28,430 research outputs found

    FlexType: Flexible Text Input with a Small Set of Input Gestures

    Get PDF
    In many situations, it may be impractical or impossible to enter text by selecting precise locations on a physical or touchscreen keyboard. We present an ambiguous keyboard with four character groups that has potential applications for eyes-free text entry, as well as text entry using a single switch or a brain-computer interface. We develop a procedure for optimizing these character groupings based on a disambiguation algorithm that leverages a long-span language model. We produce both alphabetically-constrained and unconstrained character groups in an offline optimization experiment and compare them in a longitudinal user study. Our results did not show a significant difference between the constrained and unconstrained character groups after four hours of practice. As expected, participants had significantly more errors with the unconstrained groups in the first session, suggesting a higher barrier to learning the technique. We therefore recommend the alphabetically-constrained character groups, where participants were able to achieve an average entry rate of 12.0 words per minute with a 2.03% character error rate using a single hand and with no visual feedback

    An Ambiguous Technique for Nonvisual Text Entry

    Get PDF
    Text entry is a common daily task for many people, but it can be a challenge for people with visual impairments when using virtual touchscreen keyboards that lack physical key boundaries. In this thesis, we investigate using a small number of gestures to select from groups of characters to remove most or all dependence on touch locations. We leverage a predictive language model to select the most likely characters from the selected groups once a user completes each word. Using a preliminary interface with six groups of characters based on a Qwerty keyboard, we find that users are able to enter text with no visual feedback at 19.1 words per minute (WPM) with a 2.1% character error rate (CER) after five hours of practice. We explore ways to optimize the ambiguous groups to reduce the number of disambiguation errors. We develop a novel interface named FlexType with four character groups instead of six in order to remove all remaining location dependence and enable one-handed input. We compare optimized groups with and without constraining the group assignments to alphabetical order in a user study. We find that users enter text with no visual feedback at 12.0 WPM with a 2.0% CER using the constrained groups after four hours of practice. There was no significant difference from the unconstrained groups. We improve FlexType based on user feedback and tune the recognition algorithm parameters based on the study data. We conduct an interview study with 12 blind users to assess the challenges they encounter while entering text and solicit feedback on FlexType, and we further incorporate this feedback into the interface. We evaluate the improved interface in a longitudinal study with 12 blind participants. On average, participants entered text at 8.2 words per minute using FlexType, 7.5 words per minute using a Qwerty keyboard with VoiceOver, and at 26.9 words per minute using Braille Screen Input

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    TapGazer:Text Entry with finger tapping and gaze-directed word selection

    Get PDF
    While using VR, efficient text entry is a challenge: users cannot easily locate standard physical keyboards, and keys are often out of reach, e.g. when standing. We present TapGazer, a text entry system where users type by tapping their fingers in place. Users can tap anywhere as long as the identity of each tapping finger can be detected with sensors. Ambiguity between different possible input words is resolved by selecting target words with gaze. If gaze tracking is unavailable, ambiguity is resolved by selecting target words with additional taps. We evaluated TapGazer for seated and standing VR: seated novice users using touchpads as tap surfaces reached 44.81 words per minute (WPM), 79.17% of their QWERTY typing speed. Standing novice users tapped on their thighs with touch-sensitive gloves, reaching 45.26 WPM (71.91%). We analyze TapGazer with a theoretical performance model and discuss its potential for text input in future AR scenarios.</p

    Study of accelerometer assisted single key positioning user input systems

    Get PDF
    New designs of user input systems have resulted from the developing technologies and specialized user demands. Conventional keyboard and mouse input devices still dominate the input speed, but other input mechanisms are demanded in special application scenarios. Touch screen and stylus input methods have been widely adopted by PDAs and smartphones. Reduced keypads are necessary for mobile phones. A new design trend is exploring the design space in applications requiring single-handed input, even with eyes-free on small mobile devices. This requires as few keys on the input device to make it feasible to operate. But representing many characters with fewer keys can make the input ambiguous. Accelerometers embedded in mobile devices provide opportunities to combine device movements with keys for input signal disambiguation. Recent research has explored its design space for text input. In this dissertation an accelerometer assisted single key positioning input system is developed. It utilizes input device tilt directions as input signals and maps their sequences to output characters and functions. A generic positioning model is developed as guidelines for designing positioning input systems. A calculator prototype and a text input prototype on the 4+1 (5 positions) positioning input system and the 8+1 (9 positions) positioning input system are implemented using accelerometer readings on a smartphone. Users use one physical key to operate and feedbacks are audible. Controlled experiments are conducted to evaluate the feasibility, learnability, and design space of the accelerometer assisted single key positioning input system. This research can provide inspiration and innovational references for researchers and practitioners in the positioning user input designs, applications of accelerometer readings, and new development of standard machine readable sign languages

    BRAILLESHAPES : efficient text input on smartwatches for blind people

    Get PDF
    Tese de Mestrado, Engenharia Informática, 2023, Universidade de Lisboa, Faculdade de CiênciasMobile touchscreen devices like smartphones or smartwatches are a predominant part of our lives. They have evolved, and so have their applications. Due to the constant growth and advancements in technology, using such devices as a means to accomplish a vast amount of tasks has become common practice. Nonetheless, relying on touch-based interactions, requiring good spatial ability and memorization inherent to mobile devices, and lacking sufficient tactile cues, makes these devices visually demanding, thus providing a strenuous interaction modality for visually impaired people. In scenarios occurring in movement-based contexts or where onehanded use is required, it is even more apparent. We believe devices like smartwatches can provide numerous advantages when addressing such topics. However, they lack accessible solutions for several tasks, with most of the existing ones for mobile touchscreen devices targeting smartphones. With communication being of the utmost importance and intrinsic to humankind, one task, in particular, for which it is imperative to provide solutions addressing its surrounding accessibility concerns is text entry. Since Braille is a reading standard for blind people and provided positive results in prior work regarding accessible text entry approaches, we believe using it as the basis for an accessible text entry solution can help solidify a standardization for this type of interaction modality. It can also allow users to leverage previous knowledge, reducing possible extra cognitive load. Yet, even though Braille-based chording solutions achieved good results, due to the reduced space of the smartwatch’s touchscreen, a tapping approach is not the most feasible. Hence, we found the best option to be a gesture-based solution. Therefore, with this thesis, we explored and validated the concept and feasibility of Braille-based shapes as the foundation for an accessible gesture-based smartwatch text entry method for visually impaired people

    WearPut : Designing Dexterous Wearable Input based on the Characteristics of Human Finger Motions

    Get PDF
    Department of Biomedical Engineering (Human Factors Engineering)Powerful microchips for computing and networking allow a wide range of wearable devices to be miniaturized with high fidelity and availability. In particular, the commercially successful smartwatches placed on the wrist drive market growth by sharing the role of smartphones and health management. The emerging Head Mounted Displays (HMDs) for Augmented Reality (AR) and Virtual Reality (VR) also impact various application areas in video games, education, simulation, and productivity tools. However, these powerful wearables have challenges in interaction with the inevitably limited space for input and output due to the specialized form factors for fitting the body parts. To complement the constrained interaction experience, many wearable devices still rely on other large form factor devices (e.g., smartphones or hand-held controllers). Despite their usefulness, the additional devices for interaction can constrain the viability of wearable devices in many usage scenarios by tethering users' hands to the physical devices. This thesis argues that developing novel Human-Computer interaction techniques for the specialized wearable form factors is vital for wearables to be reliable standalone products. This thesis seeks to address the issue of constrained interaction experience with novel interaction techniques by exploring finger motions during input for the specialized form factors of wearable devices. The several characteristics of the finger input motions are promising to enable increases in the expressiveness of input on the physically limited input space of wearable devices. First, the input techniques with fingers are prevalent on many large form factor devices (e.g., touchscreen or physical keyboard) due to fast and accurate performance and high familiarity. Second, many commercial wearable products provide built-in sensors (e.g., touchscreen or hand tracking system) to detect finger motions. This enables the implementation of novel interaction systems without any additional sensors or devices. Third, the specialized form factors of wearable devices can create unique input contexts while the fingers approach their locations, shapes, and components. Finally, the dexterity of fingers with a distinctive appearance, high degrees of freedom, and high sensitivity of joint angle perception have the potential to widen the range of input available with various movement features on the surface and in the air. Accordingly, the general claim of this thesis is that understanding how users move their fingers during input will enable increases in the expressiveness of the interaction techniques we can create for resource-limited wearable devices. This thesis demonstrates the general claim by providing evidence in various wearable scenarios with smartwatches and HMDs. First, this thesis explored the comfort range of static and dynamic touch input with angles on the touchscreen of smartwatches. The results showed the specific comfort ranges on variations in fingers, finger regions, and poses due to the unique input context that the touching hand approaches a small and fixed touchscreen with a limited range of angles. Then, finger region-aware systems that recognize the flat and side of the finger were constructed based on the contact areas on the touchscreen to enhance the expressiveness of angle-based touch input. In the second scenario, this thesis revealed distinctive touch profiles of different fingers caused by the unique input context for the touchscreen of smartwatches. The results led to the implementation of finger identification systems for distinguishing two or three fingers. Two virtual keyboards with 12 and 16 keys showed the feasibility of touch-based finger identification that enables increases in the expressiveness of touch input techniques. In addition, this thesis supports the general claim with a range of wearable scenarios by exploring the finger input motions in the air. In the third scenario, this thesis investigated the motions of in-air finger stroking during unconstrained in-air typing for HMDs. The results of the observation study revealed details of in-air finger motions during fast sequential input, such as strategies, kinematics, correlated movements, inter-fingerstroke relationship, and individual in-air keys. The in-depth analysis led to a practical guideline for developing robust in-air typing systems with finger stroking. Lastly, this thesis examined the viable locations of in-air thumb touch input to the virtual targets above the palm. It was confirmed that fast and accurate sequential thumb touch can be achieved at a total of 8 key locations with the built-in hand tracking system in a commercial HMD. Final typing studies with a novel in-air thumb typing system verified increases in the expressiveness of virtual target selection on HMDs. This thesis argues that the objective and subjective results and novel interaction techniques in various wearable scenarios support the general claim that understanding how users move their fingers during input will enable increases in the expressiveness of the interaction techniques we can create for resource-limited wearable devices. Finally, this thesis concludes with thesis contributions, design considerations, and the scope of future research works, for future researchers and developers to implement robust finger-based interaction systems on various types of wearable devices.ope
    corecore