3 research outputs found

    Locality-aware scientific workflow engine for fast-evolving spatiotemporal sensor data, A

    Get PDF
    2017 Spring.Includes bibliographical references.Discerning knowledge from voluminous data involves a series of data manipulation steps. Scientists typically compose and execute workflows for these steps using scientific workflow management systems (SWfMSs). SWfMSs have been developed for several research communities including but not limited to bioinformatics, biology, astronomy, computational science, and physics. Parallel execution of workflows has been widely employed in SWfMSs by exploiting the storage and computing resources of grid and cloud services. However, none of these systems have been tailored for the needs of spatiotemporal analytics on real-time sensor data with high arrival rates. This thesis demonstrates the development and evaluation of a target-oriented workflow model that enables a user to specify dependencies among the workflow components, including data availability. The underlying spatiotemporal data dispersion and indexing scheme provides fast data search and retrieval to plan and execute computations comprising the workflow. This work includes a scheduling algorithm that targets minimizing data movement across machines while ensuring fair and efficient resource allocation among multiple users. The study includes empirical evaluations performed on the Google cloud

    Parallel algorithms for computational fluid dynamics on unstructured meshes

    Get PDF
    La simulació numèrica directa (DNS) de fluxos complexes és actualment una utopia per la majoria d'aplicacions industrials ja que els requeriments computacionals son massa elevats. Donat un flux, la diferència entre els recursos computacionals necessaris i els disponibles és cobreix mitjançant la modelització/simplificació d'alguns termes de les equacions originals que regeixen el seu comportament. El creixement continuat dels recursos computacionals disponibles, principalment en forma de super-ordinadors, contribueix a reduir la part del flux que és necessari aproximar. De totes maneres, obtenir la eficiència esperada dels nous super-ordinadors no és una tasca senzilla i, per aquest motiu, part de la recerca en el camp de la Mecànica de Fluids Computacional es centra en aquest objectiu. En aquest sentit, algunes contribucions s'han presentat en el marc d'aquesta tesis. El primer objectiu va ser el desenvolupament d'un codi de CFD de propòsit general i paral·lel, basat en la metodologia de volums finits en malles no estructurades, per resoldre problemes de multi-física. Aquest codi, anomenat TermoFluids (TF), té un disseny orientat a objectes i pensat per ser usat de forma altament eficient en els super-ordinadors actuals. Amb el temps, ha esdevingut pel grup una eina fonamental en projectes tant de recerca bàsica com d'interès industrial. En el context d'aquesta tesis, el treball s'ha focalitzat en el desenvolupament de dos de les llibreries més bàsiques de TermoFluids: i) La Basics Objects Library (BOL), que es una plataforma de software sobre la qual estan programades la resta de llibreries del codi, i que conté els mètodes algebraics i geomètrics fonamentals per la implementació paral·lela dels algoritmes de discretització, ii) la Linear Solvers Library (LSL), que conté un gran nombre de mètodes per resoldre els sistemes d'equacions lineals derivats de les discretitzacions. El primer capítol d'aquesta tesi conté les principals idees subjacents al disseny i la implementació de la BOL i la LSL, juntament amb alguns exemples i algunes aplicacions industrials. En els capítols posteriors hi ha una explicació detallada de solvers específics per algunes aplicacions concretes. En el segon capítol, es presenta un solver paral·lel i directe per la resolució de l'equació de Poisson per casos en els quals una de les direccions del domini té condicions d'homogeneïtat. En la simulació de fluxos incompressibles, l'equació de Poisson es resol almenys una vegada en cada pas de temps, convertint-se en una de les parts més costoses i difícils de paral·lelitzar del codi. El mètode que proposem és una combinació d'una descomposició directa de Schur (DDS) i una diagonalització de Fourier. La darrera descompon el sistema original en un conjunt de sub-sistemes 2D independents que es resolen mitjançant l'algorisme DDS. Atès que no s'imposen restriccions a les direccions no periòdiques del domini, aquest mètode és aplicable a la resolució de problemes discretitzats mitjançat l'extrusió de malles 2D no estructurades. L'escalabilitat d'aquest mètode ha estat provada amb èxit amb un màxim de 8192 CPU per malles de fins a ~10⁹ volums de control. En el darrer capitol capítol, es presenta un mètode de resolució per l'equació de Transport de Boltzmann (BTE). La estratègia emprada es basa en el mètode d'Ordenades Discretes i pot ser aplicat en discretitzacions no estructurades. El flux per a cada ordenada angular es resol amb un mètode de substitució equivalent a la resolució d'un sistema lineal triangular. La naturalesa seqüencial d'aquest procés fa de la paral·lelització de l'algoritme el principal repte. Diversos algorismes de substitució han estat analitzats, esdevenint una de les heurístiques proposades la millor opció en totes les situacions analitzades, amb excel·lents resultats. Els testos d'eficiència paral·lela s'han realitzat usant fins a 2560 CPU.Direct Numerical Simulation (DNS) of complex flows is currently an utopia for most of industrial applications because computational requirements are too high. For a given flow, the gap between the required and the available computing resources is covered by modeling/simplifying of some terms of the original equations. On the other hand, the continuous growth of the computing power of modern supercomputers contributes to reduce this gap, reducing hence the unresolved physics that need to be attempted with approximated models. This growth, widely relies on parallel computing technologies. However, getting the expected performance from new complex computing systems is becoming more and more difficult, and therefore part of the CFD research is focused on this goal. Regarding to it, some contributions are presented in this thesis. The first objective was to contribute to the development of a general purpose multi-physics CFD code. referred to as TermoFluids (TF). TF is programmed following the object oriented paradigm and designed to run in modern parallel computing systems. It is also intensively involved in many different projects ranging from basic research to industry applications. Besides, one of the strengths of TF is its good parallel performance demonstrated in several supercomputers. In the context of this thesis, the work was focused on the development of two of the most basic libraries that compose TF: I) the Basic Objects Library (BOL), which is a parallel unstructured CFD application programming interface, on the top of which the rest of libraries that compose TF are written, ii) the Linear Solvers Library (LSL) containing many different algorithms to solve the linear systems arising from the discretization of the equations. The first chapter of this thesis contains the main ideas underlying the design and the implementation of the BOL and LSL libraries, together with some examples and some industrial applications. A detailed description of some application-specific linear solvers included in the LSL is carried out in the following chapters. In the second chapter, a parallel direct Poisson solver restricted to problems with one uniform periodic direction is presented. The Poisson equation is solved, at least, once per time-step when modeling incompressible flows, becoming one of the most time consuming and difficult to parallelize parts of the code. The solver here proposed is a combination of a direct Schur-complement based decomposition (DSD) and a Fourier diagonalization. The latter decomposes the original system into a set of mutually independent 2D sub-systems which are solved by means of the DSD algorithm. Since no restrictions are imposed in the non-periodic directions, the overall algorithm is well-suited for solving problems discretized on extruded 2D unstructured meshes. The scalability of the solver has been successfully tested using up to 8192 CPU cores for meshes with up to 10 9 grid points. In the last chapter, a solver for the Boltzmann Transport Equation (BTE) is presented. It can be used to solve radiation phenomena interacting with flows. The solver is based on the Discrete Ordinates Method and can be applied to unstructured discretizations. The flux for each angular ordinate is swept across the computational grid, within a source iteration loop that accounts for the coupling between the different ordinates. The sequential nature of the sweep process makes the parallelization of the overall algorithm the most challenging aspect. Several parallel sweep algorithms, which represent different options of interleaving communications and calculations, are analyzed. One of the heuristics proposed consistently stands out as the best option in all the situations analyzed. With this algorithm, good scalability results have been achieved regarding both weak and strong speedup tests with up to 2560 CPUs

    A Process Model for the Integrated Reasoning about Quantitative IT Infrastructure Attributes

    Get PDF
    IT infrastructures can be quantitatively described by attributes, like performance or energy efficiency. Ever-changing user demands and economic attempts require varying short-term and long-term decisions regarding the alignment of an IT infrastructure and particularly its attributes to this dynamic surrounding. Potentially conflicting attribute goals and the central role of IT infrastructures presuppose decision making based upon reasoning, the process of forming inferences from facts or premises. The focus on specific IT infrastructure parts or a fixed (small) attribute set disqualify existing reasoning approaches for this intent, as they neither cover the (complex) interplay of all IT infrastructure components simultaneously, nor do they address inter- and intra-attribute correlations sufficiently. This thesis presents a process model for the integrated reasoning about quantitative IT infrastructure attributes. The process model’s main idea is to formalize the compilation of an individual reasoning function, a mathematical mapping of parametric influencing factors and modifications on an attribute vector. Compilation bases upon model integration to benefit from the multitude of existing specialized, elaborated, and well-established attribute models. The achieved reasoning function consumes an individual tuple of IT infrastructure components, attributes, and external influencing factors to expose a broad applicability. The process model formalizes a reasoning intent in three phases. First, reasoning goals and parameters are collected in a reasoning suite, and formalized in a reasoning function skeleton. Second, the skeleton is iteratively refined, guided by the reasoning suite. Third, the achieved reasoning function is employed for What-if analyses, optimization, or descriptive statistics to conduct the concrete reasoning. The process model provides five template classes that collectively formalize all phases in order to foster reproducibility and to reduce error-proneness. Process model validation is threefold. A controlled experiment reasons about a Raspberry Pi cluster’s performance and energy efficiency to illustrate feasibility. Besides, a requirements analysis on a world-class supercomputer and on the European-wide execution of hydro meteorology simulations as well as a related work examination disclose the process model’s level of innovation. Potential future work employs prepared automation capabilities, integrates human factors, and uses reasoning results for the automatic generation of modification recommendations.IT-Infrastrukturen können mit Attributen, wie Leistung und Energieeffizienz, quantitativ beschrieben werden. Nutzungsbedarfsänderungen und ökonomische Bestrebungen erfordern Kurz- und Langfristentscheidungen zur Anpassung einer IT-Infrastruktur und insbesondere ihre Attribute an dieses dynamische Umfeld. Potentielle Attribut-Zielkonflikte sowie die zentrale Rolle von IT-Infrastrukturen erfordern eine Entscheidungsfindung mittels Reasoning, einem Prozess, der Rückschlüsse (rein) aus Fakten und Prämissen zieht. Die Fokussierung auf spezifische Teile einer IT-Infrastruktur sowie die Beschränkung auf (sehr) wenige Attribute disqualifizieren bestehende Reasoning-Ansätze für dieses Vorhaben, da sie weder das komplexe Zusammenspiel von IT-Infrastruktur-Komponenten, noch Abhängigkeiten zwischen und innerhalb einzelner Attribute ausreichend berücksichtigen können. Diese Arbeit präsentiert ein Prozessmodell für das integrierte Reasoning über quantitative IT-Infrastruktur-Attribute. Die grundlegende Idee des Prozessmodells ist die Herleitung einer individuellen Reasoning-Funktion, einer mathematischen Abbildung von Einfluss- und Modifikationsparametern auf einen Attributvektor. Die Herleitung basiert auf der Integration bestehender (Attribut-)Modelle, um von deren Spezialisierung, Reife und Verbreitung profitieren zu können. Die erzielte Reasoning-Funktion verarbeitet ein individuelles Tupel aus IT-Infrastruktur-Komponenten, Attributen und externen Einflussfaktoren, um eine breite Anwendbarkeit zu gewährleisten. Das Prozessmodell formalisiert ein Reasoning-Vorhaben in drei Phasen. Zunächst werden die Reasoning-Ziele und -Parameter in einer Reasoning-Suite gesammelt und in einem Reasoning-Funktions-Gerüst formalisiert. Anschließend wird das Gerüst entsprechend den Vorgaben der Reasoning-Suite iterativ verfeinert. Abschließend wird die hergeleitete Reasoning-Funktion verwendet, um mittels “What-if”–Analysen, Optimierungsverfahren oder deskriptiver Statistik das Reasoning durchzuführen. Das Prozessmodell enthält fünf Template-Klassen, die den Prozess formalisieren, um Reproduzierbarkeit zu gewährleisten und Fehleranfälligkeit zu reduzieren. Das Prozessmodell wird auf drei Arten validiert. Ein kontrolliertes Experiment zeigt die Durchführbarkeit des Prozessmodells anhand des Reasonings zur Leistung und Energieeffizienz eines Raspberry Pi Clusters. Eine Anforderungsanalyse an einem Superrechner und an der europaweiten Ausführung von Hydro-Meteorologie-Modellen erläutert gemeinsam mit der Betrachtung verwandter Arbeiten den Innovationsgrad des Prozessmodells. Potentielle Erweiterungen nutzen die vorbereiteten Automatisierungsansätze, integrieren menschliche Faktoren, und generieren Modifikationsempfehlungen basierend auf Reasoning-Ergebnissen
    corecore