any closed Gray monoid # there exists another Gray
monoid A and a fully faithful strict monoidal 2-functor .# — N such that
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any map pseudomonoid in # has a Hopf module construction in A . Moreover,
N can be taken to be EM(.A).

Proof. The proof is only a matter of putting Corollaries 2.23 and 2.28 together
with the definition of the object of Hopf modules. O

Proposition 2.30. Let A be a map pseudomonoid in a Gray monoid # such
that A @ — has right biadjoint. Suppose that the theorem of Hopf modules holds
for E(A) € obEM(.#); then it also holds for A. Moreover, in this case A has a
Hopf module construction provided by

A A A A 24, 4 (2.16)

as in Corollary 2.16.

Proof. Consider the image of the monad ¢ under the 2-functor E : .# — EM(.Z).
Denote by 6 the monad EM(.#)(—, Et) on EM(.Z)(—, E[A, A]) and ¢ - © the ad-
junction arising from its Eilenberg-Moore construction in Hom(EM(.#)°P, Cat).
Observe that by the fully faithfulness of F, the monad Opxup can be identified
with the monad 0x of Definition 2.1, and the adjunction opxyp 4 Opxpp with
the adjunction px 4 vx corresponding to 6.

If the theorem of Hopf modules holds for F(A) then in particular for each
object X of .# the functor

EM(.2)(1,E([5*,A]))

EM(2)(E(X), E(A)) EM(2)(E(X), E[A, A]) —

ZEC, EM()(E(X), E[A, A2 (2.17)
is an equivalence (Definition 2.3). But by the fully faithfulness of the 2-functor
FE this is, up to composing with suitable isomorphisms, just the functor Ax in

Definition 2.3 and then the theorem of Hopf modules holds for A.
The last assertion follows directly from Corollary 2.16. O

2.6 Left autonomous pseudomonoids and the theorem

of Hopf modules

In this section we specialise to the kind of pseudomonoid central to our work,
namely the autonomous pseudomonoids. We begin by recalling the necessary

background.
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2.6.1 Background on dualizations

A bidual pair in a Gray monoid .# is a pseudoadjunction (see for example [52])
in the one-object Gray-category .#. FExplicitly, it consists of a pair of 1-cells
e: X®Y —-Tandn: I —Y ® X together with invertible 2-cells

ly =Y ®e)(nY): Y =Y (e@X)(X®n)=1x: X - X

satisfying the following two axioms.

e Qu

A@n 1( \
1®n®

—fRu® fou (2.18)

\e@l e
___________ > f®u

u®fTT ]

) e \
n®1Q1 (ot
/ K 1®C®1

h U fRUR f—>

\ el

u® f (2.19)

The object X is called a right bidual of Y, denoted by Y°, and Y is called
a left bidual of X, denoted by XV. A Gray monoid in which every object has a
right (left) bidual is called right (left) autonomous.

If X has a right bidual X°, then the 2-functor X ® — has a right biadjoint
X°® —, and — ® X has a left biadjoint — ® X°, and dually for left biadjoints.
In particular, any right (left) autonomous Gray monoid is right (left) closed with
internal hom [X,Y] = X°® Y ([X,Y] =Y ® XV). If both X and Y have a
bidual and f : X — Y is a l-cell, the bidual of f is the 1-cell f° = (X° ®
) X°®fRY°)(n®Y®) :Y° — X° Similarly with 2-cells. If .4 is the full
sub-2-category of .# whose objects are the objects with right bidual, we have
a monoidal pseudofunctor (—)° : (A °P)*Y — _#, where the superscript rev
indicates the reverse monoidal structure. The structural constraints are given by
the canonical equivalences [ ~ I° and Y° ® X° ~ (X @ Y)°.
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Recall from [13] that a left dualization for a pseudomonoid (A,7j,p) in A
is a 1-cell d : A° — A equipped with two 2-cells a : p(d ® A)n = j and f :
je = p(A ® d) satisfying two axioms. Let us write f e g for the composition
p(fRA)X®g): X®Y — A, for a pair of arrows f: X — A, g:Y — A. The 2-
cells «, (8 are extraordinary 2-cells in the sense of [80], that we write o : del4 — j
and B :j — Aed. The axioms of a left dualization state that «, beta satisfy the

usual triangular equalities of an adjunction

1= (1a = jels 2 (lhed)ely S a0 (dels) 2% 1,0 4 1y)

1=(dSdej 2 de(lred) = (dels)ed % jed = d)
Left dualization structures on d : A° — A are in bijection with adjunctions
pAp@A)(A®d® A)(A@n) (2.20)

satisfying the following condition. Consider the pseudomonad (A ® —), and the
free pseudo-(A ® —)-algebras A and A ® A. The 1-cell p has the canonical struc-
ture of a pseudomorphism of pseudo-(A ® —)-algebras, given by the associativity
constraint. Also, the three 1-cells composed in the right hand side of (2.20) are
clearly pseudomorphisms; we consider (p® A)(A®d® A)(A®n) with the compo-
sition pseudomorphism structure. The required condition is that the adjunction
(2.20) must be an adjunction in the 2-category of pseudoalgebras Ps-(A® —)-Alg.
This condition is missing in [13] and will appear in [57]. Similarly, left dualization
structures on d are in bijection with adjunctions p(d ® A) 4 (A° ® p)(n ® A) in
Ps-(— ® A)-Alg. For example, given « and 3 the counit of the corresponding
adjunction (2.20) is

A@ Ao @ AL 45 PEL 1

1®nT {1@a 1e£p lp

UL S

W

1

1%

(To be precise, in [13] the authors define left dualization in a right autonomous
Gray monoid, i.e., a Gray monoid where any object has a right bidual, but
the only really necessary condition is that the pseudomonoid itself have a right
bidual).

A pseudomonoid equipped with a left dualization is called left autonomous.
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If a left dualization exists, then it is isomorphic to
d= (ARe)(p"@A°)(jRA%): A°— A (2.21)

by [13, Proposition 1.2]. Furthermore, when j is a map, a left dualization d has

always a right adjoint given by
&2 (A°Qip)(n®A): A— A°. (2.22)

Example 2.31. The bicategory of ¥-modules is left and right autonomous. The
bidual of a ¥ -category <7 is the opposite ¥ -category «7°P (if ¥'is braided non sym-
metric, we have different left and right opposites, providing left and right biduals).
The pseudonatural equivalence *-Mod (& ® #,€) ~ ¥-Mod (%4, /P ® €) can
be taken as the obvious isomorphism [(&/ ® B)PQC, ¥ ]o = [BPRAPRE, V].
The #-modules n and e are given by n(a,ad’) = &/ (a,d’) and e(a,d’) = &/ (d,a).
(Note that the #-modules e and n do not induce the isomorphism above, but
only equivalences.)

An example of a left autonomous pseudomonoid in #-Mod is a monoidal
¥V -category with left duals. More precisely, if <7 is a monoidal category regarded
as a pseudomonoid in »-Mod and D : &/°? — & is a ¥-functor, then D, is a
left dualization for o if and only if &/ has left duals and D is isomorphic to the
functor *(—) defined by a choice of left duals in /. This was shown in [13].

Example 2.32. A right bidual of an object C' in the monoidal bicategory of co-
modules Comod(7) of Example 2.2, this is, a comonoid in the braided category
¥, is the opposite comonoid, which we will denote by C°. The comultiplication
of C° is equal to the one of C' composed with the braiding of 7. The braiding
induces functors Comod(?)(C ® D, FE) — Comod(¥)(D,C° ® E) which are
isomorphisms of categories.

In [13] it is noted that a coquasibialgebra H has a structure of a left au-
tonomous pseudomonoid in Comod(?') with dualization s,, represented by a

comonoid morphism s : H° — H if and only if s, is a left dualization for H.
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2.6.2 The main result

Given a left autonomous pseudomonoid A define the following important 2-cell.

pR1
A3

vi= Ly e \“’7 / (223)

—— 2> A

In the lemma below we show that this 2-cell v is invertible, and in fact this

property will turn out to be equivalent to the existence of a left dualization.

Lemma 2.33. For a left autonomous pseudomonoid A the following equality
holds.

1@p*
-
A2 g2 g a0 A LB pa 1O k
v = pl o~ p@%@l = p®vA2 = ip@l (2.24)
A\ on AAT®A T A jz
p*

In particular, v is invertible.

Proof. A short proof of this result is possible using the missing condition in [13,
Proposition 1.1] discussed in page 26. However, since this condition will only
appear in [57], we prefer to give a slightly longer version here.

The 2-cell on the right hand of (2.24) pasted with the counit of the adjunction
(2.20) gives the following 2-cell

A%2®n A%®d 1®p®1
A24®>A2®AO®A ®d®1 A4 P A3
Pl = p®$®1 = p®$®l = \Lp@l

1®n o
A A A°® 4 1®d®1 ‘%3 p®1 A?

\ \//1®0¢ 1®p o lp
e - A
\T\\ ____________ ___p/.//,
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which itself is equal to

A? A2@d®1 1®p®1
A2$A2®AO®A ®d® A4 P

A%2®5 T

P T A3 o~ A3 A2
pR1
o p®1i 1®p/ o /
A 2 o
. A
1®j ~ P
N = f
1
P P L L PR LR
w A2v®p ~ 1%)17 P®1
Py
p®R1 A%®j TTT—s A3 —— A2 o~ A2
= 1®p J)
o p®1l2 o ¢ »
S RN,

=1 IR

2@n
A2A4®>A2®AO®A

N

w Az\&@p o 1%}) p&1
= A*®j ;\\~~~> A3 A2 o A2

A2@d®1

-1~\~~_~‘-0m_i@§>p//, l /
p
p
A
A2
Wﬁlép pet
= A2 =2
pi /
p
A

The result follows.
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Define the 2-cell w as

PECPRCTY
= lp I ip@l (2.25)
! A——> A2
P

Now we state the basic result of this work.

Theorem 2.34. Let (A, j,p) be a map pseudomonoid in a Gray monoid .4 and

suppose that A has a right bidual. Then, the following assertions are equivalent.
1. A is left autonomous.
2. The 2-cell y in (2.23) is invertible.
3. The 2-cell w in (2.25) is invertible.
4. The theorem of Hopf modules holds for A.

5. The functor

M (§*®1,1)
R

Mo = M (A%, A) MAD A A) 22 (A A°, A)lae

is an equivalence.

Proof. (1) implies (2) by Lemma 2.33, and (3) follows trivially from (2) as (5) does
from (4). By Observation 2.9, to prove that (3) implies (4) it is enough to show
that for each object X the natural transformation vxexpx is an isomorphism.
For g € .#(A® X, A)P% | the component vx(cx), is the pasting

ARX — A2 X —AQ X — A2 X —A2——= A
~_ U_/
- 1 Jv
—

where v is the action of fx on g and the unlabelled arrow is induced by the counit
of j 4 5. This 2-cell pasted with 14ex = (A ® j* ® X)(p* ® X) gives, by the

30



equality (2.1),

ARX — A% A2®X4>A24>A

N e b e

— AKX

When g = px(h) for some h € #(A®X, A), that is g = Ox(h) = p(A®h)(p*®X)

and v is equal to

*®1 1®p*®1 1017
A®X”HA2®XPHA3®X 21

>p*®1 p*®1®/1/ g ~ 4
p*®1 e U \ /

2 ~ A2
Ao X ®X g A

then (2.26) is equal to the pasting of ¢! : p(A®p) = p(p® A) with the following
2-cell

1

/—_\
2 p®1 \2 3%
A X*>A®XT®1>A RX—A A3

&
= p
19j®1 b \g ¢*®lp*®l®( \p®1®1 S \p®1
pr®1 s % A N
X

2 2 >
A® A2®X A2 @ X = A2

1ep*®1 A2®@h

which is nothing but w ® X pasted on the right with an isomorphism, and so it
is itself an isomorphism.

Now we show that (5) implies (1). Recall from Observation 2.10 that a Hopf
module structure on a l-cell A ® X — A is the same as a structure of a lax
morphism between the free pseudo-(A ® —)-algebras A ® X and A. We want to
prove that (p® A)(A® d® A)(A®n) is a right adjoint to p in Lax-(A ® —)-Alg,
for some d; or equivalently, that the former pseudomorphism is isomorphic to p*
equipped with the lax morphism structure given by the 2-cell v in (2.23).

Suppose that Ago is an equivalence. Define a 1-cell b = (A ® e)(p* ® A°) :
A® A° — A. Since v is a lax morphism structure for p* : A — A® A, we obtain a
lax morphism structure on b by simply composing with A®e. This lax morphism
structure translates into a Hopf module structure, and then, b = A 40 (d) = p(A®d)
as Hopf modules, for some d : A° — A. Using Observation 2.10 again, we have
that b and p(A®d) are isomorphic in Lax-(A® —)-Alg, and one easily deduce that
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p* equipped with the lax morphism structure « is isomorphic to p(A®d® A)(A®n).
O

If A has a right bidual the 2-functor A ® — has right biadjoint given by
[A,—] = A° ® — (see the discussion on biduals at the beginning of the section).

In this case, the monad ¢ of (2.11) can be expressed as

(p*)°®1®1
—_—

£ A0 AL fro A0 AR A AADA L 420 A (2.27)

or

1®p* @11
—_——

ARA2EL oA A @A ARARAR A @ A —

101891, pop A A2 A0 A (2.28)

(we omitted the canonical equivalence A° ® A° ~ (A ® A)°), and the 1-cell ¢ in

(2.12) can be expressed as

A (j*)°®1 A° @ A f (AO®A)t.

The 1-cell (2.14) can be expressed as (A° @ p)n®A) : A - A°RA®R A —
A ® A. Recall that this 1-cell has a canonical t-algebra structure, described in
Observation 2.15.

Theorem 2.35. For any map pseudomonoid A with right bidual the following

are equivalent.
1. A is left autonomous.

2. A has a Hopf module construction provided by

AL o AR A5 40 A (2.29)

Moreover, in this case the dualization is given by A° 187, go ® A EX A, where f
is left adjoint to (2.29).

Proof. By Corollary 2.16, (2.29) is a Hopf module construction for A if and only if
the theorem of Hopf modules holds for A, and this is equivalent to the existence of
a left dualization by Theorem 2.34. The last assertion follows from the existence
of an adjunction p(d ® A) 4 (A° @ p)(n ® A) whenever d is a left dualization (see
[13, Prop. 1.1]). O
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Corollary 2.36. For a left autonomous map pseudomonoid A the adjunction
p(d® A) 4 (A°®@p)(n® A) induces the monad t. Moreover, this adjunction is

monadic.

Proof. By Corollary 2.16 we know that (A° ® p)(n® A) : A — A° ® A provides

an Eilenberg-Moore construction for . O

By definition [13], a right dualization d' : AY — A for a pseudomonoid A
in .# is a left dualization for A in .#*V, .# with the reverse tensor product.
In particular, AV is a left bidual for A. A pseudomonoid equipped with a right
dualization is called right autonomous and a left and right autonomous pseudo-
monoid is simply called autonomous. A left autonomous map pseudomonoid with
dualization d is autonomous if and only if d is an equivalence [13, Propositions
1.4 and 1.5].

Corollary 2.37. Suppose that A is an autonomous map pseudomonoid. Then

there exists an equivalence of monads

t

A°® A A°® A
den 8 |
AR A A A

*

and, moreover, p*: A — A® A is monadic.

Proof. The first assertion is clear since d is an equivalence and t is induced by
p(d® A) 4 (d* @ A)p*; see Proposition 2.35. By the same theorem, (d* @ A)p* is

monadic, and then so is p* since d is an equivalence. Ol

Proposition 2.38. Any left dualization d : A° — A has the structure of a strong
monoidal morphism from (A°, (5%)°, (p*)°) to (A,7,p).

Proof. 1t is enough to show that
AL AL A A2 A0 A (2.30)

is strong monoidal, since (A° ® p)(n ® A) is an Eilenberg-Moore object in the 2-
category Opmon(.# ). In the proof of Theorem 2.34 we saw that p(A®d) = (A®
e)(p*®A°), so we have to show that (A°® A®e)(A°®p*®A°)(n® A°) is a strong
monoidal morphism, or equivalently, by Proposition 2.12, that (A®e)(p* ® A°) :
A® A° — A is a right pseudoaction of A° on A (i.e., a (— ® A°)-pseudoalgebra
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structure on A). This itself turns to be equivalent to saying that p*: A - A® A
is a right pseudocoaction of A on A (i.e., a (— ® A)-pseudocoalgebra structure

on A), which is obviously true. O

2.7 Preservation of dualizations

This short section contains some comments on autonomous monoidal lax functors.
The notion of right autonomous monoidal laz functor was introduced in [13], and
it consists of a monoidal lax functor equipped with the structure necessary to
ensure that it preserves, in lax sense, right biduals. More explicitly, if F' is a lax
monoidal lax functor with monoidal structure xxy : F(X)® F(Y) — F(X®Y),
t: I — F(I), aright autonomous structure for F' is pseudonatural transformation
kx : (FX)° — F(X°) with modifications

Ex te= (Fe)xx xo(F(X)®rx)  (x:xxex(hix ® F(X))n= (Fn)

satisfying two axioms.

What is proved in [13] is that if F': .# — .4 is a right autonomous monoidal
special lax functor and A is a left autonomous pseudomonoid in .# with left du-
alization d, then F'(A) is left autonomous with left dualization F'(d)k4 : F(A)° —
F(A). The term special means that F' is normal (in the sense that the constraint
1px — Flx is an isomorphism for all X') and the constraints (Fg)(Ff) = F(gf)
are isomorphisms whenever f is a map. Special lax functors have the property of
preserving adjunctions.

If we restrict ourselves to map pseudomonoids, as application of Theorem

2.34, we can deduce the following result.

Proposition 2.39. Let F : 4 — A be a monoidal special lax functor between
right autonomous Gray monoids and A be a left autonomous map pseudomonoid
in M. Assume F has the following two properties: the monoidal constraints
v: I — FI and xa4: F(A)® F(A) — F(A® A) are maps, and the 2-cell below

1s invertible.

Fpx®1

F(A)? ——=F(A)? F(A)?
19 (Fpx)* N Fpx
@1®3®FQ = \ b A;)*
F(A)? F(A)? ———= F(A)

Fpx
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Then, the map pseudomonoid F(A) is left autonomous with left dualization

(Fj)®1 (Fp*)®1
_— RO A

F(A)° F(A)® F(A)° X F(A)? ® F(A)° 18, F(A4). (2.31)
Proof. Recall that F'(A) has multiplication F(p)x : F(A) ® F(A) — F(A) and
unit F(j)e : I — F(A), so that it is a map pseudomonoid. Using the conditions
above plus the fact that (2.23) is invertible, it can be shown that the corresponding
2-cell (2.23) for F'(A) is invertible, and hence F(A) is left autonomous. The
formula for the left dualization is just the general expression of any left dualization

in terms of the product, unit and evaluation. Ol

If F is strong monoidal (sometimes called weak monoidal) in the sense that
¢ and y are equivalences, then F' preserves biduals; more explicitly, there exists

k: F(A)° — F(A®°), unique up to isomorphism, such that

(I 2% (FAPQFA "L F(AeFA) = (I 5 FI % p(A°eA) X F(A%) @ FA)
(2.32)

and k is a fortiori an equivalence.

Proposition 2.40. Suppose F' : .4 — A is a strong monoidal special lax functor
between Gray monoids and A is a left autonomous map pseudomonoid in A with
left dualization d. Then FA is a left autonomous map pseudomonoid too, with
left dualization (Fd)k : (FA)° — F(A°) — FA.

Proof. The fact that (2.23) is invertible and that x : F(A) ® F(A) — F(A® A)
is an equivalence ensures that the hypotheses of Proposition 2.39 are satisfied,
and hence F(A) is left autonomous. The formula for the dualization follows
from (2.31) using (2.32), the fact that x is an equivalence and the canonical

isomorphism (d ® A)n = p*j. O

Note that although losing some generality, we gain in simplicity by restricting
to the case of left autonomous map pseudomonoids, in that our proofs are not
based on big diagrams but on the theory of Hopf modules.

We finish the section with an application in the case of a braided Gray monoid.
In [16] a braided Gray monoid is defined as a Gray monoid .# equipped with
pseudonatural equivalences cxy : X ® Y — Y ® X and certain invertible 2-cells
satisfying axioms. These axioms ensure that the pseudofunctor ® : A4 x A4 — M
equipped with constraints X @ cy x' Y : X @ X' @YV @Y - XY X' @Y’

and 1: 1 ® I — I is strong monoidal. See Section 3.1 for more explanation.

35



Corollary 2.41. If A and B are left autonomous map pseudomonoids, with left
dualizations da and dp respectively, in a braided Gray monoid 4 , then A® B is

a left autonomous map pseudomonoid too, with left dualization

(da®1)(1®dp) A B.

B°® A° €B°,A° A° ® B°
Proof. The objects (A°, B°) and B° ® A° can be taken as left bidual of (A, B) €
M x M and A ® B € . respectively. With these choices, the corresponding
1-cell & is just cpe go. O

2.8 Opposite pseudomonoids

We give another application of the theorem of Hopf modules that we will revisit
in Chapter 3.
If (A, j,p) is a map pseudomonoid we call (A°, 7%°, p*°) its bidual pseudomo-

noid.

Proposition 2.42. A I-cell d: A° — A is a left dualization for the map pseudo-
monoid (A, j,p) if and only if d*° : A°° — A° is a left dualization for the bidual

pseudomonoid.

Proof. First we use Theorem 2.34.2 to prove that (A, j,p) is left autonomous if
and only if (A°, j*°,p*°) is left autonomous. The bidual pseudomonoid of A is
left autonomous if and only if the 2-cell (2.33) in Figure 2.2 is an isomorphism.
This is equivalent to saying that (2.34) is an isomorphism, because taking biduals
is a locally fully faithful pseudofunctor. It is easy to see that (2.34) is the 2-cell
7 in (2.23), which is invertible if and only if A is left autonomous.

All that remains to do is to express the left dualization of the bidual pseudo-
monoid of A in terms of the left dualization d of A. By [13, Proposition 1.2] or
(2.21), the left dualization of A° is isomorphic to the first 1-cell in the following

chain of isomorphisms.

(A% ®eq0) (™)) ® A%°) = (A% @ ea0)((p°5™°) ® A™)
= (A°®ea0)(((17p)°) @A) = (A° ®ea0 ) (A° @ ((A°®@57p) (na® A)))(na ® A%°)
>~ (A°®ep0)(A° @ d* @ A°°)(ng @ A)

The last isomorphism is induced by the isomorphism (2.22) of [13, Proposition
1.2). 0
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3p °®1

) (AO)
/ y B e / (2.33)
(4°)? HA‘)
A3<®—pA2 A2
*®1
p/U el e p*\u/ (2.34)
AQ—AQTA

Figure 2.2: Diagrams of the proof of Proposition 2.42.

2.9 Frobenius and autonomous map pseudomonoids

In this section we study the relationship between autonomous pseudomonoids, the
condition (2) in Theorem 2.34 and Frobenius pseudomonoids. In [17] it is shown
that any autonomous pseudomonoid is Frobenius, and we showed in Theorem
2.34.2 that autonomy is equivalent to the invertibility of the 2-cell v in (2.23)
and its dual, i.e., the corresponding 2-cell 4" in .Z*®V. We show a converse in the
absence of biduals, namely: if v and 4/ are invertible, then A is Frobenius, and
as such it has right and left bidual, and moreover A is autonomous.

A Frobenius structure for a pseudomonoid A is defined in [82] as a 1-cell

€: A — I such that ep: A ® A — [ is the evaluation of a bidual pair.

Lemma 2.43. Let A be a pseudomonoid whose multiplication p is a map, and

call v and ~/, respectively, the following 2-cells.

A3 L@)A2 AS &AQ
1®51L 1®§_ \ U77/4 A;U P®1N ¢~ \ Un/

Then the following equalities in Figure 2.3 hold.

Proof. The proof is a standard calculation involving mates and the axioms of a

pseudomonoid. Ol

Proposition 2.44. Suppose A is a map pseudomonoid and that the 2-cells v and
~' in Lemma 2.43 are invertible. Then j*p : AQ A — T andp*j: I - A® A
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2
A2®pT e \®1 ' ®P/4 TP ®A2 U” N P!
A3
p*®1T I p*T 4 p*;\k Tl@p* 2 TP*
A? > A A? > A
A4 A?@p 43 p@1 22
/ /ﬁ A2®p
1®p*®1?®7 Y 1®‘p* 2 Tp*
PRA?
BTy =
- 18p* ®1T7® S 4 Tp*
pe1 - P , \2
A? A p®1 A P A
Figure 2.3:

have the structure of a bidual pair. In particular, A is a Frobenius pseudomonoid

and given a choice of right and left biduals, A is autonomous.

Proof. The 2-cells

(J*®A)y(A®j)
S

TP A(Axp") (A7) (T App(Aej) =1a

(A®7* )Y (1®A)
- =%

(A7) (Aep)(p"©A)[Ge A) (A®j")pp(j @ A) =14

endow j*p and p*j with the structure of a bidual pair. The axioms of a bidual

pair follow from Lemma 2.43. O

Observation 2.45. In the hypothesis of the proposition above, different choices
of a bidual for A give rise to different dualizations. For example, when we take
the bidual pair j*p,p*j, so that A is right and left bidual of itself, the resulting
left and right dualizations are just the identity 14. Slightly more generally, given
any equivalence f : B — A, B has a canonical structure of right bidual of A
such that the corresponding left dualization is (isomorphic) to f. To see this just
consider the evaluation j*p(A® f) : A® B — I and the coevaluation (f*® A)p*j :
I —- B®A.
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Chapter 3

Centres of autonomous

pseudomonoids

In this second chapter we continue extending Hopf algebra theory to the context
of autonomous pseudomonoids in monoidal bicategories. We use the results in
Chapter 2 to study centres and lax centres of autonomous map pseudomonoids,
and their relationship with the Drinfel’d double.

A classical notion of centre of an algebraic structure is the centre of a monoid.
If M is a monoid, its centre is the set of elements of M with the property of
commuting with every element of M. We can slightly change our point of view and
say that the centre of M is the set whose elements are pairs (z, (z-—) = (— - z)),
i.e., elements of € M equipped with the extra structure of an equality between
the multiplication with = on the left and on the right. The centre of a monoidal
category, defined in [39], follows the spirit of the latter point of view: from the
algebraic structure of a monoidal category 4 one forms a new algebraic structure
Z%, called the centre of ¥. What we actually have is a functor Z¢ — %,
and Z% has a monoidal structure such that this functor is strong monoidal.
Moreover, Z% has a canonical braiding. The objects of Z% are pairs (z,7.)
where 7, : (— ® x) = (x ® —) is an invertible natural transformation. In this
context one can also consider the laz centre Z,% of €, simply by dropping the
requirement of the invertibility of v,. See Example 3.1. The functor Z4 — % is
the universal one satisfying certain commutation properties.

Another classically considered centre-like object is the Drinfel’d double of a
finite-dimensional Hopf algebra, or, more recently, of a (co)quasi-Hopf algebra.

See [64, 74]. Here the concept is not the one of the object classifying maps
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with certain commutation properties, but it is a representational one. Roughly
speaking, the Drinfel’d double of a finite dimensional Hopf algebra H is a Hopf
algebra D(H) such that the category of representations of D(H) is monoidally
equivalent to the centre of the category of representations of H.

We study lax centres Z, A of a map pseudomonoid A in a braided Gray monoid
A from two points of view. Firstly we would like to have canonical equivalences
M1, ZyA) ~ Zy(A(I,A)). The simple minded choice is to take the object on
right hand side of the equivalence as the lax centre of the monoidal category
M (I,A). However, this turns out to be insufficient to obtain an equivalence. We
are led to consider .# (I, A) as a .#(I,I)-enriched category and its lax centre
in .#(I,1)-Cat. This context provides an enriched equivalence as above, at the
price of requiring certain mild conditions on .#. We apply these constructions
to (pro)monoidal enriched categories.

Secondly, we construct lax centres of autonomous map pseudomonoids. By
means of the Hopf module construction of Chapter 2, we construct the lax centre
as an internal analogue of the category of two sided Hopf modules. This gener-
alises the fact that for a Hopf algebra the category of two sided Hopf modules is
monoidally equivalent to the centre of the category of representations of the Hopf
algebra (and to the category of representations of the Drinfel’d double of the Hopf
algebra). Later, in Chapter 5, Section 5.2.4, we show that the (lax)centre of a
finite dimensional coquasi-Hopf algebra H always exists within the bicategory of
comodules. Moreover, the construction of this centre is explicit, can be taking
to be finite dimensional and it is isomorphic as a coalgebra and equivalent as a
coquasibialgebra to the Drinfel’d double of H.

Now we describe the organisation of the present chapter.

Section 3.1 recalls the notion of a braided Gray monoid.

In Section 3.2 we introduce lax centres of pseudomonoids and give the first
examples.

Section 3.3 studies the relationship between .# (1, ZyA) and the centre of the
monoidal category .# (I, A). We show that the universal Z;A — A induces an
equivalence between the categories above, when we consider them as .# (I, 1)-
enriched categories.

Section 3.4 exhibits lax centres of left autonomous map pseudomonoids as
Eilenberg-Moore constructions for certain monad. When the pseudomonoid is

also right autonomous, the lax centre coincides with the centre.
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3.1 Braided Gray monoids

As in this chapter we study centres and lax centres of pseudomonoids, we shall
need extra structure on the Gray monoids where the pseudomonoids lie. For
example, if one looks at the definition of the centre of a monoidal category given in
[39] (see also Introduction above), one realises that the symmetry of the cartesian
product in Cat is used. We require similar structure on our Gray monoids, but
a symmetry is too strict a structure.

The definition of a braided Gray monoid was first introduced by Kapranov
and Veovodsky in [40] and modified by Baez and Neuchl in [1]. Here we use the
equivalent definition given by Day and Street [16].

Let .# be a Gray monoid and denote by sw : .4 X .# — M X M the obvious
symmetry. A braiding for .4 is a pseudonatural transformation ¢ : @sw = & :
M X M — M with invertible 2-cells

1®1Qcy, z

WoXY®Z WoXZIRY
CW,X®1®1i 'ﬂ\WXYZW lCW,X@)z@l

XOWRYQZ—r———>XQRYQRZW

Rewey,z

satisfying three axioms. These axioms ensure that ® : .# X .# — ./ is a monoidal
pseudofunctor when equipped with 1®cy,z®1: XQYRZQW — XQ@ZQY W
and 1: 1 — I ® I, and the obvious 2-cells.

3.2 Centres and lax centres

We shall work in a braided Gray monoid. See Section 3.1 above. The centre of a
pseudomonoid was defined in [83]. Here we will be interested in the lax version
of the centre, called the lax centre of a pseudomonoid. The definition is exactly
the same as that of the centre but for the fact that we drop the requirement of

the invertibility of certain 2-cells.

Definition 3.1. Given a pseudomonoid in a braided Gray monoid .# we define

for each object X a category C'Py(X, A). The objects, called lazx centre pieces,
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are pairs (f,v) where f: X — Ais a 1-cell and v is a 2-cell

CX,A

AR X X®A
1®f¢ ¢f®1
AR A < AR A (3.1)

NP

satisfying axioms (3.2) and (3.3) in Figure 3.1. The arrows (f,7) — (f’,7/) are
the 2-cells f = g which are compatible with v and 4/ in the obvious sense.

This is the object part of a pseudofunctor CPy(—, A) : .#°° — Cat, that is
defined on 1-cells and 2-cells just by precomposition. When C'F; is birepresentable
we call a birepresentation z, : ZyA — A a lax centre of the pseudomonoid A.

A centre piece is a lax centre piece (f,v) such that 7 is invertible. The full
subcategories CP(X,A) C CPy(X,A) with objects the centre pieces define a
pseudofunctor CP(—, A) : .#°? — Cat, and we call a birepresentation of it a
centre of A, denoted by z: ZA — A.

Definition 3.2. The inclusion CP(—,A) — CPy(—,A) induces a 1-cell z. :
ZA — ZyA, unique up to isomorphism such that z,z. = z as centre pieces. When

ze 18 an equivalence we will say that the centre of A coincides with the lax centre.

Ezample 3.1. The centre of a pseudomonoid in Cat, that is, of a monoidal ca-
tegory, is the usual centre defined in [39]. In fact, lax centres and centres of
pseudomonoids in ¥-Cat exist and are given by the constructions in [15]. Lax
centres or (ordinary) monoidal categories were also considered in [74] under the
name of ‘weak centers’. If & is a monoidal ¥ -category, its lax centre Z,% has
objects pairs (z,7) where x is an object of € and v: (—®z) = (z® —) isa ¥-
natural transformation. The #-enriched hom Z,4((x,~), (y,6)) is the equalizer

of the pair of arrows

Cg<m7y) [%7%“_@567_@3/)

l i[‘é’,%’} (1)

[%,%](l’@—,y@—)w[Cg,%]@:@_:_@y)

Observation 3.2. By [83], in a monoidal closed Gray monoid with finite limits,

every pseudomonoid has a centre.
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A9 A®X
1®1®fl pol =] 1&p lf@l@l
AQARA = A9X <" XA =~ AoA®A
\ |
1®pl m 1@3}“ f®l % ip@l
AR A = ARA = AR A = ARA

A
| (3.2)
CX,AQA
\f 1®c = c ®1 \
ARA®X A ARX®A A XA A
1®1®fi 1®JJ®1 lf@l@l
ARAR A i ARAR A ] ARARA
%"/ 1®p/ \p®1 "/%
1®p pR1
AR A = AR A
\ /
A
X X
j®l N 1®j
f > A X oA XRA = f
1®fi if@l =1y (3.3)
A 404 = AsA<L 4

Figure 3.1: Lax centre piece axioms
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3.3 Lax centres of convolution monoidal categories

For any pseudomonoid (A4, j, p) in a Gray monoid .# we know from [16] that the
category . (1, A) has a canonical convolution monoidal structure. The tensor
product is given by f * g = p(f ® A)g with unit j. We would like to exhibit an
equivalence . (I, Z;A) ~ Zy(# (I, A)). Our leading example is the bicategory
¥-Mod of ¥ -categories and #-modules. In this example the tensor product
just described is just Day’s convolution tensor product introduced in [11]. For
details about this bicategory see Section 5.1. Henceforth, we shall assume our
Gray monoid .# satisfies additional properties, which we explain below.

Recall that a 2-cell
Y

X?Z

in a bicategory 4 is said to exhibit fg as the right lifting of g through f if it
induces a bijection B(Y, X)(k,’g) = B(Y,Z)(fk,g), natural in k. Clearly, right
liftings are unique up to compatible isomorphisms. See [84].

We shall assume that our braided Gray monoid .# is closed (see Section
3.1 and references therein) and has right liftings of arrows out of I through
arrows out of I. As explained in [16], this endows each .Z(X,Y) with the
structure of a ¥ '-category where ¥ = .#(I,I) is a symmetric monoidal closed
category whose tensor product is given by composition. The ¥ -enriched hom
AM(X,Y)(f,g) is fg, the right lifting of § : I — [X,Y] through f : I — [X,Y],
where these two arrows correspond to f and g under the closedness biadjunction.
Both f and § are determined up to isomorphism, and then so is .# (X, Y)(f,9).
The compositions Z(X,Y)(g,h) @ #(X,Y)(f,9) — #(X,Y)(f,h) and units
1 — A (X,Y)(f,f), along with the ¥-category axioms, are easily deduced
from the universal property of the right liftings. Observe that the underly-
ing category of the #-category .#(X,Y) is the hom-category .#(X,Y). For,
V(1 A(X YY) = 7 (. 0g) 2 (1 [X,Y])(F,5) = A(X,Y)(f, g).

One can define composition ¥ -functors #(Y,Z) @ M (X,Y) — #(X,Z) on
objects just by composition in .#Z and on ¥ -enriched homs in the following way.
Given f,h : Y — Z and g,k : X — Y, define an arrow . (I, [Y,Z])(f,ﬁ) ®
MX,Y)) (g, k) — A4, ]X, Z])(E, hAk:) as the 2-cell in .# corresponding to
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the following pasting.

There are also identity ¥ -functors from the trivial ¥ -category to .Z (X, X). On
objects they just pick the identity 1-cells 1x and homs they are given by the
arrows 17 — (13()1}( corresponding to the identity 2-cells 1y = 1x. These compo-
sition and identity ¥ -functors endow .# with the structure of a category weakly
enriched in #-Cat, in the sense that the category axioms hold only up to specified
¥ -natural isomorphisms (e.g. when 7 is the category of sets, we get a (locally
small) bicategory.

Now we shall further suppose that the category ¥ = .#(I,I) is complete.
This allows us to consider functor ¥ -categories. In this situation, the composition
¥ -functors induce ¥-functors A (X, —)yz : MY, Z) — [#(X,Y), #(X,Z)]
making the pseudofunctor .#Z (X, —) : .# — ¥-Cat locally a ¥ -functor.

Lemma 3.3. In the hypothesis above, if A is a pseudomonoid in 4, CPy(I,A)

has a canonical structure of a ¥ -category such that the forgetful functor
CP)(1,A) — #(I,A)

is the underlying functor of a ¥ -functor. Moreover, CP(I,A) is a full sub-¥ -
category of CPy(I,A).

Proof. We give only a sketch of a proof; the details are an exercise in the universal
property of right liftings. Given two lax centre pieces (f, ) and (g, 3), define the
¥ -enriched hom CPy(I, A)((f,),(g,)) as the equalizer in ¥ of the pair

A (1, A)(f,9) M (A, A)(p(A® f),p(A® g))
j{ i//(A,A)(aJ)
M (A, A)(p(f @ A),p(g® A)) M (A, A)(p(f @ A),p(A® g))

(3.4)

A (A,A)(L,5)
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where the unlabelled arrows are induced by the universal property of right liftings
under postcomposition with the arrows A — [A, A] corresponding to p and pca 4.
With this definition, an arrow 1; — CPy(I, A)((f,«a),(g,0)) in ¥ = #(1,I)
corresponds to an arrow (f, ) — (g, ) in the ordinary category C'Py(I, A). The

composition

CPE(L A)((Q:ﬁ): (h77)) ® CPK(LA)«fv Oé), (gaﬁ)) - CPK(L A)((f: O‘)? (h77>)

is induced by the composition
M1, A)(g,h) @ A(I,A)f g) — AT, A)(f,N)

and the universal property of the equalizers, and likewise for the identities. [

Proposition 3.4. Assume the lax centre of A exists, with universal centre piece
(z¢,7)- In the hypothesis above, (zy,7) induces a ¥ -enriched equivalence U mak-

ing the following diagram commute.

M1, ZA) v CP/(I, A)

\ /
M (1,zg) ,ﬂ([, A)

Moreover, the same holds if the centre of A exists and we use CP(I,A) instead
of CPy(I,A).

Proof. On objects, U is equal to the usual functor, that is, it sends f: I — Z,A
to the lax centre piece (z¢f,v(f ® A)). Next we describe U on #-enriched homs.
Define ¢ by the following equality, where 7 exhibits "k as a right lifting of k
through h and @ exhibits *¢")(z,k) as a right lifting of zk through zh.

I % I
hy, lk n eh)(£ k) lk
\ﬂ' &Q
\ W=
7
A I— ZyA oA

This pasted composite is trivially a morphism of lax centre pieces U(h("k)) —
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1®

&I(XJV

A® ZA

‘//l(gxzeh)(zék) \\f1®w J{l@ze
A 1®h A® ZgA 1Rz, A2 4 A
k :T ’Y’&\ /
2
ZKA ® A ze®1 A
Figure 3.2:

U(k), and this means exactly that g factors through the equalizer
CPAI, AU (), U(K)) — “agk) = 4 (T, A)(zh, 22h);

in (3.4) defining CP(I, A)(U(h),U(k)) on #-enriched homs. Denote by g : "k =
ML, A)(h,k) — CPy(I,A)(U(h),U(k)) the resulting arrow in #. This is by
definition the effect of U on enriched homs.

Observe that the underlying ordinary functor of U is the usual equivalence
given by the universal property of the lax centre. Hence, U is essentially surjective
on objects as a ¥-functor. It is sufficient, then, to show that U is fully faithful,
or, in other words, that ¢ is invertible. To do this, we shall show that p has the
universal property of the equalizer defining CPy(I, A)(U(h),U(k)).

Suppose v : v — (th)(zgk:) is an arrow in ¥ equalising the pair of arrows
Geh) k) — (A, A)(p(zh ® A),p(A @ zk)) analogues to (3.4). If one un-
ravels this condition, one gets the equality in Figure 3.2. This means that the

2-cell w(zehv) is an arrow in the ordinary category C'FPy(I,A) from U(hv) =
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(zehv,y((hv) ® A)) to U(k) = (z¢k,v(k® A)), and therefore there exists a unique
2-cell 7 : hv = k : I — Z;A such that zy7 = w(z¢hv). From the universal
property of right liftings, we deduce the existence of a unique 7’ : v = "k such
that w(h7') = 7. In order to show that o : "k = (*M)(z/k) has the universal
property of the equalizer as explained above, we have to show that o7’ = v.
But the pasting of o7’ with w, w(z¢h(e7’)), is equal, by definition of o, to
ze(w(h7")) = 207 = w(z¢hv). Tt follows that o7’ = v.

The case of the centre is completely analogous to that of the lax centre. The
¥ -functor U is defined on objects by sending f : I — ZA to the centre piece
(zf,7(f ® A)), where (z,7) is the universal centre piece. The definition of U on

¥ -enriched homs is the same as in the case of the lax centre above. O

In order to exhibit the desired equivalence .Z(I,Z,A) ~ Z,(.# (I, A)), we
shall require of our closed braided Gray monoid .# two further properties.
Firstly, the pseudofunctor .#(I,—) : .# — ¥-Cat must be locally faithful.
In other words, for every pair of 1-cells f, g, the following must be a monic arrow
in 7
MXY)(f,g) = [MLX) M LYNAL f), A (1 g).  (36)

Secondly, for any f,¢g : X — Y, the image of the arrow (3.6) under ¥ (I,—) :
¥ — Set must be surjective. This condition is saying that every 7 -natural
transformation .# (I, f) = #(1,g) is induced by a 2-cell f = g; this 2-cell is
unique by the condition in the previous paragraph.

All these properties are satisfied by our main example of #-Mod, as we shall

see later.

Theorem 3.5. In the hypothesis above, if A has a lax centre then there exists a
¥V -enriched equivalence making the following diagram commute up to a canonical

1somorphism.

.//(I, ZgA) — ZZ(%(I’A))

(I, A)

Here the ¥ -category on the right hand side is a lax centre in ¥ -Cat and V is
the forgetful ¥ -functor. Furthermore, the result remains true if we write centres

in place of lax centres.

Proof. By Proposition 3.4 it is enough to exhibit a #-enriched equivalence be-
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tween C'Py(I,A) and Zy(# (I, A)) commuting with the forgetful functors.
Define a ¥-functor ® : CPy(I,A) — Zy( A (1,A)) as follows. On objects
O(f,a) = (f, ®1(a)) where

y(a)y, h f 2 p(A® f)h 2 p(f @ A)h = fxh.

Recall that the ¥ -enriched hom CP(1, A)((f, ), (g,3)) is the equalizer of (3.4)
and Zy(A (I, A))(P(f, ), P(g,3)) is the equalizer of the diagram in Example 3.1,
where € = 4 (I, A), v = f,y =g, v = ®1(a) and 6 = ®1(F). We can draw a

diagram

M1, A)(f,9) M(A,A)(p(f @A), p(A® g))
J//(I,_)

(A (1, A), A (L, A)|(f + =, —*g)

where CPy(I, A)((f, ), (g,)) is the equalizer of the pair of arrows in the top row
and Zy(A(1,A))(P(f,«),P(g,0)) is the equalizer of the other diagonal pair of
arrows. Moreover, the diagram serially commutes. The vertical arrow is induced
by the effect of the pseudofunctor .# (I, —) : .4 — ¥-Cat on ¥ -enriched homs,
and hence monic by hypothesis. It follows that there exists an isomorphism
CP/(I,A)((f, o), (g9,08)) — Ze(A (I, A))(P(f,a),P(g,5)). One can check that
these isomorphisms are part of a #-functor ®, which, obviously, is fully faithful.

It only rests to prove that ® is essentially surjective on objects. An object
(f,7y) of Zy(A (I, A)) gives rise to a ¥ -natural transformation

Vi p(A® f)h 2 hx f 2 fxh = p(f @ A)h.

By the hypothesis on .# (I, —) introduced in the paragraph previous to this the-
orem, 7/ is induced by a unique « : p(A® f) = p(f ® A). The equalities (3.2) and
(3.3) for the 2-cell « follow from the fact that (f,~) is an object in the lax centre
of #(I,A) and the fact that .# (A%, A) — [# (I, A?), . # (I, A)] is fully faithful.
Now observe that ®(f,a) = (f,~). This shows that ® is essentially surjective on
objects. Finally, « is invertible if and only if + is invertible, so that proof also

applies to centres. O

Recall from [13] that for a right autonomous pseudomonoid A, with right
dualization d : AV — A, every map f : I — A has a right dual in the monoidal 7~
category . (I, A). A right dual of f is given by d(f*)V, where f* is a right adjoint
to f. Then the full subcategory Map.# (1, A) of .# (I, A) is right autonomous (in
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the classical sense that it has right duals).

Theorem 3.6. In addition to the hypothesis above, assume the following: ¥V is
a complete and cocomplete monoidal closed category, .# has all right liftings,
AM(I,A) has a dense sub ¥V -category included in Map.# (I, A) and #(I,—) :
M — Cat reflects equivalences. If A is left autonomous, then the centre of A

coincides with the lax centre whenever both exist.

Proof. By Theorem 3.5, there exists an isomorphism as depicted below.

M1, ZA) = Z(AM (I, A))
///(LZC)\L = ,l
M1, Z4A) = Zo( M (I, A))

A straightforward modification of [16, Prop. 6] (using the property of the right
liftings with respect to composition dual to [84, Prop. 1]) shows that the monoidal
¥ -category (I, A) is closed as a ¥ -category. It follows that the ¥ -functors
(fx—)=p(f®A)—: H#(1,A) — #(I,A) given by tensoring with an object f
are cocontinuous. As .# (I, A) has a dense sub monoidal ¥-category with right
duals, the hypotheses of [15, Theorem 3.4] are satisfied, and we deduce that the
inclusion Z (. (I, A)) — Zy(A (1, A)) is the identity. It follows that .Z (I, z.) is

an equivalence and hence z. is an equivalence. Ol

The theorem above applies to the case of promonoidal enriched categories.
See Section 5.1.

3.4 Lax centres of autonomous pseudomonoids

In this section we exhibit the lax centre of a left autonomous map pseudomonoid
as an Hilenberg-Moore construction for a certain monad.

The lax centre of a pseudomonoid was defined as a birepresentation of the
pseudofunctor C' Py(—, A). An object of the category CPy(X, A), i.e., a lax centre
piece, is a 2-cell p(f ® A) = p(A® f)cx,a. We observe that the same notion of
lax centre can be defined by using ¢* instead of ¢. In an entirely analogous way
to Definition 3.1, one defines a category C'P;(X, A) as follows. It has objects
(f,v) where f: X — A and v : p(f ®A)c§(7A = p(A® f), and arrows (f,y) —
(g,0) those 2-cells f = ¢ which are compatible with « and §. Pasting with the

structural isomorphism cx acy 4 = lxga induces pseudonatural equivalences
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CPy(X,A) — CP;(X,A). This is the reason why the ¢* appears in the following

definition.

Definition 3.3. Given a map pseudomonoid A in a braided Gray monoid .#
define a pseudonatural transformation o : #Z(A® — A) = #(A® —, A) with

components
1®c
ox(g)= (Ao x L2 A2 x % Ao x @ A L2L 42 2 4),

Lemma 3.7. The pseudonatural transformation o has a canonical structure of a

monad.

Proof. Just note that ¢ is isomorphic to the monad 6 of Section 2.2 for the map

pseudomonoid (A4, j, pcly 1) O]

Explicitly, the multiplication of ¢ is given by components

p*®1®1
ARX®A —— A2 X®A 1®C§(,A®1
A A
1®ck 4 > A%@cy ,
‘ * ‘ 7 1®c% 2 2
2101 X,A ®A P11
A2ex 2 ABQX ADX@A2 —2 (3.7)

p*tm = 1®f*®1xp®1 = X = \
\ | (AN K K \

p*e1 1@ck 4 9®1 P

and the unit by

AR X —— A X —L > A .
s b PN 1o
LI 1®1‘®g = e SN (3.8)
A®X*>A2®X1*>® A<>3>X®AHA2—lL A2*>A
X A

Now we assume that the braided Gray monoid .# is also closed. In this
situation the monads 6 and o are represented by monads ¢ and s : [4, A] — [A, A].

The monad s is

[ca,a,ch 4l

A A A A dea 2l o a a0 P a4, 39)

which is the monad ¢ for the opposite pseudomonoid of A with respect to ¢*, in
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other words, (A, j, pc*A’ 4)- Alternatively, t and s can be taken respectively as

(4, A] M55 14 Al @ (A4, A] — [A@ A, A A] 222 14, 4) (3.10)
(4, A 299 14 Al @ [4, 4] — [A® A, A A 27 14 4) (3.11)

where id : I — [A, A] is the 1-cell corresponding to 14 under the equivalence

(A A) ~ (1A, A)).

Observation 3.8. At this point we should remark that for a map pseudomonoid
A, [A, A] has two pseudomonoid structures. The one we have considered so far
is the composition pseudomonoid structure, but we also have the convolution
pseudomonoid structure.

If (C,e,b) is a pseudocomonoid in the closed braided Gray monoid .Z, [C, —]
is lax monoidal in the standard way. The unit constraint I — [C, I] corresponds
under the closedness equivalence to the counit e : C' — I and the 1-cells [C, X]| ®
[C,Y] — [C,X ®Y] correspond

ColC,X]o[C,Y] 29 2g e X @ [0, Y] 22N (0w [C, X))

(ev®1)(1®1®ev) XovY.

In particular, for a pseudomonoid A, [C, A] has a canonical convolution pseu-
domonoid structure. This structure corresponds to the usual convolution tensor
product in .#(C,A) given by fxg = p(A® ¢)(f ® C)b with unit je. As we
remarked before, for a map pseudomonoid A the identity 14 has a canonical
structure of a monoid in the convolution monoidal category .# (A, A). It follows
that the corresponding 1-cell id : I — [A, A] is a monoid in .Z (I, [A, A]).

Observation 3.9. Let B be a pseudomonoid in .# and consider .# (I, B) and
M (B, B) as monoidal categories with the convolution and the composition tensor
product respectively. We have monoidal functors L, R : .#(I,B) — .# (B, B)
given by L(f) = p(f ® B) and R(f) = p(B ® f). The associativity constraint of
B induces isomorphisms L(f)R(g) = R(g)L(f), natural in f and g. If m and n
are monoids in .Z (I, B), then these isomorphisms form an invertible distributive
law between the monads L(m) and R(n).

The monoidal functors L, R are compatible with monoidal pseudofunctors: if
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F: . # — & is a monoidal pseudofunctor, then there are monoidal isomorphisms

L,R

///(I,B) .//Z(B,B)
FI,Bi/
N (FI,FB) = Fp B

N (I,FB) 2%~ y(FB,FB)
In particular, if m is a monoid in M (I, B), we have an isomorphisms F'(L(m)) =
L(Fm) and F(R(m)) = R(Fm) of monoids in .# (B, B).

Proposition 3.10. There exists an invertible distributive law between the monads

t and s, and hence between the monads 0 and o.

Proof. Apply Observation 3.9 above to the convolution pseudomonoid B = [A, A]
and the monoid m = n =id : I — [A, A], noting that ¢t = L(id) and s = R(id).
The 1-cell id is a monoid with the structure given by Observation 3.8. O

If ¢ has an Eilenberg-Moore construction u : [A, A]' — [A, A] the monad & is
represented by some 3 : [A, A]' — [A, A]'.

Proposition 3.11. The monads s and § are opmonoidal monads.

Proof. As we noted above, s is the monad ¢ corresponding to the pseudomo-
noid (A, j,pcj 4)- It can also be regarded as the corresponding monad ¢ for the
pseudomonoid (4, j,p) in .2V, and thus it is opmonoidal in .Z*V; hence it is op-
monoidal in .#. The monad § is opmonoidal since [A, A]' is an Eilenberg-Moore

construction in Opmon(.#). O

Denote by & the monad on .#(A ® —, A)? induced by . There exists an
isomorphism (.#(A® —, A)")? ~ . #(A® —, A)7.

Suppose that there exists a pseudonatural transformation ¢ : #(—, A) —
M (—, A) such that \d = 6 A; since A is fully faithful (see Proposition 2.7), this is
equivalent to saying that for each X the monad &x restricts to a monad on the
replete image of Ax in .#Z(A® X, A)%, and in this case & = \*6\. Moreover, &
carries the structure of a monad induced by the one of &, making A together with
the isomorphism A =2 6\ a monad morphism. Such a monad & clearly exists if

the theorem of Hopf modules holds for A, i.e., if A is an equivalence.

Theorem 3.12. There exists an equivalence in the 2-category [.#°P,Cat] be-
tween M (—, A)? and CPy(—, A) whenever the monad G exists. Moreover, this
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equivalence commutes with the corresponding forgetful pseudonatural transforma-

tions.

Proof. Instead of 6x, we shall consider the restriction of 6x to the replete image
of Ax. Take f: X — A and assume that Ax(f : X — A) has a structure v of

o-algebra. This means that the action v is a 2-cell

1®ck 4

ARA® X : ARX QA
p*®1T l1®f®1

AR X <= ARA®RA

1®fl lp@ (3.12)

AR A AR A

x /
A

which is a morphism of @x-algebras from éxAx(f) to Ax(f). Furthermore, the

pasting
1®c*®1
A29XQA 2ee A® X Q A2
p*®1®1T l1®f®A2
1®c*
A2 X —A®X®A s A*
p*@lT 1®f®1l lp®A2

AR X

A3 A3

tor] M %
A2 S A?
\ /
A

should be equal to the composition oxoxAx(f) — oxAx(f) = Ax(f) of the
multiplication of ox (3.7) and v, and the composition Ax(f) — oxAx(f) =
Ax (f) of the unit of o (3.8) and v is the identity. The 2-cells (3.12) correspond,
under pasting with ¢~ : p(A®p) = p(p® A), to 2-cells p(AR (p(f R A)ck 1)) (P* @
X) = p(A® f), and then to 2-cells p(A @ (p(f ® A)ck 4)) = p(A® f)(p® A) =
p(A®p)(A® AR f). Since Ax is fully faithful, and & restricts to its replete

image, it follows that the 2-cells v correspond to the 2-cells v (3.1). The axiom of
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associativity for the action v translates into the axiom (3.2) for v and the axiom
of unit for v into the axiom (3.3) for . This shows that the composition of the
forgetful functor V : CPy(X, A) — 4 (X, A) with Ax factors as a pseudonatural
transformation G followed by U , as depicted below.

CP(X,A)=—————— == ———— — - = (X, A)ox
Vx| Gx Ux 5x
(X, A) (M (A® X, A)ix)ox
M(A®R X, A)x

Moreover, Gx factors through the image of Ay, since Uy Gy factors through Ay,
and in fact Gx is an equivalence into the image of S\X. Here \ x 1is the functor
induced on Eilenberg-Moore constructions by Ax; in particular, Ay is fully faithful
since Ay is fully faithful. Therefore we have an equivalence Hx as in the diagram,
such that S\XHX = GG x. Hence, )\XUXHX = UX;\XHX = ﬁXGX = AxVx, and
U xHx = Vx . The equivalences Hx are clearly pseudonatural in X.

O

Corollary 3.13. If the theorem of Hopf modules holds for a map pseudomonoid
A then there exists an equivalence CPy(—, A) ~ M (A ® —, A)?Y.

Proof. \x is an equivalence and then the monad & exists and
M= A = (M (A® -, A = M(As —, A,
O

Theorem 3.14. Suppose that the theorem of Hopf modules holds for the map
pseudomonoid A and that it has a Hopf module construction. Then the lax centre

of A is the Eilenberg-Moore construction for the opmonoidal monad
§:=0slt=A— A

one of them existing if the other does. Moreover,

1®¢h A

(A2 4042 A4 ApAe AL A AL 4).

Proof. The monad § exists and is opmonoidal since ¢ : [A, A] — [A, A] has an
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Eilenberg-Moore construction in Opmon(.#). Hence, § has a canonical op-
monoidal monad structure induced by the one of §. Theorem 3.12 implies that
the lax centre of A exists, that is, CP(—, A) is birepresentable, if and only if the
monad s has an Eilenberg-Moore construction.

To obtain an expression for the 1-cell § recall that, by definition, .#(—, 3) is

isomorphic to A*GA. It is easy to show that

AxOxAx(f: X = A)=pp@ A)(A® f@A) (A 4)(p"® X)(j © X)
=plp@ A)(A®cA)(p"®A) G @ A)f;

see the definition of A in Section 2.2 and Definition 3.3. It follows that the

expression for § of the statement holds. O

Observation 3.15. The thesis of Theorem 3.14 above holds under the sole hy-
pothesis of A being left autonomous. This is so because every left autonomous

map pseudomonoid has a Hopf module construction (see Theorem 2.35).

Theorem 3.16. For a (left and right) autonomous map pseudomonoid the centre

equals the lax centre, either existing if the other does.

Proof. Consider the commutative diagram

(M (A® X, A)PX)7X —= #(A® X, A)°X —" #(A® X, A)’x

| | |

M(A S X, A)x M(A® X, A) M(A® X, 4)

e
In Theorem 3.12 we proved that any lax centre piece arises as

1®ca,x

AQARX —— AR AR X AX®A
ool Tp*@l lh@l
A®X < A® A (3.13)
x /
A

for some G x-algebra v : 6x(h) — h, so we have to prove that (3.13) is invertible.
Consider the canonical split coequalizer 6% (h) = 6x(h) — h in 4 (A® X, A)Px,
and its image v : ox(h) — h in #(A® X, A). The arrow v is a morphism of ox-
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algebras. This implies that the lower rectangle in the diagram below commutes.

plox(h) ® A)(A® cax) p(h® A)(A® cax)
p(UX(h)®A)(13®CA,X)(77®X) p(h®A)(A®$A,X)(77®X)
plox(h) ® A)(A® cax)(p"p @ X) p(h®@A)(A@cax)(p'p® X)
h)(p® X) ox(h)(p® X)
(Mx)h¢p®X) lV(PGKJX)
ox(h)(p® X) h(p ® X)

The upper rectangle commutes by naturality of composition. Here 1 denotes the
unit of the adjunction p 4 p* and p the multiplication of the monad o. Observe
that the rows are coequalizers and the right-hand column is just (3.13). Then, to
show that this last arrow is invertible it suffices to show that the left-hand side
column, which is the pasting of n with the multiplication of o (3.7), is so. But
this 2-cell is invertible because A is right autonomous and hence by the dual of

Theorem 2.34.2 the 2-cell below is invertible. This completes the proof.

A2 A2 pel AS AS 4>1®p AQ A2
| o~ el _ ~ 2
x . 1®p 1l 1®Q« pr@1 | p®l\ = .
A— A2 A2 A2 A2—= A

Finally, putting together the results above we obtain:

Corollary 3.17. Any autonomous map pseudomonoid in a braided monoidal
bicategory with Eilenberg-Moore objects has both a centre and a lax centre, and

the two coincide.
Finally, we state and prove the following easy preservation result.

Corollary 3.18. Suppose F' : A4 — N is a pseudofunctor between Gray monoids
with the following properties: F preserves Filenberg-Moore objects, is braided
and strong monoidal. Then, F preserves lax centres of left autonomous map

pseudomonoids.
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Proof. Let A be a left autonomous map pseudomonoid in .#. By Observation
3.15, the lax centre of A is the Filenberg-Moore construction for the opmonoidal
monad 5 : A — A, one existing if the other does. On the other hand, F'A is also a
left autonomous map pseudomonoid by Proposition 2.40. Therefore, it is enough
to show that I’ preserves the monad 3, in the sense that F's is isomorphic to the
corresponding monad § for F A.

Since § is the lifting of the monad s on A° ® A to the Eilenberg-Moore con-
struction (A°®@p)(n® A) : A — A° ® A of the monad ¢ (see Theorem 2.35) it
suffices to prove that F' preserves the monads ¢ and s. We only work with ¢, the
proof for the monad s being completely analogous. Now, we know from the proof
of Proposition 3.10 that ¢ = L(n) and s = R(n), where L, R : .#(I,A°® A) —
M(A° ® A, A° @ A) are the functors defined in Observation 3.9. Therefore,
Ft = F(L(n)) = L(I = pr F(A°® A)) = L(npa), which is the monad ¢
corresponding to the pseudomonoid F'A.

O
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Chapter 4

Radford’s formula for

autonomous pseudomonoids

In this Chapter we give a generalisation of Radford’s formula for finite-dimensio-
nal Hopf algebras to the context of autonomous pseudomonoids. We also define
and study unimodular autonomous map pseudomonoids.

Radford’s formula, originally proven in [71] but also see [76], states that for a

finite-dimensional Hopf algebra H with antipode S the following equality holds
Stz) =ala™! =z — a)a. (4.1)

Here —: H* ® H — H, —: H ® H* — H are actions of H* on H given by
(f = 2) = Sarflaz) = (H® HAR), (@ — f) = ¥ flor)as = (f © H)A(),
An element t € H is called a right integral if tx = ()t for all z € H (e is the
counit of H). Dually, a right cointegral is a integral in the dual of H. In (4.1),
a is the modular element of H and « is the modular function of H, defined by
the properties that xt = a(x)t and ¢ x a = ¢(a)a for all x € H, ¢ € H*. The
existence and uniqueness of a, « are consequences of the fundamental theorem of
Hopf modules and the finiteness of H. See for example [85, 76]. It also follows
that a is a group-like element and a : H — k is a morphism of algebras. It is
worth mention that in fact, in all the proofs of Radford’s formula we are aware

of, what one actually deduces is
S%(x) = a(a™t = S7%(2) — a)a (4.2)

and then apply S? to get (4.1). The formula (4.2) has the same form as the
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formulas for finite dimensional quasi and coquasi Hopf algebras we will deduce in
Section 5.2.5 from the results of this chapter. Moreover, the passage from (4.2)
to (4.1) depends of special properties of Hopf algebras, and does not behave well
for more general algebraic structures.

Radford’s formula was first proved in [71], and plays an important role in
the theory of finite-dimensional Hopf algebras. Other techniques are used in
the proof in [76]. The formula has been generalised to various contexts, such
as quasi-Hopf algebras [34], coquasi-Hopf algebras [30], weak Hopf algebras [69],
bi-Frobenius algebras [21, 14], co-Frobenius Hopf algebras [3], Hopf algebras in a
braided category [5] and finite tensor categories [27].

The main results of the present chapter, Theorem 4.15 and Corollary 4.16,
generalise Radford’s formula for Hopf algebras, coquasi-Hopf algebras and finite
tensor categories. See Sections 5.2.5 and 7.5.

The role of a Hopf algebra and its antipode is played by an autonomous map
pseudomonoid A and its left dualization d. The role of the inverse of the antipode
(that automatically exists for finite-dimensional Hopf algebras) is played by the
right dualization d of A. The finiteness hypothesis on the Hopf algebra is replaced
by the assumption that the counit n : I — A° ® A of the pseudoadjunction has
a right adjoint. The modular element a takes the form of an invertible element
w in the monoidal category .# (A, I) and the modular function « appears as an
isomorphism. Moreover, this isomorphism is monoidal, generalising the fact that

the modular function is a morphism of algebras.

4.1 Duals in convolution hom-categories

Recall closed Gray monoids and braided Gray monoids from Sections 2.1.1 and
3.1 respectively.

Suppose that .# is a closed braided Gray-monoid [16] with internal hom
[—, —] and braiding cxy : X ® Y — Y ® X. In this situation, the pseudofunctor
[—,—]: AP x M — A is weak monoidal (see [16, Corollary 9]). If (A, j,p) is a
map pseudomonoid in .#, the object [A, A] has the structure of a pseudomonoid

with multiplication

A A @A A — [Ae A Ao A 22 (4 4 (4.3)
and unit o
120,059 4, 4 (4.4)
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where the unlabelled arrows are part of the monoidal structure of [—, —]. These

1-cells correspond under the closedness biadjunction respectively to

AD A A &[4, A T2 420 (4, 4|0 [4, 4] 2% A [4,A]@ A® A, 4]

OOl 20 0A4,A] 2% A A A (45)

and A rdoa
Suppose further that the object A has right bidual A° with evaluation and
coevaluation e: A® A° - I andn: [ — A°® A. The 1-cells

6 A9A N A9A° ST and n: IS A@A A AgA° (4.6)

makes of A° a left bidual for A. This is so because the braiding ¢ gives rise to a
strong monoidal 2-functor S : .#™ — # with underlying 2-functor the identity
2-functor of .#, and €¢ = S(e), n = S(n). There is a canonical equivalence
A°® A ~ [A, A], and the pseudomonoid structure on [A, A] transports to one on
A° ® A, described in the following Lemma.

Lemma 4.1. When A has right bidual the map pseudomonoid structure on A°® A
described in (4.3) and (4.4) is given by the multiplication

(pe)*° @1l
—_—

AQARA DA 127% feo AP0 ARA A0ARA 2 A0 A (4.7)

and unit
125 40 1%, ge g A (4.8)

Proof. Simple exercise. O

4.1.1 Opposite and bidual autonomous pseudomonoids

If (A,7,p) is a pseudomonoid in the braided Gray monoid .#, then (A, j,pc) is
a pseudomonoid too, called the opposite pseudomonoid. This is the image of the
pseudomonoid (A4, j,p) in .#™" under the monoidal functor identity S : .Z™" —
M (see comments above).

Through this subsection we will equip A with the left bidual with evaluation
and coevaluation € = ecy 40 and 0 = cz’ 400 respectively. With this choice of left
biduals A° is a right and a left bidual of A.
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Proposition 4.2. Suppose the pseudomonoid A has a left dualization d : A° — A.
Then d is a right dualization for the opposite pseudomonoid of A.

Proof. As already mentioned, the braiding of .# induces a strong monoidal struc-
ture on the identity 2-functor, yielding a strong monoidal 2-functor S : .Z*¥ —
A . Then S preserves biduals and left dualizations. This proves the proposition,
observing that the image under S of the right bidual pair n,e in .# is the left
bidual pair n, €. Ol

Ezample 4.3. A particular instance of Proposition 4.2 is the obvious fact that left
duals in a monoidal category % are right duals in the reverse monoidal category
@V, that is, the category % equipped with the tensor product X ™Y =Y ® X.
To see this, we consider % as a map pseudomonoid in #-Mod as in Chapter 5.1
or [13, Prop. 1.6]; the opposite pseudomonoid is given just by €™V, while the left
and right dualizations are given by the left and right-dual functors respectively.

Another example of Proposition 4.2 is the fact that if s : H — H is the
antipode of a coquasi-Hopf algebra H, then s~! is an antipode for the coquasib-
ialgebra with the same comultiplication as H but with the opposite multiplication.
See Section 5.2.

Recall from Section 2.8 that if (A, j,p) is a map pseudomonoid, its opposite
pseudomonoid is (A°, j*°,p*°). In Proposition 2.42 we proved that A° is left
autonomous if and only if A is so, and expressed the left dualization of the latter

in terms of the one of the former.

Corollary 4.4. Ifd: A° — A is a left dualization for (A, j,p) then d* : A°° — A°
is a right dualization for the pseudomonoid (A°, j*°, (pca,a)*).

Proof. Combine Propositions 2.42 and 4.2. O

Corollary 4.5. Let A be an autonomous map pseudomonoid in a braided Gray
monoid ./ , and denote by d and d the left and right dualizations. Then, A° ® A
with the pseudomonoid structure described in Lemma 4.1 is autonomous. More-

over, the left dualization is given by
AO ® AOO i} AOO ® AO d*0®1 AO ® AO 1®d AO ® A

Proof. The pseudomonoid structure of A° ® A in Lemma 4.1 can be obtained as
the tensor product of the pseudomonoids (A°, 7*°, (pc)*°) and (A4, 7, p) in the Gray
monoid .# with braiding ¢*. Note that d*° is a left dualization for (4°,j*°, (pc)*°)
by Corollary 4.4. The result now follows from Corollary 2.41. Ul
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4.1.2 Duals

Let A be an autonomous map pseudomonoid in the (not necessarily braided)
Gray-monoid .#. In particular, we suppose that A has left bidual A" and right
bidual A°. Denote the left and right dualizations by d : A° — A and d: AY — A.
Duals in the convolution category .# (I, A) were studied in [16]. If f : I — A has
right adjoint f* then it has right dual f* and left dual f<in .# (I, A) given by

per Yl v g ana e r YL g0 4y, (4.9)

Dually, if f : A — I has left adjoint f, then it has right and left dual in .# (A, I)
given by

PrA 2 U 0 aa A YN (o)
The evaluation and coevaluation for the left dual f<in .# (1, A) are
[ 2 pd® A)(A° 8 F)A°® [ HEDEE pd o A
and
JB AT @ A)(AGN)f X je(AR A @ [ (A@n)f -
PSS, A @ d)(A® A°® f*)(A@n) = fx f°

where «, 3 are the 2-cells giving to d the structure of a left dualization (see
Section 2.6), and 7, ¢ are the unit and counit of the adjunction f - f*.

The formulas (4.10) for the duals in .Z (A, I) can be deduced from (4.9) ap-
plied to the pseudomonoid A° together with the monoidal equivalence .# (A, I) ~
M (I, A°)°P.

In the case of map pseudomonoids it is not only true that maps have duals
in .#(I,A) but the converse also holds. We leave to the reader the various

dualizations of the following result.

Proposition 4.6. Let A be a left autonomous map pseudomonoid in 4. Then,
a 1-cell f € #(1,A) has a left dual if and only if it has a right adjoint in A .

Proof. We only have to prove the direct implication. We know from Proposition
2.17 that the functor A; : .# (I, A) — .# (A, A)P" in Definition 2.3 is strong mo-
noidal; therefore the composition of A\; with the forgetful functor .# (A, A)% —

63



M (A, A) is strong monoidal. Explicitly, there are coherent natural transforma-
tions A\r(g)Ar(f) = Ar(f*g) and 14 = A7(j). Then we have an adjunction Az(f) -
Ar(f9): A — A, and composing with j we obtain f = (A7(f))7 47 r(f9). O

Ezxample 4.7. In Chapter 4 we will interpret Proposition 4.6 in terms of comodules
for a (coquasi) Hopf algebra H, recovering the following well-known fact. In this
case the monoidal bicategory is the bicategory of comodules Comod (%) and H
is a left autonomous pseudomonoid in it (e.g., ¥ = Vect). Hence a right H-
comodule M has a left dual if and only if M € ¥ has a dual (e.g., M has finite
dimension), by Proposition 5.14.

We shall write .#,.(I, A) for the full subcategory of .# (I, A) determined by
the 1-cells with right adjoint (the maps). This is clearly a monoidal subcategory.

Corollary 4.8. If A is a left autonomous map pseudomonoid in A , then the
category M, (1, A) is left autonomous. If A is also right autonomous, #,(I,A)

1S autonomous.

Proof. We know that the left dual of a map f is given by d(f*°), which is again
a map, with right dual given by f°d*. O

Observation 4.9. We will compute the right and left double duals of a 1-cell
f e (A, I) with left adjoint, where A is an autonomous map pseudomonoid.

f<1<1 — (ff\/cz*)q — (ff\/({*)é\/cz* ~ (JfV)VJ* ~ f\/Vd\/CZ* (411)

fl>l> _ (ffod*)b _ (ffod*)fod* ~ (dfo)od* ~ foodod*‘ (412)

These isomorphisms are the components of monoidal transformations with respect

to the convolution tensor product. In fact (4.11) is just (4.12) in the reverse Gray
monoid, so we will only show that the first of them is monoidal.

Consider the following diagram of monoidal categories and monoidal functors.

Y - Ry
wan o gy J/Z(AV e 4o pane o g aye

* _\ _\V
P s l()/()l

M (LAY ) —= ol (1AY ) = M (AVY D) — Mo(AY])
d

It is easy to see that this diagram commutes up to canonical monoidal isomor-
phisms. The resulting monoidal isomorphism postcomposed with the monoidal
functor .#,(d*,I) has components (4.11).
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Proposition 4.10. Assume # is braided with braiding c. If the coevaluation
n:I — A°® A has right adjoint n* then any map f : A — A has a left and a
right dual in the convolution monoidal category M (A, A). Moreover, if we take
the left bidual of A as A° with evaluation and coevaluation as in (4.6), the left
dual is given by

I

AL 40180 gog At A BL Acp A A 128 pog Ao A 12 40 4 4.

(4.13)

Proof. If we prove the existence of a left dual, the existence of a right dual follows
automatically by considering the pseudomonoid A in the reverse Gray monoid
M.

The equivalence .# (A, A) ~ # (I, A° ® A) becomes monoidal when we equip
A° ® A with the pseudomonoid structure of Lemma 4.1. Then, an arrow f €
M (A, A) has left dual if f = (A°® f)n € (I, A° @ A) does so, which is the

case if f and n are maps. A left dual of f is
I ﬁAOQ@AOO i)AOO(X)AO d*°®1 A0®Ao 1®d AO®A

by Corollary 4.5. This 1-cell corresponds to (4.13). O

4.2 Radford’s formula

Throughout this section we shall assume that A is an autonomous map pseudomo-
noid in a braided Gray monoid .# and that the coevaluationn : I — A°® A has a
right adjoint. Under these conditions, Proposition 4.10 ensures that the identity
1-cell of A has a left and right adjoints in the convolution category .# (A, A). On
the other hand, in Section 2.2 we showed that the identity 1-cell has the struc-
ture of a monoid in this monoidal category, and then its dual 19 has a canonical
structure of a (— * 1)-algebra. Here (— x 1) is the monad on .Z (A, A) given by

tensoring with 1 on the right; the (— * 1)-algebra structure on 19 is

N q q q
19% 1 19x1xcoev 191 %1 %19 19%ex1 19% 1 % 19 evxl 1<

where € : 1 x 1 = pp* — 1 is the counit of the adjunction p - p*.

By Theorem 2.34, or rather this applied to the autonomous map pseudomo-

noid (A°, 7*°, p*°), there exists a 1-cell w : A — I, unique up to isomorphism, and
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an isomorphism of (— * 1)-algebras
192 (jw) = 1 (4.14)

recall that the arrow on the right hand side is isomorphic to (w ® A)p*.

Observation 4.11. The 1-cell w is isomorphic to (5*)1; this follows from the
last paragraph above. Therefore, Proposition 4.10 implies that w is isomorphic
to

AL 08 e A T

Proposition 4.12. Ifw: A — [ has a left adjoint, then it is an invertible object
in M (A, I). Equivalently, 1°: A — A is an equivalence.

Proof. We use Theorem 2.34 repeatedly. We know from Proposition 4.8 that w
has a left and a right dual in .Z (A, I) if it has a left adjoint in .#. The right
dual 1% of 1 is a (1 % —)-algebra, and hence of the form 1 (jv) for a unique up to
isomorphism v : A — I. Then, 1 2 (19)” 2 1" % jw” = 1% j(vxw”). It follows that
J* = vs*w” and hence j* = wx v, Similarly, 1 2 (17)9 2 jv¥ % 192 j(visxw) % 1

and v x w X 5%, 0J
Consider the isomorphism p* = (p® A)(A®d® A)(A®n) that gives to d the

structure of a left dualization. It induces an isomorphism between the functors
M(AT) — (A, A)1*7) given by

f—= (A f)p* (4.15)

and

[ (Ao e AA0de Ao =pAd®). (416

The first functor is the composition of #(A,j) : A (A, I) — # (A, A) with the
free (1x—)-algebra functor .# (A, A) — .# (A, A)*~) and hence strong monoidal
by a dual of Proposition 2.17. Explicitly, the monoidal structure is induced by
the isomorphism (A ® p*)p* = (p* @ A)p*:

(Azgp")@A)p" = (A2 g)(A® A® f)(p" @ A)p*
(AR g) (AR A® f)(Axp")p*
(A® (g f)p"

12

[12

and the isomorphism (A ® j*)p* = 1. The second functor is the composition of
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A(1,d)(—)° : M(AT) — A (I, A) with the monoidal functor \; : Z(I,A) —
M (A, A)*7) of Definition 2.3 (that is strong monoidal by Proposition 2.17).

Lemma 4.13. The isomorphism between the functors (4.15) and (4.16) described
above is monoidal.
Proof. An equivalent formulation of the lemma is that the isomorphism (4 ®

e)(p*®A°) = p(A®d) induces a monoidal transformation between the respective
functors .4 (I, A°) — # (A, A)™*7) or in other words, that the isomorphism

(A°QA®e)(A°@p" @ A°)(n® A°) = (A°®@p)(n® A)d (4.17)

induces a monoidal transformation between the respective functors .# (I, A°) —
M (I, A° @ A7) where A° ® A has the monoidal structure of Lemma 4.1.
In the proof of Proposition 2.38 we saw that the monoidal structure of the 1-
cell on the left hand side is a consequence of the pseudocomonoid structure of
(A°, j*°,p*°), and we equipped the 1-cell on the right hand side with the unique
monoidal structure such that (4.17) is a monoidal isomorphism. Therefore the

lemma is proved. O

In the course of the proof of Radford’s formula will need the following easy

result, which we state as a Lemma.

Lemma 4.14. Let M be a monoid in a monoidal category ¥V with left duals.
Equip the left dual M< of M with its canonical structure of (— ® M)-algebra and
W QM QW with the obvious monoid structure given by the the one of M together
with the evaluation and coevaluation of W .

1. The functor — @ W< : ¥ — ¥ lifts to a functor between Eilenberg-Moore

(—®M) _, 5 (—@WaMaW<)

categories V' These functors are equivalences

when W is invertible.

2. If £ MY — W ® M is an isomorphism of (— ® M)-algebras, where the

codomain is a free algebra, then the arrow

—1\« ~
M= E we My S oW 2 we Me W

is a morphism of monoids.

Proof. (1) The functor — ® W< together with the transformation

—QevR1®1
e

— QW WeMeW- - Me W (4.18)
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is a lax morphism of monads from (— ® M) to (— @ W ® M ® W<). Therefore,
(—@ W) lifts to a functor between the respective categories of algebras. When W
is invertible, the functor (—® W<) is an equivalence and (4.18) is an isomorphism;
in other words, (— ® W) is an equivalence of monads, and hence the induced
functor between the categories of algebras is an equivalence.

(2) is a routine exercise. O

Applying Lemma 4.13 to .Z"*¥ we get a monoidal isomorphism between strong
monoidal functors .# (A, I) — .# (A, A)(=*) with components

pr s () ¥ 12 (dfY5") % L. (4.19)

Now we state the main result of this chapter. The idea of the proof has certain

similarities to [27, Theorem 3.3].

Theorem 4.15. Let A be an autonomous map pseudomonoid in a braided Gray
monoid and suppose that 1 € # (A, A) has both a left and a right duals (or
equivalently, that n : I — A° ® A has a right adjoint) and the 1-cellw : A — I
in (4.14) has a left adjoint. Then there exists a monoidal isomorphism between

strong monoidal endo-functors on # (A, I) with components
Crow's f%w = o7,

Proof. The identity 1: A — A has a left and a right dual in .Z (A, A) by Propo-
sition 4.10; hence w exists, and it is invertible by Proposition 4.12.

There exists a monoidal isomorphism of strong monoidal functors .Z;(A, I) —
A (A, I) with components

(@) = d(f)"s (4.20)

this follows from the fact that (—)Y : 4 (A, I)**Y — .# (I, AY) is a strong monoi-
dal functor and d : AY — A is a strong monoidal 1-cell. From (4.14) we obtain
an isomorphism

1992 19 (jw™) = (Jw) = 1 = (jw?); (4.21)

moreover, by Lemma 4.14.2, this is an isomorphism of monoids when we equip
(jw) * 1 % (jw?) with the monoidal structure induced by that 14.

Now consider the monoidal isomorphisms between strong monoidal functors
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from (A, T) to (A, A)+1™)
pjlfl . (jf<1<1) * 1<1<1 o~ (vaj*)«] * 1<1<1’

The isomorphism of monoids (4.21) induces a natural isomorphism of free (—

(jw) * 1 % (jw"))-algebras depicted on the bottom of the following diagram,

(FF39) * 199 s (sz\/j*)«] % 199

gl ig

(GF9) % (Gw) * 1x (W) ——L (dfV5*)% 5 (jw) * 1% (jw®)

and by Lemma 4.14.1 74 is of the form 7y * (jw®) for a unique (— * 1)-algebra
isomorphism

T (JFY) % (Jw) x 1 = (dfY )" * (jw) * 1 (4.22)

natural in f. We can form, then, an isomorphism
Jwe s f%w) x 1= 5«1 (4.23)

between functors . # (A, I) — .# (A, A)(=*1) given by the composition

iw %7 — ~ _
Jwk (G ) xgwx 1 Ehiliil N G ((df)V %) s jwxl = jw s jwx ((df)V 5% *1
-1
evk(4.20)*1 (Ci(fbb)vj*) “1 P o> ijD w1 (424)

The unnamed isomorphism is the obvious one induced by ((dfY)%j*) * jw =
((dfV)95*)w = jw * ((dfV)9j*). Finally, by Theorem 2.34, (4.23) is the image
under .# (A, I) — .4 (A, A)=*D) of a unique isomorphism Crowds f9%w = f7P,

Now we shall prove that the isomorphism (y monoidal. We have to prove that

the following diagrams commute.

WOk fI% Wk wdk gk w ——= Wk [ gk w —=wTk (fxg) ke w
Cf*gl]l icf*g

f7rxg™ (f x9S
(4.29)

14
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Jw g f 9w jw g g9k wkl —————— Jw kg I g Nk jwk ]l —————— jw Ik (fxg) Ikjwakl

Jw kg f 9wk jw %7y Jwkg fI97,
Jwg £ 9% jwr jw Ik (dgV 995 * ) xjwr L = Jwg £ 9% (dgV 995 ) xjwl JWIHTf g
Jwxg £ 9% jw jw S jw (dgV 995 )+ 1 Gk £ 9% jw (dgV 995* )+ 1 JwIk(d(fxg)VI9G* ) xjwxl
= = (4.27)
Jwxg £ 9% jw (dg ¥ 995% )+ 1 (dgV995* ) xgw kg f 9% w1 i~
(ngqu*)*jwq+f
jw<'>c<jf<]<‘>|<_jw>(<p;|>1D (dgV995* ) xgw s (dfV9I95% ) xjwx1 (d(f*g)V 5% ) xjw w1
JWEkG f I jw gt 1 (dgV 5 )x(d f V95" ) wjw s w1 B
(+) =
(dgV 95 )#(df V") w1 ———= (d(f*g)VIj*)*1
(dg" 95" )%p oo
Cf*jhbb*l (Jg\/«ij*)*jfbb*l
~ —1
= Pxg
FPP#(dg¥ %) %1 (4.25)
ijD*Pg_blb
JIPPxigPP 1 J(fxg)PP*1

R

Figure 4.1: Proof of the monoidality of (.
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R

(Gf*x1)(jgx1l) —————jg*jfx 1 ————j(g* f)*1
Jg*pf
ggx (dfVy*) =1
PiPy ~ Pyxs (4.25)
(df¥j*) *jg=1
(vaj*)*Pg

(dfY5*) % (dgVj* * 1) —=d(g  f)Vj* 1

o)

(dfV5* = 1)(dg"* 1) —

Gg% % 99 % 199 = (g * f)3% % 199
Jg<ixp}e
jg« % va«lj* % 19
4] < Pgss (4.26)
dfVas* % g9 % 199

va«]j**p;q

va«‘j* % dg\/«ij* % 199 = N d(g* f)\/<1<1j* % 1

Sxjwkl

Gg N g % gw ok 1

(g £ x jw 1
JgiixTy
jg« * va«]j* * jw ok 1
jwl Toxf (4-27)
Jf\/«]j* *jg«] * jw ok 1

dfv<1<1j* *729

S gwakl -

dfV* s dgV gtk jwox 1 ———d(g * )TV x jwx 1

Figure 4.2: Proof of the monoidality of (.
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JwS sk 55wk 1

JwWkjugxjw o
ijw *T

JWS sk G5k Wk T ——— jw S x (dj*V ) # w1

- s

i x1 — (dg*™™V 5*) * jw % jw * 1 (4.28)
Ly ] % pj*

Figure 4.3: Proof of the monoidality of (.

w7k w (4.30)

Wk pxw

\;
A

<

>|<j>s<<1<1 * W

W
G

Here ¢y and ¢, denote the canonical isomorphisms between j* (which is the unit
of the convolution tensor product in .# (A, I)) and its double left dual and double
right dual, respectively. We will deal with (4.29) first. The image of this diagram
under the equivalence . (A, I) — .# (A, A)(=*V) is, by definition of ¢, the diagram
in Figure 4.1. In it, the diagrams left blank commute trivially and the one marked
with (+) does by definition of (y; so the diagram in Figure 4.1 commutes if (4.25)
and (4.27) in Figure 4.2 do so. The exterior rectangle in (4.25) in Figure 4.2
commutes because p is monoidal, while the square on the left hand side does
by direct verification; hence the square on the right hand side also commutes.
Finally, the commutativity of (4.27) follows easily from (4.26).

We now turn our attention to (4.30). Its image under
M(AT) — (A, A) D)

is the exterior diagram (4.28) in Figure 4.3, where the internal pentagon commutes
trivially, the lower triangle commutes by naturality of p, and the upper triangle

by naturality of ¢, and definition of 7j« in terms of pj<. O

Our next result is a special case of Theorem 4.15 that will be useful when we

consider our main applications.
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We remind the reader that we are considering the braided Gray monoid .#

as autonomous with left biduals induced by the right biduals via the braiding.

Corollary 4.16. Suppose .# is an autonomous braided Gray monoid and A is
an autonomous map pseudomonoid in 4 . Suppose further that the coevaluation

n: Il — A°® A is a map.

1. If the unique up to isomorphism w : A — I such that jw x 1 = 19 has a
left adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of My(A,I) with components

(A2 A0 AL AP A a8 A4 AL a9, 4 1,

(4.31)

2. If the unique up to isomorphism w : A — I such that 1 % jw = 1* has
left adjoint, then there exists a monoidal isomorphism of strong monoidal
endo-functors of My(A,I) with components

dd*

(A2 A0 A AP A A WL A4 AL a9, 4 L,

(4.32)

3. If the unique up to isomorphism w : I — A such that 1 % wj* = 1” has a
right adjoint, then there exists a monoidal isomorphism of strong monoidal
endo-functors of M (I, A) with components

WAL Ao Al A A AL )= (1L A ).

(4.33)

EN

4. If the unique up to isomorphism w : I — A such that wj* * 1 = 19 has a
right adjoint, then there exists a monoidal isomorphism of strong monoidal

endo-functors of M (I, A) with components

f dd*

(TL A8, A2 Ao a2 A8 poa2 ayx Ll a4, g,

(4.34)

Proof. First of all, the assumption that n is a map ensures the existence of 1¢
and 17 in .Z (A, A).

Part 1 is simply a restatement of Theorem 4.15 using d = d¥ and d = d°,
while 2 is just 1 applied to the autonomous pseudomonoid A in .Z™" (so that d

and d are interchanged).

73



To prove 3, we first write part 1 for the case of the autonomous map pseu-
domonoid (A°,5*°,p*°). Applying (—)° to the hypothesis 1 x wj* = 1* we get
J°W® x 140 = 15,. Recalling from Proposition 2.42 that A° has both left and
right dualizations d*° and d*° respectively, we obtain from part 1 monoidal iso-
morphisms

gd*oJO(AoWO)pO(WOQ ® AO)po o~ gJ*OdO

with g € 4y (A°, I); putting g = f°, with f € #,(I, A), and using that (—)° is a
monoidal biequivalence, we obtain (4.33).

Finally, 4 is obtained from 3 by considering the reverse Gray monoid. O

Ezxample 4.17. The results above when applied to a coquasi Hopf algebra give
a formula that generalises the classical Radford’s formula for finite-dimensional

Hopf algebras. This is explained in Section 5.2.5.

4.3 Unimodular pseudomonoids

Recall from the comments at the beginning of the chapter that a right cointegral
for a bialgebra H is a functional ¢ : H — k such that the convolution product
¢x1p =1(1)¢ for all v : H — k. If H is a finite-dimensional Hopf algebra, there
exists a unique up to scalars modular element a € H such that 1 * ¢ = ¢ (a)y for
all ¢ : H — k. The Hopf algebra H is unimodular if a = 1. This is equivalent to
saying that the right cointegrals coincide with the left cointegrals (functionals x
such that ¢« x = ¢¥(1)x for all ¢ : H — k).

If one takes the point of view that autonomous pseudomonoids are generalised
Hopf algebras, there must be a corresponding notion of unimodularity for them.
In this section we introduce unimodular autonomous map pseudomonoids and
deduce the first consequences of the definition. One classical result on Hopf
algebras establishes that semisimple Hopf algebras are unimodular. We address
the relationship between semisimplicity and unimodularity in Section 7.6.

Throughout this section A will be an autonomous map pseudomonoid, for
which the coevaluation n: I — A° ® A is a map.

As we mentioned before, and will explain in Section 5.2.5, the 1-cell w :
A — I of (4.14) plays the role of the modular element. This 1-cell is defined by
the property that 19 2 jw x 1 in .# (A, A)(=*1). This leads us to the following

definition.
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Definition 4.1. A unimodularity isomorphism on A is an isomorphism between
the 1-cell w and the unit of the convolution product, j*. We say that A is
unimodular when it is equipped with a unimodularity isomorphism.

Note that unimodularity isomorphisms are in bijection with isomorphisms of
(— * 1)-algebras 19 = 1.

We show below that this condition is related to the notion of Frobenius monad.
A Frobenius monad in a bicategory % is a monad (7,7, ) in £ equipped with
a 2-cell 0 : r = 1 such that ou : rr = 1 is the counit of an adjunction r — r.
In [82] several conditions equivalent to this definition are given. The Frobenius
structure reflects on Eilenberg-Moore constructions in the following way. If r has
an Eilenberg-Moore construction f 4 u : X” — X, then there exists a bijection
between Frobenius structures on r and adjunctions u - f.

In the special case when r has left adjoint ¢, the composition

e, ' e Tt g goert

rr——mrrrr ——rrr ——>T£

equips r¢ with the structure of a r-algebra in J#°P.
The proof of the following lemma is a standard calculation

Lemma 4.18. Suppose (r,n, ) is a monad in & and the 1-cell r has left ad-
joint r’. Then, there is a bijection between the Frobenius structures on r and

isomorphisms of r-algebras in H°P between r¢ and r.

A Frobenius monoid in a monoidal category is just a Frobenius monad in the

respective one-object bicategory.
Theorem 4.19. There exist a bijection between the following structures.
1. Unimodularity isomorphisms on A.

2. Frobenius structures on the monoid 1 : A — A in the convolution monoidal

category M (A, A).

Proof. By Definition 4.1, we have to establish a bijection between isomorphisms
of (— * 1)-algebras 19 = 1 and Frobenius structures on 1 € .#(A, A). This is
exactly what Lemma 4.18 does. O

Proposition 4.20. 1. If A is unimodular and j : I — A has a left adjoint,
then j* - j.
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2. If 5% 4 7, then A is unimodular.

Proof. 1. Assume f - j. By Observation 4.11, there is an isomorphism n*(A° ®
j)d* = j*. Taking left adjoints, we get an isomorphism j = d(A°® f)n. Together
with the isomorphism (j*p® A)(A®d® A)(A®n) = 14 that can be easily deduced
from [13, Proposition 1.2], we get

I

fEHEr)oA)Aedo A)(AQn)
(A ((A® f)(d® A)n))

“p(A® j)

*

1R
S, S,

12

(2) If 7* 4 4, by Observation 4.11, w is right adjoint to (A® j*)(d® A)n. This
1-cell is isomorphic to (A ® j*)p*j = j, and hence w = j*. O

Before our next result, we recall the monads ¢, s on A° ® A. In Observation
3.9 we saw that there are two strong monoidal functors L,R : .# (I, A°A) —
M(A°A, A°A), where the domain has the convolution monoidal structure and the
codomain the composition monoidal structure, such that L(n) =t and R(n) = s.
In this way we showed the existence of an invertible distributive law between ¢
and s. When A is left autonomous, a lifting § : A — A of s to the Eilenberg-
Moore object of ¢ (which can be taken to be A), is a monad with Eilenberg-Moore

construction the lax centre of A (Theorem 3.14).

Proposition 4.21. For a unimodular autonomous map pseudomonoid, the cor-
responding monads t, s are Frobenius. Moreover, the Frobenius structure on s lifts

to S.

Proof. The strong monoidal functors L, R of the paragraph above preserve Frobe-
nius monoids, and n is Frobenius by Theorem 4.19. Since everything in the image
of the functor R commutes with the action of t = L(n), the Frobenius structure
of s lifts to s. O

Corollary 4.22. If A is a unimodular autonomous pseudomonoid, then there

exist an adjunction p* - p.

Proof. The monad t is Frobenius by the proposition above, and as such, the left
adjoint to its Eilenberg-Moore construction is also its right adjoint. By Corol-
lary 2.37, p* : A — A ® A is an Kilenberg-Moore construction for ¢, and hence

Frobenius structures on ¢ are in bijection with adjunctions p* - p. O
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Corollary 4.23. If A is unimodular and the (lax)centre of A exists, then the

universal Z(A) — A is not only monadic, but the generated monad is Frobenius.

Proof. Since A is a left and right autonomous pseudomonoid, if a lax centre of
A exists, it is also a centre for A (Theorem 3.16). Now, if Z(A) — A is a (lax)
centre, then it is an Eilenberg-Moore construction for the monad 5§ on A, by

Theorem 3.14. But s is a Frobenius monad by Proposition 4.21. O
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Chapter 5

Monoidal categories and

coquasi-Hopf algebras

The present chapter comprises the first two main applications of the theory
of autonomous pseudomonoids developed so far. The first application is to
(pro)monoidal enriched categories and the second to coquasi-Hopf algebras.

In section 5.1, after interpreting the fundamental theorem of Hopf modules
(Theorem 2.34) and Hopf module constructions in the case of the bicategory of #-
modules 7-Mod, we study centres and lax centres of (pro)monoidal categories.
One consequence of our results is that if a promonoidal ¥ -category 7 has a lax
centre Zyo/, then there is a canonical equivalence [Z,o/, V| ~ Zy[</, V], where
the #-category on the right hand side is the lax centre of [«/,#] in ¥-Cat.
We also show that if o/ is a left autonomous map pseudomonoid (e.g., a left
autonomous monoidal ¥'-category), Zy.o/ does exists and can be given explicitly.

Section 5.2 deals with the examples more directly related to Hopf algebra
theory by means of the monoidal bicategory of comodules Comod(¥). We ex-
plain why Theorem 2.34 generalises the fundamental theorem of Hopf modules
for (coquasi) Hopf algebras, and describe the Hopf module construction of a
coquasi-Hopf algebra as a bicomodule. Then we relate the centre construction
for pseudomonoids with the Drinfel’d or quantum double of a finite dimensional
(coquasi) Hopf algebra. In fact, we show that the Drinfel’d double is exactly
the centre construction of the autonomous map pseudomonoid in Comod(¥)

associated to the coquasi Hopf algebra.
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5.1 7V -categories and 7-modules

The concept of ¥-module, also called bimodule, distributor or profunctor, arose
in connection with enriched categories [56], [4]. The bicategory of ¥ -categories
and 7-modules can be introduced in several different ways. See for example
[6, 78, 16]. It can be viewed as an extension of the 2-category #-Cat with good
properties, and experience indicates that it is the right environment to study
enriched categories and related structures.

We take a short definition of the bicategory of #-modules, but at the same
time we must ask for some properties (such as completeness) on the base monoidal
category 7 that are not necessary in other approaches. However, in our examples
¥ always has these properties, necessary to develop the usual theory of enriched
categories as in [42].

Let 7 be a complete and cocomplete closed symmetric monoidal category.
There is a bicategory #-Mod whose objects are the small #-categories and
hom-categories ¥-Mod(«/, B) = [P & A,V ]y, the category of ¥ -functors
from the tensor product of the ¥ '-categories &/°P and % to ¥, and ¥ -natural
transformations between them. Objects of this category are called #-modules
and arrows morphisms of #-modules. The composition of two #-modules M :
o — B and N : B — € is given by (NM)(a,c) = [* N(z,¢) ® M(a,z). The
identity module 1, is given by 1,(a,a’) = &/(a,a’). Our convention is that a
¥ -module from &7 to & as a ¥-functor /P @ B — V.

There is a pseudofunctor (—), : ¥-Cat® — #-Mod which is the identity on
objects and on hom-categories [«7, B))’ — [P ® B, 7] sends a ¥-functor F
to the ¥-functor Fi(a,b) = ZA(F(a),b). Moreover, the ¥-module F, has right
adjoint F* given by F*(b,a) = #(b, F(a)). The pseudofunctor (—), is easily
shown to be strong monoidal and symmetry-preserving.

The tensor product of ¥ '-categories induces a structure of a monoidal bica-
tegory on ¥-Mod. Moreover, the usual symmetry of #-Cat together with the
symmetry of 7" induce a structure of symmetric monoidal bicategory on ¥-Mod,
or rather, induce a symmetry in the sense of [16] in any Gray monoid monoidally
equivalent to ¥-Mod.

Ezample 5.1 (Promonoidal enriched categories). A pseudomonoid in ¥-Mod is a
promonodial ¥-category [11]. The pseudomonoid structure amounts to a multi-
plication and a unit #-functors P : &/°PR.4°PR«/ — ¥ and J : & — ¥ together

with associativity and unit ¥ -natural constraints satisfying axioms. Any monoi-
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dal 7 -category can be thought of as a promonoidal ¥ -category, in fact a map
pseudomonoid, by using the monoidal pseudofunctor (—), : #-Cat® — ¥-Mod;
explicitly, if &7 is a monoidal ¥ -category, then the induced promonoidal structure
is given by P(a,b;c) = &/ (b® a,c) and J(a) = &/ (I,a).

One of the many pleasant properties of »-Mod is that it has right liftings.
IfM: % — € and N : o/ — € are ¥-modules, a right lifting of NV through M is
given by the formula MN(a,b) = [ _[M(b,c),N(a,c)]. As explained in Section
3.3, the existence of right liftings endows each hom-category #»-Mod(/, /) with a
canonical structure of a #-Mod (I, I)-category, where I is the trivial ¥-category.
Therefore, each 7-Mod(I, <7) is canonically a ¥ -category via the monoidal iso-
morphism ¥-Mod(I,I) = ¥. This is exactly the usual ¥-category structure of
[</,¥]. In fact, each hom-category ¥-Mod(/, #) is canonically a ¥ -category,
in a way such that the equivalence ¥-Mod (<, %) ~ ¥-Mod(I, &P @ A) is a
¥ -functor.

Another feature of 7-Mod we will need is the existence of Kleisli and Eilen-
berg-Moore constructions for monads. The existence of the former was shown in
[77]. Here we recall the explicit construction for later use. If (M, n, ) is a monad
in #-Mod on &, KI(M) has the same objects as </ and homs Kl(M)(a,b) =
M (a,b). Composition is given by

beod
M(b,¢) @ M(a,b) — M(b,¢) ® M(a,b) 225 M(a, c)

and the units by [ i, o (a,a) ULLN M (a,a). One can verify that the #-module
K, induced by the #-functor K : &/ — KI(M) given by the identity on objects
and by 1, : %7 (a,b) — M (a,b) on homs has the universal property of the Kleisli
construction. It is not hard to see that K™ is an Eilenberg-Moore construction
for M.

5.1.1 Hopf modules for autonomous (pro)monoidal enriched ca-
tegories

We already established our notations and conventions regarding the bicategory
of ¥-modules in Examples 2.1 and 5.1. Next we show how the results on Hopf
modules specialise to the bicategory of #-modules, and give explicit descriptions
of the main constructions. Although these descriptions carry over to arbitrary

left autonomous map pseudomonoids, here we will concentrate on the simpler
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case of the left autonomous monoidal ¥ -categories 7.
The opmonoidal monad T : &/°PR.e/ — &/°PR.e/ defined in Section 2.4 is given
as a ¥-module by T'(a,b;c,d) = [* o (b®x,d) ® o (c,a® z). The multiplication

is has components

T?*(a,bye,d) = [ [T (v@2,d) @ (c,u@2)@ [V F(bRy,v) @ (u,a®y)
= [ (boy)@z,d) e d(c(a0y) @)
= [ (b (yor),d®d(c,a® (y@ ) — T(ab;ec,d)

where the last arrow is induced by the obvious arrows <7 (b® (y®x),d)® . (c,a®
(yoz) — [T (b@r,d) @ (c,a®z). The unit has components

(AP @) a,b;c,d) = (b,d) @ (c,a) l/z%(b®x,d)®£f(c,a®x),

the component corresponding to I € ob.</.
The existence of Eilenberg-Moore constructions in #-Mod implies the fol-

lowing.

Proposition 5.2. Any map pseudomonoid in ¥ -Mod has a Hopf module con-

struction.

Following the remarks on Eilenberg-Moore constructions above, one can give
an explicit description of the Hopf module construction for a map pseudomonoid
. The ¥-category (#/P®.e/)! = (&/°P@.9/ )7 has the same objects as &P ®.47,
homs (&°P ® o) (a, b; c,d) = T(a,b;c,d) and composition and identities induced
by the multiplication and unit of 7. The unit of the monad 7" defines a ¥'-functor
n: AP — (P ®)T; the Kleisli construction for T is just the module 7,
and the Eilenberg-Moore construction is 7*. The module L : &7 — (&P ® /)T
in (2.12), which is an equivalence if and only if &7 has a left dualization, equals

(J1) e
e

L= (o AP @ o s (P @ o)) (5.1)

When the promonoidal structure is induced by a monoidal structure on .o7,
i.e., P(a,b;c) = @/ (b®a,c) and J(a) = &/ (1,a), we can compute L more explic-
itly. Firstly note that for any ¥ -functor F': 4 — % there exists a canonical iso-
morphism of ¥-modules (F*)° & (F°P), : #°° — €°P, where F°P : #°P — €°P
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is the usual opposite functor. Then
L= ((J?) @ o) = (n(J?P @ L))
In components,
L(a;b,c) = (P @ ) (n(I,a),(b,c)) =TI, a;b,¢c) = o/ (a®@b,c)

with right .o7-action and left (&/°P ® < )T-action. The latter is given by the

composition of (&7°P ® &7)T, while the <7/-action can be shown to be given as

R(—®b)
_

A (a®@b,c)®d(d,a) ! A (a@b,c)®d(d @ba®b) s of (d @b, c).

The fact that L is a fully faithful ¥-module (Proposition 2.17) means exactly
that the ¥ '-functor n(J°P ® &) is fully faithful. This can be also verified directly,

for the effect of this #-functor on homs is

(b, d) 2 (b, d) @ a7 (1,T) / A2 a,d) @S (I,10z)= o b d)

sending an arrow f to (b =N Y e, do I = d).

We finish the section by characterising monoidal categories which are left au-
tonomous as pseudomonoids in the bicategory of Set-modules, sometimes called
profunctors or distributors. We will denote this bicategory simply by Mod, and
use the conventions of Example 2.2.

If o7 is a monoidal category, consider the arrows <7 (b,d @ ) X & (x ® a,c) —
' (b® a,d® c) sending (f, g) to the composition

b®aﬂﬂ>(d®x)®aid®($®a)ﬂd®c

where the isomorphism is the associativity constraint of the monoidal category

</ . These arrows are dinatural in z, inducing arrows
x
/ (b, d@z)x d(xRa,c)— A(bRa,dR c). (5.2)
When b = I, the neutral object of <7, we get arrows

/xﬂ(I,d(@x)xﬂ(x@a,c)ﬁﬂf(a,d@c). (5.3)
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Proposition 5.3. A monoidal category &7 has a structure of a left autonomous
pseudomonoid in Mod if and only if the arrows (5.2) are isomorphisms, if and

only if the arrows (5.3) are isomorphisms, for all objects a,b,c,d in < .

Proof. The result follows from Theorem 2.34 since the arrows (5.2) and (5.3) are
the components of the natural transformations v and w defined in (2.23) and
(2.25) respectively. O

When idempotents in &7 split, the conditions in the proposition above imply
that o7 has left duals, by classical arguments. Indeed, if (5.3) is an isomorphism,
by taking ¢ = I and a = d, we deduce that 1, = (1, ® g)(f ® 1,) for some
f:l—a®x g:r®a— I. By an argument due to Paré, the splitting of the
idempotent (g ® 1,)(1; ® f) :  — x provides a left dual for a. There is another
way of seeing this. The splitting of idempotents in &/ means that </ is Cauchy
complete, and therefore the dualization &/°P — & in Mod is represented by a
functor. This functor assigns a left dual to each object of .7 (see Example 2.31).

5.1.2 Lax centres in ¥-Mod

In this section we study the centre and lax centre of pseudomonoid in the monoidal
bicategory of #-modules by means of the theory developed in previous sections.
Along the way, we compare our work with [15, 18].

First we consider lax centres of arbitrary pseudomonoids. We shall show that
the results in Section 3.3 apply to ¥-Mod. To realise this aim, we have to verify
all the hypothesis required in that section.

We already saw at the beginning of Section 5.1 that liftings exist. In order
to show ¥-Mod satisfies the other two hypotheses required in Section 3.3 it is
enough to prove that the arrow (3.6) is an isomorphism for .# the bicategory of

#-modules. In this case (3.6) becomes
[P @B, V|(M,N)— [, V], [B,V]|((Mo-),(No-—)), (5.4)

where (M o —) is the ¥-functor given by composition with the #-module M. To

show that (5.4) is an isomorphism, recall that the ¥ -functor
[P R B, V] =B, [P, V]| — Cocts|[BP, V], [P, V]| (5.5)

into the sub-7-category of cocontinuous ¥ -functors is an equivalence by [42,
Theorem 4.51]. This #-functor sends R : €°P®% — ¥ to the left extension of the
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corresponding R’ : ¢ — [¢°P, ¥ along the Yoneda embedding y : € — [€°P, ¥,
which is exactly (Ro —).

Theorem 3.5 gives:

Corollary 5.4. Suppose the lax centre of the promonoidal ¥V -category <7 exists.
Then there exits an equivalence of V -categories [Zyol , V| ~ Zy[of , V]|, where on
the left hand side appears the lax centre in 7' -Mod and on the right hand side
the lax centre in ¥ -Cat. The composition of this equivalence with the forgetful
V -functor Zy|/ , V| — [, V] is canonically isomorphic to the ¥ -functor given
by composing with the universal ¥ -module Zyof — of . If the centre of <f , rather
than the lax centre, exists, then the above holds substituting lax centres by centres

throughout.

Now we turn our attention to autonomous pseudomonoids. The existence
of Eilenberg-Moore constructions in ¥-Mod together with Theorem 3.14 and
Theorem 3.16 imply:

Proposition 5.5. Any left autonomous map pseudomonoid in ¥ -Mod has a
lax centre. Moreover, if the pseudomonoid is also right autonomous then the lax

centre 18 the centre.

Proposition 5.6. If a left autonomous pseudomonoid </ in ¥ -Mod has a centre

construction, then its lax centre and its centre coincide.

Proof. We saw that the lax centre of a & exists. The result, then, follows from
Theorem 3.6. The category ¥-Mod([,.</) has a dense small sub #-category,
namely the one determined by the representable ¥ '-functors; and representables
are maps in the bicategory of #-modules. The rest of the hypotheses on .# are
easily verified. O

We shall describe the lax centre explicitly. In order to simplify the description,
we will suppose o7 is a left autonomous monoidal ¥ '-category, and not merely a
promonoidal one. However, all the following description carries over to the case
of map pseudomonoids.

By Theorem 3.14, the lax centre of &/ in ¥-Mod is the Eilenberg-Moore

construction for the monad S given by

A g oad T o eod s dedwd L deod Lo (5.6)
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where ¢ denotes the usual symmetry in #-Cat. Explicitly,
- .y Y
Sahy [T awe@onneslyon= [ oys@oy).,

where y" denotes the left dual of ¥ in /. The multiplication of this monad is

given by

S2(a;b) = /my,zsz{(y@ (u®y”),b) @ (2@ (a®z"),u)

Y,Z Y,z
g/ ,sz{(y®(z®(a®zv))®yv,b)%’/ A((yez2) @@ (y®2)Y),b) —

[ s taos st

where the last arrow is induced by the components C;é’z (Yo 2) @ (a® (y®
2)V),b) — [T o (z®(a®z"),b) of the universal dinatural transformation defining
the latter coend in the codomain above. The unit of S is given by components
¢ A (a,b) — [T (x @ (a®xY),b) of the same dinatural transformation
corresponding to x = I. Now we have all the ingredients to describe the lax
centre Zy(<7), that is, a Kleisli construction for S. It has the same objects as
</, enriched homs Z;(7)(a,b) = S(a,b), composition given by the multiplication
and unit given by
I — d(a,a) < S(a,a),

where the first arrow is the identity of a in 7. The arrows g“?’b - o (a,b) — S(a,b)
define a #-functor, which we also call ¢, and the universal Zy(«/) — & is none

other than (*.

Observation 5.7. The monad S is closely related to the monad M in [18, Section
5]. There the authors show that for a general small promonoidal ¥ -category &
there exists a monad M on % in #-Mod with the following property. Whenever
[¢, 7] has a small dense sub-7-category of objects with left duals (it is right-dual
controlled, in the terminology of [18]), the forgetful ¥ -functor Z,[¢, ¥ | — [€, V]
is a Eilenberg-Moore construction for the monad M on [¢, 7] in ¥-Cat given

by composition with M. The module M is given by
o m7y
M(a,b) = / P(P ®%)(y,a,2,b) ® 2'\(y),
where 2\ is the internal hom [€(x, —), J] € [¢, 7] (J is the unit of the promo-
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noidal structure).

When € is equipped with a left dualization D : €°P — ¥, each ¥ -module
I — € with right adjoint in #-Mod has a left dual in the monoidal ¥ '-category
¥-Mod(I,%¢) = [¢,7]. This was first shown in [13]. In particular, € (x,—),
which is the #-module induced by the #-functor I — % constant on z, has left
dual. It follows that [¢, 7] has a small dense sub-¥'-category with left duals, and
the results of [18] mentioned above apply.

In this situation, if we assume J is a map, so that S exists, we claim that the
monads M and S are isomorphic, or more precisely, that both are isomorphic as
monoids in the monoidal #-category #-Mod(%,%) = [¢°° ® €, 7]. To show
this, it is enough to prove that the monads (Mo—) and (So—) on ¥-Mod(I, %) =
[€, ] given by composition with M and S respectively are isomorphic. Now,
the monad (S o —) is #-Mod([, S), and then it has the forgetful ¥-functor
Zy|€, V] — [€,7] as a (bicategorical) Eilenberg-Moore construction by Corollary
5.4 and Proposition 5.5. Then, (So—) and M = (M o—) have the same Eilenberg-
Moore construction in #-Cat and it follows that both monads are isomorphic as

required.

Example 5.8. Let ¢ be a groupoid. Write A : 4 — ¢ x & for the diagonal
functor and F : 4 — 1 the only possible functor. These give ¥ a structure of
comonoid in Cat and thus P = A* and J = E* is a promonoidal structure on
4. Explicitly, P(a,b;c) =% (a,c) x 4(b,c) and J(a) = 1; the monoidal structure
induced in [¢, Set] is given by the point-wise cartesian product. Define a functor
D : 9°P — & as the identity on objects an D(f) = f~! on arrows. In [16,
Example 10] it was essentially shown that D is a left and right dualization for
the map pseudomonoid (¢, J, P) in Set-Mod®. Then, by Corollary 3.17, ¢
has centre and lax centre in Set-Mod® and both coincide. On the other hand,
there is a category ¢Z described in [16, Example 10] with the property that
(9%, Set] ~ Z[¥,Set]. In [15] 4% is shown to be equivalent to the centre of the
promonoidal category ¢4 in the sense of that article. As the centre in Set-Mod
satisfies [Z9, Set] ~ Z[¢, Set], we have that ¥4Z is Morita equivalent to Z%.

5.2 Hopf algebras and comodules

5.2.1 Hopf algebras

This section pretends to be a very short introduction to Hopf algebras and some

related structures. Readers familiar with the concepts of Hopf algebras and
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(co)quasi-Hopf algebras can skip to the next section.

Hopf algebras originally appeared as cohomology rings of topological groups
or H-spaces, to later find applications to many branches of Mathematics. Basic
examples of Hopf algebras are the group algebras of finite groups, the algebra of
regular functions of an affine algebraic group, the universal enveloping algebra
of a Lie algebra. Hopf algebra theory is of interest to mathematical physicists
because of its connection to quantum theories, via for example the g-enveloping
algebras of a Lie algebra, and to category theorists because of its relationship
with braided monoidal categories.

Let 7 be a braided monoidal category. The braiding makes the category of
comonoids and comonoid morphisms in ¥ a monoidal category. A bimonoid in ¥
is a monoid in this category of comonoids. Therefore, a bimonoid is an object H
of 7 with a comonoid structure with comultiplication A : H — H ® H and counit
e: H — I, and a monoid structure with multiplication p : H ® H — H and unit
j : I — H. These structures are compatible in the sense that A, e are monoid
morphisms, or equivalently, p, j are comonoid morphisms. We use Greek letters
for the comonoid structure and Roman ones for the monoid structure because,
although completely dual to each other in the case of a bimonoid, these structures
will play different roles when we move to the coquasibialgebras.

There is a convolution product on ¥ (H, H) given by f* g = p(f ® g)A with
unit je. An antipode for the bialgebra H is an inverse S to 1 : H — H under the
convolution product. Hence an antipode, if it exists, is unique, and moreover it
can be shown to be an anti-monoid and anti-comonoid morphism. A bimonoid
equipped with an antipode is called a Hopf monoid.

In the case when ¥ is the category of modules over a commutative ring, these
structures are usually called coalgebras, algebras, bialgebras and Hopf algebras.

Sometimes we will use Sweedler’s notation which we briefly recall. If (H, e, A)
is a coalgebra, we write A(z) = > x; ® x3. These expressions are subject to the
coassociativity rule > (1)1 ® (z1)2 @ 22 = Y 21 @ (x2)1 ® (v2)2, and we write
this element > x1 ® x9 ® xo. The counit condition is written Y e(x1)ry = x =
> xe(xe).

Ezample 5.9 (Group algebras). If G is a finite group and k a commutative ring, the
algebra k[G] is a Hopf algebra with algebra structure induced by the monoid struc-
ture of G (the free vector space functor is monoidal, and thus it sends monoids
in Set to monoids in Vect), comultiplication and counit given by A(g) = g® g

and e(g) = dg, respectively, where e € G is the unit. The antipode is given by
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S(g)=g7"

Ezample 5.10 (Universal enveloping algebras). If g is a Lie algebra, the universal
enveloping algebra U(g) has a canonical structure of a Hopf algebra. Recall that
U(g) can be constructed as a quotient of the tensor algebra T'(g) over the vector
space g by the two-sided ideal generated by x @ y — y ® x — [z,y|. For a € T(g)
we write a for the corresponding element of U(g). Then the comultiplication
A :U(g) — U(g) ® U(g) is defined by A(z) = z®@1+1®z for z € T(g) of
degree 1; this formula extends to the whole of U(g). The counit € : U(g) — k
is given by £(z) = 0 and the antipode S : U(g) — U(g) by S(z) = —Z for all
x € T(g) of degree 1.

Ezample 5.11 (Taft’s algebras). Let k be a field and & € k a primitive N root
of the unity. Define a Hopf algebra H in the following way. As an algebra, H is

generated by two elements g,z with relations

N _q N _q

T xg = &g,

The comultiplication A : H — H® H, counit € : H — k and antipode S : HP? —
H are defined on the generators by

Alg)=g®g Alz)=1Rz+xR®g
e(g) = e(z) =1
Sg)=9g"  S@)=—-zg "

This Hopf algebra is called a Taft’s Hopf algebra, and it has dimension N? with
basis {g'z/ : 0 <i,7 < N;}. Observe that H is not commutative nor cocommu-
tative, and the antipode does not satisfy S? = id, as S?(g) = grg~'. In fact, it
can be shown that S has order 2INV

In [23] Drinfel’d introduced a weaken version of Hopf algebras called quasi-
Hopf algebras. A quasibialgebra is a k-algebra H equipped with a counit ¢ : H —
k which is a morphism of algebras and a comultiplication A : H — H ® H that is
not coassociative. Instead, A is coassociative up to conjugation with an invertible
3-cycle. We give the definition of the dual concept of coquasi-Hopf algebra that
serves best to our purposes.

A coquasi bialgebra structure on the k-coalgebra (C, A, ¢) is a triple (p, j, ¢)
where p : C ® C — C (the product) and j : & — C (the unit) are coalgebra

morphisms, and ¢ : C ® C @ C — k (the associator) is a convolution-invertible
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functional, satisfying the following axioms, where we write p(x ® y) as xy.
p(j ®id) =id = p(id ® j)

D b1 @y @) (w2 ya) 2o = Y w1 (Y1 21)b(w2 @ Y2 © 29)
(@) xd(1@pR1)*(p®e)=¢(1R@1®@p)*xo(pe1®1)
Pz ®j@y)=c(x)e(y)

where * denotes the convolution product in the dual of C ® C ® C ® C.

Of course, these axioms can be written as string diagrams in any braided
monoidal category 7', giving rise to a structure we call a coquasibialgebra or
coquasibimonoid in #. Coquasibialgebras were first considered under another
name in [10]; see also [64]. Observe that when ¢ = ¢ ® € ® €, a coquasibialgebra
is just a bialgebra.

If one consider the two-dimensional aspects of reconstruction theorems, the
algebraic structures corresponding to monoidal categories are coquasibialgebras.
The reason for this is that both are pseudomonoids in different monoidal bicate-
gories; see Example 5.12. This approach is taken in [66].

An antipode for the coquasi bialgebra H is a triple (S, o, ) where S : H®P —
H is a coalgebra morphism from the opposite coalgebra of H to H, and the
functionals o, 8 : H — k satisfy the following equations, where we write 1 for the

element of H corresponding to the unit j : k — H.
D S()a(z)es = a(x)j > wiB(x2)S(ws) = Blx)j (5.7)

> ¢(x1 @ Sz @ w5)B(w2)a(ws) = £(2) (5.8)
D ¢ (Sry @ w3 @ Sws)a(rs)Blxa) = £(x) (5.9)

The definition of coquasibialgebra and coquasi-Hopf algebra are designed in
such a way that the following holds. If B is a coquasibialgebra, the category of
(right) comodules Comod(B) is monoidal and the forgetful functor U into Vect
is multiplicative in the sense that U(M)®U(N) = U(M ® N), but not monoidal.

This is because the associativity constraint of Comod(B) is the composition

MoN®L —» M@BaN@BOLOB — M@N@Lg B3 MENELES,

MN®L
where the first arrow is the tensor product of the coactions, the second is induced
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by the symmetry of Vect, and we omit the associativity constraint of Vect.

In the case of a coquasi-Hopf algebra H with antipode S, the category of
finite-dimensional comodules Comod ¢ (H) is left autonomous. A left dual *M for
a comodule M with coaction xy : M — M ® H is given by the dual M" of the

vector space M with coaction

eRCh, pmv

MY Ve Me MY 22EL MY o Mo He MY MY ®H
where ¢, e are the coevaluation and evaluation of vector spaces and c¢ is the sym-
metry. The evaluation *M ® M — k and the coevaluation k — M ® *M are the

morphisms of comodules below.

MY oM 225 MY oMo H 2%k

S MeoM X248 Mo H oMY 228N ve MY

When H is a bialgebra (i.e., ¢ is trivial) and o = 3 = &, we recover Hopf algebras.

5.2.2 The bicategory of comodules

In this section we apply the general theory we have developed for autonomous
pseudomonoids to Hopf algebras and some of their generalisations. After review-
ing the definition and basic properties of the bicategory of comodules, we interpret
the material of the three previous chapters in three sections. In the first of them,
Section 5.2.3, we explain why Theorem 2.34 generalises the fundamental theorem
of Hopf modules for (coquasi) Hopf algebras. In Section 5.2.4 we describe the
centre in the monoidal bicategory of comodules of (the pseudomonoid induced
by) a finite dimensional coquasi-Hopf algebra. We show that this centre is equiv-
alent to the Drinfel’d or quantum double of the coquasi-Hopf algebra. Finally, in
Section 5.2.5 we deduce from the isomorphism we called Radford’s formula for au-
tonomous map pseudomonoids in Section 4.2 formulas for the cases of quasi-Hopf
algebras (Theorem 5.34) and coquasi-Hopf algebras (Theorem 5.36).

Given a monoidal category ¥, there is a monoidal 2-category Comon(%")
called the 2-category of comonoids. Its objects are comonoids in ¥/, its 1-cells

comonoid morphisms and 2-cells o : f = g: C — D are arrows 0 : C — [ in ¥
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such that

o, o
g %Dﬁ%

The vertical composition of a pair of 2-cells o : f = g and 7: g = h is the usual
convolution product: 7% o = (7 ® o)A, where A denotes the comultiplication.

The horizontal compositions

A loB-tlsc and D-F-44T 0B

g g

are AL Tand D5 A ST respectively.

Now suppose further that ¥ has equalizers of reflexive pairs and each func-
tor X ® — preserves them. Then we can construct the bicategory of comod-
ules over ¥, denoted by Comod(¥?). It has comonoids in ¥ as objects and
homs Comod(7)(C, D) the category of C-D-bicomodules; this is the category
of Eilenberg-Moore algebras for the comonad C'® —® D on ¥". The composition
of two comodules M : C' — D and N : D — F is given by the equalizer of the

following reflexive pair

xMON

MUOpN

M ® N M®D®N

Mexy

where the various y denote the obvious coactions. This equalizer is denoted by
MUOpN, and has a C-FE-comodule structure induced by the structures of M and
N. The comodule MpN is sometimes called the cotensor product of M and N
over D. The identity 1-cell corresponding to a comonoid C' is the reqular comodule
C, i.e. it is C with coaction A2 = (A® 1)A: C - C®C®C.

There is a pseudofunctor (—). : Comod(¥) — Comod(¥') acting as the
identity on objects, sending a comonoid morphism f : C' — D to the comodule,

denoted by f, : C'— D, with underlying object C' and coaction

C
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and sending a 2-cell o : f = g to the comodule morphism o, : f. = g. given by

C

,(;)
The axioms of coaction and of comodule morphism follow from the ones of co-
module morphism and 2-cell in Comon(¥) respectively. It is easy to show that
the pseudofunctor (—), is locally fully faithful (in fact, locally it can be viewed
as a ¥ °P-enriched Yoneda embedding).

An important property of (—), is that it sends any 1-cell in Comon(?) to a
map in Comod(?). For, if f: C' — D is a comonoid morphism, then f, has a

right adjoint, denoted by f*, with underlying object C' and coaction

and the counit of the adjunction is just the arrow f : C' — D, which turns out to

be a comodule morphism; the unit is the unique map such that

Fri=fUpff —=C®C
A

L

C

where the horizontal arrow is the defining equalizer of f* f,.

When 7 is braided, Comon(?’) and Comod(?') have the structure of mo-
noidal bicategories with tensor product given by the tensor product of #’; note
that the braiding is used in defining the comultiplication and coactions on the
tensor product of comonoids and comodules. The pseudofunctor (—). is strong
monoidal. Through (—). we can think of Comon(7’) as a monoidal sub bicate-
gory of Comod(7).
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Ezample 5.12 (Coquasibialgebras). A pseudomonoid (C, j,p) in the bicategory of
comonoids Comon(¥’) amounts to a comonoid C with two comonoid morphisms
j:I—Candp:C®C — C and the invertible 2-cells ¢ : p(p ® C') = p(C @ p),
A:p(j®C) = 1and p: p(C®j) = 1 satisfying axioms. These 2-cells are
convolution-invertible arrows ¢ : C @ C @ C — [ and \,p: C — I.

Normal pseudomonoids, that is, pseudomonoids whose unit constraints A, p
are identities, in the monoidal bicategory Comon(Vect) are coquasibialgebras.
The dual of this algebraic structure, called quasibialgebra, was first defined in [23]
where also were defined the quasi-Hopf algebras. Coquasibialgebras and coquasi

Hopf algebras can be found for example in [63, 10, 73]. See Section 5.2.1.

The bicategory Comod(¥') is not just monoidal but it is also left and right
autonomous. The right bidual of a comonoid C' is the opposite comonoid C°.

The braiding provides pseudonatural equivalences
Comod(¥?)(C ® D, E) ~ Comod(¥)(D,C° ® E).

The coevaluation n : I — C° ® C and evaluation e : C' ® C° — I comodules are

the object C' with coaction

h \

The left bidual is defined by using the inverse of the braiding.
Ezample 5.13 (Coquasi-Hopf algebras). As shown in [13], Coquasi-Hopf algebras

are exactly the left autonomous normal pseudomonoids in Comod(Vect) whose
unit, multiplication and dualization are representable by coalgebra morphisms.
Regard a coquasibialgebra H as a pseudomonoid (H, j., p«) in Comod(Vect),
and assume H has a left dualization (s, «,3) where s : H® — H is a comonoid
morphism. We write A? for the arrow (A ® H)A = (H ® A)A as it is custom
in Hopf algebra theory. The 2-cell « is a comodule morphism from p,(s. ® H)n
to jx. Then a : H — k is a functional satisfying p(s ® a ® H)A? = ja, or in
Sweedler’s notation: > a(ze)s(z1) - v3 = «a(x)j. This is one of the equations
in (5.7). Taking mates, the 2-cell § : j*e = p.(H ® s,) corresponds to a 2-cell
B :e(H ® s*)p* = j*. This comodule morphism is an arrow (3 : H — k satisfying
p(H® 3 ® H)A? = j3, or in Sweedler’s notation Y B(z3)x1 - s(z3) = B(z)j,
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\$®

Figure 5.1: Comodule structure of the monad t.

that is the second equation in (5.7). The bijection between 3 and (3 is given by
f=(H®B® H)A? = (c®c)B. Now it is not hard to check that the axioms
of a left dualization translate into the equations (5.8) and (5.9).

5.2.3 Hopf modules

From now on ¥ will not only have equalizers of reflexive pairs, but all equalizers.
Equalizers are necessary as the proof of the proposition below uses the Adjoint
Triangle Theorem [24]. In any case, these properties are certainly satisfied in our

main example of the category of vector spaces.

Proposition 5.14 ([13]). A comodule M : C — D has a right adjoint if and only

if its composition with e, : D — I has a right adjoint.

Now we shall describe for a pseudomonoid C' in Comon(¥’) the underlying
comodule of the monad ¢ on C° ® C representing 6. Recall from (2.28) that

t2(C°p)(C°RCRexC)C°Rp"@C*"RC) (ne C*®C)

and so it has underlying object C ® C'® C' with coaction depicted in Figure 5.1.
The Hopf module construction for a map pseudomonoid in Comod (%) may
not exist, as this bicategory does not have Eilenberg-Moore objects for monads.

However, it does have Eilenberg-Moore constructions for comonads.

Observation 5.15. The bicategory Comod (%) has Eilenberg-Moore objects for
comonads. If GG is a comonad on the comonoid C' with comultiplication § : G —
GUOcG and counit € : G — () its Eilenberg-Moore object admits the following
description (which is dual to the description of Kleisli objects for monads in

¥-Cat in [77]). As a comonoid, it is G equipped with comultiplication and
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counit
¢S 600G —-GoG and GSCSI

Note that the arrow € : G — C' in ¥ becomes a morphism of comonoids. The

universal 1-cell is just the comodule ¢, : G — C.

Proposition 5.16. Given a map pseudomonoid C in Comod(¥), if the monad
t:C°®C — C°®C has right adjoint, then C' has a Hopf module construction.
In particular, this holds if C € ob?" has a dual.

Proof. The 1-cell t* has a canonical structure of a right adjoint comonad to the
monad ¢. It is well-known that the Eilenberg-Moore construction for the comonad
t* is an Eilenberg-Moore construction for the monad ¢. To finish, we show that
if C' has a dual in ¥ then t = ((p*)° ® p)(C° @1 ® C) has a right adjoint, and for
that it suffices to prove that n does. But by Proposition 5.14, n is a map if and
only if C' has a dual. O

When 7 is the category of vector spaces and C' is a coquasi-bialgebra, the
assertion that the functor A\; from Comod(7)(I,C) to the category of Hopf
modules is an equivalence is what Schauenburg [75] calls the theorem of Hopf
modules. See Example 2.8. We shall show that when C has a Hopf module
construction both notions are equivalent.

Let # be a braided monoidal replete full subcategory of ¥ closed under

equalizers of reflexive pairs. There is an inclusion monoidal pseudofunctor
Comod(#') — Comod(?).

This inclusion, being monoidal, preserves biduals.

Corollary 5.17. Let # and ¥ be as above. Suppose C' is a map pseudomonoid
in Comod(#') such that C has a dual in # . Then, the theorem of Hopf modules
holds for C in Comod (%) if and only if it holds for C' in Comod(7¥).

Proof. We begin by observing that since C has a dual in #', and hence in ¥, by
Proposition 5.16, C' has a Hopf module construction both in Comod(%#) and in
Comod(7’). Moreover, the two coincide. To see this, observe that the monad ¢
is given by (2.28) and each of the 1-cells in the composition lies in Comod(%).
Since C has a dual, ¢ has a right adjoint comonad, whose Eilenberg-Moore con-

struction, described in Observation 5.15, is the Hopf module construction for C.
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By the description of this Eilenberg-Moore construction, one sees that it lies in
Comod(%#).

Hence, we have to prove that the 1-cell £ : C — (C° ® C)! (see Proposition
2.17) is an equivalence in Comod (%) if and only if it is one in Comod(%’). One
direction is trivial, so we shall suppose /¢ is an equivalence in Comod(%). We
have, then, an adjoint equivalence ¢ - ¢*; as ¢ is always a map (by Proposition
2.17), this adjoint equivalence lifts to Comod(%#"). O

Corollary 5.18. Suppose that C is a map pseudomonoid in Comod(Vect). If
C' is finite-dimensional, the theorem of Hopf modules holds for C if and only if

the functor
A7 : Comod(Vect)(I,C) — Comod(Vect)(C, )%

(see Definition 2.3) is an equivalence.

Proof. Only the converse is non trivial. Write 7" for Vect and 7} for the full
subcategory of finite-dimensional vector spaces. By Proposition 5.17, it is enough
to show that the theorem of Hopf modules holds for C' in Comod(7%).

The functor \; is represented by the 1-cell £: C — (C° ® C)t. We have that
the functor Comod(75)(I,¢) is an equivalence, and the result follows from the
fact that the functor Comod(#%)(1, —) reflects equivalences. O

We obtain the following generalisation of [75, Thm. 3.1].

Corollary 5.19. Let C be a map pseudomonoid in Comod(Vect) whose under-
lying space is finite-dimensional. Then C has a left dualization if and only if the
functor \; : Comod(Vect)(I,C) — Comod(Vect)(C, C)?" is an equivalence.

Proof. By the corollary above, the theorem of Hopf modules holds for C'; hence,
C has a left dualization by Theorem 2.34. O

Corollary 5.20. For any finite-dimensional coquasi-bialgebra C' there exists a
map pseudomonoid D in Comod(Vect) such that the category of Hopf modules
for C (as defined in [75]) is monoidally equivalent to the category of right D-
comodules Comod(Vect)(I, D). Moreover, D can be taken to be the Hopf module

construction for C, and in particular, finite-dimensional.

By Observation 5.15, the Hopf module construction (C°®C)! — C°®C can be

taken to be of the form e,, where € : (C°®C)! — C°®C is a comonoid morphism.
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Figure 5.2: Hopf module construction for a coquasibialgebra with a left dualiza-
tion.

Note that, in general, the forgetful functor Comod(Vect)(I, D) — Vect is not
monoidal.

Now suppose that C is a left autonomous map pseudomonoid in Comod (7).
The existence of a left dualization forces the multiplication to be a map [13, Prop.
1.2]. On the other hand, the unit of C' is a map because its underlying object
I € 7 has a (right) dual by Proposition 5.14. It follows that any left autonomous
pseudomonoid in Comod(¥') is a map pseudomonoid. A Hopf module construc-
tion for C' is provided by (C° ® p)(n® C) = (p(d® C))* : C — C° ® C. In the
case when C is a coquasibialgebra, the comodule (C° ® p,)(n® C) is C ® C with

coaction depicted in Figure 5.2.

5.2.4 Centres and Drinfel’d double

We now consider the results of Section 3.4 on the lax centre in the context of
comodules. We suppose the underlying monoidal category ¥ is symmetric, and
thus Comon(7) is a symmetric monoidal Cat-enriched category. Via the mo-
noidal pseudofunctor (—), we obtain comodules cps n : M @ N — N ® M making

the usual diagrams commute up to canonical isomorphisms in Comod(¥).

Proposition 5.21. Any left autonomous pseudomonoid in Comod(¥) whose
underlying object in V" has a dual has a lax centre. If the pseudomonoid is also

right autonomous then the lax centre equals the centre.

Proof. We have already mention that any left autonomous pseudomonoid C' in
Comod(7¥) is a map pseudomonoid. By Theorem 3.14 we have to show that the
monad 5 : A — A has an Eilenberg-Moore construction, and for that it is enough
to show that it has a right adjoint, since Comod(?") has Eilenberg-Moore objects
for comonads. By Theorem 3.14, we have § = p(p® C)(C @ ccc)(p* @ C)(j ® C)
and therefore § has a right adjoint if p*j : I — C ® C has one; but C being left
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autonomous, this 1-cell is isomorphic to (d® C')n which is a composition of maps:
d by [13, Prop. 1.2] and n by [13, Prop. 5.1]. O

Ezxample 5.22. The proposition above implies that any finite-dimensional coquasi-
Hopf algebra H has a lax centre in Comod(Vect). Moreover, the antipode of
a finite-dimensional coquasi-Hopf algebra is always invertible by [9, 75]. This
means that the dualization of the induced map pseudomonoid is an equivalence,
and hence we have a left and right autonomous pseudomonoid (see [13, Prop.

1.5]). It follows that H has a centre and it coincides with the lax centre.

Observation 5.23. In the proposition above, suppose that the full subcategory
7} of objects with a dual in 7 is closed under equalizers of reflexive pairs. Then
the lax centre Z;(C) — C' lies in Comod(%}), and it is a lax centre in it.

To prove this observe that ¢t : C°® C — C° ® C and its Eilenberg-Moore con-
struction C' — C° ® C lie in Comod(7%), and the monad s and the distributive
law between t and s do so too; see the description of Eilenberg-Moore construc-
tions for comonads in Observation 5.15. It follows that the induced monad 5 on
C lies in Comod(7}), and it has right adjoint in this bicategory, as shown in the
proof above, and it is necessarily the same as in Comod(7’). It follows from the
description of Eilenberg-Moore objects mentioned above that s* has an Eilenberg-
Moore construction in Comod(%}) and coincides with the respective construction
in Comod(7'). Moreover, this construction is given by e, : C¥ — C, where €
is the comonoid morphism induced by the counit of the comonad §*. Therefore,
the lax centre of C' in Comod(7}) is the lax centre of C' in Comod (7).

The Drinfel’d double or quantum double of a finite-dimensional Hopf algebra
is a finite-dimensional braided (also called quasitriangular) Hopf algebra D(H)
with underlying vector space H* ® H (one can also take H ® H) and suitably
defined structure. It is a classical result that the category of left D(H)-modules is
monoidally equivalent to the category of (two-sided) H-Hopf modules and to the
centre of the category of H-modules. The Drinfel’d double of a finite-dimensional
quasi-Hopf algebra was defined in [64] using a reconstruction theorem, and explicit
constructions were given in [35, 74]. This last paper shows that the category
of D(H)-modules is monoidally equivalent to the centre of the category of H-
modules, via a generalisation of the Yetter-Drinfel’d modules. The quantum
double of a coquasi-Hopf algebra was described in [10]. Alternatively, it can be
described by dualising the explicit constructions for the quasi-Hopf case. Then

the Drinfel’d or quantum double D(H) of a finite-dimensional coquasi-Hopf H

98



algebra is finite-dimensional and has the property that the category of D(H)-
comodules Comod(D(H)) is monoidally equivalent to the centre of Comod(H),
and the equivalence commutes with the forgetful functors.

Given a finite-dimensional coquasi-Hopf algebra H, we would like to study
the relationship between the centre Z(H) in Comod(Vect) and the Drinfel’d
double D(H). To this aim we will need some of the machinery of Tannakian
reconstruction, of which we give the most basic aspects following [68].

Let 7" be a monoidal category and 7} the full sub-monoidal category with
objects with left duals. We denote by #}-Act the 2-category of pseudoalgebras for
the pseudomonad (7} x —) on Cat. Objects of this 2-category are pseudoactions
of 7} and 1-cells are pseudomorphisms of pseudoactions. Observe that 7} has a
canonical #}-pseudoaction given by the tensor product. We form the 2-category
5-Alg /75 with objects 1-cells o : &/ — 77 in ¥;-Act. The 1-cells are pairs
(F,¢):0 — o where F : o/ — o/ is a 1-cell in #j-Act and ¢ : o' F = ¢ is a 2-cell
in ¥y-Act. 2- cells (F,¢) = (F',¢') are just 2-cells F = F’ in ¥;-Act. There is
a 2-functor Comody : Comon(?) — #p-Act/7; sending a comonoid C' to the
forgetful functor we : Comodf(C') — #%; here Comodf(C') is the category of right
coactions of C' with underlying object in #;. This category has a canonical 7}-
pseudoaction such that w is an object of #}-Act/7}. The definition of Comod
on 1-cells and 2-cells should be more or less obvious; see [68].

Under certain hypothesis on 7, the 2-functor Comod; is bi-fully faithful. Here

is the case we will need: the 2-functor
Comody : Comon(Vect) — Vects-Act/Vect ¢

is bi-fully faithful. We refer the reader to [68] for a proof of this result.

Theorem 5.24. For any finite-dimensional coquasi-Hopf algebra H, the coalge-
bras H%" and D(H) are equivalent coquasibialgebras. Moreover, they are isomor-

phic as coalgebras.

Proof. By Observation 5.23, H% is a centre for the pseudomonoid H in the
monoidal bicategory Comod(Vecty). Hence we have an equivalence in the 2-
category Vect ;-Act/Vect, from the forgetful functor Comod;(H®") — Vect; to
the forgetful functor Z(Comod;(H)) — Vecty. On the other hand, there is an
equivalence from the latter to Comod(D(H)) — Vects. In this way we get an
equivalence from Comod(H®") to Comod(D(H)) in Vect ;-Act/Vect;. By the

result mentioned above this theorem, we have an equivalence f : H — D(H)
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in Comon(Vect). That is, both coquasibialgebras are equivalent. As every
equivalence in Comon(¥') has an invertible underlying arrow in ¥, we deduce

that f is an isomorphism of coalgebras. O

5.2.5 Radford’s formula

In this section we interpret the results on Radford’s formula obtained in Chapter 4
in the case of the bicategory of comodules. We will assume that ¥ is a symmetric
monoidal category with equalizers and whose tensor product preserves equaliz-
ers of reflexive pairs in each variable, so that Comod (%) exists. Since the base
monoidal category ¥ is symmetric, the canonical right and left bidual pseudo-
functors we have chosen on Comod(7’) are equal. Therefore we shall write both
right and left biduals by (—)°.

For the sake of simplicity, and with view to the applications to Hopf algebra
theory, from now on we will suppose that (H,j,p,s) is a coquasi-Hopf algebra
in the symmetric monoidal category #. We consider the map pseudomonoid
(H, j«,ps) in Comod(?) with left dualization d = s,.

Lemma 5.25. The arrows sj and j : I — H are equal in V.

Proof. Write j°P for the arrow j regarded as a comonoid morphism I — H°. It
is easy to see that j*° = jJP : I — H°. By Proposition 2.38, the left dualization
S« is a strong monoidal morphism. In particular, there exists an isomorphism
(s7°P)s = 547" = ji, and then an isomorphism sj°°? = j in Comon(?’). This
amounts to an invertible arrow + : I — [ such that v ® sj = j ® y; hence

sj=17. O
Lemma 5.26. Let M be a left H-comodule.

1. M is invertible in the monoidal category Comod(¥)(H,I) if and only if
the object M € ¥ is invertible.

2. If M is invertible, M is isomorphic to f* @ (Me*) where f: 1 — H is the
unique morphism such that f ® M is the coaction of M.

3. If M is invertible and f,g : I — H are the comonoid morphisms corre-

sponding to M and its left dual respectively, then p(f ® g) =j =p(g ® f).

Proof. 1. Clearly, € : H — [ is a strict monoidal 1-cell from the pseudomonoid

(H,j,p) to I. Hence, the monadic functor
Comod(¥)(¢*,I) : Comod(¥)(H,I) — Comod(¥)(I,I) ~ ¥ (5.10)
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is strong monoidal. Therefore, Me* is invertible whenever M is so.

Conversely, by [13, Prop. 5.1] (see Proposition 5.14), Me* has a dual if and
only if M has left adjoint, and this happens if and only if M has left a dual in
Comod(7)(H,I), by Proposition 4.6. Moreover, the coevaluation and evaluation
for Me* are the image under (5.10) of the ones of M. Then, the invertibility of
M follows, because (5.10) is conservative.

2. If M € ¥ is invertible, tensoring the coaction M — H @ M with M" on
the right we obtain an arrow f : I — H. The coassociativity of the coaction
ensures that f is a comonoid morphism. Clearly f* ® Me* = M.

3. Denote a left dual of M by M<. The underlying arrow in ¥ of the evaluation
ev : M*® M — I is an isomorphism between (¢* ® M%*) @ (f* @ Me*) =
(plg® f)* @ (M®® M)e*) and j*. If one writes this explicitly as diagrams in
¥, one immediately sees that it implies p(¢ ® f) = j : I — H. An analogous
reasoning proves that p(f ® g) = j. O]

When s is invertible, denote by § : H° — H the morphism of comonoids

whose underlying arrow in ¥ is the inverse of s.

Lemma 5.27. With the notation above, H is also right autonomous if and only
if s : H® — H s invertible in Comon(¥), or equivalently, in ¥'. Moreover, in

this case the right dualization is given by S,.

Proof. From [13, Propositions 1.4 and 1.5] we know that a left autonomous map
pseudomonoid is right autonomous if and only if the left dualization is an equiv-
alence. Then, H is right autonomous if and only if s, 4 s* is an equivalence.
In particular, the counit, that is given by s : H — H (see beginning of Section
5.2.2), is an isomorphism. The converse is clear.

The right dualization is given by (s,)°, by [13, Prop. 1.4] (recall that in our
case left and right bidual coincide); so it is the comodule with underlying object

H and left and right coactions

(HE2HoHSHoH 2 HoH SHoH) =H> HeoH 2L He H)

and
HS5HoHSHoHSHH)=A

respectively. It is clear that the arrow s : H — H is an isomorphism of comodules

from (s4)° to S. O
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From now on we will suppose that the antipode of H is invertible. The right
dualization d is just 3, where 5: H° — H is the inverse of s.

If H has dual in 7, so that n: I — H° ® H has a right adjoint, then there
exists a comodule W : H — I such that (j,W)=*1g = 1, has (—*1p)-algebras (see
(4.14)). Here, 1j is the regular bicomodule H, j.W is just W with trivial right
coaction induced by the unit j; then, (juW) * 15 can be taken as the comodule

with underlying object W ® H, left and right coactions

Weo I X2 Howe %2 129 pe2 owe g %L gowe o

We H 22 We He H.

The right action of 15 on j,W x 1 is just the morphism W@ p W@ H® H —
W® H. Using Proposition 4.10, the comodule 1§; can be taken to be the left dual
HY of H with coaction

12(18A)A®1 H @ H® o HY —

1®evl®l
e

H\/ 1®coev H\/ ® H® H\/

cgv m®1®cy gv “1®1®s
_ -

HeoHY@HQHYQH HoHY®H = HeoHY9H

where ¢ denotes the symmetry of #". Analogously, the right action of 15 on 13
is the morphism

1®1®coev
—_——

HY @ H H @ H? o HY 2225 gV o H o HY <24 gV,

Observation 5.28. The comodule W : H — [ is isomorphic to the composition
of 1§, with j* : H — I; in other words, W is the equalizer of (HY ®s)(cy gv)(ev®
HoHY)(HY®@A®HY)(HY®coev) and HY®j, or, composing with the symmetry

and s~! and using Lemma 5.25, the equalizer of
Jzal 1®coev oY ®H®Hv 1RA®1 Jzal ®H®2 ®HV ev1®1 H®Hv

and j ® HY. We call W the object of right cointegrals of H. When the base

monoidal category is Vect, W is the usual space of right cointegrals

{pe HY | Y d(z1)ws = d(x)j}.

Definition 5.1. When the comodule W : H — [ is invertible, define b : [ — H

as the invertible comonoid morphism given by Lemma 5.26. Define the modular
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element of H asa=sb:1 — H.

Ezample 5.29. When the base monoidal category is Vect, the element a € H
defined above is the usual modular element. In order to show this we compare
two expressions for the coaction of W. The diagram on the left hand side below,

in which the vertical arrows are the coactions, commutes by definition of W.

We——— gV W H HY® H

L |

HoW——H®HY HoW® H H

Taking mates under duals, we get the commutative square on the right hand side,
i.e., for any ¢ € W and x € H, ¢(x)b = ¢(x2)s ! (z1); equivalently,

d(x)a = Z o(x9)xy.

This means that a is the modular element, since (¢ * ¢)(x) = > ¥(x1)p(x2) =
(a)¢(z) for any ¢p € HY.

Proposition 5.30. Let (H,j,p,s) be a coquasi-Hopf algebra in ¥, and suppose
the comodule W is invertible. Then any isomorphism

dd*

Womy=H S e YL gL,

TS HeH 2, g, H)

in Comod(¥), where d = s, gives rise to a convolution invertible arrow « :

H — I in ¥V satisfying

(5.11)

where b : I — H is as in Definition 5.1.

Proof. Denote by s and § the inverse of s when regarded as a coalgebra morphism
H° — H and H — H° respectively. Also denote by § the morphism s when

regarded as a morphism H — H°. Then, 5 = 57! and s = 57! in Comon(7?),
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©
=]
a
u
12
[VaRY
‘*
H
=
c
»n

and hence d & 5, =~ §
dd* =2 5*5* = (538)" = (s72)*  dd* = 55" = (s8)" = (%)%,

where s72,s> : H — H in Comon(?). We can rewrite the isomorphism 7
as an isomorphism (p(s™2 ® b))* = (p(b ® s?))*, and hence it is induced by
an isomorphism « : p(b ® s?) = p(s~2 ® b) in Comon(¥), in the sense that
7= (a® H)A, and this is exactly our result.

O

Observation 5.31. Recall the following standard notation in Hopf Algebra The-
ory. If C is a coalgebra, its dual C" acts on C on the left and on the right by

’Y®UC'—>74$:Z$1’Y(I2) x®’y'—>x;'y:2fy(m1)x2.
Then, the equality (5.11) is often written as
b-s?(x—a)=s52(a—x)-b.

Lemma 5.32. Let k be a commutative ring and % = k-Mod®®. Denote by
Comod (% )(B, E)y the category of B-E-bicomodules whose underlying k-module

has a dual. Then any natural transformation
7: Comod(% )(M,I) = Comod(% )(N,I)
between functors Comod(% )(D,1I); — Comod(% )(C,I) is of the form
7 = Comod(%)(v,I)

for a unique comodule morphism v : M — N.

Proof. Write D-Mod; for the category of D-modules whose underlying k-module
has a dual. This category is the Cauchy completion (i.e., the completion un-
der absolute colimits) of its full subcategory determined by D. Observe that
Comod(%)(D,I); is just D-Mod}", the category of D-modules with a dual
within k-Mod. This is because a comonoid in % is a k-algebra and a comodule in
% a k-module. Then Comod(% )(D, I)y is the completion under absolute limits
of its full subcategory determined by the regular comodule D. Hence 7 is of the

form vp— for a unique morphism of left C-comodules v : M — N which can
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be easily seen to be also a morphism of right D-comodules. O
Lemma 5.33. Let k be a commutative ring.

1. A k-module L is invertible if and only if Ly is a kn-vector space of dimen-

sion one for each mazximal ideal m of k.

2. If a k-module L has (categorical) dual LV and M is a k-module such that
M ® L= LV, then M is invertible.

Proof. (1) Localisation is a (normal) monoidal functor k-Mod — kyn-Mod; this is
just the well known fact that My ®p,, Nm is canonically isomorphic to (M @ N ).
Therefore, the evaluation ev : L ® LY — k gives evaluations Ly, Rk Ly — km for
each maximal ideal m, each of which is an isomorphism since L., has dimension
one over ky,. If follows that evy, is an isomorphism for each m, and then ev is an
isomorphism.

(2) For each maximal ideal m, we have My ®p,, L = (L)Y, where the dual
is taken in the category of ky-vector spaces. Then, dimy My, = 1 for every

maximal ideal m, and hence M is an invertible k-module. Ol

A quasi-Hopf algebra H in k-Mod is a coquasi-Hopf algebra in % = k-Mod®P.
If H has dual as a k-module, we can consider the 1-cell W : H — [ in Comod (%)
as before. This 1-cell is just a left H-module, and when W is invertible the action
of H is given by a convolution invertible multiplicative functional 5 : H — k.

If A is the comultiplication of a quasibialgebra, we will write A(z) = > 21 ®
9. However, the usual computations with Sweedler’s notation do not apply since

A is not associative.

Theorem 5.34. Let k be a commutative ring and H a k-algebra with multipli-
cation m : H® H — H and unit w € H. Assume H is projective and finitely
generated as k-module, and equipped with a quasi-Hopf algebra structure with co-
multiplication A : H — H ® H, counit € : H — k and antipode s : H° — H.
Then there exists an invertible h € H such that

D Blan)h-s*(w2) =Y Blxa)s *(z1) - b, (5.12)

where B : H — k is the invertible multiplicative functional given by the H-module

structure of W.
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Proof. Write % for k-Mod®®. The 1-cell W : H — I in Comod(% ) satisfies
W ® 1y = 1%;; in particular, there is an isomorphism of k-modules W ® H =~ HY,
and therefore, W is an invertible k-module by Lemma 5.33. By Lemma 5.26 we
deduce that W is invertible in Comod(% )(H, ) ~ H-Mod®P.

On the other hand, by means of Lemma 5.32 and Corollary 4.16 we obtain an

isomorphism
while Proposition 5.30 tells us that (5.12) holds. n

Now we turn to the case of coquasi-Hopf algebras.

Lemma 5.35. If we write .#4 = Comod(Vect), any natural transformation
T M) = Mg I) : HM(D,I) — H(C, 1)y, where f,g : D — C are
coalgebra morphisms and D and C have dual in Vect, is of the form .4 (a*, 1)
for a unique 2-cell a : g = f in Comon(Vect). Moreover, T is invertible if and

only if a is too.

Proof. Set ¥ = Vect. There are isomorphisms between Comod(?)(D, I); and
Mod(7)(DY,I); sending a comodule to the module with same underlying space
but with the action of DV. Under these isomorphisms, 7 becomes a natural

transformation
Mod(¥)(f¥*,I) = Mod(¥)(g"*,I) : Mod(¥)¢(D",I) — Mod(¥);(C",I)
where fV* is the bimodule with left and right actions
cVop' N pVepY - DY  and DY@DY — DY,

and analogously for g. This is just a natural transformation 7 : ((fV)* ®pv
—) = ((9¥)* ®pv —) between functors from D¥-Mody to CV-Mody, and any such
transformation is of the form (3 ®pv —) for a unique morphism of bimodules
B:(fY)* — (gY)*. To give 3 is the same as to give a morphism of bicomodules
0 : g« — f+; in fact, 0V = 3 as morphisms in Vect. Finally, 7 = .# (a*, I) where

ay = 0. O

Theorem 5.36. If H is a finite dimensional coquasi-Hopf algebra (in Vect),
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then there exists a convolution-invertible functional o : H — k such that
b-s?(z —a)=s52(a—x)-b.

Proof. First we have to check that the comodule W is invertible. This is clear
since W ® H = HY, and hence dimW = 1, and using Lemma 5.26. Now, Lemma
5.35 together with Corollary 4.16 provide us with an isomorphism of comodules

as in Proposition 5.30, and hence with our result. Ol
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Chapter 6

Pseudo-commutative enriched
monads and monoidal

structures

We would like to apply the theory of autonomous pseudomonoids developed in
previous chapters to ¥ -categories with certain class of (co)limits, or more gener-
ally, to 2-categories of algebras and pseudomorphisms for a 2-monad. To this aim,
we must endow a 2-category of the form T-Alg with a monoidal structure compat-
ible in certain sense with 1. Of course, it will not be possible to accomplish this
for any 2-monad 7. An answer to our needs is given by the pseudo-commutative
2-monads introduced in [37].

The main result of this chapter is Theorem 6.35, where we show that each lax-
idempotent or KZ 2-monad and each colax-idempotent 2-monad has a canonical
structure of a pseudo-commutative 2-monad. This considerably extends the set
of examples given in [37].

As we already mentioned, our main examples, which will be treated in the next
chapter, are ¥'-categories with certain (co)limits. This amounts to considering 2-
monads on the 2-category #-Cat. As a result the constructions in [37] cannot be
applied without modification. The problem arises in that in the mentioned paper
the authors construct monoidal structures on 2-categories of the form T-Alg for
a pseudo-commutative 2-monad 1" on Cat. If one tries to replace Cat by 7#'-Cat
one finds that several additional hypotheses are required on ¥, which essentially
amount to the monadicity of ¥ over Set. To avoid these undesirable restrictions

we are forced to develop the theory of pseudo-commutative # -enriched monads,
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where % is a symmetric monoidal closed Cat-enriched category (2-category).
When # is ¥-Cat we obtain our main examples. The price we have to pay
for this generality is to extend some of the basic theory of 2-monads to the # -
enriched case.

The philosophy of [37] is that in many examples of monoidal closed struc-
tures, the closed structure is easier to describe and behaves better that the mo-
noidal structure. The simplest example is the category of vector spaces with the
usual monoidal closed structure. The authors define a notion of pseudo-closed
2-category that is a semi-strict version of closedness, in the sense that it is as
strict as the examples of interest allow. The weakness in this definition is intro-
duced in the conditions involving the unit object. Under certain conditions, a
pseudo-closed structure induces a (weak or pseudo) monoidal structure by means
of biadjunctions.

The structure on a 2-monad 7" on Cat that corresponds to a pseudo-closed
structure on T-Alg is called a pseudo-commutativity. Pseudo-commutative 2-
monads are the 2-dimensional analogue of the commutative monads introduced
in [48] and further studied in [49, 50].

For a complete and cocomplete symmetric monoidal closed Cat-category #,
we develop an enriched version of many of the results in [37]. In Section 6.1
we give the basic definitions and properties of # -limits and their relation with
2-limits. In particular, we look at the 2-dimensional aspects of # -limits.

In Section 6.2 we define for a #-enriched monad T a # -category T-Alg.
We study the preservation of # -limits and colimits of the “inclusion” # -functor
J : T-Alg, — T-Alg with domain the usual Eilenberg-Moore # -category of T'.
These constructions capture the usual elements of the 2-monad theory of [7] in
the case # = Cat.

Section 6.3 introduces pseudo-closed # -categories and pseudo-commutative
# -monads, while Section 6.4 gives an alternative description of a pseudo-com-
mutativity essential in our proof of the pseudo-commutativity of lax-idempotent
2-monads.

In Section 6.5 we describe the pseudo-closed structure of the % -category
T-Alg for a pseudo-commutative # -monad 7', and in Section 6.6 we induce mo-
noidal structures from pseudo-closed ones.

Finally, Section 6.7 shows that lax-idempotent and colax-idempotent # -
monads are equipped with canonical pseudo-commutativities. As a consequence,

for a finitely presentable monoidal category ¥, the 2-category of #-categories
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with finite (co)limits and finitely (co)continuous ¥ -functors has canonical pseudo-
closed and monoidal structures. To keep this chapter of a reasonable size, we

study this consequence and others in the next chapter.

6.1 #-limits when # is a 2-category

Fix a complete and cocomplete monoidal closed 2-category (i.e., Cat-category)
#1. We will write #4 for the underlying category of #7, which is a complete
and cocomplete monoidal closed category. We can consider # -categories, # -
functors and # -natural transformations by enriching in #4. We write # for the
W -category # , with enriched structure induced by the closed structure.

Denote by W the 2-functor #(I,—) : #1 — Cat. The corresponding under-
lying functor Wy : #) — Caty is lax monoidal, and then it induces a 2-functor
(=)1 = (Wy)« : #-Cat — 2-Cat. The image of a # -category .# under (—); is
denoted by #1 and called the underlying 2-category of £ . Similarly, if F' is a
W -functor, we call F the underlying 2-functor of F. The underlying 2-category
of # is #1. Observe that the underlying category of the 2-category # is g,
the underlying category of the enriched category 7 .

Since Wy has left adjoint given by taking tensor product with the neutral
object I € #, the 2-functor (—); has a left adjoint F : 2-Cat — #'-Cat.

Observation 6.1. If X is an object of a # -category %, the representable 2-
functor 71 (X, —) : # — Cat equals the composition of .7 (X, —); : 1 —
with W : #1 — Cat.

Given # -functors F,G : X — £, with J# small, there is a canonical iso-
morphism between the categories W ([, Z](F,G)) and #-Cat(.#, Z)(F,G).

Observation 6.2. For any 2-category ./ and # -category % there is a # -
category of 2-functors &/ — .77, denoted by [</, #]. The # -enriched homs
are given by the usual end formula: [«7, % |(f,g) = fmed H (fr,gz). In fact,
# -Cat is monoidal closed and hence canonically a (#/-Cat)-category, and hence
a (2-Cat)-category via the 2-functor (—); : #-Cat — 2-Cat. The # -category
[o/, ] is just the cotensor product of the 2-category o/ with the # -category % .
In particular, there are canonical isomorphisms between [7,. %] and the usual

W -category of # -functors [F(</), #].

Let ¢ : & — Cat be a 2-functor. Denote by ¢ : F(2) — # the unique
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# -functor such that the following diagram commutes.

b1

F(P)h ——=
NT T_*z (6.1)
P p Cat

Here N : & — F(42); is the unit of the adjunction F - (—);. Let G : F(#) —
J be a W -functor corresponding to a 2-functor F' : & — #;. We define the
W -limit {¢, F}y of I weighted by ¢ as the usual weighted limit {¢, G'}.

Lemma 6.3. Let & be a # -category and F' : &P — # be a 2-functor with
corresponding W -functor G : F(P) — A . If u: ¢ — # (L, G—) is a W -limiting

cylinder, then

counite WuN
—_—

¢ W(—x )¢ =Wé N % W' (L,G-)N = (L F-)  (6.2)

1s a Cat-limiting cylinder.

Proof. By hypothesis, u induces % -natural isomorphisms

These isomorphisms constitute an arrow in the category #-Cat(.2°P, #). Ap-
plying the 2-functor (—); : #-Cat — 2-Cat we get an arrow in 2-Cat (4", #4),
and composing with the 2-functor W : #; — Cat we get the first 2-natural iso-

morphism in the chain of isomorphisms below (see Observation 6.1).

H(Y, L) = [F(2), W], # (Y,G-))
= W -Cat(F(2), W) (o, # (Y,G-))
=~ 2-Cat(Z, #1)(¢1N, # (Y,G—)1N)
=2-Cat(2, 71)((—x )¢, # (Y,G—)1N)
= 2-Cat(Z,Cat) (¢, WH (W,G—)1N)
=~ 2-Cat(2, Cat)(¢, #1(Y,F—)))
The third isomorphism is induced by F - (=), the equality by (6.1), the fifth
isomorphism is induced by the adjunction (—*I) 4 W : #; — Cat, and the last

isomorphism by Observation 6.1 and definition of G. Now it is easy to see that
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the 2-natural transformation ¢ — J#1(L, F—) corresponding to the identity 1-cell
le (L)L) is (6.2). O

Observation 6.4. Let ¢ : & — Cat be a weight, ¢ : F(£) — # the in-
duced #/ -functor and # a ¢-complete # -category. Recall from Observation
6.2 that there is a # -category of 2-functors [&?, #]. Then {¢, —} is the under-
lying 2-functor of a % -functor [, %] — ¢, namely, the composition of the
isomorphism [22, #| = [F(2), #] and {¢, —}.

Given a set of Cat-weights @, i.e., a set of 2-functors ¢ : & — Cat with &
small, we denote by ® the set of # -weights ¢ with ¢ € ®.

Corollary 6.5. Let & be a # -category. The 2-category J&1 is ®-complete when-

ever # is ®-complete.

6.2 Enriched categories of algebras

We shall call monads (7,7, ) in the 2-category #-Cat # -enriched monads.
When there is no chance of confusion we omit the unit 1 and the multiplication
1 of the monad and write only 7. As usual, we have the Eilenberg-Moore # -
category of algebras, which we will denote by T-Alg,, and we recall briefly here.
Let T be a # -enriched monad on the % -category .%#". The objects of T-Alg,,
called (strict) T-algebras, are Ty-algebras, where Tj is the underlying (ordinary)
monad of T on the category #). We will write T-algebras as pairs (A, a) where
a:TA — A is the algebra structure, or simply as A when there is no place to
confusion. The enriched hom T-Alg,((4,a),(B,b)) is given by the equalizer of
the following pair of arrows in 7.
H#(A,B)—L @A, TB) LY (1A, B)
N A (6.3)

A (a,1)

The fact that #] is a 2-category provides us with an extra dimension, allowing
us to define the enriched analogous of many 2-categorical constructions.
6.2.1 Lax and pseudo morphisms
For each object X € J# and each T-algebra (B,b) define a 1-cell in #

H(1,b)
e

ox.p:H(X,B) L #(TX,TB) JH(TX,B). (6.4)

112



When A, B are T-algebras, the 1-cells 04 p are the components of a % -natural
transformation o : # (Us—,Us—) = H (TUs;—,Us—) : T-AlgP @ T-Alg, — #'.

Observe that o satisfy the following equations:
orABOAB =K (A, B)oap  H(na,B)oap =1 (6.5)

Definition 6.1. Given two T-algebras (A, a) and (B,b) in 7, define a 1-cell
p:L— J#(A,B) and a 2-cell

) A (A, B) s
L — U H (TA, B) (6.6)
\p% 7 (a,1)
(4,B)

The pair (p,v) is defined as the universal such pair satisfying the equalities in
Figure 6.1, in the following sense. If (¢ : M — (A, B),d) is another pair
satisfying the same conditions, then there exists a unique f : L' — L such that
g = pf and 6 = yq. Moreover, suppose that (r: N — J# (A, B),¢€) is yet another
pair satisfying the conditions and denote by g : N — L the corresponding 1-cell.

If w: g = ris a 2-cell compatible with § and € in the sense that

(A, B)

q
SAHAB) 4
N//\\; Is \%(TA B) = L< be /%(TA’ B)
\ri%/ e ; \\‘%/(A’ p) @

(4,B) 7V

0A,B

R

then there exists a unique 2-cell A : f = g such that p- A = w. We will denote
the object L by T-Alg,(A, B), and call it the object of lax morphisms from A to
B.

Similarly, if we add the requirement that v be invertible, we obtain an object in
#1 which we will denote by T-Alg(A, B), and call it the object of pseudomorphisms
from A to B.

Observation 6.6. The universal pair (p : T-Alg,(A,B) — (A, B),7y) can
be constructed using an inserter and two equifers in the complete 2-category
#1. Hence this universal pair always exists. Analogously, T-Alg(A, B) can be

constructed using an iso-inserter and two equifers.

Proposition 6.7. There is a W -category T-Alg, with objects the T-algebras and
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A (A, B) # (TA, B)
p OTA,B
/ 2 7 (a,1) \
L= -~ #(A B) H (T?A, B)
oA,B
’ b e
H (A B) — = K (TA,B)
I
. HAB)
/ \ %(MAJ) 2
L\ b H(TA,B) —— ¥ (T*A, B)
/
") T
o AADB)
/ \ %(771471) o
L\ U H (TA, B) H(A,B) =1
)
" e

Figure 6.1: Axioms for T-Alg(A, B).
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enriched homs given by the objects T-Alg,(A, B). Similarly, there is a # -category
T-Alg with objects the T-algebras and enriched homs given by T-Alg(A, B). There
are obvious forgetful # -functors Uy : T-Alg, — %, U : T-Alg — & and an
identity on objects inclusion # -functor T-Alg — T-Alg,.

Proof. We give only a very short outline of the proof. Let (4,a),(B,b),(C,c)
be T-algebras, and (p: L — # (A, B),7), (¢ : M — 2 (A, B),0) the respective
universal objects as in Definition 6.1. Using v and § we can form a 2-cell

A (B,C)® # (A, B) 22 ¢ (4,C)

qRp
L@M////7 I #(TA,C)
e

H(B,C)® # (A, B) —— #(A,C)

comp

oa,c
~Han)

obtaining a 1-cell L ® M — T-Alg;(A,C). This is the composition of the #
category T-Alg,. Similarly, if we denote the identity of A in J# by id : I —
JH (A, A), the identity 2-cell #(T'A, )Ty aid = J# (a, A)id induces a 1-cell I —
T-Alg,(A, A). This is the identity of (A,a) in T-Alg,. O

Definition 6.2. Define a # -functor J : T-Alg, — T-Alg as follows. On objects
J is the identity. On homs, Ju p : T-Alg, (A, B) — T-Alg(A, B) is induced
by the universal property of T-Alg(A, B). If (p : T-Alg(A, B) — % (A, B),7)
is an universal pair then J4 p is defined by the requirement that pJ4 p be the
equalizer of (6.3), and v.J4 g be an identity 2-cell. Similarly, there is a # -functor
Jp: T-Alg, — T-Alg,. Observe that UJ = Us = UyJy : T-Alg, — W'

6.2.2 Preservation of limits

Now we study the preservation of limits and colimits of J : T-Alg, — T-Alg and
J : T-Alg, — T-Alg,.
The objects T-Alg,(A, B) and T-Alg(A, B) can be described as weighted limits
in one step, as follows. Consider the graph G
T Y
—_— —_—
0%~ 1 =272
u w
and let .% be the free 2-category on G with relations yv = zz, yr = wx, 20 = wo,

uxr = wv. For T-algebras A, B the following diagram in #) defines a 2-functor
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Fap:F — M.

OA,B OTA,B

2 (a,1) H (T'A, B) 2 (Ta,1) H (T*A, B) (6.7)

B — R ——
H (na,l) H (pa,l)

H# (A, B)

Now, the Yoneda embedding Y : .% — [%#°P, Cat| defines a diagram of shape G
in [[#°P, Cat], satisfying the relations in the definition of .#. Thanks to these
relations we can form a (iso) inserter and two equifers analogous to the ones in Ob-
servation 6.6 to obtain a 2-functor (x) x¢ : #°P — Cat. Using the Yoneda lemma
one can easily deduce that the limit ({x, Fa,B}) {x¢, Fa,B} is just (T-Alg(A, B))
T-Alg,(A, B).
We claim that the correspondence A, B — F4 g : % — W) is the object part
of a #/ -functor
F:T-Alg® @ T-Alg, — [Z, V] (6.8)

where the codomain is the % -category of 2-functors from .# to # of Observation

6.2. Indeed, this # -functor corresponds to a 2-functor
F — [T-Alg® @ T-Alg,, #']1 (6.9)

and hence to a graph morphism G — [T-AlgP? @ T-Alg,, #']o satisfying the re-
lations given above. This morphism is defined by the diagrams (6.7), that are
clearly # -natural in A, B.

Proposition 6.8. The # -functors J and Jy preserve limits.

Proof. We only treat the case of J; the proof for J; is completely analogous. We
will show that the # -functors T-Alg(A, J—) : T-Alg, — # preserve limits. By
the discussion above, T-Alg(A, J—) is just the composition

T-Alg, ZA 17 ) 7 oy

s

(Recall that {¢, —} is a #'-functor by Observation 6.4). Since {¢, —} is contin-
uous, it suffices to show that F'(A, —) is so. To show this, recall that F'(A, —) is
defined by sending B to the diagram (6.7), or rather to the diagram of shape .#
in # constructed from (6.7). A direct inspection of the diagram (6.7) shows that
the assignment B — (6.7) preserves limits; since the diagram F(A, B) is given
by composition of the arrows in (6.7), it follows that F'(A,—) preserves limits

because limits in [.%, #] are computed point-wise. O]
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Proposition 6.9. IfT : % — J preserves ¥-colimits, then J, J; have the same
property.

Proof. The proof is similar to that of Proposition 6.8. We have to show that
T-Alg(J—, B) : T-Alg?® — W preserves 1-limits, or equivalently, that F'(—, B) :
T-AlgP? — [Z,#] does so. This last property holds since F'(—, B) is defined by
the diagrams (6.7) and T preserves t-colimits. O

Corollary 6.10. The # -functor J has a left adjoint if and only if its underlying
2-functor J1 has a left adjoint, if and only if its underlying functor Jo has a left

adjoint.

Hence, J has left adjoint when the 2-category T-Alg, ; has codescent objects.
In particular, this holds if .#] is cocomplete and 7" has a rank. See [53].

6.2.3 Flexible replacement

Now fix a monad 1" on %" in #'-Cat and assume that J has a left adjoint. We can
reproduce some of the results on flexibility in [7] in the context of # -categories.
It is not our intention to develop a theory of monads enriched in 2-categories, but
only prove the results we will need later in this work. We will use the notations
in [7].

Denote by pg : A — A’ and g4 : A’ — A the unit and counit of the adjunction
(=) 4 J. We know gapa = 1 and g4 is a retract equivalence in T-Alg,. We say
that a T-algebra A is flexible when it is a flexible T%-algebra in J#] in the sense
of [7]. In other words, when g4 has a section in T-Alg, ;. As observed in [7],
T-algebras of the form A’ are flexible.

The following lemma is a slight generalisation of [7, Theorem 4.7].

Lemma 6.11. For a T-algebra A, q : A" — A is an equivalence in T-Alg,, if
and only if the 1-cell Jy g : T-Alg (A, B) — T-Alg(A, B) is an equivalence in #’
for all T-algebras B. In particular, this is the case if A is a flexible algebra.

Proof. Suppose g4 is an equivalence in T-Alg, ;, with chosen pseudoinverse k :

A — A'. As py is a pseudoinverse for g4 in T-Alg,, it follows that k and py are

isomorphic. The pseudoinverse for J4 p is

) T'Algs (kvl) T

T-Alg(A, B) = T-Alg,(A', B “Alg (A, B).

In the proof one uses that J4 p is monic in %y, as UapJap = (Us)ap :
T-Alg (A, B) — (A, B) is a regular mono. O
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Proposition 6.12. Let G : T-Alg — £ be a # -functor and suppose H : £ —
T-Alg, is a left adjoint for GJ, with unit s : 1 — GJH. Then the components of

the W -natural transformation

G Z(s,1)
—

tpa: T-Alg(JH(L), A) S L(GJH(L), A) Z(L,GA)

are retract equivalences in W .

Proof. The proof is by inspection of the composition
J
ZL(L,GJ(A)) = T-Alg,(H(L), A) 224 T Alg(JH(L), J(A)) —

CmnIN, pGaH(L),GI(A) LY, 2(L,GaA)).

This composition is an identity. On the other hand, the composition of the last
two arrows, G g (r),7(4) and £ (sp, 1), is just 7, 4. It follows that 7, aJp(r) A is
an isomorphism. But H(L) is flexible by [7, Theorem 5.1], and hence Jy (1) 4 is
an equivalence by Lemma 6.11. Therefore, t7, 4 is an equivalence, and since it has

a section, in fact it is part of a retract equivalence. Ol

Corollary 6.13. The components of the # -natural transformation

FX,A

T-Alg(FX, A) 224 g rx,uA) L0, v (x, A)

are retract equivalences in W .

We do not go as far as to define 7 -biadjunctions and saying something about

the pseudo-# -naturality of the equivalences in the corollary above.

6.2.4 Preservation of colimits

For a moment we go back to the case of a 2-monad S on a 2-category #". Assume
the left adjoint to J : S-Alg, — S-Alg has a left adjoint (—)". In [53] the existence
of (=)' is related to the existence of certain colimits in S-Alg, called codescent
objects. We recall below only the definitions needed in this work. In particular
we consider strict algebras and not lax algebras as in [53].

A strict coherence data in a 2-category Z is a diagram

p d
T) E——
e
X34>X2<;X1
L _c.
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satisfying equations: de = 1x, = ce, dp = dq, cr = cq, cp = dr. A lax codescent
object for the strict coherence data is a pair (z,§) where z : X; — X and
€ : xd = xc universal (in a 2-categorical sense) with respect to the conditions
(&p) - (&r) = &g and e = 1. A codescent object is defined in the same way buy
insisting that the 2-cell £ must be an isomorphism. Codescent objects of strict
coherence data were called “strict coherence objects” in [79].

By [53], the existence of (—) amounts to the existence of codescent objects

for the strict coherence data below, for each S-algebra (A, a).

KT A HrA
784 M2 114y (6.10)
T?a Ta

There is an obvious 2-category 2 such that strict codescent objects in a 2-
category .Z are in bijection with 2-functors 2 — .Z. Moreover, there is a weight
v : 9°P — Cat such that for any F' : ¥ — £ the colimit v x F is a codescent
object for the strict codescent object defined by F'. The same construction in the

case of lax codescent objects can be found in [53]; we omit the details.

Proposition 6.14. Let ¢ : &7°P — Cat be a 2-functor. If S preserves ¢-colimits,

then (=)' J preserves ¢-colimits.

Proof. First observe that since S preserve ¢-colimits, the forgetful U, : S-Alg, —
& creates such colimits. Now, the diagrams (6.10) define a 2-functor C :
S-Alg, — [2,S-Alg,], which is easily shown to preserve ¢-colimits. Hence the
composition of C' with (y* —) : [Z, S-Alg,] — S-Alg, preserves ¢-colimits. This

composition is just (—)"J. O

6.3 Pseudo-closed #-categories and pseudo-commu-

tative 7 -monads

This section recalls the concepts of pseudo-closed # -category and pseudo-com-
mutative # -category. We say recall because, although [37] considers 2-categories
the relevant definitions are exactly the same for # -categories.

6.3.1 Pseudo-closed enriched categories

In the same way that pseudo-closed 2-categories were defined in [37], we can

define pseudo-closed # -categories.
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Definition 6.3. A pseudo-closed W -category is a # -category % equipped with
the following data: # -functors V : % — # and [—,—] : AP @ 4 — A,
an object I € J, # -natural transformations js : I — [A, A], eq : [I, A] — A,
ian:A—[I,A], kapc:[B,C| — [[A, B],[A, C]]. This data must satisfy axioms
completely analogous to [37, Definition 1]. Explicitly, this data is subject to the
commutativity of the diagrams in Figure 6.2 and
o V[_a_] :%(_7_) :<%/OP®<)£/_>W;
; 1%
o the l-cell I 24 #/(I,[A, A)) = V[, [A, A]] —24,
the identity of A;

VIA, Al = # (A, A) is

e there are retract equivalences i4 - e4 in the 2-category J#7;

o the 1-cell # (I,V(igen)): #1(I,A) — #1(I,A) in Cat takes each f: 1 —
Ain 4 to ealp, Alja : I — [A A — [I, A] — A.

ka.ac

1 Iz (B, B| (A, Cl —=[[A, A, [A, C]]

. lkA \L[JA71]
J[A,B]
[[4, B], [A, B]] [4,C] [1,[A,C]]

€la,c]

ka.c,D

€, D] [[4, C), [A, D)) —"— [[[A, B], [A, C]], [[A, B, [A, DJ]]
kB,C,Dl \L[kA,B,C’:l]

[B,C],[B, D] [B,C1,[[A, B, [A, DI]]

[1,ka,B,D]
(A, B] —2E (11, Al [1, B]
%A\ J{[I’GB]
11, A], B]

Figure 6.2: Some of the axioms of a pseudo-closed # -category.

When # = Cat we recover the pseudo-closed 2-categories of Hyland-Power
[37].
Lemma 6.15. If 2 is a pseudo-closed W -category then 1 has an induced

structure of a pseudo-closed 2-category.
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Proof. Apply (—); : #-Cat — 2-Cat to the pseudo-closed structure of J#". [

A closed W -functor G : # — £ between pseudo-closed # -categories is a #' -
functor equipped with 1-cells ¢xy : G[X,Y] — [GX,GY], ¢° : I — GI satisfying
the usual axioms of a closed functor that we recall from [26] or [37, Definition 3].
So, G is said to be closed when it is equipped with a % -natural transformation
oxy : G[X,Y] — [GX,GY] and an arrow ¢g : I — GI satisfying the axioms
depicted in Figure 6.3.

1—1>[GAGA] @A -4 (G1,GA]
¢ol Tm,A GeAl l[¢071]
GITG[A,A] GA o [[’ GA}

®[A,B],[A,C)
_—

G[B,C] — ~ G[lA, B, A, O] [G[A, B], G[A, C]|
¢B,C\L l[lﬂm,c]
[GA, GB], [GA, GC]] [G[A, B],[GA, GCY]

[pa,B,1]
Figure 6.3: Axioms of a closed functor.

We will need the concept of a pseudo-closed transformation mentioned in [37].

Definition 6.4. Let G, H : Z — £ be two closed # -functors between pseudo-
closed # -categories. A pseudo-closed W -natural transformation T : G — H is a

W -natural transformation equipped with invertible 2-cells

¢

GIX,Y] [GX,GY]
i“”] [—* ~qc1
| ol [GX, HY] % iﬁ
b0
T[Tx,l] HI
H[X,Y] [HX,HY]

satisfying three axioms depicted in Figure 6.4.

Since a pseudo-closed 2-category is a semi-strict kind of closed 2-category, it
is reasonable to think that if each 2-functor [X, —] has a left biadjoint we obtain

a monoidal structure. This was studied in [37].

121



G[B,C] T G[[A,B],[A,C] —¢> [G[A,B],G[A,C]] W [G[A,B],|GA,GB]]

HBC) —2E o HiaBac]) |7 [1,7]
6 p ‘! [1,(1.7]]
[HB,HC] (HIABLHIAC) — o [GIABLHIAC
k [1,0] [1,0]
[#,1] [7,1] [ J[m.1]]
([HAHB] 2 [H[A,B),[HAHC]] —— = [GA,B],[HA,HC]] > [G[A,B],[GA,HC]]
|
GIB.C] e [GB.GO) —— > [[GAGB}GAGC] > [GIABLIGAGC]
T l[l,’r}
HIB,C (GB,HC) [L,01,7)]
é %’ \ (1,01,7]]
[HB,H ([GA,HB),[GA,HC)] TN ([GA,GB],[GA,HC]]
1
k [[7,1],1]J( U[?,I]%
(1,[7,1]] (#,1] [1,1]

wmansanc) 2T ma s ca oy 2 (mia B canc) Tl (GlaBLGAHC)

HI HI HI[A, A]
%
l‘ﬁ
T H[A, A
o I [HA, HA|
L [HA HA J l l[ﬂl
W (GA,GA] - [GA, HA
GA HA
[177_] [ Y ]
GIL, A ¢ (GI,GA] G A% [GI,GA]
l A
HII, A]— [HT, HA] CUGLHA = GA<~— [1.GA]
l ¢071] [ﬁ/ Tl i[luﬂ
A [1, A] <—[¢0.1] HA~<——[I,HA]

Figure 6.4: Axioms of a pseudo-closed transformation
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Theorem 6.16 ([37]). Suppose % is a pseudo-closed 2-category. If for each pair
of objects X, Y there is an object X @ Y and an equivalence dz : [X @ Y, Z] —
[X,[Y, Z]] 2-natural in Z such that the following diagram commutes

Z,W] : 1Y, 2), [y, W]] 2= [[X, [, Z]], [X, [Y, W]]]

k\L i[dzal}

(X oY, Z,[X @Y, W]| (X oY, 2], [X,[Y,W]]

[LdW]

then the assignment (X,Y) — X ® Y extends to a (weak or pseudo) monoidal

structure on JE with unit object I.

If 22, are pseudo-closed 2-categories with compatible monoidal structures
as in Theorem 6.16: each closed 2-functor J#° — £ has a canonical structure of
a (weak) monoidal 2-functor, and each pseudo-closed transformation induces a

(weak) monoidal 2-natural transformation.

6.3.2 Pseudo-commutative enriched monads

T : W — W is a #-functor, a strength for T is a # -natural transformation
txy : X®@TY) - T(X ®Y). Using the symmetry of %, we obtain a #/-
natural transformation 'y : T(X) ® Y — T(X ® Y). To give a strength ¢ is
the same as giving a % -natural transformation ¢ : T[X,Y] — [X,TY] and the
same as giving a # -natural transformation T : [X, Y] — [T'X,TY]. The bijection
between these structures is given by the diagrams below (where i denotes the unit

of the closedness adjunction of 7).

TX,TY|®TX — = =Ty X L [V, X®Y]

o o] E

X,Y]® X ——T([X,Y] 9 X) [V.X@TY] o [TYV.T(X V)]
TX — =TV, X Y]  7X,Y]oX —L~T(X,Y]® X)

| o a e

VITXeY] ¥V TXeY)] [X7TyY]eX TY

ev

We will consider # -enriched monads T equipped with the canonical strength
corresponding to the enrichment [X,Y] — [TX,TY].
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Definition 6.5. A pseudo-commutativity for a # -enriched monad 7' is an in-

vertible modification

t Tt

TX@TY —>T(X@TY) —>T%X®Y)

tTX'Yl \U/WX:Y lux@Y (611)
R 2 R

TTX®Y) —~THXQY) oy T(X )

XY
satisfying the axioms resulting from replacing in [37, Definition 5] the cartesian
product in Cat by the tensor product ® of #. We do not write the axioms
here, as these will not be explicitly used. An equivalent description of a pseudo-
commutativity is given in Proposition 6.18 below, which can be taken itself as an
alternative definition.

We call an strong enriched monad equipped with a pseudo-commutativity a

pseudo-commutative monad.

When # = Cat with the symmetric monoidal closed structure induced by

the cartesian product, we recover the pseudo-commutative 2-monads of [37].

Ezxample 6.17. One basic example of pseudo-commutative 2-monad discussed in
detail in [37] is the one of the free symmetric strict (unbiased) monoidal category
2-monad. This is the monad 7" on Cat given by the following description. If
X is a category, T'X has objects finite sequences of objects of X, and arrows
(1, xn) — (Y1, yn) pairs ((f1,---, fn), ™) where 7 is an element of the
symmetric group S, and f; : 1 — yn; is an arrow in X. There are no arrows
between sequences of different length. Composition is defined by multiplying the
elements of the symmetric group and then composing the arrows in the lists in
the unique possible way. Identities are of the form ((1,,,---,14,),1). The tensor
product of two lists of objects of X is obtained by appending the second list to
the first. This is easily extended to arrows. The multiplication puy : 72X — TX

is given on objects by removing parenthesis:

MX((x%a e '7x1191)a (l’%, e '71'%2)7' "5 (x?a e axzn)) = (l’%, ) 'axllcl’x%f ) 'vxzn)

The unit nx : X — TX is given on objects by nx(x) = (z). The description of
these functors on arrows are obvious and omitted for simplicity.
The domain of the 2-cell (6.11) is the 2-functor sending an object

(1, 2n), (Y1, ym)) ETX xTY (6.12)
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to

((xlv yl)? (:Ul’yQ)? ) (xlu ym)v (x27 yl)v Tt (332;ym)7 Y (xmyl)a o '(xna ym))

while the codomain is the functor sending (6.12) to

((x17y1)7 (132,:1/1), Y ($n>yl)a (xlay2)7 T (l'nvy?)a ) (xlv ym)7 T (mnv ym))

Therefore, domain and codomain of (6.11) are the functors sending (6.12) to the
two lexicographic orders. The components of the natural isomorphism yx y are
of the form ((1,---,1),7) where 7 is the permutation that mediates between the

two lexicographic orders. More details can be found in [37].

Later we will use the following alternative description of pseudo-commutati-
vities in [37, Proposition 8|. The basic observation is that 2-cells yxy in (6.11)

are in bijection with 2-cells

71X, Y] "L 71X, TY] L~ [T X, T2Y]

EX’Y\L \U,'VX,Y l[l,/.ty] (613)

_— 2 _—
(X, TY) = [TX, T?Y] = [TX, TY]

and the axioms of a pseudo-commutativity translate accordingly into conditions
on 7.
The following result was proved in [37, Proposition 8] in the case of 2-monads,

but it carries over unchanged to the case of enriched monads.

Proposition 6.18. To give a pseudo-commutativity for a # -enriched monad T is

equivalent to give a modification ¥ as in (6.13) subject to the following conditions.
1. [X,9v,zltx [v,z) is the exponential transpose of [t, T Z|yxwy,z-
2. AXYNx,y] 8 an identity.

3. Inx,TYyxy is an identity.

125



4- X,y px,y] 18 equal to the pasting

T2 T _
T?[X,Y] UL [TX,TY] > T[T X, T?Y]

_ Tyx,y
T v T[,up]

71X, 7]~ i x, 12y D e, Ty

t tJ/ t

1,T
(X, T2Y] rx, 73v) 2 i x 1y
T rxry \L[LMTY} (1,pv]
[TX,T3V] — [TX, T?Y] [TX,TY]
[1,pu7v] [1,pv]
5. lpx, TY)yxy is equal to the pasting
(T (T 7
71X, Y] s rirx, Y] L 12X, T2Y] - (12X, T3Y]
t_i \Lf Jarx,Ty i[LHTY]
17
X TY)9xr  [1X,72Y] — = T[12X, 7%V ] 270 [7X 72y ]

Ti l[LNY] \L[LTMY} i[lvuy}

[TX,T2Y] [TX,TY] [T2X,TY] [T2X,TY]

1,y 1,ny

6.4 A characterisation of pseudo-commutativity

In [37, Section 4.1] the authors show that a pseudo-commutativity on a strong
2-monad T on Cat induces a canonical structure of pseudomorphism on the
functor ox g : [TX,0]T : [X,B] — [TX,TB] — [TX, B], for X € Cat, (B,b) €
T-Alg. These pseudomorphisms satisfy certain properties necessary to ensure
that T-Alg has the structure of a pseudo-closed 2-category. In this section we
improve these observations in two ways. First, we work with monads enriched
in a monoidal closed 2-category, and secondly we show that pseudomorphism
structures on the functors [T'X,b|T satisfying certain conditions are in bijection
with pseudo-commutativities on 7.

Let T : # — W be a # -enriched monad, equipped with its canonical
strength. Consider the 2-functors [—, —|,[T—, —] : #;°* x T-Alg; — T-Alg;.
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Observe that the 1-cells

ox.s: X, B & rx,7B] ML X, B] (6.14)
are part of a pseudonatural transformation
Ul—,—] = U[T—,—] : #{* x T-Alg; — #4.

Indeed, if f : B — C'is a 1-cell in T-Algy, the structural 2-cell oy corresponding
to f is the pasting below.

X, B] — [TX,TB] X% [TX, B]
[Lf]l [LTf}l ) l[l,f] (6.15)

ix,0] I~ 7x, 70 2L (7X, 0]

Observe that the pseudonatural transformation obtained by precomposing ¢ with
L Jy: #7P x T-Algg ; — #1°P x T-Alg, is in fact 2-natural. In other words, o
is 2-natural on strict morphisms.

The conditions in the proposition below appear in [37].

Proposition 6.19. There is a bijection between pseudo-commutativities on T
and liftings of o to a pseudonatural transformation [—, —] = [T—, —] : #°P x

T-Alg, — T-Alg, satisfying the following conditions.
1. [nx,Bloxp = 1[X,B} in T-Alg,.
2. orx,Box,B =[x, Blox,p in T-Alg;.

3. [ X,oyB| : [X,[Y,B]] — [X,[TY, B]] is the exponential transpose of the 1-
cell t,Bloxgy,p: [X ®Y,B] = [X @ TY, B] in T-Alg,.

4. The composition of 1 x Jy : WP x T-Alg,y — # x T-Alg; with o is a

2-natural transformation.
We split the proof of the proposition in several lemmas.

Lemma 6.20. Let T : # — W be a W -enriched monad, equipped with its canon-
ical strength. There is a bijection between modifications 5 as in (6.13) satisfying
conditions 2 and 4 of Proposition 6.18 and liftings of o to a pseudonatural trans-
formation [—,—] = [T—,—] : #°® x T-Alg; — T-Alg, which composed with

WP x J are 2-natural.
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Proof. Given a modification ¥ as in 6.13, we can define 2-cells ox g for X € #/,
(B,b) € T-Alg as the following composition.

T[X, B] £ TITX, TB] — 2 717X, B]
it t
; ix.s rx, 728 X X, TR
i[lqu]
X, TB] — " 7x,72B] "2 17X, TB] [1.0]
[1,5] \L[l,Tb] m
X, B] ITX,TB] = ITX, B

Each 2-cell 6x g endows [T'X, b]T with the structure of a pseudomorphism of T-
algebras: the condition involving the unit 7 follows from condition 2 of Proposition
6.18 and the condition involving the multiplication u follows from condition 4 of
the same proposition. With this pseudomorphism structure, the 2-cell (6.15) is
a 2-cell in T-Alg,; in other words, (0,5) is a lifting of o to a pseudonatural
transformation between the 2-functors [—, =], [T—, —] : #;° x T-Alg, — T-Alg;.
(If such a lifting exists, it is unique). Moreover, the composition of (o,) with
Lx Jy: P x T-Algg ; — #7°P x T-Alg, is a 2-natural transformation.
Conversely, we now show that any lifting (o,5) of o whose composition with

# P x Jp is 2-natural, induces a modification ¥ as in (6.13). Given 7x p define

Vx,y by
TIX, Y] — L T[TX, TY] .
; TIX, TY] — s rirx, 72y] 2L rirx, Ty
[11T77Y] 2 _ 2
[X,TY] [X,T?Y] Joxry [TX,T°Y]
I lu,m lu,m
1
(X, TY] [TX,T?Y] [TX,TY]

[LHY]

To show that 7xy is a modification, we use that & is 2-natural on strict mor-

128



phisms: for f: Z —Y, h: W — X in #4,

YxyTlh, f] = ox v (T[X,ny)(T'[h, f]) = ox v (T[h, T f)(T[W,nz])
= [Th, T flowrz(T[W,nz]) = [Th, T f]yw,z-

Condition 2 of Proposition 6.18 follows easily from the unit axiom of a pseudo-
morphism: ¥x ynxy] = ox,ry T[X, ny|nix,y) = oxrynxry)[X,nv] = 1. Con-
dition 4 of the same proposition is a bit harder to prove, but routine nonethe-
less. We leave the verification to the reader; we only mention that the equality
(TX, py|ox r2y = ox,ryT[X, py] and the multiplication axiom of a pseudomor-
phism must be used in the verification.

These constructions are inverses of each other: there is a bijection between
modifications 4 and liftings of o to a pseudonatural transformation (¢, ) which
composed with #,°" x J; are 2-natural.

O

Lemma 6.21. Assume the hypotheses of Lemma 6.20. Then

1. Condition 3 of Proposition 6.18 holds if and only if [n, —]o is the identity

pseudonatural transformation of [—, —].

2. Condition 5 of Proposition 6.18 holds for 4 if and only if orx pox B =
ux,Blox,p for all X € #1 and B € T-Alg;.

3. Condition 1 of Proposition 6.18 holds for ¥ if and only if the pseudomor-
phism [ X, oy ] : [X,[Y,B]] — [X,[TY, B]] corresponds to the pseudomor-
phism [t,Bloxgyp : [X ® Y, B] — [X @ TY, B] under the closedness struc-
ture of #1.

Proof. The proof of part 1 is obvious.
Now we show 2. Suppose that orx pox p =[x, Blox p. If 7 is defined as
in the proof of Lemma 6.20, condition 5 of Proposition 6.18 is the equality

(12X, pylox rexT([TX, ny ) T)T X, ny]) - ((T2X, py | Tox oy TIX, ny])

= [px,TY|ox v T[X,ny]
(6.16)

Using the 2-naturality of o with respect to strict morphisms,

[T2X, MY]a'X,TQY = 5'X,TYT[TX7 ]
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and using this we can transform the left hand side of (6.16) into the pasting

T[lﬂlﬂ

T[X, Y] ° ° °
l OX,TY i OTX,TY \L
° ° °

that is by hypothesis equal to [ux,TY|ox ryT[X,ny]. Conversely, assuming
condition 5 of Proposition 6.18, and defining & in terms of 4 as in the proof of

Lemma 6.20, we have to show
(12X, 0)37x, T[T X, b)T(T)) - ([T° X, b] T[T X, b]9x,8) = [ux, B[TX,b9x,5

for X € # and a T-algebra (B,b). Using the fact that 4 is a modification, one
can see that the left hand side in the equality above is equal to the pasting

. T[TX,TB] .
R
¥x,B [TX,T?B] [T2X,TPB]
l (1] i [T2X,b][T2X,Tb]
o [TX,TB] [T2X, B

_—
[T2Xb][T2X,TH] T

that by hypothesis is just [72X, b][ux, T B}yx,5. This completes the proof of part
2.

Finally, we prove 3. It is not hard to show that at the level of 1-cells in
W, [X,oy | always corresponds to [t, Bloxgy,B, so we must only check the 2-
dimensional aspect. Suppose condition 1 of Proposition 6.18 holds. The pseudo-
morphism structure of [X, oy, p] is given by the 2-cell [X, oy,pltx [y,p), and then
we must show that its exponential transpose is the 2-cell [txy, B]oxgy,p. This
follows trivially from our hypothesis as the former is equal to the composition
[X, [TY, b]][X, ¥x 8]t x,[v,p) and the latter is equal to [X @TY, b][tx vy, TBlyxy,s-
Conversely, if we assume that the exponential transpose of [X, 6y73]fx,[y, B is

[txyv,Bloxey,B, it is clear that

(X, Ay.zltx v.z) = (X, ox102][X, T[Y,nz]ltx v, 7
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corresponds to
txy, T2 xev,z = [txy, TZ]oxevrzT[X @Y, nz].

This concludes the proof of the lemma. O

6.5 The pseudo-closed # -category T-Alg

In this section we show that for a pseudo-commutative % -monad on %, the # -
category T-Alg is pseudo-closed. We briefly discuss the closed 2-multicategory
structure of T-Alg;. Although we do not emphasise here the % -multicategory
structure of T-Alg, our view is that this is the most natural structure to con-
sider on T-Alg. To save space, and because the description of the closed # -
multicategory structure is analogous to the 2-categorical case, we will only discuss
the latter.

6.5.1 Parametrised pseudomaps

For a # -enriched monad T on #', we can define objects of parametrised pseu-

domaps. Given objects X1, -+, X, in #, we denote by

the unique arrow obtained by compositions of components of ¢ and t'. We recall
from [37] the notion of parametrised pseudomap. If (A;,a;) and (B,b) are T-
algebras, a pseudomap parametrised by Xi,---, X;, and X4, -+, X, is a 1-cell
[ X1® - X, 1084, X;11®---®X,, — B equipped with an invertible 2-cell
(TH =2 (X1 ®---®a®--- @ X,) satisfying pseudomap axioms. With the
obvious notion of 2-cell between parametrised pseudomaps, we obtain categories
T-Alg(Xy, -+, Ai, - -+, Xy, B). Parametrised pseudomaps and cotensor products
are related in the following way. If A, B are T-algebras and X is an object of #/,

there are 2-natural isomorphisms
T1-Alg(X, A; B) =2 T1-Alg(A, [X, B)) (6.17)

where [X, B] is the usual cotensor product in T-Alg.
For an enriched monad S on a monoidal category # one can define parametrised

maps of algebras. There is an obvious multicategory ¥ with objects the T-
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algebras and multimaps Aq,---, A, — B the arrows 41 ® --- ® A,, — B which
are parametrised maps in each variable. However, in the two-dimensional case
we have two obvious choices of a 2-multicategory, as we explain below.

For a pseudo-commutative #-monad T on #', there are two 2-multicategories
of T-algebras one can consider. The simplest is the 2-multicategory whose objects
are the T-algebras and multihom-categories T1—Algb(A1, -++, Ay, B) the categories
of 1-cells A1 ® ---® A,, — B that are parametrised pseudomaps in each variable,
and 2-cells compatible with this structure. The other 2-multicategory is the one
considered in [37], denoted by T1-Alg. It has as objects the T-algebras and mul-
tihoms T1-Alg(A1, - -+, Ap, B) the full subcategory of the corresponding multihom
of T1-Alg? determined by the 1-cells which are partial maps in each variable with
the additional condition that each partial map structure must commute with
the others. To state this property, a pseudo-commutativity on 7' is required. For
more details see [37]. There is an obvious inclusion morphism of 2-multicategories
T-Alg — Ty-Alg.

From these two 2-multicategories the most interesting is T-Alg, as it carries

a closed structure. This is explained below.

6.5.2 The T-algebra of pseudomorphisms

In this section we construct the internal hom that will be part of a pseudo-closed
structure on the # -category T-Alg. The underlying object of this T-algebra is
the # -object of pseudomorphisms constructed in Definition 6.1. First we look at

an example.

Ezxample 6.22. Let T be the 2-monad on Cat of Example 6.17, whose algebras are
symmetric strict unbiased monoidal categories. For each pair of T-algebras A, B,
the category T-Alg(A, B) has an obvious symmetric strict monoidal structure. If
fi,-+ fn + A — B are symmetric strong monoidal functors, their tensor product
is the functor sending a € A to fi(a) ® --- ® fn(a). This functor is symmetric

stong monoidal thanks to the existence of the pseudo-commutativity of 7.

We need to give, for each pair of T-algebras A, B, an T-algebra [A, B] with
underlying object T-Alg(A, B). The latter is defined by means of (PIE)*-limits
in 74, (limits that can be constructed from products, inserters and equifers) and
these are created by the forgetful # -functor U; : T-Alg; — #4, and in this way
T-Alg(A, B) is endowed with a canonical structure of a T-algebra. We explain

this in more detail below.
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Recall from Section 6.2.2 that the enriched hom T-Alg(A, B) can be obtained
as a limit {x, Fa g} in #1, where Fyp : # — W) is certain 2-functor defined
by (6.7) and x is a weight in the class (PIE)". The diagram in (6.7) in this case
(X =%)is

0AB OTA,B
[A7 B] [a,1] [TAv B] [Ta,1] [T2A7 B] (618)
[n4,1] [1a,1]

Proposition 6.19 tells us that the 1-cell o4 p of (6.14) is a pseudomorphism,
and hence the diagram above lies in T-Alg; = T1-Alg. Hence Fup : % — W
factors through a 2-functor FA,B : F — Ti-Alg as UFAB. Since U creates
(PIE)*-limits, it follows that T-Alg(A, B) is the underlying object of a canonical
T-algebra, namely {X,FA,B}~ Moreover, the universal p : [A, B] — [A,B] is a
strict morphism.

The assignment A, B +— [A, B] extends to a # -functor [—, —] : T-Alg® ®
T-Alg — T-Alg. Indeed, we need to exhibit 1-cells

T-Alg(C, A) ® T-Alg(B, D) — T-Alg([A, B], [C, D]) (6.19)
in #, or equivalently, a parametrised pseudomap of algebras
T-Alg(C,A) ® [A, B] ® T-Alg(B, D) — [C, D]. (6.20)

As a 1-cell, this parametrised pseudomap is just the obvious composition 1-cell.
The other piece of data we have to provide is an invertible 2-cell between the

1-cells

t T
T-Alg(C,A)@T[A,B]@T-Alg(B,D) — 2> T(T-Alg(C,A)[A,B]@T-Alg(B,D)) — 2 7[C,D]

l 1®act®1 laet

T-Alg(C,A)®[A,B|®T-Alg(B,D) [c.D]

comp

This 2-cell corresponds, upon composition with the universal [C, D] — [C, D], to
the 2-cell obtained from the 2-cell in Figure 6.5.

Ezample 6.23. Although it might seem a bit complicated, the definition of [—, —]
on homs (6.19) has a very simple content. This can be exemplified by the case
when # is Cat and T is the 2-monad whose algebras are symmetric strict (un-
biased) monoidal categories. See Examples 6.17 and 6.22. In this case, (6.20)

is the composition functor and with parametrised pseudomap structure given by
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T1A,BIo[B.D] —2Z2 o (A, Blo[B.D] — > T((A.B2[B.D]) —"P 7(4.D]

t(Tp)®1l l{
1® 1T com

[A,TB®[B,D] ——— > [A,TB]®[B,D] — > [A,TB]®[TB,TD] — % > [A,TD]

1®p 1®UB D [1,d]

®[ 1] 18[1.d] comp

[ATB|®[B,D] ——— [A TB]® [T'B,D] [A,D]
[1 b]®1 /

[A,B]®[B,D]

Figure 6.5: 2-cell that induces the parametrised pseudomap structure of the com-
position.

the canonical isomorphism

h(g1® - @gn)f = (hgrf) @ @ (hgnf)

induced by the strong monoidal structure of h, for f : C — A, ¢, : A — B,
h:B— D.

Observation 6.24. The # -functor [—, —] restricts to a % -functor T-Alg?® ®
T-Alg, — T-Alg,. Indeed, in the construction of the 1-cell (6.19) we only used
the universal isomorphism op pp = [b, D]p defining [B, D]. This means that by
restricting to T-Alg (B, D) in (6.19) we obtain a 1-cell

T'Alg(cv A) ® T'Algs(B? D) - T'Algs([[A7 B]]7 [[C? D]])
In other words, each # -functor [A, —] sends strict morphisms to strict morphisms
and each % -functor [—, B] send all pseudomorphisms to strict morphisms.

The proof of the following proposition is the same as the proof of [37, Theorem
10].

Proposition 6.25. If T is a pseudo-commutative # -enriched monad on W , then

T-Alg, has a canonical structure of a closed 2-multicategory .

For later use we include the description of the isomorphisms of categories
T-Alg,(A, B;C) = T-Alg,(A,[B,C]) given in [37]. A multimap (f, fa, fB) :
A, B — C is given by the following data in #: a l-cell f: A® B — C, and
invertible 2-cells f4 : (Tf)t' = f(a® B) and fp : (Tf)t = f(A®b) satisfying
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axioms. If g : A — [B, (] is the exponential transpose of f and g the transpose
of fa, then the condition on f4 expressing the fact that f is a partial map in the
first variable translates into the statement that (g, g) is a pseudomap A — [B, C].
The transpose of fp gives a 2-cell « : oB,cg = [b,C]g because fy commutes with
fB. Finally , « lifts to a 2-cell between 1-cells into [B,C] as a translation of the

pseudomap condition on the second variable.

6.5.3 T-Alg as a pseudo-closed # -category

Proposition 6.26. If T is a pseudo-commutative # -enriched monad on W , then

T-Alg has a canonical structure of a pseudo-closed W -category.

Proof. We have to provide the data in Definition 6.3. The # -functor T-Alg — #
will be the forgetful # -functor U, the internal hom will be the one described in
the preceding section, denoted by [—, —], and the unit object will be FI, the free
T-algebra on the unit object of #'. The 1-cell j4 : FI — [A, A] is the strict
morphism corresponding to the identity 1-cell I — T-Alg(A, A). The 1-cell ey is

the strict morphism
[F1,A] 2 rr, A 220 741 2 A

The pseudoinverse of ey is ig : A — [I,A] = [FI,A]. The composition 1-
cell kapc : [B,C] — [[A, B],[A,C]] corresponds to the composition multi
pseudomap [B,C] ® [A,B] — [A,C]. Observe that ja, e4 and k are strict
maps of T-algebras. Checking the axioms of a pseudo-closed # -category is now
a matter of routine. This can be found for the case # = Cat in [37]. O

Recall that the unit and counit 7, € of the #'-adjunction F 4 Uy : T-Alg, — #
induce # -natural transformations 1 — UF' : and FU — 1, which we still name

n and €.

Proposition 6.27. The # -functors U : T-Alg — # and F : W — T-Alg have
canonical closed structures. The unit n: 1 — UF is a closed W -natural transfor-

mation and the counit e : FU — 1 is a pseudo-closed W -natural transformations.

Proof. The forgetful # -functor U is closed by definition of the pseudo-closed
structure of T-Alg: the closed constraints are given by the universal U[A, B] =
T-Alg(A,B) — # (A, B) and the unit n; : I — UFI.

The closed structure of F' is given in the following way. The arrow ¢ :

F[X,Y] — [FX, FY] is the unique strict morphisms of T-algebras corresponding
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to the 1-cell [X,Y] — T-Alg(FX, FY) induced by the identity 2-cell

T
[TX,TY] ——[T?X,T?Y] [1,y]

/

Mle]

T
[T2X,TY]
\

T ITx,TY]

The unit constraint is just the identity F I — F'I.

The closedness of 7 follows from the commutativity of the diagrams below.

X,Y] L] [X,UFY]

, I
1 n
n[x’y]l \ T[nx’” / \

UFIX,Y] 7 UIFX, FY] > [UFX,UFY] I =7 UFT == UFI

Now we show that the counit € is a pseudo-closed # -natural transformation in
the sense of Definition 6.4. We exhibit an isomorphism depicted in the diagram
on the left hand side below, and show that the triangle on the right hand side

comimutes.

FU[A, B] —= F[UA,UB] —2~[FUA, FUB] Pl ;1 FM prpr

5[[A,B]]\L = ﬂl,sB]}l \ /

[[A’ B]] IIEA71]] [[FUA’ B]:I

The unit condition is obvious. To define the isomorphism in the diagram on the
left hand side, we observe that all the arrows are strict morphisms of T-algebras,

and hence it suffices to define an isomorphism between [e 4, B] and

[[1 Bl

U[A,B] & [UA,UB] 5 [FUA, FUB] =24 [FUA, B]. (6.21)

By using the 2-dimensional aspect of the universal property of the limit [FU A, B],
we reduce the problem to defining an isomorphism between the composition of
(6.21) and [e 4, B] with the universal p : [FUA, B] — [T'A, B], compatible with
the universal isomorphism [T2A,b]Tp = [ua, B]p (see Definition 6.1). The com-
position of (6.21) and [eA, B] with p are respectively

[4,B] — [A,B] & 1A, 78] M 14,B] and [A,B] — (A, B] L (74, B]
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and the required isomorphism between these is the universal isomorphism in the
definition of [A, B]. One can verify that this isomorphism satisfies the axioms of
a pseudo-closed transformation.

O

6.6 Monoidal structures

Proposition 6.28. Given a monad T on W in W -Cat, suppose we have the

following commutative diagram in # -Cat.

T-Alg, —% ~ T-Alg,

J i J/Us
A T
If J has a left adjoint, T-Alg, admits tensor products and coequalizers, then G
has a left adjoint too.

Proof. First of all, observe that in presence of cotensor products, the existence of
coequalizers in T-Alg, is equivalent to the existence of coequalizers in the ordinary
category (T-Alg,)o. See [42, Section 3.8].

Since Us creates limits, G preserves limits if and only if U;G = T-Alg(A, J—)
preserves limits. But this is true as J preserves limits (Proposition 6.8). Then
G has a left adjoint if and only if the functor Gy does. We can use the Adjoint
Triangle Theorem, or for example [2, Theorem 7.3.b], to prove that Gy has a
left adjoint. Indeed, Uy is monadic and T-Alg(A, J—)o = T-Alg (A’,—)o has a
left adjoint given by taking — * A’ (tensor product with A’) and (T-Alg,)o has

coequalizers. O

Corollary 6.29. Let T be a # -enriched pseudo-commutative monad on # and
[—,—] the internal hom of the induced pseudo-closed structure on T-Alg. If J
has left adjoint and T-Alg, has cotensor products and coequalizers, then the W -
functor [B,—] : T-Alg, — T-Alg, has a left adjoint — @ B, for all T-algebras B.

In particular, the result holds if T is pseudo-commutative and has a rank.

Corollary 6.30. The # -functors — @ B extend to a W -functor

© : T-Alg? @ T-Alg, — T-Alg,
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cocontinuous in the first variable. Moreover, if for a weight 1, T preserves -

colimits, then @ preserves -colimits in the second variable.

Proof. The first part of the statement is obvious from Corollary 6.29 above. The
last part is equivalent to claiming that each # -functor [—, C] : T-Alg? — T-Alg,
preserves -limits whenever 7' preserves t-colimits. Since Uy : T-Alg, — W
creates limits, this is equivalent to saying that Us[—, C] = T-Alg(J—, C') preserves
¢-limits whenever T preserves -colimits. This last statement holds true by
Proposition 6.9. O

Proposition 6.31. Assume the hypotheses of Corollary 6.29. Then each 2-
functor [B, =]y : T-Alg, — T-Alg, has a left biadjoint — X B. Moreover, the
pseudofunctor — X — is part of a (pseudo-)monoidal structure making T-Alg, a

(pseudo-)monoidal pseudo-closed 2-category.

Proof. We use Theorem 6.16 to deduce our result. Define AKX B = J(A' © B).
Since (— @ B); is a left adjoint to

[B,~-]x [B,-11

(T-Alg, L T-Alg; ——— T-Alg;) = (T-Alg,; ——— T-Alg,, DT Alg;)

we have that (— X B); is a left biadjoint to the 2-functor [B, —];. Moreover,

[[unlt 1]

de : [J(A' @ B),C] 22 [[B, J(A' @ B)].[B, C]] 2 14, [B, C]]

is a retract equivalence in # (see Proposition 6.12). The commutativity of the
diagram in Theorem 6.16 is equivalent to the commutativity in % of the diagram

below, which is easy to verify.

®

[ARB,C]®][C, D]] [[A [B,Cll®lC,D] —— [A,[B,ClII[1B,C1,[B,D]]
compl J{comp
[ARB,D] . [A.[B,D]]
Now we apply Theorem 6.16. O

Corollary 6.32. The 2-functors F1,U; and the unit and counit n,e of the biad-

gunction Fy =y, Uy, have canonical (pseudo) monoidal structures.

Proof. We already mentioned at the end of Section 6.3.1 that when pseudo-closed
structures induce monoidal structures, closed 2-functors and pseudo-closed 2-

natural transformations acquire structures of (pseudo) monoidal functors and
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(pseudo) monoidal transformations, respectively. In the case of the biadjunction
1, Ui, this means that F},U; together with the unit and the counit are

(pseudo) monoidal. O

Observation 6.33. 1. The universal property of AKX B can be expressed in
the following way. There is a multimap A ® B — A X B inducing an
equivalence between the category of pseudomorphisms AKX B — C' and the

category of multimaps A ® B — C, for all T-algebras C.

2. A standard argument shows that the monoidal constraint (X)X F;(Y) —
Fi(X ®Y) is an equivalence in T-Alg.

6.7 Lax-idempotent monads are pseudo-commutative

In this section we show that every lax-idempotent # -enriched monad has a canon-
ical pseudo-commutativity.

Recall that a 2-monad (7,7, 1) on a 2-category % is laz-idempotent, or Kock-
Zoberlein, when any 1-cell f: A — B between T-algebras has a unique structure
of a lax morphism of T-algebras. This is equivalent to the condition that a 1-cell
a:TA — Ais a T-algebra structure if and only if there exists an retract adjunc-
tion a@ 4, n4 (i.e., and adjunction with counit an identity). Another equivalent

condition is the existence of a modification ¢ : T — 1T satisfying
om=1 and pué = 1. (6.22)

Many more equivalent conditions are given in [44, Theorem 6.2]. Also, the for-
getful 2-functor Uy : T-Alg — 7 is locally fully faithful.

If A, B are T-algebras, the unique lax morphism structure on a 1-cell f: A —
B in ¢ is given by the following 2-cell, where the arrows denote the counit and

unit of the respective adjunctions.

T

TA=—=TA ! TB
al % % ib (6.23)
A ; B=——=2R

It follows that a 1-cell f : A — B has a (unique) structure of a pseudomorphism
of T-algebras if and only if 6.23 is invertible. Also, the forgetful 2-functor U :
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T-Alg — ¢ is locally injective on objects (i.e., U is injective on 1-cells) and
locally fully faithful.

In [51] it is shown that left adjoint 1-cells between algebras for a doctrine
are pseudomaps. In our case, the same is true. If A, B are T-algebras and
f 7 f": B — Ais an adjunction in %", then f*, just as any l-cell, is a lax
morphism and hence f has a structure of a colax morphism of T-algebras. It
follows from [44, Lemma 6.5] that the colax structure fa = bT'f is invertible and

its inverse is a pseudomorphism structure on f.

Lemma 6.34. Let T : W — W be a # -enriched monad and assume that the
underlying 2-monad Ty : W1 — Wi is lax-idempotent. Then the 1-cell in (6.14)

Xy

ox.5:|X,B] 5 [TX,TB] —2 [TX, B]

is part of a coretract adjunction with right adjoint [nx, B] : [T X, B] — [X, B]. In
particular, (6.14) is a pseudomorphism.

Proof. We have [nx, B|[TX,b]T = [X,b][nx,TB]T = [X,b][X,nx] = 1 by #-
naturality of 1. So indeed we can define the unit of our adjunction as the identity.

Now define the counit as the following 2-cell

[TX,B]

[17773]

where the unlabelled 2-cell is [0x, 1]. Now we check the axioms of an adjunction.
First, [nx, B][TX,b][0x,TB]T = [X,b][6xnx,TB]T = 1 by (6.22). The other

axioms is again follows from (6.22):

[TX,b)[0x, TB]T[TX,b|]T = [6x, B)[T*X, b][T?X, T TT
[0x, BI[T*X,b][T*X, pp|TT
= [0x, B[T* X, b][ux, TB|T
= [0x, Bllpux, B[TX,b]T
= 1.
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Theorem 6.35. Every # -enriched monad T : W — W such that its underly-
ing 2-monad Ty is lax-idempotent is pseudo-commutative. Moreover, the pseudo-

commutativity is unique.

Proof. We have to check the conditions in Proposition 6.19. By Lemma 6.34
above, o lifts to a pseudonatural transformation [—,—] = [T—,—] : #" ®
T-Alg, — T-Alg;. Moreover this lifting is unique because Uy : T-Alg; — #) is
injective on 1-cells and locally fully faithful. The conditions (1) to (4) in Propo-
sition 6.19 hold trivially, since U; is injective in 1-cells; in other words, these
conditions hold if and only if they hold in #'. The uniqueness of the pseudo-
commutativity is equivalent to the uniqueness of the pseudomorphism structure

on each ox g, which holds by the properties of Uy already mentioned. O

Corollary 6.36. If T : W — W is a W -enriched monad with laz-idempotent
underlying 2-monad, then T-Alg has a canonical structure of a pseudo-closed

W -category.
Proof. 1t is a consequence of Theorem 6.35 together with Proposition 6.26. [

Example 6.37. There are pseudo-commutative 2-monads which are not lax-idem-
potent. For example, the 2-monad 1" on Cat whose algebras are the symmetric
strict monoidal categories. See [37] for a detailed description of the pseudo-
commutativity for this 2-monad, or Example 6.17. One of the several possible
ways of seeing that T is not lax-idempotent is to show that there can not be a
2-natural transformation 6x : Tnx = nryx : TX — T?X. For, if (xq,--,1,) €
TX, the corresponding component of dx should be an arrow ((xy),---, (zy)) —
((z1,--+,2,)). But there are no such arrows in 72X unless n = 1, as there are

arrows only between strings of the same length.

Example 6.38. There are property-like 2-monads which are not pseudo-commu-
tative. Property-like 2-monads were defined in [44] as those 2-monads for which
every algebra structure is unique up to isomorphism and every pseudomorphism
structure on a 1-cell is unique. For example, if T" is the 2-monad on Cat that
freely adds chosen finite products and finite coproducts, 1" is property-like but is

not pseudo-commutative (as products do not always commute with coproducts).

Recall from Section 6.5 the 2-multicategories Ty-Alg and Ty-Alg’.

Proposition 6.39. If T is lax-idempotent, the canonical morphism of 2-multi-

categories T-Alg, — T-Alg? is an isomorphism.
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Proof. For simplicity we explain why the inclusion
T-Alg, (A, B;C) — T-Algh (A, B; 0)

is an isomorphism. In other words, we must show that every 1-cell f: A9 B — C
equipped with structures of a partial map in each variable automatically satisfies
the commutation relation necessary to be a multimap. As we noted at the end
of Section 6.5.2 of the partial map structures give a pseudomap structure to the
exponential transpose g : A — [B,C] of f. The other partial map structure
correspond to a 2-cell a: op cg = [b,Clg in #'. The two partial map structures
commute with each other if and only if « is a 2-cell in T-Alg;. Now, by Lemma
6.34, the domain and codomain of a are pseudomorphisms, and hence « is a
2-cell in T-Alg, since for the lax-idempotent 2-monad T} the forgetful 2-functor
T-Alg, = T1-Alg — # is locally full.

O
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Chapter 7

Categories with finite

(co)limits

Now it is time to apply the theory of the previous chapters to the example of
the 2-category of ¥'-categories with finite (co)limits equipped with the (weak or
pseudo) monoidal structure constructed in Chapter 6.

After discussing pseudo-closed structures on 2-categories of ¥ -categories with
a class of colimits, we look closely at the corresponding monoidal structures in the
case of finite colimits. In Section 7.3 we recall Deligne’s tensor product of abelian
categories (introduced in [19]) and prove that our tensor product of categories
with finite colimits coincides with Deligne’s tensor product on a special class of
abelian categories: those abelian categories for which Deligne’s tensor product is
proven to exist in [19].

In Section 7.5 we deduce the “Radford’s formula for finite tensor categories”
of [27] from the general theory of previous chapters. In particular our proof is
independent of the Perron-Frobenius dimension argument used in [27]. In the
rest of the chapter we consider the case of semisimple categories, and give a char-
acterisation of semisimplicity of a autonomous category enriched in vector spaces
in bicategorical terms (the existence of certain adjunction). Explicit descriptions

of various constructions are provided.

7.1 The case # = ¥ -Cat

In this section we apply the results developed so far to the case of the symmet-

ric monoidal closed 2-category # = ¥-Cat. Here 7 is a complete an cocom-
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plete symmetric monoidal closed category, and #-Cat the 2-category of small
¥ -categories. We use the constructions and follow the notations of [45].

Let ® be a small class of weights. Recall from [42, Section 5.5] that the
free completion of a #'-category A under ®-colimits can be obtained as the clo-
sure under ®-colimits of the representables in [A°P, #]. This ®-cocomplete ¥-
category is usually denoted by ® A. The Yoneda embedding y4 : A — ® A induces
equivalences of ¥'-categories ®-Cocts[PA, B] ~ [A, B] for all ®-cocomplete ¥-
category B, with pseudoinverse given by taking left Kan extension along y4. Here
®-Cocts[C, D] denotes the ¥ -category of ®-cocontinuous ¥-functors C' — D;
these are the enriched homs of a % -category with objects the ®-cocomplete small
¥V -categories.

Let us denote by ®-Colim; be the 2-category of ¥ -categories with chosen
d-colimits, ¥ -functors strictly preserving these and 7 -natural transformations.
This is the underlying 2-category of a # -category ®-Colim with enriched homs
®-Colim(A, B) the full sub-#-category of [A, B] determined by the ¥-functors
that strictly preserve ®-colimits. There is an obvious forgetful # -functor Us :
®-Colim — 7. The main result of [45] is the monadicity of (Us)1, as a 2-functor.
If T is the associated 2-monad on %, with unit 1 : 1 — T, there is an equivalence

of ¥-categories making the following diagram commutative.

Below we explain the necessary modifications to prove that the # -functor Uy

is monadic.
Lemma 7.1. The # -functor Ug has a left adjoint.

Proof. By [45, Theorem 5.1] we know the 2-functor (Us); has a left adjoint.
Hence, it is enough to prove that ®-Colim has cotensor products preserved by
Us. As we aim to prove Uj is monadic, U will in fact create cotensor products,
and that is what we shall show. This amounts to saying that for any #-category
X and any ¥-category with chosen ®-colimits A, the #-category [X, A] has a
canonical choice of colimits and the unit X — ®-Colim([X, 4], A) is a cotensor
product.

Let A be a ¥-category with chosen ®-colimits and X be any ¥ '-category.
Given a weight ¢ : D — ¥ in ® and a functor G : D — [X, A], we want to choose
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a colimit ¢ * G. What follows is the explanation of how to chose the colimits
point-wise. Denote by G : X — [D,A] and G' : D ® X — A the ¥-functors
induced by G, and define

60G = (X S [D, 4] = A),

Now we need a cylinder v : ¢ — [X, A|(G—, ¢0G) = [ A(G'(—,2),p0G(x)) =
Joex A(G'(=,2),¢ % G'(—,x)). For each z € X we have a chosen colimiting
cylinder pg : ¢ — A(G(z)(—), ¢ * (G(x))). If follows easily that s, is dinatural
in z and hence it induces a unique ¥ -natural transformation into the end, which
we take as v. We leave to the reader the rest of the verification of the fact that

X — ¢-Colim([X, A], A) has the universal property of a cotensor product. [
Proposition 7.2. The # -functor U, is monadic.

Proof. At the beginning of [45, Section 6] it is shown that the functor (Us) creates
coequalizers of (Us)g-contractible pairs of arrows. But we know that ®-Colim
has cotensor products, which is enough to ensure that coequalizers in ®-Colimg
are coequalizers in the % -category ®-Colim. From the enriched version of Beck’s

monadicity theorem [25], we deduce that U is monadic. O

Denote by T' the # -enriched monad on # = ¥-Cat whose Eilenberg-Moore
construction is Us : ®-Colim — %#. Theorem 6.3 of [45] asserts that the 2-
monad T} on the 2-category #1 of small ¥ -categories, ¥ -functors and ¥ -natural
transformations is laz-idempotent. Henceforth, Theorem 6.35 gives the following

corollary.

Corollary 7.3. The ¥ -Cat-monad T on ¥ -Cat whose algebras are the V-
categories with chosen ®-colimits is pseudo-commutative. The same holds if we

replace colimits by limits.

Proof. Only the case of limits needs a proof. If L is the #-monad on # = ¥-Cat
whose algebras are categories with chosen ®-limits, L; is colax-idempotent. Now,
if we write % for #/°°, L{® has an obvious structure of a lax-idempotent 2-monad
on 7. Therefore, L{° is a pseudo-commutative 2-monad on % by Theorem 6.35,

and hence L is pseudo-commutative too. O

Corollary 7.4. ForT as in the corollary above, the # -category T-Alg, and hence

the 2-category ®-Cocts,., are pseudo-closed.
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Ezample 7.5. As observed in [70], there are lax-idempotent 2-monads which are
not equivalent to a 2-monad given by freely adding chosen colimits as described
above. Any such 2-monad must have a fully faithful unit. The example in [70,
Example 10] is the 2-monad 7" on Cat constant on the terminal category. The
unit of this 2-monad is the unique possible functor nx : X — 1, which is not

always fully faithful.

7.2 Finite limits and colimits

Let ¥ be a complete and cocomplete locally finitely presented closed symmetric
monoidal category, ® be a class of finite weights (see [43]) and ®-Colim the #'-
category of ¥ -categories with chosen finite colimits, #'-functors strictly preserving
them and 7 '-natural transformations.

We want to show that the forgetful 2-functor Uy : #-Colim — #'-Cat creates
filtered colimits. The forgetful 2-functor ¥-Caty — #-Gph, into the category
of ¥ -graphs is finitarily monadic, as shown in [46]. Colimits in ¥-Gph, have
the following simple description. If D : ¢ — 7#-Gph, is a functor with ¢
small, write ¢; = D(j). Define ob¥ as colimjob¥;, with universal cone ¢; :
ob¥; — ob¥. Define 4(X,Y) as the colimit in ¥ of the functor G : ¢ — ¥
defined on objects by sending j € _# to qu(U):Xﬂj(V):Y %;(U, V) and on arrows
in the obvious way. We obtain morphisms of #'-graphs ¢; : ¢; — ¢ forming a
colimiting cone. Details, along with a more conceptual description using the
bicategory ¥-Mat of #-matrices, can be found in [46].

Let D : 7 — ®-Colimg be an ordinary functor with _# filtered. We
shall also denote by D the functor ¢ — 7-Catg resulting from composing
with (Us)o. To abbreviate, we denote D(j) by %;. We know that D has a
colimit since the 2-category 7-Cat is cocomplete; that is, there exists a 7-
category ¢ and a natural transformation ¢; : ¢; — ¢ inducing an isomorphism
V-Cat(¢,#) = lim; V-Cat(€;, B) 2-natural in ZB. Then € is a fortiori a
colimit in the ordinary category 7-Caty and hence in 7-Gphy. As ¢ is fil-
tered, the #-enriched homs % (X,Y) have a simpler description than in the gen-
eral case. Pick j; € _# such that there exist Xi,Y; € ¢, with ¢;,(X1) = X
and ¢;, (Y1) = Y. Consider the functor H : ji| # — ¥ defined on objects by
H(o:ji — j) = €j(Da(X1), Da(Yr)). On arrows, H(y) is given by the effect
of Dy on homs. If P: ji| # — _# is the projection functor, we have a natural
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transformation 7 : H = GP with components

T(a:j1—j) - ng(Da(Xl)7 Da(Yl)) - Z %(Uv V)
g (U)=X,q;(V)=Y

the canonical arrows into the coproduct.

Lemma 7.6. 1. The natural transformation T induces an isomorphism

colimH =2 ¢(X,Y).

2. For any ¥V -functor F' : & — % and X € ob%j, consider the functor
Fy:g | 7 — [PP,V]y sending o : j1 — j to €;((Da)F, (Da)(X)).

There ezists a canonical isomorphism colim Fy = € (q;, F(—), ¢j, (X)).

Proof. The functor P : ji | # — _# isfinal. This gives a canonical isomorphism
colim G 2 colim GP. We shall show that 7 induces a bijection between the cones
0q : H(a: j1 — j) — Z and cones p,, : GP(a) = G(j) — Z for any Z € V.

Given o, define p in the following way. To give p, is to give arrows pE’V :
¢;(U,V) — Z for every U,V € ob %j such that ¢;(U) = X and ¢;(V) =Y. Given
such U, V, choose some arrow (3 : j — k in _# such that DB(U) = D(fo)(X1)
and DB(V) = D(Ba)(Y1). Here X1,Y] € €, are the objects used in the definition
of H. Set

oY = €U V) 2 G(DBU), DBV)) = Gi(D(Ba)(X1)), D(Ba)(Y2)) “ Z.
Using the fact that ¢ is filtered and the naturality of o, it is easy to show that
pg’v does not depend on the choice of the arrow (3 : j — k. Moreover, poTo = 04-
Naturality of p can be easily established using the same techniques. Next we
show p is unique. Suppose p is another cone satisfying p7 = o. Then, for any
U,V € ob ¥}, if we choose 3 : j — k as above, we have: ﬁg’v = ﬁgf(U)’Dﬂ(V)Dﬂ =
(pT)a DB = (pT)pa D = pLV. It follows that p = j. This finishes the proof of
the first part of the lemma.

Consider the cone qx : Fip — €(q;,F(—),q;, (X)) with components (g4)a =
q; : €i((Da)F,D(a)(X)) — €(q;, F(—),qj,(X)). Given any other cone 7 : Fiy —
G, the part (1) of the lemma gives arrows 7p : € (¢;, F(P), gj, (X)) — G(P) unique
with the property that 7pg; = (r)p for each P € ob &?. The ¥ -naturality of 7
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can be expressed as the commutativity of

Cg(qle(P)vqjl(X)) ®(€(P/7P) H%(qle(Pl)vqjl (X))

fp@ll fpli

G(P) @€ (P, P) G(P)

where the horizontal arrows correspond to the respective #'-functor structures.
The fact that this diagram does commute follows from the analogous diagrams

for each r, and the fact that ® preserves colimits in each variable. Ol

For a class of finite weights ®, denote by R the monad induced by the monadic
W -functor U, : &-Colim — #'.

Proposition 7.7. The forgetful # -functor Us; : ®-Colim — ¥ -Cat creates
filtered colimits. Equivalently, the # -monad R is finitary.

Proof. Since U creates cotensor products, it is enough to prove that the ordinary
functor (Uy)g : ®-Colimy — # creates filtered colimits.

Let D : # — ®-Colimg be a functor with _¢# filtered. As before, denote
D(j) and colim UsD by ¢ and € respectively, with colimiting cone ¢; : €; — €.
We have to show that the g; form a colimiting cone in ®-Colim,.

First we show that ¢ has finite colimits. Let ¢ : &2 — ¥ be a weight in ¢ and
G : P — € a V-functor. Being a finite ¥ -category, & is finitely presented in
¥-Catg; hence, G factors through some ¢; as G = ¢;G; for some G : & — €.
Consider the unit of the colimit n; : ¢ — €;(G;j(—), ¢ * Gj). We claim that

Nt C(G(=), 6% Gy) = € (G(-), q5(¢ * Gy)) (7.1)

is the unit of a colimit, or in other words, (7.1) induces a ¥ -natural isomorphism
C(qi(¢xG;),C) = (2, 7](¢p,€(G(—),C)). First, observe that n does not depend
on the factorisation of G. For, if G : & — %}, is another factorisation, there exist
B:j—Ly:k—Llin ¢ suchthat (DB)G; = (Dv)Gj, and therefore ¢;(¢+G;) =
aw(DP)(¢xGj) = qu(o* (DB)G;) = qi(¢+ (Dy)Gr) = qi(Dy) (¢ Gr) = (¢ G)
and g;n; = qe(DB)n; = qene = qe(DY)nk = qrnk-

Given C' € ob®%, we can choose j; such that C' = g;, (X) for some X €
ob%;, and G = ¢;,Gj,. Using the fact that finite weights ¢ : 2P — 7 are
finitely presented objects in [Z2°P, ¥| and Lemma 7.6, one sees that the arrow
€ (g, (0%Gj,),C) — [2, V](9p,€(G(—),C)) is the composition below, and hence
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an isomorphism.

colim €j(Da(¢ * G, ), Da(X)) = colim € (¢ * (Da)Gy,)), Da(X))

aj1—] aj1—)

= colim[Z, V](¢, €;((Da)Gj,, Da(X)))

aji1—]

12

['@7 7/]((;57 %(le Gj1 ) C))

Now we equip € with chosen finite colimits. So far we have showed that
¢ has finite colimits and each g; : €; — % preserves finite colimits. For each
finite weight ¢ : P — ¥ in ® and G : & — € set ¢ * G = q;(¢ * Gj)
where G; : & — % is a factorisation of G through ¢;. To make sense, ¢ * G
has to be independent of the choice of j. Suppose Gj is a factorisation of G
through %},. Since ¢ is filtered and &7 is finite, there are arrows (3 : j — ¢ and
v+ k — £ such that (DB)G; = (Dv)Gy. Hence qj(¢ * G;) = q(DB)(¢ * G;) =
4(6+ (DF)Gy)) = qul@ + (DVGR)) = ae((DV) (6% Gr)) = gu(6 * G). With this
choice of finite colimits each ¢; strictly preserves colimits, so that them form a
cone in ®-Colimg. Now it is easy to show that ¢ is a colimiting cone. Suppose
pj 1 €; — A is a cone in ®-Colimy and let ' : € — % the corresponding 7'-
functor. We only have to show that F' preserves chosen colimits. For any finite
weight ¢ : PP — ¥ in ® and G : & — €, we have F(¢ x G) = Fqj(¢p* G;) =
pi(¢* Gj) = ¢ * (p;Gj) = ¢ * (Fq;G;) = ¢+ (FG). Hence, € is a colimit in
®-Colimy. O

Corollary 7.8. Let ® be a class of finite weights. The 2-categories -Cocts,. and
®-Cts. have canonical structures of pseudo-monoidal pseudo-closed 2-categories.
Furthermore, the right biadjoint forgetful 2-functors into ¥ -Cat are part of mo-

notdal pseudo-closed biadjunctions.

Proof. Recall that from [45] that there are isomorphisms of 2-categories making

the following diagrams commute.

R-Alg = d-Cocts, L-Alg = d-Cts,

T~ T~

¥ -Cat ¥ -Cat

Here R,L are the 2-monads (and in fact (#-Cat)-monads) on ¥-Cat with
Filenberg-Moore constructions ®-Colim and ®-Lim respectively. Both R and L
are finitary by Proposition 7.7, and then R-Alg, and L-Alg, are cocomplete by
the results in [7]. Now we apply the results obtained in Section 6.6. O
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Example 7.9. Let k be a commutative ring, A a k-algebra and X A the one-object
k-Mod-category defined by A. Then, [(XA)°P, k-Mod] is the category of left A-
modules. When A is finitely generated as a k-module, ®X A is the category of
finitely generated A-modules A-Mod;.

Example 7.10. Suppose ¥ = k-Mod, the category of modules over a commutative
ring k. If A and B are k-algebras of finite rank, A-Mod; X B-Mody can be taken
to be A ® B-Mody. To see this, define a #-functor right exact in each variable
A-Mody ® B-Mody — A® B-Mody sending (M, N) to the A® B-module M ® N.
If ¢ is a /-category with finite colimits, a functor F' : A-Mod; ® B-Mod; — &
right exact in each variable is the same, up to an equivalence, as an object C' of
% with an action of A and an action of B, each one commuting with the other;
in other words, it is the same as a ¥-functor (A ® B) — €, or a right exact ¥-
functor A® B-Mody — % . Therefore there is an equivalence and an isomorphism

as depicted in the following diagram.

A-Mod¢ ® B-Mod; — A-Mody X B-Mod ¢

: |

A X B—Modf

7.3 Deligne’s tensor product

Let k be a commutative ring and % = k-Mod category of k-modules. Of course,
% is a complete and cocomplete symmetric monoidal closed category. Moreover,
7 is locally finitely presentable; we write %} for the full (monoidal) subcategory
of finitely presentable objects, as usual.

If o/, % are abelian % -categories, their Deligne’s tensor product, introduced
in [19], is a k-bilinear functor &/ x B — o/ ® A, where o/ ® % is another abelian
category, that induces equivalences between the category of right exact functors
o/ B — ¢ and the category of functors &/ x Z — € right exact in each variable,
for all abelian % -categories €.

The property of .« ¢ 8 can be rewritten in the following manner. There are

equivalences
®-Cocts(Z, [/, €¢]) ~ P-Cocts( © B,€)

pseudonatural in ¢, where ® is the class of weights of finite colimits, or a class
whose closure is the class of finite colimits. However, as a result of the requirement
that o7, B, € and o/ e % be abelian, </ @ % need not be equivalent to the finitely
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cocomplete &7 X # defined by Proposition 6.31, at least a priori.
Although in [19] the tensor product is defined for arbitrary abelian catego-
ries, it is only shown to exist for certain special abelian categories, namely those

satisfying the following conditions.

Condition 1. The ground commutative ring k is a field, all the objects have finite

length and the homs are finite-dimensional.

We shall show that for this special type of abelian categories, <7 X % has the
defining property of & e Z. In other words, for the kind of abelian categories
that .7 e A is shown to exist in [19], &/ K # and < ¢ A coincide. This gives
evidence that the right product to consider would be X.

Recall that a sub-quotient of an object in an abelian category is a quotient of
a subobject. An abelian subcategory is closed under sub-quotients exactly when

it is closed under subobjects, or dually, when it is closed under quotients.

Observation 7.11. If & is an abelian category satisfying Condition 1 above, the
inclusion of a full abelian subcategory closed under sub-quotients 7 : ¥ — % has
a left adjoint i¢; the left adjoint sends an object X of 2 to the greatest quotient of
X lying in 4. When Z has a projective generator P, Z is canonically equivalent
to (P, P)-Mod; via X — 2(P, X). Moreover, i‘(P) is a projective generator in
%, so that € ~ €(i*(P),i'(P))-Mod;. There is an isomorphism

3 = % (i' P, i’ P)-Mod;

|

2(P, P)-Mod;

1%

Z

with components %' (i P, X) = 2(P,iX); here the functor on the right hand side
is the one induced by the morphism of algebras ifg, p: 9P P)— € (i'P,i'P).

We consider the base category % = k-Mod equipped with chosen finite co-
products and coequalizers given by the usual constructions. This gives chosen
finite colimits by the usual construction of colimits out of coproducts and co-
equalizers. For any k-algebra A, the category A-Mod; of finitely presentable

A-modules inherits a choice of finite colimits.

Observation 7.12. Given algebra k-morphisms f: A — A’ and g : B — B’ call
f* and ¢g* the functors given by restriction of scalars. If the four algebras involved
are finitely presentable as k-modules and Noetherian as algebras, we can prove

that f* X ¢* is an exact functor.
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Consider the diagram

A'-Mod; ® B'-Mody — A’-Mod K B'-Mod; —— A’ @ B'-Mod
rar| - ral |iseor
A-Mod; ® B-Mod; — A-Mod; ¥ B-Mod; —=—> A ® B-Mody

where the equivalences are the ones of Example 7.10. If A is a Noetherian al-
gebra, the category of finitely presented A-modules A-Mod; is not only finitely
cocomplete but it is closed under kernels in A-Mod. Hence it makes sense to
say that f* X g* is exact (as a tensor product of Noetherian algebras is again
Noetherian). Since the outside rectangle commutes up to an isomorphism, we
deduce that there exist an isomorphism filling in the square on the right hand

side. Therefore, the exactness of f* X g* follows from the exactness of (f ® g)*.

Now suppose that <7 is an abelian category satisfying Condition 1 above. Us-
ing [19, 5.12] & can be shown to be a filtered colimit of full abelian subcategories
; closed under sub-quotients, such that each .7 is equivalent to category of
modules of finite rank over a k-algebra of finite rank (depending on 7). Following
the notation of [19], denote by (X) the full subcategory closed non-empty finite
direct sums and under subquotients of &/ generated by the object X. Define a
filtered category ¢ with ob_# = ob&/ and an arrow X — Y if an only if X is
a direct summand of Y in 7, and a functor ¢ — %-Cat by sending X — Y
to the inclusion (X) < (Y). Clearly, <7 is a (filtered) colimit of this functor. By
[19, 2.14, 2.17], each category (X) has a projective generator Px and there is an
equivalence (X) ~ o/ (Px, Px)-Mod (see Observation 7.11).

Let R be the 2-monad on % -Cat whose algebras are the % -categories with
chosen finite colimits. Suppose that the abelian category <7 in the paragraph
above is equipped with chosen finite colimits. Then each subcategory <7 is a
subobject of & in the category (R-Alg,)o of categories with chosen finite colimits
and functors strictly preserving them. Since R is finitary, R-Alg, — % -Cat
creates filtered colimits, and <7 is a filtered colimit of the subcategories <7 in
R-Alg,.

Theorem 7.13. Suppose &/ and A are abelian categories with chosen finite col-
imits and satisfying Condition 1. Then o/ W% not only has chosen finite colimits
but is also abelian. Therefore, the monoidal structure X coincides on such abelian

categories with the tensor product defined in [19].
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Proof. Suppose o7, % are % -categories satisfying Condition 1 and with chosen
finite colimits. We only need to prove that o/ X 2 is an abelian category.

As observed above, & and A are filtered colimit of filtered diagrams of sub-
categories o7; and %; in R-Alg,, respectively. By Proposition 6.14, <’ is filtered
colimit of the diagram 7. The 2-functor © : R-Alg, x R-Alg, — R-Alg, of
Corollary 6.30 preserves filtered colimits in each variable (since R does so) and
hence & K A = o/’ @ A will be the filtered colimit of the 7 X B = o7 @ A} in
R-Alg,, and in % -Cat.

We have seen in Observation 7.11 that each inclusion & — &7 is, after com-
posing with certain equivalences and up to isomorphism, a restriction of scalars
functor between categories of finite-dimensional modules, and likewise for the
H;’s. Hence, each functor &7 X %, — o/; X %, is exact by Observation 7.12. It
follows that o7 X Z is abelian, since the colimit in % -Cat of a filtered diagram
of abelian categories and exact functors is an abelian category.

O

7.4 Tensor products from sketches

In this section we briefly explain the relationship between our definition of the
tensor product of two ¥ '-categories with chosen colimits and the work of Kelly
on essentially algebraic theories.

For the purposes of this section, ¥ will be a locally finitely presentable mo-
noidal category (see [43]); however, in some parts less is needed (for example,
locally bounded).

Denote by R the 2-monad on 7-Cat whose algebras are the 7#-categories
with chosen finite colimits. Then R-Alg is (isomorphic to) the 2-category of
¥ -categories with chosen finite colimits, finitely cocontinuous ¥ -functors and -
natural transformations. In this section we explain the relationship between the
monoidal structure on the 2-category R-Alg defined in the previous sections and
work by Kelly [42, 43].

For a ¥-category Z°, denote by ®(Z2") the closure under finite colimits in
[Z7°P, V] of the representables. One could consider any class of colimits here, but
the finite ones will suffice for our purposes. Denote by y : 2" — ®(2") the Yoneda
embedding. It has a universal property: composition with y induces equivalences
from the ¥ -category of finitely cocontinuous ¥-functors FinCocts[®(Z), /] to
[Z, o], for any finitely cocomplete ¥ -category /. By construction of R [45],
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there exits an equivalence making the following diagram commutative.

2 —L-R(2)

RN

o(27)

In particular, both y and 7 are dense.

The ¥ -category [2 °P, #] is locally finitely presentable, and ®(.2") is the full
subcategory of finitely presented objects.

A V-sketch is a pair (o7, V) where o7 is a #-category and ¥ = {V, : ), =
o (A, Sy(=))}yer is a set of #-natural transformations, where ¢, : 2, — ¥
and S : 2, — /. A model for the sketch (&7, ¥), or a W-model, is a 7-
functor F' : &/ — 2 such that the transformations ¢, = #(A,,S,(-)) =
B(F(A,), FSy(—)) are the units of a weighted limit {1, F'S,(—)}. We denote by
U-Mod[e7, #] the full subcategory of [«7, %] determined by the W-models. Then,
a W-model is a functor that sends each U, to a limit. We denote W-Mod[«/, ¥
by W-Alg, and call its objects W-algebras.

Given a sketch (&7°P, ¥), define the ¥ -category

U-Coml|e, ] = U-Mod|=/°P, Z°F].

The objects of this ¥ -category are called W-comodels. A sketch (o/°P, W) can
be identified with a set of transformations {¢, = &/ (G~(—), A,)}yer where ¢, :
23’ — ¥ and G : 2, — /. A U-comodel is a ¥-functor that sends each one of
these transformations to a colimit.

It is shown in [42, 6.3] that for a sketch (&/°P, V), W-Alg is a reflective sub-
category of [/°P, #]. In particular, it is cocomplete. Denote by K : &/ — W-Alg
the composition of the Yoneda embedding with the reflection. It is easy to see
that K is dense. Moreover, K is a W-comodel. To see this, note that a functor
G: o — A is a U-comodel if and only if G is a K-comodel in the sense of [42,
5.12] by [42, Theorem 6.11] and the last paragraph of [42, 6.2].

Now suppose ® is a set of weights and that all the elements 1), of the sketch
¥ belong to ®. Denote by # the closure under ®-colimits of the image of K in
V-Alg, and Z : of — & corresponding factorisation of K.

Theorem 7.14 ([42, Theorem 6.23]). Composition with Z : &/ — ¥ induces
equivalences ®-Cocts[ A, B| ~ V-Com[/, HB]. The inverse equivalence is given
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by taking left Kan extension along Z.

Given two 7 -sketches (&/°P, ¥ ,/) and (#°P,¥4), one can define a new 7-
sketch (o @ B,V @ Vy) consisting of the ¥ -natural transformations

¢ 5 o (G(-), A) 225 o7 (G(-), A) © B(B, B) = o © B((G(~), B), (A, B))

oL B(H(-),B) 225 /(A A) @ B(H(-),B) = o @ B((A, H(-)), (A, B))

where 7 € W,, 0 € Uy, A is an object of &/ and B an object of A.

Consider the example when @ is the class of all finite weights, or a class whose
closure is the class of finite weights (for example, ® can consists of the weights for
coequalizers, binary coproducts, initial object and tensor products with objects
in a small strong generator of 7 included in #}). Take two finitely cocomplete 7'~
categories &7 and % and ¥ -sketches ¥, and V4 consisting, respectively, of the
units of the colimits in &/ and % with weight in ®. Then, ¥, ®¢ V4z-Com|s @
A, € is the ¥-category of ¥-functors &7 @ B — ¥, finitely cocontinuous in each
variable. The ¥-category V., ®q¢ V¥5-Alg is Lex[o/°P, Z°P; V], the ¥ -category
of ¥-functors &7°P @ °P — ¥ finitely continuous in each variable. The dense
¥ -functor Z : o/ @ 9 — ¢ in this case has the universal property of the tensor
product corresponding to the pseudo-closed structure on R-Alg.

Suppose that the base monoidal category ¥ is equipped with chosen finite
colimits. We choose finite colimits in [«7°P @ ZB°P, ¥| point-wise, and use the
reflection [&/°P @ P, V| — Lex[a/°P, $°P; V] to equip the codomain with chosen
finite colimits. We equip the 7#-category # of Theorem 7.14 with the chosen
colimits corresponding to the ones of Lex[o/°P, 2°P; ¥|. Hence, if &/ and % have
chosen finite colimits, we have ¢ ~ o/ K 4.

7.5 Radford’s formula for finitely complete autono-

mous categories

Throughout this section we will denote the category of vector spaces by 7', and
the category of finite-dimensional vector spaces by 7#}. Let L be the 2-monad on
¥ -Cat whose algebras are ¥ '-categories with chosen finite limits, and denote by
X the tensor product corresponding to its pseudo-closed structure as in Section
6.6 (see Theorem 6.35). The neutral object for this pseudo-monoidal structure
is the free ¥'-category with chosen finite limits L(I) over the unit #-category I.
We shall identify F'(I) with ¥} via the canonical equivalence L(I) — ¥} that
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makes the following triangle commute (see the beginning of Section 7.1).

x N
op
7y

The unit constraint ”f/fOP X% — % corresponds to the cotensor product 7#'-functor
{—,-}: “//f()p®<€—>(€.

If X is an object of ¥ and Y an object of &, we will denote the image of
the object (X,Y) under the universal multimap ¢ ® ¥ — ¢ X Z, the canonical
¥ -functor left exact in each variable, by X XY

We denote the dual of a finite-dimensional vector space W by WV.

A pseudomonoid in L-Alg is the same as a monoidal ¥ '-category ¢ which
is finitely complete and whose tensor product is left exact in each variable. We
will denote the multiplication and unit by P : € X% — % and J : “//f()p — E,
respectively, and by 1 the object of ¥ defined by J.

From now on, we will consider only 7-categories with homs lying in the full
subcategory of finite-dimensional vector spaces 7.

Lemma 7.15. Any 1-cell F : ”//fc’p — € in L-Alg has a right adjoint given by
€ (Fk,—)

7 e, (7.2)

In particular, J has right adjoint.

Proof. The isomorphism € (Fk, X) = ¥3(¢(Fk,X)", k) = VP (k, € (Fk, X)")
exhibits the left exact (7.2) as right adjoint to F'. O

Ezample 7.16. Let k be a perfect field (e.g. a field of characteristic zero), </ be a
category equivalent to A-Mody, the category of finite-dimensional modules over
a finite-dimensional k-algebra A, and suppose &/ has the structure of an autono-
mous monoidal category. We shall show that any such category is an autonomous
map pseudomonoid in L-Alg, so that the theory developed in previous chapters
apply. In particular, our results apply to the finite tensor categories considered
in [27].

We only have to prove that the multiplication P : &/ K o/ — &/ has right
adjoint. Via the left dual functor, &/ is equivalent to .27°P. Hence, by a dualised
instance of Example 7.10, the tensor product functor A—Mod?plD ® A—Mod?p —
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A® A—Mod?cp provides us with a choice of &/ X &/. Now, the monoidal product
of &/ corresponds to a functor A—Mod?cp ® A—Mod;p — A—Modjﬁp , exact in each
variable; by [19, 5.7], the induced functor A ® A—Mod(}p — A—Mod?p is exact.
It follows that the multiplication P : o K o/ — & is not only left exact but
also right exact. Therefore P has a right adjoint, because both domain and
codomain of P are equivalent to categories of finite-dimensional modules over a
finite-dimensional algebra, as we explain below.

Any right exact functor G : A-Mody — B-Mody is of the form (M ®4 —)
for a (unique up to isomorphism) left B right A finite-dimensional bimodule M.

Hence, the functor Homp(M, —) is a right adjoint to G.
Lemma 7.17. If € and 2 are pseudomonoids in L-Alg, then € X & so is.

Proof. The pseudomonoidal structure is induced by the monoidal structure of
C®D. O

Note that in the proof above we are not allowed to say that that the pseudo-
functor (— X —) is monoidal and hence preserves pseudomonoids. This is because,
although there are equivalences ¥ X ¥ ~ 2 X % induced by the isomorphisms
C®RP = PRF, we can not say that the former provide a braiding, making L-Alg
a braided monoidal 2-category, as we lack an established definition of braiding

for general monoidal 2-categories.

Lemma 7.18. If X € € and Y € & have left duals *X and *Y, then X Y €
XD has left dual * X KX *Y .

Proof. We have to show that (*X K *Y) @ — is left adjoint to (X XY) ® —.
The former functor is the image under X : L-Alg x L-Alg — L-Alg of the 1-cell
((*X ® =), (*Y ® —)) while the latter is the image of ((X ® —), (Y ® —)). Since

pseudo-functors preserve adjunctions, we get our result. O

Now we fix a map pseudomonoid % in L-Alg; this means that % is a finitely
complete monoidal category whose (left exact) multiplication functor P : X% —
% has right adjoint P* (the unit J has right adjoint by Lemma 7.15). We shall
suppose that € is autonomous, and denote by D : €°P — % the functor given by
taking right dual; its pseudo-inverse D* : € — €°P is given by taking left dual.

For any object Y of € we shall write Ly : € — € for the left exact functor
given by Ly (X) =Y ® X. This functor has left adjoint L{, isomorphic to L+y.
Observe that there exist canonical isomorphisms : @ : P(Ly X %) = Ly P whose
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components wygy : (Y @ X)® Z — Y @ (X ® Z) are just the associativity
constraint of the tensor product. Analogously, there is a left exact functor Ry :

€ — € given by tensoring with Y on the right, and Ry« 4 Ry-.

Lemma 7.19. The 2-cells below

@3 PX1 I Y
1®V I \}zi o~ R s %Z (7.3)
e 3
and
&3 1XP P
P*y I xa{ ~ Y{ s %Z (7.4)
¢? 0" £ ¢

are given, on an object of the form Y K Z, respectively by

XX, (PRE)(ERP*(2))Y) = %X, (LyRE)(P*2)) = ¢*((LY RE6) X, P*Z)
~F(P(LYy RE)X,Z) 2 C(LyPX, Z2) = €(PX,Y @ Z) = €*X,P*(Y @ Z)

and

CHX,(ERP)(P*(Y)RE)Z) = €*(X, (€ KRy P*Y) = €*((€ KRS X, P*Y)
~ F(P(¥¢ KRR X,Y) = €(RLPX,Y) =€ (PX,Y ® Z) 2 €*(X,P*(Y ® Z).

In particular, (7.3) and (7.4) are invertible.

Proof. First observe that the result for (7.4) follows from the one for (7.3) by
considering the reverse monoidal category. Therefore it suffices to prove that the
outer rectangle in the diagram (7.5) in Figure 7.1 commutes; and this happens
when the diagram marked as (A) commutes. In fact, we can show that (A)
commutes when we substitute P*Z by any object of ¥ X ¥". In order to do this
consider the diagram (7.6), where we changed P*Z by U X V; this suffices since,
for fixed X, all the functors ¢ W ¢ — 7} involved are left exact. Hence, it is
enough to prove the commutativity of (B). Now, the rectangle in (7.7) commutes

by naturality of co, and then it follows that (B) commutes too.
O

As a direct consequence of Lemma 2.43 Observation 2.45, we get the following.
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Corollary 7.20. For any autonomous monoidal ¥V -category € with homs in ¥y
and multiplication P : € WE — € with right adjoint,

1. The left exact functors J*P : € X € — “//fOp and P*J : ”//fOP — ECKE form

a bidual pair. In particular, € is a Frobenius pseudomonoid in L-Alg.

2. The left dual functor D : €°P — € is a right dualization with respect to the

bidual pair

E=¢Re? 22 ere Lov Ly

Ny Lo D ere DL grRY).

3. The right dual functor D : €°° — € is a right dualization with respect to
the bidual pair

E=(erre 2L one Log Loy

N:o? L Zore B2 g rew).

We are now ready to deduce, for any autonomous monoidal k-linear category
with finite-dimensional homs and left adjoint multiplication P : ¥ X% — C, the
main results in [27].

Let N : ”I/fOP — € KE°P be the coevaluation given in the corollary above, and
denote by H € € X€°P the corresponding object. By Lemma 7.15, N has a right
adjoint, and therefore by Section 4.2 there exists a unique up to isomorphism left
exact ¥-functor W : 7/fOp — ¢ such that (PR ¢P) WK H) = (WKX1)® H is
isomorphic as an H-module to the left dual of H. By Lemma 7.15, W has right

adjoint.

Proposition 7.21. The left exact functor W : ”f/f°p — € is invertible in the
monoidal category L—Alg(”i/f()p,%); equivalently, the object W of € defined by W

1s invertible.

Proof. The functor W has a right adjoint by 7.15. Then, a result dual to Propo-
sition 4.12 shows W is invertible in L-Alg(”//f()p,%). In other words, the object
W € ¥ is an invertible object. O

Observation 7.22. If ¢ is a finite tensor category in the sense of [27] (and
hence a map pseudomonoid in L-Alg by Example 7.16), the object W is called
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a distinguished invertible object of € (see [27, Definition 3.1]). The proposition
above shows that the invertibility of W follows from abstract considerations and it
is independent of the Frobenius-Perron dimension argument used by the authors

of that paper.

Theorem 7.23. There exists a monoidal isomorphism between endo-functors of
V(%)

Proof. The coevaluation N : “//fOP — €°PX% has a right adjoint by Lemma 7.15,
and hence 14 has a left and a right dual in L-Alg(%, %), and we already saw that
W has a right adjoint. Therefore we can apply Theorem 4.15 to the autonomous
pseudomonoid (%, J*, P*) in L-Alg®? and, since left (respectively right) duals in
L-Alg®® (%, 7;") are the same as left (respectively right) duals in L-Alg(7;",€),

we obtain the result. OJ

We include below some results that may shed some light on how the general

theory applies to L-Alg.

Lemma 7.24. Let € and 2 be autonomous ¥ -categories which are map pseu-
domonoids in L-Alg equipped with the right and left bidual in part 2 and 3 of
Corollary 7.20. Then any left exact F : € — 2 has a left adjoint FY and the
right and left bidual F°,FY : 9°° — €°P are given by F° = FV = [fop = [op*,
In particular, F does not only preserve finite limits but all the limits that may

exist in €.

Proof. The bidual of F' is determined by the existence of an isomorphism E(Z°PX
F) = E(FYK%), or, evaluating on XXY € 2°°KE, 2(X,FY)" 2 €(FVX,Y)".
If follows that FV°P is a left adjoint for F'. The proof with the right bidual is

analogous. O

Observation 7.25. 1. We shall describe the pseudomonoid structure of the
bidual €°P of ¥. By Lemma 7.24, the unit object of €°P is the same as
the one of ¢. The multiplication is (P*)Y; because of the definition of the
evaluation and coevaluation of the bidual pair in Corollary 7.20.3, and by
using repetitively Lemma 7.19, this functor is isomorphic to D*P(D X D).

Hence, the multiplication of ¢°P is isomorphic to

€OP RGP 2V, @op [} goP L, op
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where () denotes the left exact functor induced by the opposite of the tensor
product of &, ®°P : €°P ® €°P — %°P, and sw is the canonical equivalence
sw: o KB~ BN .

2. Now we turn our attention to the (convolution) pseudomonoid structure
on ¥ X ¢°P. This structure was described in Lemma 4.1, and has unit
object 1 X 1 and multiplication (P X ((P*)"sw))(¢ X sw X €°P). Then,
the multiplication is just the composition (P X Q)(% Xsw X ¢°P); it sends
objects of the form XXYXZXU in KEPREREP to (X®Z)K(Y®U).

Observation 7.26. The convolution hom-category L—Alg(”f/f()p, ) is monoidal-
ly equivalent to #-Cat(I, Z), which is the underlying ordinary category of 2.
Therefore, if 2 is autonomous, L—Alg(”f/fOp, 2) is autonomous. Explicitly, if F' :
V3P — P is left exact, its left and right duals in L-Alg(¥}", ) are the left exact
¥ -functors determined by the objects D*(Fk) and D(Fk) respectively.

A number of the constructions we have done for a general pseudomonoid in

Chapter 2 translate under the equivalence
L-Alg(€,¥) ~ L—Alg(”f/f‘)p,%ﬁ%"p) ~ ¥ -Cat([,CRE?P) = V(EREP) (7.8)

into constructions on the ordinary category V(% X ¢°P). This equivalence is
monoidal with respect to two different monoidal structures. On L-Alg(%, %) we
have the convolution monoidal structure and the composition monoidal structure.
The former corresponds to the pseudomonoid structure on % X €°P described
in Observation 7.25; the latter corresponds to the pseudomonoidal structure on

@ X €°P given by multiplication and unit

CREPRERE? L RYPREP ~ ¢REP  H = N(k) € CREP.

(7.9)
Explicitly, the multiplication sends an object X XY K Z XU to {¢(Y,Z)", X K
U} =2 (X ®U)ImeY2) The fact that the identity 1-cell is a monoid in the
convolution category L-Alg(%, %) translates into the fact that the coevaluation
N is a monoid in L—Alg(”f/f‘)p , € XE°P), where ¢ K4 °P has the product described
in Observation 7.25, or equivalently, that the object H determined by N is a
monoid in the underlying ordinary category V(% X ¢°P), and hence in ¢ X €°P.

Definition 7.1. We denote the Hopf module construction for the pseudomonoid
% in L-Alg™ by s — € K €°P. The finitely complete category 77 is called the
category of Hopf modules of €.
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Observation 7.27. When we restrict ourselves to the finite tensor categories
of [27], the category ¢ defined above is what is called the category of Hopf
bimodules. (Note that in that paper the authors use the symbol €°P for what we
would denote by €™V: ¢ equipped with the reverse tensor product.) Hence, our

notion of category of Hopf modules generalises the one of [27].
The following result is a generalisation of [27, Prop. 2.3 (a)].

Proposition 7.28. The functor ¢ — H# given by X — (XX1)®H is a monoidal

equivalence, where the latter category has the monoidal structure induced by (7.9).

Proof. The functor in question is equivalent to the functor sending X : [ —
¢ to (P X %°P)(X W H), which is induced by composition with the monoidal
equivalence (PX%°P)(¢ X N) (see Theorem 2.35). Hence, X — (XX 1)® H is a
monoidal equivalence as claimed, with monoidal structure induced by transport

of structure. 0

7.6 Semisimple categories and completion under bi-

products

In this section we express the semisimplicity of a category enriched in vector
spaces in terms of two 2-monads: the 2-monad D whose algebras are the categories
with chosen biproducts and L whose algebras are the categories with chosen finite
limits. Then we relate the semisimplicity of an autonomous monoidal category
with finite dimensional homs with a purely bicategorical property; namely, the
existence of a right adjoint to the right adjoint to the unit. See Theorem 7.39.

In this section ¥ will still denote the category of vector spaces over a field k.

Let Fin-BP be the 2-category of ¥ -categories with chosen biproducts, 7'-
functors preserving biproducts up to isomorphism, and #-transformations. We
will also call biproducts direct sums. Of course, any ¥ -functor preserves biprod-
ucts; in other words, the forgetful 2-functor Fin-BP — ¥'-Cat is locally an iso-
morphism of categories. The 2-category Fin-BP is isomorphic to D-Alg for certain
2-monad D on ¥-Cat that we describe below.

If 2" is a ¥ -category, D(Z") has as objects finite sequences (z1, 2, - ,Ty)
of objects of 2. The elements of the #-enriched hom

D(‘%)((wl? T 7xm)7 (ylv T 7yn))
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are matrices (fpq), 1 <p <n, 1 < g <m, where f,, € Z (24,y,). Composition
is given by product of matrices, while identities are given by the corresponding
identities matrices. Multiplication D?(.2") — D(%) is given by deleting brackets,
and the unit 2~ — D(2") by adding brackets.

We now examine the relationship between the 2-monad D and semisimple
categories. First we fix some terminology. A subobject of an object X in 2 is a
monic S — X. Subobjects of a fixed object form a category Sub(X) with the
obvious arrows. We call any subobject isomorphic to 1x : X — X or0:1 — X
trivial; note that the zero subobject is defined only when 2" has a final object.
We say that X has finite length if the length of the chains of subobjects of X
is bounded; this is, if there exists an n > 0 such that, if there is an m-tuple of
composable arrows in Sub(X), none of which is an isomorphism, then m < n. An
object X is simple if it is not initial and its non-zero subobjects are isomorphisms.
Clearly, simple objects have finite length. A ¥ -category 2 is semisimple if every

object is isomorphic to a direct sum of simple objects.

Observation 7.29. Any object (z1,---,2,) in D(Z") is isomorphic to an ob-
ject in a mormal form. By this we mean that there exists a permutation o
of {1,2,---,n} and positive integers ki,--- ,ky, such that > ", k; = n and
To(j) = To(j+1) if and only if Y50 ki < j < Stk —1,1 <7 <m-—1.
In other words, we can rearrange the x; in a way such that all of them that are
equal are grouped together. The permutation matrix associated to o provides an
isomorphism between (z1,- -+ ,2yn) and (Zy(1), ", Ts(n))- In particular, any ob-
ject of D(Z) is isomorphic to an object of the form (y1)* @ (y2)*2 @+ - - @ (ym )",
with all the y; distinct objects of 2". Here (y)* denotes the direct sum of k copies
of the object (y) of D(Z"); this direct sum is isomorphic to the list (y,y, - ,v),
of length k.

Given two objects of D(2Z7), it is clear from the discussion above that we can
find normal forms for each one in a compatible way. In other words, one of the
objects will be isomorphic to (z1)4 @ - @ (2,)" @ (1) @ --- @ (ys)* and the
other to (z1)" @ - @ (z,)" @ (21)™ @ --- @ ()™, with all the z;, y; and z
distinct pairwise.

Lemma 7.30. If B has kernels, then for any pair of simple objects S, S’, B(S, S")

is a division algebra if and only if S = S’ and zero otherwise.

Proof. Suppose f : S — S is a non-zero arrow. The arrow ker f is a subobject of
S, and it cannot be an isomorphism as f # 0. Therefore, ker f is zero, and then

f is a non-zero subobject of S’. We deduce that f is an isomorphism. O
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Lemma 7.31. Let B be a semisimple ¥ -category with kernels, and {Sa}acr @
representative set of simple objects. If the objects of B have finite length, then A
is equivalent to D(Z") where 2" =[] c; Za, ob(Za) = {xa} and Zo(xa,ra) =
PB(Sa, Sa)-

Proof. The ¥ -category 4 is equivalent to its full sub #-category %’ with objects
the direct sums of the S,. So, it is enough to prove the result for #’. Let 2
be the ¥ -category described in the statement. Define 2~ — %’ sending z, to
S, and as the identity on homs. We shall prove this functor induces equivalences
Fin-BP(#',¢) ~ |2, €] for any ¥ -category ¢ with finite direct sums.

Any arrow f : SiL @ - @ Sim — S @ - @ Sy is coproduct of arrows
fie Sgi — S5t by Lemma 7.30. Moreover, each f* determines and is determined
by a matrix (f. ) with entries in End(S,,).

Now suppose F : 2" — % is a ¥ -functor. Define G : ' — % on objects such
that it preserves finite direct sums. On arrows, G(f) = G(f!) @ --- @ G(f™),
where G(f?) : G(Sa,)"" — G(Sa,;)* is given by the matrix (F(f;,)). This defines
a finite direct sum-preserving 7 -functor, corresponding to F' under composition

with 2" — %’. This is the object part of the required inverse equivalence. O

Lemma 7.32. Let 2, be ¥ -categories with ob(Zy) = {za} and Ay = Z (o, o)
division algebras. Then, the ¥ -category 9 = D(]], Za) is semisimple and
abelian, and has objects of finite length.

Proof. By definition, every object of Z is direct sum of the objects x,. So, to
show this category is semisimple, it suffices to prove that each z, is simple. Let
f: (zay, 1 %a,) — To be a non zero monomorphism. By definition, f is a
matrix (f1, -, fn) with f; : ©o, — 2. All the f; must be non-zero, otherwise
f would not be monic. This forces a; = « for all i. Now, f € Matjx,(As), and
the condition of being a monomorphism implies that for any g € Mat,,xn(Aq),
fg = 0 implies ¢ = 0. But A, is a division ring, and then n = 1. We just
showed that f comes from a non-zero arrow x, — ., and hence it is invertible.
Therefore, the only non-zero subobjects of z,, are isomorphisms, and x,, is simple.

Next we show that & has kernels and cokernels. In fact, only one of the two
properties is needed, since by duality we get a proof for the other, as D(%)°P =
D(#°P) for any ¥ -category % . Let f be an arrow in 2. To the purpose of
showing it has a kernel, by Observation 7.29, we may assume f is of the form
g @@ g ®0, where g; : (z;)% — (2;)" and 0 is the zero morphism between

certain objects. Hence, it suffices to prove that each g; has a kernel. An arrow
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9 (Tag)® — (Ta)" in 2 is a matrix gy, € Matyxk(Aa,). Since Ag, is a division
algebra, and then every A,,-module is free, the matrix (g ,) has a kernel. This
kernel is the matrix of the inclusion of the (submodule) kernel of (g,,), with
respect to any basis in this submodule. Now it is easy to see that this kernel
matrix is the kernel of g.

To prove that Z is abelian it only remains to show that any arrow factors as
a cokernel followed by a kernel. The argument is very similar to the one used in
the previous paragraph. It is enough to prove that the arrows (z4,)" — (za)™
have coker-ker factorisations, and this is true because matrices with entries in the

division algebra A,, have a coker-ker factorisation. This finishes the proof. [

Recall that we denote by L the 2-monad on #-Cat whose algebras are the

¥V -categories with chosen finite limits.
Proposition 7.33. For a ¥ -category A, the following are equivalent.

1. A is semisimple abelian with objects of finite length.
2. B is semisimple and has kernels and objects of finite length.

3. A is equivalent to D([[, Za) where Zy has one object x and its unique

hom Zo(za,zq) is a division algebra.

4. B is equivalent to L(]], Za) where 2, has one object x and its unique

hom Zo(Ta,Tq) is a division algebra.

Proof. (1) implies (2) trivially, (2) implies (3) by Lemma 7.31 together with
Lemma 7.30, and (3) implies (1) by Lemma 7.32. To prove the equivalence of
(3) and (4) it is enough to show that any ¥ -functor with domain D(]] Z%)
preserves kernels. But this is clear, since this category is semisimple abelian and
every object in it is injective, and hence any kernel is, up to composing with

isomorphisms, the the coprojection of a direct sum. O

Corollary 7.34. Let % be a ¥V -category satisfying the properties of Proposition
7.33. Then, A is equivalent to D(Z") for a discrete ¥ -category X if and only if
B(S,S) = k for every simple object S of B. In this case, B is also equivalent to
L(Z).

The corollary above can be reinterpreted in the following way. Let % be as
in Corollary 7.34, and let {S,}oca be a set of representatives of the isomorphism
classes of simple objects. Then, to give a ¥-functor 8 — o, where &/ has finite

direct sums, is, up to isomorphism, to give an object of &7 for each S,.
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Example 7.35. Suppose the base field k is algebraically closed. Then any semisim-
ple abelian ¥ -category 4 is as in Corollary 7.34. Indeed, for any simple object

S, A(S,S) is a finite dimensional division algebra, and then isomorphic to k.

We now show that the results on semisimplicity above hold for ¥ -categories
with finite homs and whose objects are injective. An object E is injective if for
any monic m : X »— Y the ¥ -natural transformation 2 (—,m) : Z(-,Y) =
2 (—, X) is epi. In particular, if s : S — X is a subobject with S injective, then

there is an arrow r : X — S such that rs = 1g.

Lemma 7.36. If s : S — X is a subobject with S injective in a ¥ -category P

with kernels, then s is part of a biproduct diagram.

Proof. We have to give a diagram
s p
S<——=X <T> K.

Choose r such that rs = 1g, and define £ = kerr and p the unique arrow such
that kp = 1x — sr; this makes sense as r(1x —sr) =r —rsr =r —r = 0. The
only condition that remains to be checked is pk = 1x. But this is also easy:
kpk = (1x — sr)k = k — srk = k, and k is mono. O

In the hypothesis of the Lemma above, we have
dim Z(X, X) > dim #(S, 5) + dim(K, K) > dim #(S, S) + 1.

Lemma 7.37. Suppose B has finite-dimensional homs and every object is injec-

tive. Then every object is Artinian and Noetherian, and has a simple subobject.

Proof. Suppose X is not Artinian; that is, there is an infinite chain of subobjects
X 25128 2. Then, dim#AB(X,X) > dim A(S,,Sn) +n > n+ 1 for all
n > 1, which contradicts the finite-dimension of (X, X). The proof for the
Noetherian condition is analogous. Finally, if X had not a simple subobject,
we could construct an infinite descending chain of subobjects, contradicting the

Artinian property. O

Lemma 7.38. Suppose & has finite-dimensional homs and every object is injec-
tive. Then every object is isomorphic to a finite direct sum of simple objects. If,

in addition, B has kernels, then % is abelian.
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Proof. Every object is finite direct sum of simple objects by Lemmas 7.36 and
7.37. The rest follows from Proposition 7.33. OJ

We now apply these results to the case of autonomous ¥ -categories. Recall
that if ¢ is a monoidal ¥ '-category we denote by J : ”I/fOP — € the left exact

¥ -functor corresponding to the unit of the monoidal structure.

Theorem 7.39. Let € be an autonomous monoidal ¥V -category with finite-di-

mensional homs and finite limits. Then

1. IfJ*: % — ”VfOp has a right adjoint, then € is semisimple abelian with
objects of finite length.

2. J* has right adjoint if and only if J* - J.
3. If € is semisimple and €(1,1) = k, then J* - J.

Proof. (1) If
Tt = (% ¢(=1) 7/fop [SOMR %)

(see Lemma 7.15) has right adjoint, then ¢(—,1) : 4 — ¥} is cocontinuous.
In other words, ¢(—,1) : €°° — ¥ is continuous, and hence 1 is injective.
Therefore, every object in % is injective, as € (—, X) is isomorphic to ¢ (— ®
X*,1). By Lemma 7.38, % is semisimple abelian with objects of finite length.

(2) Denote by G a right adjoint to J*. We know that % is semisimple. Write
1 = @, and G(k) = ®,S0, decompositions of 1 and G(k) as direct sum
of simple objects. There is an isomorphism ¢'(X,G(k)) = ¥7P(J*(X), k) =
%(1,X)Y, natural in X. Setting X = S,, a simple object, we get

%(Saov Soéo)vmao = %(Sam Sao)nao

and hence my = ngy for all a. Then we see that G(k) = 1 and therefore G = J.

(3) We have to prove the existence of a natural isomorphism (1, X)" =
% (X,1). As € is semisimple, by Proposition 7.33, it is enough to show there exists
an isomorphism between the restriction of the two functors to the full subcategory
of ¥ with objects a set of representatives of isomorphism classes of simple objects.
Write 1 as the direct sum of simple objects as in the paragraph above. It is enough
to show that there is an exact dinatural pairing € (S5,1) ® € (1,5) — k, where §
is a simple object appearing in the decomposition of 1. If ¥’(1,1) = k, by the

finiteness of the hom spaces, the composition is such a pairing. O
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Corollary 7.40. For an autonomous monoidal ¥ -category € with finite limits

and finite-dimensional homs and with € (1,1) = k, the following are equivalent.
1. J:% — ”//f()p is has a right adjoint.
2. J 4 J.

3. € is semisimple abelian with objects of finite length.

7.7 Semisimple pseudomonoids and fusion categories

In this section we show that any semisimple autonomous monoidal ¥ -category is
unimodular. We work in the monoidal 2-category L-Alg of Section 7.5. As in the
previous section, ¥ will denote the category of vector spaces over a field k.

We have seen in Proposition 7.33 that a finitely complete semisimple ¥#'-
category is equivalent to L(] ], £4), where the #-categories Z;, have one object

and the unique 7 -enriched hom is a division algebra under composition.

Proposition 7.41. Assume k is algebraically closed. If the objects &/ and %A
in L-Alg are semisimple as ¥ -categories and have objects of finite length, then
o W B is semisimple too. Moreover, if o and B have representative sets of
simple objects { Ao} and {Bg} respectively, then {Aq X Bg} is a representative
set of simple objects of o/ KA.

Proof. By Proposition 7.33, we may assume &/ and % are of the form D([[, Z«)
and D(][5 %) respectively, where ob 2, = {za}, ob%, = {ya} and every -
enriched hom Z,(za,zq) and #3(yg,ys) is isomorphic to k (since k is alge-
braically closed). The sets {(z)} and {(ys)} are the sets of simple objects in the
respective categories. By Corollary 6.32, L([[, Za) ® L(I[5 %5) is equivalent to
L((I, Za) ® (115 %5)), and hence to L([],, 3 Zo ® #3). Under this equivalence
2o Myg corresponds to (zq,ys). Then, & KA is equivalent to D(Ha,ﬁ Za®%3),
again by Proposition 7.33. The #'-categories 2, ® %3 have one object (zq,y3),
and its ¥ -enriched hom is clearly isomorphic to k. It follows from Proposition
7.33 that o/ X Z is semisimple abelian. Finally, {(z4,y)} is the set of simple
objects of D(][, 5 Za ® %), and then {z,Kyg} is a set of representatives of the
simple objects of &/ X . O

Let € be semisimple and monoidal with objects of finite length and finitely

many simple objects. Then ¢ has associated structural constants. If {Sq}aea is

168



a set of representatives of the isomorphism classes of simple objects, we can write

na’ﬁ

The non negative integers nf;”g are called the structural constants of %

Theorem 7.42. Assume k is algebraically closed and let € be semisimple abelian
autonomous monoidal ¥ -category with finite dimensional homs. Then, the mul-
tiplication P : € W€ — € has a right adjoint if and only if € has finitely many
isomorphism classes of simple objects. Moreover, P*(X) = @aecpSa X (S) @ X) =
DaecA (X @ So) W Sk, where {S,} is a set of representatives of the isomorphism

classes of simple objects.

Proof. Let {S,}aca be a set of representatives of classes of isomorphism of simple

objects. Write a* for the element of A such that S, = S%. Suppose P has a
right adjoint P*, and write P*(1) = @4 gen(Sq X S3)"#, where all but finitely
many of the non negative integers n, g are non zero. By Corollary 7.20, for any

object X in & we have

X2 P50 X)", 5" = {65 X)", 52"}
a,BEA a,BeA

where {—, —} denotes the cotensor product. Let S, be an arbitrary simple object
and set X = S, to obtain

= (s, 5)° 50 ) = @ s

a€cl acl
where we used €(5,.5) = k for all simple objects S. We deduce that ng .+ = 0 if
a # 7 and ny,+ = 1. Then ~ belongs to the finite set A’ = {& € A | ng o+ # 0}.
This proves that A = A’ is finite. Moreover,

P(1)=PHSs. RS
acl
Henceforth, by Corollary 7.20 (2) and (3), together with (2.20) and its dual, we
deduce P*(X) = @(X ® So) K S, = ©,5, K (S} ® X).

For the converse, suppose %€ has finitely many isomorphism classes of simple
objects, and let {S,}aea a set of representatives, and that € (Sq, So) = k for all
a € A. We have to show that there exists a #-functor ) : ¥ — € X % and a
natural isomorphism ¢(X ® Y, 7)) =2 ¢ K¢ (X XY,Q(Z)). By Corollary 7.34,
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to give @ is to give objects Q(S,). Then we have to find objects Q(S,) with
a natural isomorphism (X ® Y,S,) 2 ¢ K€ (X XY,Q(S,)). Applying again

Corollary 7.34, we have to find isomorphisms
C(Sp®85y,5,) =2C€NRE (SRS, Q(S)) (7.10)

By [
for all o, 8,7 € A. Write S5 ® Sy, = @)Sy*  and Q(Sa) = ®x,(Sx K S,,) ",
where mY  are integers to be determined. Substituting in (7.10), we have to

exhibit isomorphisms
(S Sy) 2 ERE(S3 K S, (S5 R 8,)"8).

Using that € X €' (Ss X Sy, Sg X .S,) has dimension one, we deduce that setting

mg y= ng’v, we have an isomorphism as required. OJ
b

Following [28], when k is algebraically closed, we call a semisimple abelian
autonomous monoidal ¥ -category with finite dimensional homs, finitely many

simple objects and simple unit object a fusion category.

Observation 7.43. The Theorem above can be reinterpreted in the following
way: fusion categories are exactly the semisimple abelian autonomous monoidal
k-linear categories € with simple unit object and such that the multiplication
P : % X% — % has right adjoint.

The following result originally appears in [27, Corollary 6.4]. However, our
proof is very different, as it follows from a general result on autonomous map

pseudomonoids.

Theorem 7.44. Let € be a fusion category regarded as an autonomous map
pseudomonoid in L-Alg. Then, € is an unimodular autonomous pseudomonoid

in L-Alg. In particular there exists a natural isomorphism

Proof. We can consider ¢ as an autonomous map pseudomonoid in L-Alg by
Theorem 7.42 and Corollary 7.20. By Corollary 7.40, there exists an adjunction
J* -4 J, and this forces to ¥ to be unimodular, as showed in Proposition 4.20.
This means that the object W in Theorem 7.23 is isomorphic to the unit 1,

yielding an isomorphism as claimed. O
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€2 (X,n)

\ /

¢2(X,(Ly®e¢)P*Z

]

*P(LyR%)P*Z)

¢?((Ly W)X, P*Z € (PX,P(LyXC)P*Z) 2(X, P wpry)
/| e
¢(P(LY X)X, PP*Z) = ¢ (LY, PX,PP*Z) = & (PX,Ly PP*Z) - ¢*(X,P*Ly PP*Z)
(ﬁ(l‘,sz) %(1fz) %(Lbyé‘z) %2(1,PJLyez)
G (P(Ly®6)X,72) —— €(L{, PX,Z) ———> ¢(PX,Ly Z) ———> €*(X,P*Ly %)
(7.5)
2(X.Ly (U)RV) L “(PX,P(Ly (U)RV))
\L‘{, X1 %(1‘,@)
\
=~ (LY RO X L Ly (U)RV)  (B)  G(PX,Ly(URV))
%2(1,5[]&1)/ ip J/L{, (7.6)
€2 (LS Re) X, URV) ¢(P(LLRE) XL Ly (U)RV) = ¢(Ly PX,L{ Ly (URV))
%(I,EUKI)/ ‘5(175‘U®v)
— ~ V
¢ (P(LY, XE)X,UV) — E(Ly PX,UQV)
P LS
(X Ly (RV) ————= C(PX Ly (U)®V) —— ¢(LL, PX LY (Ly (U)RV))
\
L%&l i%ﬂ(ler@V)
¢2((LY K9) XL Ly (U)KV) ¢ (PX,Ly (URV)) ¢, @, (U)m)
B
pi () X
% (P(LY X)X L, Ly (U)QV) E (LY PX,LY Ly (D)RV)
¢ (wy'.1)
(7.7)
Figure 7.1:
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